7 research outputs found

    Context-Aware Driver Distraction Severity Classification using LSTM Network

    Get PDF
    Advanced Driving Assistance Systems (ADAS) has been a critical component in vehicles and vital to the safety of vehicle drivers and public road transportation systems. In this paper, we present a deep learning technique that classifies drivers’ distraction behaviour using three contextual awareness parameters: speed, manoeuver and event type. Using a video coding taxonomy, we study drivers’ distractions based on events information from Regions of Interest (RoI) such as hand gestures, facial orientation and eye gaze estimation. Furthermore, a novel probabilistic (Bayesian) model based on the Long shortterm memory (LSTM) network is developed for classifying driver’s distraction severity. This paper also proposes the use of frame-based contextual data from the multi-view TeleFOT naturalistic driving study (NDS) data monitoring to classify the severity of driver distractions. Our proposed methodology entails recurrent deep neural network layers trained to predict driver distraction severity from time series data

    A Context Aware Classification System for Monitoring Driver’s Distraction Levels

    Get PDF
    Understanding the safety measures regarding developing self-driving futuristic cars is a concern for decision-makers, civil society, consumer groups, and manufacturers. The researchers are trying to thoroughly test and simulate various driving contexts to make these cars fully secure for road users. Including the vehicle’ surroundings offer an ideal way to monitor context-aware situations and incorporate the various hazards. In this regard, different studies have analysed drivers’ behaviour under different case scenarios and scrutinised the external environment to obtain a holistic view of vehicles and the environment. Studies showed that the primary cause of road accidents is driver distraction, and there is a thin line that separates the transition from careless to dangerous. While there has been a significant improvement in advanced driver assistance systems, the current measures neither detect the severity of the distraction levels nor the context-aware, which can aid in preventing accidents. Also, no compact study provides a complete model for transitioning control from the driver to the vehicle when a high degree of distraction is detected. The current study proposes a context-aware severity model to detect safety issues related to driver’s distractions, considering the physiological attributes, the activities, and context-aware situations such as environment and vehicle. Thereby, a novel three-phase Fast Recurrent Convolutional Neural Network (Fast-RCNN) architecture addresses the physiological attributes. Secondly, a novel two-tier FRCNN-LSTM framework is devised to classify the severity of driver distraction. Thirdly, a Dynamic Bayesian Network (DBN) for the prediction of driver distraction. The study further proposes the Multiclass Driver Distraction Risk Assessment (MDDRA) model, which can be adopted in a context-aware driving distraction scenario. Finally, a 3-way hybrid CNN-DBN-LSTM multiclass degree of driver distraction according to severity level is developed. In addition, a Hidden Markov Driver Distraction Severity Model (HMDDSM) for the transitioning of control from the driver to the vehicle when a high degree of distraction is detected. This work tests and evaluates the proposed models using the multi-view TeleFOT naturalistic driving study data and the American University of Cairo dataset (AUCD). The evaluation of the developed models was performed using cross-correlation, hybrid cross-correlations, K-Folds validation. The results show that the technique effectively learns and adopts safety measures related to the severity of driver distraction. In addition, the results also show that while a driver is in a dangerous distraction state, the control can be shifted from driver to vehicle in a systematic manner

    Vision-based Detection of Mobile Device Use While Driving

    Get PDF
    The aim of this study was to explore the feasibility of an automatic vision-based solution to detect drivers using mobile devices while operating their vehicles. The proposed system comprises of modules for vehicle license plate localisation, driver’s face detection and mobile phone interaction. The system were then implemented and systematically evaluated using suitable image datasets. The strengths and weaknesses of individual modules were analysed and further recommendations made to improve the overall system’s performance

    Predictive Model of Driver\u27s Eye Fixation for Maneuver Prediction in the Design of Advanced Driving Assistance Systems

    Get PDF
    Over the last few years, Advanced Driver Assistance Systems (ADAS) have been shown to significantly reduce the number of vehicle accidents. Accord- ing to the National Highway Traffic Safety Administration (NHTSA), driver errors contribute to 94% of road collisions. This research aims to develop a predictive model of driver eye fixation by analyzing the driver eye and head information (cephalo-ocular) for maneuver prediction in an Advanced Driving Assistance System (ADAS). Several ADASs have been developed to help drivers to perform driving tasks in complex environments and many studies were conducted on improving automated systems. Some research has relied on the fact that the driver plays a crucial role in most driving scenarios, recognizing the driver’s role as the central element in ADASs. The way in which a driver monitors the surrounding environment is at least partially descriptive of the driver’s situation awareness. This thesis’s primary goal is the quantitative and qualitative analysis of driver behavior to determine the relationship between driver intent and actions. The RoadLab initiative provided an instrumented vehicle equipped with an on-board diagnostic system, an eye-gaze tracker, and a stereo vision system for the extraction of relevant features from the driver, the vehicle, and the environment. Several driver behavioral features are investigated to determine whether there is a relevant relation between the driver’s eye fixations and the prediction of driving maneuvers

    Learning outcomes of classroom research

    Get PDF

    Learning Outcomes of Classroom Research

    Get PDF
    Personal pronouns are a linguistic device that is used to engage students at various educational levels. Personal pronouns are multifunctional, and their functions range from inclusion to exclusion, and include establishing of rapport with students. In this chapter, we compare the use of personal pronouns at university and secondary school levels. Our previous study (Yeo & Ting, 2014) showed the frequent use of you in lecture introductions (2,170 instances in the 37,373-word corpus) to acknowledge the presence of students. The arts lecturers were more inclusive than the science lecturers, reflected in the less frequent use of exclusive-we and we for one, as well as the frequent use of you-generalised. We have also compiled and analysed a 43,511-word corpus from 15 English lessons in three Malaysian secondary schools. This corpus yielded 2,019 instances of personal pronoun use. The results showed that you was the most frequently used personal pronoun, followed by we and I. You-audience was used more than you-generalised, and the main function was to give instructions to students. The teachers appeared to be more directive than the lecturers in the previous study, who sometimes used the inclusive-we for you and I and we for I to lessen the social distance with students, indicating that the discourse functions of personal pronouns vary with the educational context. The findings suggest that educators can be alerted to the versatility of personal pronouns, for example, for engaging students in the lesson and for asserting authority in the subject matter. Keywords: student engagement; personal pronouns; lecture; classroom; teache
    corecore