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Abstract

This paper presents a new model for capturing spa-
tial information for object categorization with bag-of-words
(BOW). BOW models have recently become popular for the
task of object recognition, owing to their good performance
and simplicity. Much work has been proposed over the
years to improve the BOW model, where the Spatial Pyra-
mid Matching (SPM) technique is the most notable. We pro-
pose a new method to exploit spatial relationships between
image features, based on binned log-polar grids. Our model
works by partitioning the image into grids of different scales
and orientations and computing histogram of local features
within each grid. Experimental results show that our ap-
proach improves the results on three diverse datasets over
the SPM technique.

1. Introduction
Classifying images into semantic categories is one of

the most challenging problems in computer vision. This is
especially true when images contain occlusion and back-
ground clutter. Appearances of objects belonging to the
same category may vary significantly due to changes in
viewpoint, scale and deformation.

Recently, appearance-based methods [5][6][20][24]
have been successfully applied to the problem of generic
object class categorization. A popular strategy is the Bag-
of-Words (BOW) model [5], which represents an image as
an orderless collection of local features and has shown im-
pressive levels of performance [10][23][27], in spite of the
simplicity of the scheme. The idea is built on the success
of similar techniques in the text mining domain [11], where
documents are presented as a vector of word counts.

The BOW model, however, discards the spatial relation-
ships of local descriptors, which severely limits its descrip-
tive power. One of the most successful solutions to this

problem, described in the seminal work by Lazebnik et
al. [19], is called Spatial Pyramid Matching (SPM).

Spatial relationships between image features are impor-
tant in the sense that they provide a kind of ‘linkage’ in-
formation between independent image features. We believe
that this information will help us better understand how ob-
ject parts are related to each other, and in theory, enable
classifiers to better discriminate object categories from each
other. We argue that objects belonging to the same cate-
gory exhibit significant regularity in their geometry, and that
this information should and can be incorporated into object
recognition systems.

In this paper, we propose a novel approach in captur-
ing spatial information for the BOW model. Our proposed
technique, binned log-polar histograms, are based on the
binned log-polar representation, which was initially devel-
oped for shape matching [2]. Unlike the SPM model, where
a sequence of increasingly coarser grids are placed over
the image, our approach divides the image into grids of
different scales and different orientations. This explicitly
captures the distribution of image features both in distance
and orientations. We evaluate variations of our model on
three diverse datasets: Caltech101 [7], Graz-02 [9] and 15
Scenes [17]. The experiments lead to the observation that
our model outperforms SPM in capturing spatial informa-
tion.

The rest of the paper is organized as follows. In Sec-
tion 2 we will discuss the original concept of the BOW
model, followed by a selection of previous works on incor-
porating spatial information. We then explain our proposed
algorithms in Section 3. In Section 4 we will present the
datasets and experimental results. Finally, we will conclude
this work in Section 5.

2. Previous Work
In this section, we first discuss the strengths and weak-

nesses of the BOW model, followed by the key principles of
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Figure 1. Bag of words model.

the SPM scheme and finally, the original binned log-polar
representation.

2.1. Bag of Words Model

The BOW model has shown remarkable performance in
a wide range of object recognition tasks, in spite of its sim-
plicity. The key idea is that images can be represented by
different distributions of visual words (usually SIFT key-
points [14]). A BOW is then built as a histogram over vi-
sual word occurrences. Figure 1 shows the key steps for
a typical BOW-based method. In its basic form, the BOW
method discards all spatial information about how features
are related and distributed across images.

Over the years, many works have been proposed to im-
prove the original BOW model, such as generative meth-
ods [18][4] for modelling the co-occurrence of image fea-
tures, and discriminative codebook learning in [12][15][26].
In this paper, we focus on discovering spatial relationships
between image features. Sivic et al., in [21] were one
of the first in attempt to incorporate topological informa-
tion by joining features into pairs. Zhang et al., in [27],
utilizes proximity between features, measured by distance
(normally L2) between feature coordinates. However, these
approaches exploit the weakness of the dataset, where the
object of interest are almost always located in the middle
of images and are roughly aligned. Thureson et al. fur-
ther extends on the pairs-of-features approach by organiz-
ing features into triplets in [22]. Local spatial information
is also represented in a template-based model in [2], which
introduces the concept of geometric blur. Berg et al. later
further extended the geometric blur concept in [3], where
second order spatial information is utilized to solve the cor-
respondence between geometric blur features. By discov-
ering pairwise configurations between edges, Leordeanu et
al. in [13] have proposed the use of edge fragments for
category recognition, where model parameters are learned
sequentially. Most recently, the spatial pyramid matching

Figure 2. Shape matching with log-polar representation.

model (SPM) by Lazebnik et al. [19] have demonstrated
promising results.

2.2. Spatial Pyramid Matching

The SPM is one of the most successful extensions of the
BOW model. The model builds on the Pyramid Matching
kernel by Grauman and Darrell [10]. Broadly speaking,
pyramid matching works by placing a sequence of increas-
ingly coarser grids over the image and taking a weighted
sum of the number of matches that occur at each scale. Fea-
ture matches from finer scales are given more weight.

It is important to note that matches found in scale L also
include all the matches found at the finer scale L - 1. Lazeb-
nik et al. argued that because the pyramid matching kernel
is simply a weighted sum of histogram intersections, they
implemented KL as a single histogram intersection of long
vectors formed by concatenating the weighted histogram of
all channels at all resolutions [1]. In that, spatial pyramids
repeatedly subdivide an image, computing all features re-
peatedly for all progressively smaller sub-images. The first
image is always the global image, and then the image is
divided into 2 × 2 sub-images, and features are computed
from each of those. The image may then be further sub-
divided, this time into 4 × 4 subregions, and so on. For a
spatial pyramid with l levels, the maximum granularity will
be a division of an image into 2l × 2l−1 sub-images. This
means that when L = 0, the feature vector size is the size of
the codebook, M .

2.3. Binned Log-Polar Grids

Our proposed method is based on binned log-polar rep-
resentation. Belongie et al. in [1] first proposed the binned
log-polar scheme as a descriptor for the purpose of shape
matching. In the original work, a histogram of the distri-
bution of points over relative positions was used as a com-
pact, yet highly discriminative descriptor. In order to make
the descriptor more sensitive to positions of nearby sample



points than to those points far away, bins are uniform in logj

polar space, where sample points on a shape can express the
configuration of the entire shape relative to the reference
point. The descriptor can be applied to greyscale images,
but it is very dependent on brightness values. Hence it is
more applicable for line drawings.

Broadly speaking, the technique is based on representing
a shape by a set of sample points from the external and inter-
nal contours of an object, normally detected using an edge
detector. Assuming that there is a stored view ‘sufficiently’
similar in configuration and pose, the correspondence pro-
cess will succeed. Figure 2 illustrates an example of the
log-polar representation.

3. New Methods for Capturing Spatial Infor-
mation

In this section we describe methods for exploiting and
capturing geometrical information between image features.
Because all two of our algorithms are built from the visual
words from the BOW model, it is important that we explain
how these words are produced in detail. To this end, we will
first explain the steps that we took in order to produce the
vocabulary, before explaining our proposed algorithms.

3.1. Preprocessing from SIFT Keypoints to Visual
Dictionary

Recall that there are two categories of approaches in
sampling areas of interest from images – using scale invari-
ant detectors and dense sampling. For this work, we took
advantage of the second approach. Our reason for this is
twofold. Firstly, scale invariant detectors are not known to
be good at capturing uniform information such as sea, sky
or flat surfaces – information that is essential for our work.
Secondly, research by Fei-Fei et al. [8] found that dense fea-
tures work better for scene classification and that random
sampling of keypoints work nearly as well as keypoints se-
lected by detectors [16].

In order to construct our visual dictionary, we first com-
pute a dense overlapped grid of 16× 16 pixels over the en-
tire image, with a spacing of 8 pixels per grid. We then use
Lowe’s high dimensional SIFT descriptor to describe each
of the 16 × 16 patches. Each descriptor consists of 128-
dimensions. K-means clustering is then utilized to group
similar image patches (now in SIFT descriptor format) into
M bins, where M is the vocabulary size for our experiments
and M = 200.

In order to simplify the problem into more intuitive and
describable terms, we visualize each descriptor as a label,
the label being the bin number that the descriptor most
closely matches in L2 distance. For example, if a patch de-
scriptor most closely matches cluster centre 202, then that
patch is replaced with 202.

Figure 3. Log-polar label distribution representation.

3.2. Method 1: Log-Polar Shapes

Once the image is converted and represented by labels,
we apply our methods directly on top of this new represen-
tation. Our first type of methods focuses on capturing the
distribution of image features using binned log-polar repre-
sentation.

In the original shape-matching binned log-polar repre-
sentation, edges are first detected from objects, and these
edges are then converted into dots. A binned log-polar de-
scriptor is then used to describe the distribution of these dots
in 2D space. For our work, we treat image feature labels as a
dots and we utilize binned log-polar representation to cap-
ture the spatial relationships between all labels. However,
we distinguish the types of dots since each label represents
a different visual pattern.

To this end, for every label in the codebook, we look
for the same label from all of the grids within the log-polar
representation, where the distribution of labels is charac-
terized with a histogram. See Figure 3 for an example of
our log-polar representation. After computing the distribu-
tion for every label, we simply concatenate all histograms
(a histogram per label) to form a large single feature vector,
where the size is M × 32.

Our reasoning behind this approach is that for example,
if the label 3 represents an image patch depicting the wheel
of a car, by looking for the same label across the entire im-
age, we will be able to see other occurrences of the same
image patch. In this case, the wheel of a car. It is impor-
tant to note that we apply this to all of the labels from the
codebook, where the size of the codebook M , is 200.

The benefits of this representation are twofold. First, it
results in a compact, yet discriminative descriptor for each
image feature (label). Second, the representation accounts
for increasing positional uncertainty with distance from the
point of origin, which is an important component for cap-
turing spatial information.

One limitation of the proposed single log-polar repre-
sentation is that the centre of the log-polar grid is always
located in the middle of the image. However, in many in-
stances, the object of interest is not always located in the



Figure 4. Multiple multi-scaled log-polar grids.

middle of the image, therefore the object might not rep-
resented properly. In order to improve on this, we extend
the single log-polar approach by having multiple log-polar
grids (5 in total) in the image. They are located in the mid-
dle and also the four corners of the image, to better capture
the distribution of image features of objects. Finally, we
simply concatenate all histograms from all of the grids to-
gether to form a large feature vector.

Lastly, we also notice that objects can be of different
sizes when depicted in images, which means that our fixed
size log-polar approach will not be sufficient in represent-
ing all objects. To solve this problem, we further extend
this implementation by not only include multiple log-polar
grids of the same size, we included multiple multi-scaled
log-polar grids over the image, in order to account for ob-
jects of different sizes. This extension is similar to the SPM
approach, where it works by placing a sequence of increas-
ingly coarser grids over the image and taking a weighted
sum of the number of matches that occur at each scale. Fig-
ure 4 illustrates an example of our multi-scaled approach.

3.3. Method 2: Log-Polar Histogram

Our second method focuses on characterizing the distri-
bution of all image feature labels within each of the cells.
Similar to our previous approach, a binned log-polar repre-
sentation is mapped onto the label representation of the im-
age, then for each of the grids, a histogram with size = M
is then computed. This approach is similar to the successful
SPM scheme, where the image is divided into smaller sub-
regions and the distribution of image features is then char-
acterized with a histogram. Figure 5 illustrates an example
of this approach.

The difference of this approach, compared to SPM, lies
in the way subregions are defined. Unlike the original SPM
scheme, the size of subregions can vary greatly depending

Figure 5. Binned log-polar histogram representation.

on how far away from the the centre point. Regions that
are closer to the centre contains less labels, while regions
further away contain a significantly more labels. This im-
plicitly accounts for increasing positional uncertainty with
distance from the point of origin, and hence captures spatial
relationships.

Similar to the previous proposed methods, we further ex-
tended this approach to including both multiple log-polar
and multiple multi-scaled log-polar representation to ac-
count for variation in object location and size.

4. Evaluation
In the first part of this section, we describe the datasets

used to evaluate out new algorithms, and then describe the
experiments we performed, and give the result.

4.1. Datasets

We evaluate our proposed models on three popular
datasets: Caltech101 [7], Graz02 [9] and 15 Scenes [17].

4.1.1 Caltech101 [7]

This is probably one of the most diverse datasets in the re-
search community. There are in total 101 object categories
in the dataset, where each object class contains between 31
and 800 images. The resolution for most of the images is
about 300 by 300 pixels. For this dataset, we follow the
experimental setup of Zhang et al. [27]. Specifically, 30 im-
ages per class are used for training and up to 25 images are
tagged as test images.

4.1.2 15 Scenes [9]

The 15 scenes dataset contains fifteen categories. Each cate-
gory contains 200 to 400 images with the average size about



300 by 250 pixels. For this dataset, we followed the experi-
mental setup of Lazebnik et al. [19]. That is, for each of the
categories, 100 images are randomly selected for training
and the remaining images are tagged as test images.

4.1.3 GRAZ-02 [17]

The dataset contains four categories: Bike, Person, Cars and
Background. This dataset is much more complex that the
Caltech101 dataset in terms of intra-class variation, such
as illumination, scale, pose, viewing angle, occlusion, and
clutter. We follow the experimental setup of Opelt [17].
Namely, we took a training set consisting of 150 images
of the object category as positive images and 150 of the
counter-class as negative images. The tests were carried out
on 300 images half belonging to the category and half not.

4.2. Methods

We report the experiment setup and results in this sec-
tion. Multi-class classification is done with SVM classifier
and the SMO learning algorithm, with default parameters
as specified in WEKA V.3.5.5 [25]. All experiments are re-
peated 10 times with different randomly selected training
and testing splits. The final result is reported as the means
and standard deviation accuracy of the individual runs. We
first show experiment results using only the proposed mod-
els, then follow this with results from combining our models
with the original frequency histogram and SPM.

4.3. Evaluation

The performance of the SPM scheme is 63.6% for the
Caltech101 dataset. Both our single log-polar shapes and
histogram representations performed well on this dataset,
with accuracy of 62.67% and 65.32% respectively. One of
the main reasons why our single log-polar representations
worked so well on this dataset, is due to the placement of
the objects in images – nearly all objects of interest are lo-
cated in the middle of the image, which is completely cov-
ered by our log-polar grids. For the shapes approaches, per-
formance is increased by 2 to 3 percents after either mul-
tiple log-polar grids were included, both fixed and differ-
ent scales. However, such increase in performance did not
occur for the histogram based approaches, instead, we ob-
served a performance decrease of about 2%, mainly due to
over-fitting.

For the Graz-02 dataset, the performance of the SPM
model is 69.34% for the Bike class, which is fairly poor con-
sidering there are only two classes – bike and background.
In this dataset, the object of interest (bikes), are not always
located in the middle of the image and they vary greatly in
terms of size and appearances. Our single log-polar rep-
resentations performed about the same as the SPM model.
However, once multiple log-polar grids were included, we

Table 1. Results for Caltech101, our methods compared with the
original SPM.

Spatial Pyramid Matching (SPM) 63.6% ±0.9
Single Log-Polar Shapes 62.67% ±1.5
Multiple Log-Polar Shapes 64.98% ±1.2
Multi-Scaled Log-Polar Shapes 65.08% ±0.9
Single Log-Polar Histogram 65.32% ±0.9
Multiple Log-Polar Histogram 63.81% ±0.8
Multi-Scaled Log-Polar Histogram 63.12% ±0.9

Table 2. Results for the Bike class in Graz-02, our methods com-
pared with the original SPM.

Spatial Pyramid Matching (SPM) 69.34%±1.7
Single Log-Polar Shapes 68.76% ±1.4
Multiple Log-Polar Shapes 72.98% ±1.3
Multi-Scaled Log-Polar Shapes 73.18% ±1.3
Single Log-Polar Histogram 67.11% ±1.4
Multiple Log-Polar Histogram 72.78% ±1.5
Multi-Scaled Log-Polar Histogram 73.11% ±1.2

Table 3. Results for 15 Scenes, our methods compared with the
original SPM.

Spatial Pyramid Matching (SPM) 79.4% ±0.3
Single Log-Polar Shapes 74.5% ±0.8
Multiple Log-Polar Shapes 79.9% ±0.5
Multi-Scaled Log-Polar Shapes 79.5% ±0.4
Single Log-Polar Histogram 75.5% ±0.4
Multiple Log-Polar Histogram 79.8% ±0.4
Multi-Scaled Log-Polar Histogram 79.8% ±0.5

observed a performance increase of 3 to 4%, especially the
multi-scaled log-polar representation. The mainly reason
for the improvement over the SPM model is that our log-
polar grids are located not only in the middle of the image,
they are also multi-scaled to capture bikes of different sizes.

While for the 15 Scenes dataset, the performance of the
SPM model is 79.4%. All of our best approaches yield sim-
ilar results to the SPM model. The main reason, we believe,
is that unlike objects, there are no repeating ‘shapes’ to cap-
ture in a scene. Since there are no ‘shapes’ to capture, our
log-polar representation is reduced to a normal SPM-like
model, in capturing the distribution of image features only.

5. Discussion and Conclusion
Appearance-based methods have been successfully ap-

plied recently for the task of object recognition, due to their
simplicity and good performance. One of the popular strate-
gies is the Bag-of-Words model, which represents an image
as an orderless collection of local features. In order to incor-
porate spatial information, one of the most notable models
is the Spatial Pyramid Matching scheme.

Ever since the scheme was introduced back in 2006, it



has been the cornerstone of many successful object recog-
nition models. Over the years, various improvements have
been proposed for the SPM scheme, some focus on alterna-
tive ways of codebook construction in order to produced a
more representative codebook; some focus on new kernels
and classification techniques; some focus on using different
or multiple descriptors. However, not much work has been
done on how to capture spatial information directly from
images more effectively.

Despite good performances of the SPM model, we do not
believe that by placing a sequence of increasingly coarser
grids over the image and taking a weighted sum of the num-
ber of matches that occur at each scale, is the most effec-
tive way of capturing spatial information. This weakness
was demonstrated by the low performance of the GRAZ-02
dataset using the SPM model.

In this paper, we proposed two new types of approaches
for capturing spatial information based on the binned log-
polar representation. Unlike the SPM model, our models
work by partitioning the image into grids of different scales
and orientations. We experimented our two types of mod-
els on three popular datasets, where the results of our mod-
els showed significant improvements over the original SPM
model.
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