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ABSTRACT 

Understanding the safety measures regarding developing self-driving futuristic cars is a 

concern for decision-makers, civil society, consumer groups, and manufacturers. The researchers 

are trying to thoroughly test and simulate various driving contexts to make these cars fully secure 

for road users. Including the vehicle’ surroundings offer an ideal way to monitor context-aware 

situations and incorporate the various hazards.  In this regard, different studies have analysed 

drivers’ behaviour under different case scenarios and scrutinised the external environment to 

obtain a holistic view of vehicles and the environment. Studies showed that the primary cause of 

road accidents is driver distraction, and there is a thin line that separates the transition from 

careless to dangerous. While there has been a significant improvement in advanced driver 

assistance systems, the current measures neither detect the severity of the distraction levels nor 

the context-aware, which can aid in preventing accidents. Also, no compact study provides a 

complete model for transitioning control from the driver to the vehicle when a high degree of 

distraction is detected. 

The current study proposes a context-aware severity model to detect safety issues related to 

driver’s distractions, considering the physiological attributes, the activities, and context-aware 

situations such as environment and vehicle. Thereby, a novel three-phase Fast Recurrent 

Convolutional Neural Network (Fast-RCNN) architecture addresses the physiological attributes. 

Secondly, a novel two-tier FRCNN-LSTM framework is devised to classify the severity of driver 

distraction.  Thirdly, a Dynamic Bayesian Network (DBN) for the prediction of driver distraction. 

The study further proposes the Multiclass Driver Distraction Risk Assessment (MDDRA) model, 

which can be adopted in a context-aware driving distraction scenario. Finally, a 3-way hybrid 

CNN-DBN-LSTM multiclass degree of driver distraction according to severity level is 

developed. In addition, a Hidden Markov Driver Distraction Severity Model (HMDDSM) for the 

transitioning of control from the driver to the vehicle when a high degree of distraction is 

detected.  

This work tests and evaluates the proposed models using the multi-view TeleFOT naturalistic 

driving study data and the American University of Cairo dataset (AUCD). The evaluation of the 

developed models was performed using cross-correlation, hybrid cross-correlations, K-Folds 

validation. The results show that the technique effectively learns and adopts safety measures 

related to the severity of driver distraction. In addition, the results also show that while a driver is 

in a dangerous distraction state, the control can be shifted from driver to vehicle in a systematic 

manner. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction  

The advent of Intelligent Transportation Systems (ITS) has not only revolutionised how 

safety information is gathered and shared, but it has also increased road safety. A critical 

requirement for improving road traffic safety is data availability, such as the causes of driver 

distraction and safety information on blind spots, emergency brake lights, accidents on the 

road, prevailing weather conditions and collision warnings [1]. ITS have greatly improved 

how such information is gathered and shared. Additionally, these systems aid in sharing 

critical vehicle information, such as signal intersections, acceleration, and the speed and 

direction of movement of vehicles. Although the availability of information and the adoption 

of ITS have greatly improved road safety, drivers still need to react to changing context-

aware information on the road such as road condition, dual carriageways, urban roads, 

weather conditions, and other fast-moving vehicles, necessitating research into real-time 

context-aware systems that aid in accident prevention.  

The US National Highway Traffic Safety Administration (NHTSA) cites driver distraction 

as one of the significant causes of road traffic accidents [2]. A major cause of driver 

distraction – according to NHTSA – is the presence of multiple in-vehicle electronic devices, 

promoting the agency to published guidelines discouraging excessive distraction [2]. Excess 

electronic devices, coupled with an ever-increasing amount of information presented on 

vehicle user interfaces, are a significant cause of distraction, occupying the driver’s attention 

to dangerous levels that can easily cause accidents. Modern-day infotainment systems divert 

the driver’s visual attention as they require complex operations [3].  A considerable amount 

of safe driving inputs is visual, while the outputs are predominantly manual activities, 

including feet and hand movements on the accelerator, steering wheel, and gear shift. 

Additionally, gazing at in-vehicle dashboard-monitors makes the driver take their eyes off the 

road, in most cases accompanied by removing a hand from the steering wheel to manipulate 

the in-vehicle display [4].   

Visual input dynamically affects the perception of the driver’s behaviour within a context-

aware driving environment. Consequently, the impact and influence on the driver’s behaviour 

and decision-making processes can be hugely detrimental to a driver’s safety on the road. 

Research has shown that human beings can only hold the same concentration level for more 

than three hours at a time. Therefore, the European driving law obliges drivers, especially 
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those driving HGVs, to have a rest break every three hours. This safety measure is monitored 

by a tracker installed in the vehicle.  

Nevertheless, various studies have been carried out to understand drivers’ behaviours in 

different environments, especially concerning existing context-aware safety systems that have 

demonstrated some limitations regarding a clear-cut differentiation between careless and 

normal driving behaviour. This research proposes an Advanced Driver Assistance System 

(ADAS) to capture a driver’s context state and distractions to alert drivers in potentially risky 

situations. This gives the driver time to change their behaviour to avoid a critically dangerous 

situation; this encompasses the primary motivation for using this software. 

This introductory part of this thesis encompasses the research background, which sheds 

light on the field of context-aware research. This is followed by the research motivations, 

which present the reasons for this study, identifying the research gaps, thereby underlining 

the primary deficiencies in previous research, and the research questions, wherein the 

principal interrogations supporting this research are asked. The research objectives present 

the primary orientation of this research and are followed by the research aims, highlighting 

the achievable milestones of this study. The contributions to the present research are 

presented to highlight the research achievements and delineate its limitations. Finally, the 

different steps of this thesis are detailed and presented for maximum clarity.  

1.2 Research Background 

In current society, driving is considered necessary, especially for families and commuting. 

However, driving introduces significant consequences, such as car crashes or other forms of 

accidents related to human error and people control these vehicles.  

Estimates show that human error accounts for almost 94% of road traffic accidents, while 

75% of accidents are attributed to the bad decisions made by the driver [5]. Studies on deaths 

resulting from road traffic accidents showed that 55% of deaths were careless driving. 

Indeed, a driver taking their gaze from the road for 5-6 seconds at a speed of 55 mph will 

travel the length of a football pitch [3], thus underlining how dangerous it can be for a driver 

to lose their focus on the road and lose control of their vehicle. Thus, a few seconds of 

distracted behaviour can have severe consequences.  

Critically, the driver’s behaviour can be significantly affected by in-vehicle devices, such 

as infotainment systems. Indeed, radio-sets, Compact Disc (CD) players, mobile phones 

connected to the car dashboard, among others, are an enormous source of distraction, causing 

drivers to perform actions that lead to dangerous and unacceptable driving behaviour, thereby 
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breaching UK/EU driving laws. Therefore, detecting and monitoring driver behaviour are of 

paramount importance to avoid catastrophic situations. Driver behaviour detection thereby 

finds wide usage in designing and developing autonomous driving software and intelligent 

vehicle applications.   

Context-aware information has a significant influence on driver reflexes, instinctive 

reactions and driving behaviour. This context-aware changes dynamically, and so do the 

perceptions of drivers and the associated driving risks and hazards. Mitigating driving risks in 

such an environment requires using a real-time sensing, context-aware system with the ability 

to detect and learn driver behaviours dynamically. Implementing such a system requires a 

clear definition of the context, context-aware information, and components of the context-

aware application. Understanding the context will aid in selecting the context to be used in 

the application, subject to the naturalistic driving data available.  

In ADAS, the analysis of context-aware information relating to driver distraction plays a 

critical role in warning or alerting the driver when the distraction level is potentially 

dangerous. This can be when the driver’s attention has been distracted by in-vehicle 

electronics. Entertainment leading to distraction plays a big part in our everyday lifestyle, and 

this is usually transferred in our driving environment to a smaller scale, including CD players 

or music and sound systems. The reality is that they are now part of the in-vehicle 

environment, and thus drivers must become accustomed to them and find a way to ensure 

they stay in control by managing the distraction level inside the car environment.  

Distraction inside a car can critically affect and reduce a driver’s alertness, concentration, 

and reaction time. To handle driver distraction, researchers worldwide have developed 

intelligent systems, such as Intelligent Driver Assistance Systems (IDAS), to improve driving 

safety and reduce accidents. The use of IDAS to prevent road accidents is part of driver 

monitoring or vehicle-oriented accident prevention measures. Meanwhile, road transportation 

challenges such as faulty road facilities and traffic jam reduction could be monitored using 

ADAS.  

Therefore, the development of ADAS appears to be the only effective way to handle 

accidents and help drivers remain focused while at the steering wheel. This succinct analysis 

of the research background will help to detect the essential motivation factors of this 

research.   
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1.3 Careless Driving and Dangerous Driving  

The classification of careless driving behaviour cannot be carried out without defining 

careless driving behaviour or what normal driving behaviour entails. There is a need to define 

the terminologies used in various classifications of driving behaviour, such as normal, 

careless, dangerous, and abnormal driving. The Oxford Dictionary defines carelessness as 

“not giving sufficient attention or thought to avoid harm or errors” [6].  

According to the United Kingdom Crown Prosecution Service (CPS), a driving offence 

resulting in a fatality is considered dangerous or careless driving. It further states that a driver 

may be engaging in dangerous driving whilst feeling that they are driving safely [7].  

However, careless driving is different from dangerous driving. The CPS listed the attributes 

that will cause a person to be classified as engaging in dangerous driving behaviour, namely 

fast racing, aggressive driving, ignoring traffic lights, violating road signs, dangerous 

overtaking, ignoring vehicle faults, unfit driving, drowsiness, distractions (e.g., using hand-

held phones, reading, infotainment system control, cigarette lighting, passenger 

communications) [7].  

From a legal and regulatory perspective, careless driving is defined by section 3ZA of the 

Road Traffic Act (RTA) 1988, which states that “a person is to be regarded as driving 

without due care and attention if (and only if) the way he drives falls below what would be 

expected of a competent and careful driver” [8]. A driving offence is committed when an 

individual’s “…driving falls below the standard expected of a competent and careful driver” 

or when one drives a vehicle in a public place “…without due care and attention, or 

reasonable consideration for other persons using the road or place” [7]. 

Government agency ThinkDirect states that certain driving behaviours result in 

distractions, such as mobile phones [9]. In addition, National Highway Traffic Safety 

Administration (NHTSA) and Ranney et al [1] define driver distraction as any activity that 

diverts a driver’s attention away from the task at hand, including visual, cognitive, auditory, 

and other elements [10]. Furthermore, potential causes of driver distraction are other 

passengers, external stimuli, and in-vehicle technologies [11]. 

However, it should be noted that some of the attributes mentioned above can be further 

classified as contextually internal or external. Internal attributes influence driver behaviour 

within the vehicle. They can be detected by pervasive technologies, such as sensors, while the 

external attributes primarily affect the vehicle dynamics as detected by roadside cameras or 



  

 5  De Montfort University 

vehicle side cameras. The taxonomy and degree of driving behaviour attributes are significant 

to the severity of the impacts of such driving behaviour.  

According to Smith [2], the infotainment systems of a vehicle is an attack vector that 

could be compromised by an attacker [12]. In a context attack scenario, a third-party remote 

attack could passively monitor the communication channels of the vehicle and remotely 

control its infotainment system such that the driver is prompted to act in a way that could 

distract them, thus resulting in careless driving behaviour.  

Both internal or external vehicle components can cause drivers to behave distracted or 

aggressive, leading them to be classified as careless drivers. Such components are the seat, 

mirror, Global Positioning System (GPS), infotainment system, window, and gearstick.  

There are elements of driving behaviour that should be detected and analysed before a driver 

can be classified as a careless driver.  The list of driving behaviours is not exhaustive and is 

taken from the CPS and police charging standards. The types of careless driving behaviour 

are driving too close, inattention (lapses), fatigue, nodding off, mobile phone use, talking to 

passengers, failure to see traffic lights or signs, unsafe overtaking, and failure to see other 

vehicles or pedestrians [13].  According to driving law and CPS [7], inattention, or having 

more than a momentary lapse in attention, indicates careless driving, whilst anything 

significantly more than a momentary lapse of attention indicates dangerous driving. The 

degree of inattention (distraction) in any incident can be a subjective judgement. However, it 

could be argued that some of the behaviours mentioned above indicate careless driving 

behaviour, but in extreme cases could be classified as dangerous driving.  Further, it could be 

argued that a careless driving state can change from being careless to dangerous, based on the 

severity level of driver distraction.   

Does this raise the question of when driver behaviour can be regarded as usual, careless, or 

dangerous? There is a need to propose a metric for the degree of careless driving and 

assigning a severity level to possible incidents, thereby facilitating the development of an 

ADAS system based on the severity level of careless driving. Drawing knowledge from those 

as mentioned above and as a further contribution of this work, the most applicable definition 

of careless driving in the modern context of ITS is: 

“Careless driving behaviour is a driving act that entails a deviation from normal driving 

behaviour, either by the driver actions or emanating from an entity, such as a malicious cyber 

attacker, pedestrian, or an environment that is influencing the driver behaviour, leading them 

not to give reasonable consideration to others, resulting in careless driving that can cause a 

casualty.” 
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This research proposes a novel approach to adopting naturalistic driving data to classify 

careless driving behaviour (driver inattention). Table 1 identifies the different event and 

distraction types that constitute careless driving and dangerous driving.  However, one of the 

arguments in this work is that some of these distractions can transition from careless to 

dangerous driving when a degree or multiclass distraction is considered.   

 

Table 1-1: Careless and Dangerous Driving Distractions (Ref: RTA 1988) 

CARELESS DRIVING  DANGEROUS DRIVING  

Driving too Close Fast Racing 

Inattention Lapses of Fatigue Aggressive Driving  

Nodding Off (Eyes Closed) Ignoring Traffic Lights  

Mobile Phone Use Violating Road Signs 

Talking to Passengers Dangerous Overtaking 

Failure to See Traffic Lights Ignoring vehicle faults 

Unsafe Overtaking  Drowsiness Eyes Closed 

Failure to See other vehicle and 

Pedestrians  

Distraction (Handheld Phone) 

 Inattention Lapses 

 

1.4 Research Motivation  

Understanding and monitoring drivers’ behaviour in a real-life situation and in real-time 

can be a game-changer in saving people’s lives regarding accidents caused by human error or 

driver distraction. Employing systems that can fully control vehicles is seen by many as 

crucial to reducing human involvement and responsibility in accidents due to the latter being 

distracted by in-vehicle infotainment.  

According to Braunagel [14], ADAS can enable the vehicle to take over lateral and 

longitude control to support the driver in certain situations where driving may be difficult or 

riskier for human drivers. Partially automation of driving exists in various vehicle models, 

with conditionally automated driving functions still being developed. Braunagel further stated 

that the responsibility of controlling a vehicle always lies with the driver, even for partially 

automated vehicles. Occasionally, control can be transferred to the autonomous system to 

allow the driver to perform secondary tasks, such as reading or communicating [14],[15]. 
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However, passing controls to the autonomous system is not a licence to perform secondary 

tasks and is still closely regulated, even in fully autonomous vehicles.  

The employed approach entails driver monitoring through in-vehicle monitoring systems 

that collect and analyse the driver’s state and context-aware information. Still, situations arise 

where the intelligent features of a vehicle need to take over from the driver. Such situations 

may arise where a vehicle detects the possibility of a collision because the driver is distracted 

and consequently is not giving their full attention to the driving activity. Therefore, this 

shows the importance of measuring and classifying the driver’s distraction according to 

severity.  

Previous research on these subjects analyses the accident’s impact according to the 

severity of the injuries sustained by the victims or the number of casualties [16],[17]. Other 

research has focused on communication protocols in VANET, leading to research limitations 

in context-awareness attacks in vehicle networks. It is essential to mention that an incident 

before applying a safety measure is not the best form of prevention, and it is best to eliminate 

the drivers’ behaviour that led to that accident. The advent of autonomous vehicles has made 

monitoring driver activity possible via sensors and pervasive technologies, such as cameras 

incorporated into ADAS.  

This research is from the driving behaviour perspective and the close interaction and 

influence of the driver’s behaviour on context-aware information. However, proactive is 

preferable to the reaction after an accident, especially when human life is the price to pay for 

an incomplete or ill-designed system [18],[19].  This evaluation of the main reasons and 

motivating factors for engaging in this task of using context-aware systems to understand and 

reduce human involvement, and most importantly, reduce human error in vehicle accidents, 

will enable the critical gaps in the previous research to be identified.   

1.5 Research Gap Identification  

Several research studies have been conducted concerning autonomous vehicles, and the 

understanding and monitoring of drivers’ behaviour to ensure their involvement in accidents 

is reduced. However, preliminary research has been conducted on driver distraction 

classification and severity level of distraction in the context-aware situation. In addition, the 

context-aware behaviour of the driver, when the context situation changes, is crucial, which 

this study uses as a pivotal framework. 

Bruanagel et al [20] developed an automated recognition activity in autonomous driving 

scenarios for driver take-over readiness, not when the vehicle needs to take over or transition 
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from driver to vehicle. A typical example may be losing a lane marking or reaching the end 

of the right road; such situations require the driver to resume the responsibility for driving. 

The limitation in the methodology is the focus on eye-tracking and head posture and the use 

of a driving simulation. The study focused on driver’s inattention, which can be used in 

monitoring drivers.  However, there are situations where there is a need to transition from 

driver to vehicle in a semi-autonomous vehicle. The vehicle does have a limited amount of 

time to take such intelligent decisions, and thus, the question is at what moment and threshold 

should a semi-autonomous vehicle ready to take over from the driver or transition from the 

driver to the vehicle; especially in ADAS?  

The measurement of the degree of driver distraction can help reduce accidents and their 

impacts. In contrast, vehicle mobility is dynamic, and the context-awareness of a vehicle 

changes in real-time. Thus, there is a need for an effective and efficient intelligent safety 

system to predict driver behaviour based on context-awareness.  Observing the gaps 

mentioned earlier in the literature, this work presents approaches that can further integrate 

and improve ADAS to solve the identified gaps in ITS. Therefore, in line with the above 

analysis, the following gaps have been detected in the literature.  

 The first gap in the literature is related to the fact that an inadequate model or framework 

was used to differentiate a driver’s careless behaviour. Most driving behaviour research has 

been carried out using simulation, such as VEINS, measuring different parameters that 

include braking events and traffic flow [2], [25], [26]. To address the issues presented above, 

we have analysed and developed algorithms that satisfy both types of behaviour by using 

naturalistic driving data from TeleFOT vehicle behaviour, which is developed using 

algorithms for different attack types and context scenarios; Furthermore, video image coding 

and analysis frames detect drivers’ behaviour based on Deep Learning (DL) CNN. 

The second gap in the literature concerns the lack of a system that can classify a driver’s 

distraction into careless, dangerous, and safe driving behaviour. The approach used to address 

this gap is to review the literature on Artificial Intelligence (AI) and machine learning (ML) 

techniques. The combinations of ML techniques, such as DL CNN, Support Vector Machines 

(SVM), and Naive Bayesian classifiers, are applied.  The systems are developed using the 

Python programming language. Further research can help in this direction in that the 

identification and justification of AI or ML techniques can be used to detect and identify both 

types of behaviour.  

The third gap discovered in the literature relates to the lack of a system that can simulate 

driver behaviour and measure driver distraction [6], [7]. To solve this, an extensive literature 
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review and identification of the parameters that satisfy the requirement of measuring driver 

distraction; and developing an algorithm that can predict and prevent strange behaviour. 

The fourth gap is related to limited and context-aware driver behaviour [8], [9]. To address 

this gap in research, the following approach is adopted concerning the development of 

algorithms that consider context-aware. Further research appears necessary to develop safety 

issue scenarios covering the broader context-aware vehicular environment, thus considering 

dual carriageways, urban roads, weather conditions, and other factors.  

The fifth gap in this study is related to the lack of optimisation techniques to analyse the 

degree of driver distraction or reaction. The following approach can be used to tackle the fifth 

gap identified in the literature: a heuristic analysis and pattern recognition analysis in a 

system that monitors the driver’s behaviour in real-time, considering the intent, reaction 

level, and engagement with any source of distraction. Finally, concerning further research, 

the following suggestion is made optimisation algorithms that can enable efficient decision-

making by automated vehicles. In addition, the integration of an optimised system with safety 

control will ensure a more accurate prediction and more effective prevention of accidents.  

The sixth gap, referring to Bruanagel et al [10], relates to developing an automated 

recognition activity during autonomous driving scenarios for driver take-over readiness, not 

when the vehicle needs to take over. Thus, it is essential to develop an ADAS system that 

enables the vehicle to take over from the driver when a certain degree of driver distraction 

severity level has been reached in a semi-autonomous vehicle.  

The seventh gap is that UK CPS classifies some distractions as either careless or 

dangerous. However, it could be argued that while some of these distractions are classified as 

careless, when a multiclass distraction is considered, they can quickly become dangerous 

[11], meaning the degree of classification can change when multiclass distraction is 

considered.  

This detailed presentation of the gaps in the literature will lead to the generation of the 

research questions presented below.  

1.6 Research Questions 

The theory challenges our assumptions in an essential and even significant way for 

understanding a phenomenon [12]. Nevertheless, forming research questions is usually based 

on the identification of gaps in the literature. For the current research, this raises a certain 

number of questions concerning the classification of drivers’ behaviour; these are formulated 

as follows: 



  

 10  De Montfort University 

This research seeks to address the following questions:  

RQ1: Can we develop algorithms to estimate careless driver behaviour/dangerous 

distractions and design a mathematical model for measuring the degree of driver 

distraction?  

RQ2: What threshold is safe for different severity levels of driver distraction; on what 

basis the severity levels should be assigned? 

RQ3: How do we implement a multiclass risk assessment model with a safety framework 

for the degree of driving distraction? 

1.7 Research Aims and Objectives 

This thesis aims to develop a robust context-aware safety mechanism for the detection and 

classification of driver’s distraction into severity levels. The research objectives are 

intimately related to the research aims, given that the latter provides a more comprehensive 

view/indication/definition of the former. Therefore, the research objectives are further 

detailed to clarify the smaller achievable tasks during this study. The current research 

objectives are defined as follows: 

1. To develop algorithms to estimate careless driver behaviour/dangerous 

distractions. 

2. To develop a metric and mathematical model for measuring the degree of 

driver distraction. 

3. To define a threshold for different severity levels of driver distraction.  

4. To develop a novel multiclass risk assessment model for the degree of driving 

distraction. 

5. To design and develop a safety framework based on the severity level of 

driver distraction. 

Tackling the different highlighted objectives will enable the researcher to generate 

contributions during this study, advancing the body of research on self-driving cars.  

1.8 Main Contributions 

This research aims to develop a context-aware system to monitor driving behaviour by 

classifying it into careless or normal driving behaviour. After this study, it becomes apparent 

that the following contributions were made to the scope of the literature in this area:  
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• The development of a novel ADAS framework that classifies driver distractions into 

severity levels to aid vehicle take-over. 

• The development and evaluation of a mathematical model that classifies driver 

behaviour according to severity levels using thresholds. 

• The definition of a threshold safety system classifies driver behaviour into careless 

and dangerous driving, thus enabling an autonomous vehicle to take over from the 

driver or know when it is safe to return autonomy to the driver.  

• A novel MDDRA risk assessment model for the classification of driver distractions 

using ML algorithms. 

• The development of a novel 3-phase parallel Fast-CNN architecture to address each 

physiological attribute.   

• The development of a context-aware situation and using output from the parallel 

FCNN via a novel three-tier FCNN-DBN-LSTM that detects and classify driver’s 

distraction into the severity level of distractions. 

• The development of a Fuzzy-Logic-DDBN model for the classification of driver 

distraction. 

• Development of a Hidden Markov Driver Distraction Severity Model (HMDDSM) for 

classification of driver distractions.  

The main contributions of this research are achieved based on a series of studies carried 

out in this thesis; these are presented in the following, with a succinct description of the 

content of each chapter.   

1.9 Thesis Organisation  

The present thesis, dealing with a context-aware safety system for detecting and improving 

dangerous driver behaviours, encompasses nine chapters and is built around a clear and 

logical structure that coordinates and links these chapters. The organisation presented below 

thus supports the thesis.  

Chapter one is the opening chapter and deals with the research background related to the 

study of context-aware safety systems, discussing, in general, the detection and classification 

of driver behaviour with regards to the level of danger it can carry. The research motivations 

and questions are addressed, wherein the researcher tries to explain the reasons for this 

research. This is followed by pertinent questions that have arisen during this study and helped 

the researcher guide this work. In addition, by inference, the research aims, and objectives are 
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deducted from the research questions, which are a more detailed form of the research aims. 

Moreover, the research’s contributions that encompass the prominent achievements made 

during this research are likely to be included in the literature in this research area. Finally, the 

research organisation shows how the different chapters connect to create a coherent narrative 

for the reader. 

Chapter two deals with the literature review, giving a more comprehensive view of this 

study and the literature related to the context-aware identification of driver behaviour, 

especially distinguishing normal behaviours from careless ones. This chapter concerns three 

main domains: ITS, computer vision, and DL areas of research. Regarding the ITS, the 

drivers’ behaviours are scrutinised via behaviour profiling and through simulation, such as 

using the National Advanced Driving Simulator (NADS). The involvement of AI and ML 

techniques is necessary to distinguish normal from dangerous driving. The detection of 

cognitive drivers’ behaviour is performed using facial geometry-based eye region detection, 

enabling the inference of the driver’s concentration and risk level. Finally, the relationship 

and impact of the detection and classification of drivers’ behaviour on autonomous vehicles 

are scrutinised, whereby the design and implementation of context-aware systems are also 

closely monitored, and their importance in previous research is established.  

Chapter three carefully investigates the methodology adopted in the present study. In this 

regard, a quantitative data analysis approach is applied in a time-series dataset, images, and 

videos, monitoring driver behaviour through these recorded data. The chapter also highlights 

the main algorithms, techniques and models supporting this research. These mainly revolve 

around algorithms, such as Convolutional Neural Network (CNN) as the DL algorithm, 

Fuzzy-logic, Hidden Markov Model, DBN as the AI algorithm, and Long Short-Term 

Memory (LSTM) as the computer vision algorithm, which is related to the analysis of driver 

behaviour. The choice of the research method is also justified and is developed around two 

methods, namely simulation and Field Operational Testing (FOT). Indeed, one of the primary 

datasets used in this study is TeleFOT, one of the most extensive European datasets related to 

monitoring and improving autonomous and cooperative systems in the ITS context.   

Chapter four, aims to tackle the main reasons for carrying out this study. It starts by 

succinctly presenting the main algorithms involved in this study and their usage. This 

includes selecting regions of interest (RoIs) that will be used for image recognition and 

classification, DBN is then used to model the dynamic state of the driver’s behaviour in a 

context-aware system, and finally, the LSTM for the classification and predictive analysis. 

Therefore, three main aims are identified in this research study and are highlighted to 
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facilitate the definition of the research objectives. However, the extension of this chapter is in 

chapter 7.  

Chapter five is the research questions chapter and focuses on the main questions to define 

the present study’s direction. Indeed, the question formulation establishes the primary 

orientation of the research to ensure more rationality and clarity in how the study is 

conducted. With regards to the current study, different questions are formulated and 

addressed as per the following points: i) the possibility of classification of driver distraction 

into safe, careless, or dangerous, ii) the possibility of distinguishing between these two 

distractions, iii) and finally the use of mathematical models and technology, including 

algorithms, to implement the models to understand and monitor drivers’ behaviour. This 

chapter involves the use of the Mamdani Fuzzy-Logic Dynamic Bayesian Network model.  

 Chapter six presents a novel-risk assessment model Multiclass Driver Distraction Risk 

Assessment (MDDRA) model for the driver’s distractions. This chapter involves a risk 

assessment model that covers context-aware in-vehicle, vehicle and environment parameters. 

The metrics to measure the driver distraction level and a safety framework based on the 

distraction severity level are also highlighted. Finally, an optimisation solution for the degree 

of distraction, helping the in-vehicle decision-making process, was also developed. The 

MDDRA involves applying the ML technique to classify driver’s distractions. Further, this 

also entails validation using the cross-correlation test and Kruskal Wallis test.  

Chapter seven is the hallmark of the research as it introduces a novel context-aware model 

called the Hidden Markov Driver Distraction Severity Model (HMDDSM), which integrates 

the MDDRA developed in chapter 6 into the detection and classification. Here is the 

introduction of a hybrid CNN-LSTM-DBN model to detect and classify the driver’s 

distraction. Adopting Fast-Recurrent Neural Network (Fast-RCNN) from a pre-trained 

network Resnet in detecting context-aware constitutes distractions.  

Chapter eight is the chapter that deals with evaluation and comparison with works of other 

authors. Here there is very significant performance in the developed algorithms compared 

with other works. The results in this research compared with other works are promising. A 

critical analysis and reflection, and justification of a few instances where other works 

outperformed our model inaccuracy due to the few parameters used in their works.  

Chapter nine, as the closing chapter, presents the contribution of the current thesis. 

Several contributions were made, focusing on the main algorithms used to improve the driver 

behaviour classification and monitoring. Moreover, an algorithm is used to predict driver 

behaviours to control what is classified as dangerous or careless driving behaviour compared 
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to the previous research in the same area. Meanwhile, different metrics are defined and 

developed to help assess the driver distraction level and distinguish between dangerous and 

normal driving behaviour. Limitations of the research and future work were highlighted as 

well.  
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CHAPTER 2. LITERATURE REVIEW  

2.1 Synopsis 

This research cuts across three main domains: the Intelligent Transportation System (ITS), 

Computer Vision, Deep Learning (DL). This section covers the significant and most recent 

literature related to the three domains mentioned above. The review of this literature takes 

place in the following sections.  

2.2 Artificial Intelligence and Driver’s Behaviour Classification 

2.2.1 Introduction 

It would be unimaginable decades ago to think of using a computer to diagnose a disease 

from blood samples or to have a car without a driver. Surgeons can now perform clinical 

surgery with higher precision using laser surgery technology [32]. This seems not to shock 

people anymore and looks quite normal and even natural nowadays. However, there is a need 

to accept and recognise that technological advancement has made so many things possible 

and so easy that it is now possible to look back and admit that technology has come a very 

long way  [32]. However, other researchers support that human intelligence is not fully 

understood; therefore, it will be challenging to develop an intelligence that can imitate human 

intelligence. Nevertheless, the areas where much progress has been made include AI’s 

research field [32].  

AI in computer science deals with the area of research where machines are programmed to 

simulate human intelligence. Authors believe that it is also associated with the cases where 

the machine mimicking or exhibiting human-like traits of learning, reasoning and then 

developing capability in problem-solving, knowledge representation, etc., [32]– [34]  [026]. 

Stephen Hawking affirms that the advent of artificial intelligence could be the worst event in 

the history of civilisation unless humans can control its development and expansion [32]. In 

this 21st century, AI is everywhere in daily lives and activities. It can be found in 

smartphones, cars, learning materials, production lines, cities, etc. 

Nonetheless, Artificial Intelligence encompasses different subclasses, including ML, 

neural networks, and DL. It has been applied in different areas, including computer science, 

mathematics, physics, chemistry, medicine, aeronautics, banking, military, postage, 
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neuroscience, transport, and aviation, nearly all aspects of human life, with more areas 

covered discoveries and work undertaken. Chakraborty [35] even further believes that 

artificial intelligence will transform every aspect of future life. The following subsection 

below will present some of its current applications.  

2.2.2 Machine Learning  

Machine learning (ML) is a subclass of AI, where a system can learn from experience and 

improve without any further programming. ML spans different research fields such as 

Artificial Neural Networks (ANN), DL, etc.  [36]. One of the main focuses of ML is to 

develop computer programs where the machine will access data and use it to learn by itself. 

Indeed, with the world wide web showing faster development, a massive amount of data is 

available in all the fields of research, and one of the main focuses of computer scientists is to 

build programs that will help in analysing this available data, build models and infer helpful 

knowledge for all [33],  [36],  [37]. Some of the essential algorithms built and used so far 

encompass Support Vector Machines (SVM) and Naïve Bayes for classification, Bayesian 

Decision Trees, Self-Organising Maps for clustering, Principal Component Regression, etc. 

[36]. For example, in a support vector machine, an upper plane is needed to segregate two 

individuals: sick and those belonging to the healthy control group. This can also be applied to 

fully concentrated drivers and drivers who are very distracted by infotainment devices. The 

SVM classifier will create a separation boundary between the different classes [33]. 

Nevertheless, ML is also confronted with ever-growing data, especially security-related 

data, for network security issues [37]. Data collection issues will become even more complex 

due to the inadaptability of most current systems to the soon available 5G network. The 

diverse origin of data to be collected and analyse and the variety of their format will add to 

data analysis problems [37]. Once data collection has been solved, the research shows that 

context-aware systems behaviours can be adapted to the user’s context. Therefore, correlating 

user modelling and context-awareness is essential to develop systems and services adapted to 

users’ needs [38]. This development in the ML arena can benefit users in several areas, such 

as DL. 

2.2.3 Deep Learning and Neural Network  

Deep Learning is a subclass of ML that uses artificial neural networks; hence, the learning 

method can be supervised, semi-supervised or unsupervised. So far, there have been 
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applications in different research areas such as natural language processing (NLP), machine 

vision, computer vision, speech recognition, machine translation, and drug design. Deriving 

from artificial neural networks (ANNs), DL is more about the unbounded number of layers 

and limited sizes related to system optimisation. This can be seen as an ANN optimisation 

model that is more disconnected and detached from the traditional biological structural model 

of connectivity, which is related to the original view and base of ANNs [39]. Therefore, in a 

DL application, such as in the field of image recognition, the input might have a matrix 

representation, whereby different layers might represent a different or specific part of the 

image. For example, the image of a driver in a car might have the following distribution: 

layer-1 dealing with the surrounding of the car, layer-2 dealing with the road, layer-3 dealing 

with the interior of the car, and layer-4 dealing with the driver’s head positioning. In this 

manner, different layers will be dealing with as many details as needed for the analysis 

outcomes, providing what could represent a different level of abstractions and hence, 

improving the quality of the image and picture [39].  

The precision of the image and a perfect object is essential with the classification of 

images. Furthermore, another essential factor is the localisation of the object contained within 

the images. A prominent model used in the detection of objects is the Deep Neural Network 

(DNN). According to Szegedy et al [39], the classification and localisation of objects are 

challenging. Szegedy et al developed a DNN that detects large object instances with varying 

sizes in the same image using limited computing resources. The DNN predicts bounding 

boxes of multiple objects in each image. The method entailed a DNN-based regression that 

outputs a binary mask of the object bounding box. A generic architecture for localisation is 

based on seven layers, with five being convolutional and the last two being fully connected. 

Furthermore, the SoftMax classifier as the last layer is used to generate a binary object mask. 

Using some levels of tuning in terms of human involvement, DL can allow the developed 

model to magnify part of the image under investigation, giving some level of autonomy to the 

researcher in terms of the research aims and objectives. Nevertheless, DL has several 

applications in another area of research, namely the deep vision research field. 

2.2.4 Deep Vision  

The notion of deep vision is a computer technology allowing information to be extracted 

from images, video footage or camera images. Deep vision enables the application of CNN, 

whereby deep vision algorithms can convert images into shapes and movement and enable 
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information extraction from images and videos using event automatic image analysis [24]. 

Different technologies have been proposed in terms of the applications of Deep Vision.  

Researchers proposed a wearable size version of deep vision software dealing with 

different executions of several deep vision models, such as CNNs. For example, DeepEye can 

run multiple cloud-scale DL models, whereby rich analysis can be performed locally using an 

embedded processor without the need to offload the image file on the cloud. In this manner, 

the software reduces the computational overhead cost, as the heavy convolutional layers load 

from memory and reduce the connection between layers. In addition, the execution 

framework includes memory caching and minimises the memory bottlenecks by applying a 

model compression technique, which in turn considerably reduces the need for ample 

memory space [40].  

On the other hand, Xu et al [41] presented DeepCache, another deep vision technology 

used for learning inference in a continuous mobile vision. DeepCache tackles mobile vision 

challenges, whereas trade-offs about other challenges must be overcome, including 

cacheability, overhead, and, more importantly, the loss of model accuracy [41]. The model is 

an application of deep vision in DL whereby the model refrains from using video heuristics 

because of the difficulty related to the data interpretation. Nevertheless, many advantages are 

related to the development of the model, including saving inference execution times of 18-

47% while reducing energy consumption by 20% [41]. Guo et al [42] developed a robotic 

grasp detection system based on images that can predict and accelerate the robot’s detection 

speed. 

Since robots cannot intuitively detect a grasp location area for a given object, the current 

deep vision system allows the robot to learn from the image. The model allows rectangular 

potential grasp areas to be created, refined with a score attributed to each graspable location 

in real-time at the speed of 80 frames per second. Datasets are built in this manner from those 

images, allowing a comparison of different rectangles to produce the best detection 

performance, whereby the robot learns quickly to detect the best graspable areas of each 

object [42].  

A significant challenge in object detection is that CNNs require a fixed-size (224 x 224) 

input image, which is stimulated, thus reducing image recognition accuracy. He et al [43] 

proposed using a pooling strategy, spatial pyramid pooling (SPP), to resolve the earlier 

challenge. Convolutional layers and fully connected layers involve the use of cropping or 

warping at the initial stage. He et al used Spatial Pyramid Pooling (SPP) in generating fixed-
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length output, regardless of input size with single window size  [43]. SPP makes it possible to 

generate arbitrarily sized images for testing and accepts images with varying sizes or scales 

during the training. The approach involved the convolutional layers using sliding filters, with 

their outputs having the same ratio at the inputs. The output is referred to as feature maps, 

which entails spatial positions.  

2.3 COMPUTER VISION 

2.3.1 Computer Vision Algorithms  

Computer vision is the field of research involving computers, digital videos and images, 

whereby the former will gain more understanding and cognition from the latter [44]. 

Different algorithms have been developed in the computer vision field of research. Szeliski 

[44] looked at framed family photographs and stated that it could be easy to count and name 

everyone on each photograph and, further, guess their deep emotions at the time from their 

facial expressions [44]. On the other hand, perceptual psychologists have spent decades 

trying to understand how the visual system works; although developing optical illusions to 

tease apart some of its principles, reaching a satisfactory solution can be elusive[26], [27]]. 

Researchers have been trying to develop methods and techniques to recover three-

dimensional shapes from images. Advanced techniques enable an individual to be tracked in 

a complex environment, dealing with a combination of faces to determine people’s names in 

a photograph, etc. However, the truth is that to develop a system that will allow a computer to 

reach the same level of interpretation and accuracy as a two-year-old child remains 

elusive[25].  

Nevertheless, it is also true to admit that significant advancements have been made in the 

development of computer vision algorithms, with applications in different fields of research, 

such as algorithms in distributed computing, cognition understanding, computer surveillance, 

intelligent environment, robot coordination, space exploration, and so on. Indeed, camera-

equipped sensor nodes communicating with a wireless network can provide ease, flexibility 

and robustness to nodes failure [47]. Computer vision algorithms involve the collection and 

analysis of data from videos and images for various purposes. This includes decision making, 

monitoring, etc. The initial step to this work is the object detection and recognition stage, 

where cameras can track the object in motion. Tron and Vidal [47] supported the inference 

level on the relationship between the human-object interaction, human behaviour, multi-

objects, etc., and the context environment can be critical in the decision-making process. 
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Nevertheless, different applications areas exist, and they are dealt with in the following 

subsection. 

2.3.2 Application Areas 

Computer vision algorithms (CVA) have been applied in different areas and can have 

several applications. For example, a Camera Sensor Network (CSN) is used to continuously 

monitor scenes such as the workplace, disaster zones, exploration areas such as space 

exploration, etc. In these cases, the function of the CVA will be to direct the cameras to 

record images data and transmit these images to a server for a centralised analysis [47]. In 

this case scenario, the images will go through different stages, including the transmission, 

processing, and analysis of a large volume of data. The process can be effective if each 

camera can process its data with other sources (cameras, etc.). This usually creates problems 

such as noise with overlapping images from different sources. Distributed algorithms can be a 

solution for noise management, with a global analysis of the scenes obtained with these 

distributed algorithms fusing all local and external image data [47].  

On the other hand, computer vision techniques have allowed consistent advancement in 

areas such as computer vision technologies integrated into Unmanned Aerial Vehicles 

(UAV), which fall under the category of autonomous vehicles; these applications have 

enabled effective management of the aerial perception issues. This includes obstacle 

detection and avoidance, visual navigation algorithms, and aerial decision-making. One well-

known and even controversial utilisation of this combined system is the Remotely Piloted 

Aerial System (RPAS), also known as drones [48]. Recent applications of drones include 

mail and postal delivery, such as the Amazon delivery drones, which are meant to make 

delivery faster; drones are also used in targeting enemies on battlefields, etc. Other forms of 

UAV include helicopters, tricopters, quadcopters, etc., which were initially designed for 

military purposes on battlefields and to save human lives [49]. However, for their ability to 

operate in dangerous areas and situations, such as scientific exploration, rescue operations in 

disasters, etc., certain special helicopters and Vertical Take-Off and Landing (VTOL) rotor-

craft, including quad, Hexa, octo-rotors, are being used [50]. It is essential to mention that 

military applications are one of the most critical areas of application. For example, missile 

guidance, where the missile is sent to a combat area rather than to a specific target, is made 

clear by more information provide by locally acquired data (xx). This presents some of the 
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main applications of computer vision algorithms, however, many more exist and and 

reviewing all these applications is beyond the scope of the current study.  

2.3.3 Example Standard Dataset  

Computer vision is presented as a fast-growing area of research that is primarily applied in 

the industry. The interaction between the human agent and machine has changed with 

Computer Vision technologies that have transformed this relationship to benefit industries. 

Building a trusted and solid work relationship using robust DL algorithms for Computer 

Vision requires a high-quality dataset to train the algorithm [51]. A list of standard datasets 

used for a computer vision project includes the following, most of which will be succinctly 

reviewed in this subsection.  

2.3.3.1 CIFAR-10 

This popular computer vision dataset was used for object recognition encompassing 

60,000 colour images (32 × 32) in 10 classes. This series of images is divided into 50,000 

training images and 10,000 testing images. The classes encompass the following: aeroplane, 

automobile, bird, cat, deer, dog, frog, horse, ship, truck. The CIFAR-100 dataset is composed 

of superclass and classes [51]. They can be accessed through the following link: 

http://www.cs.toronto.edu/~kriz/cifar.html 

It is essential to mention that the different classes are mutually exclusive, meaning that 

overlapping them is impossible. For example, a distinction is made between dog and deer, 

aeroplane and automobile, etc. [51].  

2.3.3.2 Cityscapes 

This corresponds to an open-sourced large-scale dataset for computer vision projects 

containing a diverse set of stereo video sequences recorded in street scenes from 50 different 

worldwide. It encompasses a high-quality pixel level of 50,000 annotated frames and a more 

extensive set of 20,000 weakly annotated frames. The datasets are used to train DL neural 

networks for the performance assessment of vision algorithms [034]. It can be assessed from 

the following link: https://www.cityscapes-dataset.com/ 

The dataset is free for research and other related purposes, including teaching, scientific 

publications, etc. Benchmarks are available for performance measurement, whereby the 

results can be sent to an evaluation server [51]. 

http://www.cs.toronto.edu/~kriz/cifar.html
https://www.cityscapes-dataset.com/


  

 22  De Montfort University 

2.3.3.3 Fashion MNIST 

This corresponds to an image dataset for computer vision encompassing 60,000 samples 

for the training set and 10,000 samples for the testing set, whereby the example is a (28 × 28) 

grayscale image of 10 classes. A benchmark system using Scikit-learn covers 129 classifiers 

with different features. The dataset is utilised by the AI-ML community as a benchmark for 

the algorithm’s validation and can be accessed from GitHub on the following link: 

https://github.com/zalandoresearch/fashion-mnist 

Researchers believe that this dataset is the whole first set used, and if a project fails on 

MNIST, it is likely to not work in any other dataset. However, they are planning to replace 

MNIST because of the following reasons: first, it is too easy, and Convolution Networks and 

ML algorithms can quickly achieve 97% or more; second, it is overused; and third, the 

dataset cannot present modern CV tasks, as research has warned [51]. 

2.3.3.4 ImageNet 

This is a popular image dataset classified based on the WordNet hierarchy in the field of 

computer vision. Therefore, it provides access to an image database, whereby the WordNet 

hierarchy allows a cleanly complete organisation of these images. Themes or concepts 

describable by words or sentences are called synonym sets or synsets. The database 

constitutes 100,000 synsets in WordNet, with ImageNet creating 1,000 images representing 

the illustration of each synset in the WordNet. It also corresponds to several 1,000,000 sorted 

images related to different themes in the WordNet hierarchy [51]. It can be accessed from this 

link: http://www.image-net.org/. 

The ImageNet project answers a call from researchers in the computer vision field and 

academia asking for more available data in this field of research. In this respect, researchers 

have developed more complex algorithms to index, organise, retrieve, update, etc., 

multimedia data. This will be a means for helping researchers in the field to make a large-

scale image database available for different purposes, including research purposes [51].  

2.4 Intelligent Transportation Systems 

2.4.1 The Notion of Intelligent Transport 

The notion of the intelligent transport system (ITS) relates to the usage of different types 

of advanced applications that provide better transport combined with an effective traffic 

management system, allowing traffic users to make an informed decision regarding the usage 

of transport networks system. Researchers believe that the intelligent transport system has 

https://github.com/zalandoresearch/fashion-mnist
http://www.image-net.org/
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brought several network changes and improvements in the last two decades. This includes a 

drastic improvement of the security in transportation, the multiplication of choices for 

travellers. Furthermore, thanks to the data availability from an enormous variety of sources, 

the researcher's work are now more complete and accessible [52]. The same researchers 

believe that this can significantly change ITS development, which is currently a necessity. 

Indeed, due to the increase of vehicles on the road and the related issues such as road 

congestion, increased pollution level, illness such as heart disease, but also the increased 

number of road accidents, there is a need to come up with a more intelligent transportation 

management plan, whereby AI, ML, and DL can play a leading role by bringing more 

innovative solutions. Research shows that three-fourths of road accidents are caused by 

human error [53]. 

Given that the transportation system plays an increasingly important role in a country 

development, its economic strength depends on its effectiveness and efficiency. Indeed, it is 

reported that 40% of the population worldwide spend at least 1 hour in the transport system 

every day [54]. Human daily activities are so transport-dependent that this has increased the 

number/level of congestion in big cities, leading to increased pollution and consequent health 

problems such as heart disease [53]. Therefore, it is crucial to implement a country-level 

strategy that helps mitigate and reduce the transportation system's impact and human 

involvement on issues in modern society. This section of the thesis analyses the different 

algorithms and their role in reducing problems linked to the increased need for a 

transportation system in daily life.  

2.4.2 Intelligent Transport Systems Using Pervasive Technologies  

 

Naturalistic data from vehicles has been collected using onboard sensors that collect driver 

braking behaviours to reduce collisions and prevent accidents. Research has shown that most 

car crash fatalities and injuries happen at roads junction or intersections. Therefore, many car 

manufacturers seeking to enforce security measures are planning to release an automated 

braking system that will reduce the car speed at the approach to an intersection to reduce car 

crashes [44]. Nevertheless, the researchers have decided in this study to develop a 

probabilistic model for human driving behaviour, which will distinguish between possible 

and probable scenarios. However, the system’s total safety probability p is still correlated to 

the surrounding of the vehicle, such as the other drivers’ (1-p) probability, which is related to 
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their behaviour  [55]  [45]. That is perfectly understandable because a vehicle can be parked, 

and another driver can still crash into it, causing causalities.  

In another study, researchers tried to monitor drivers’ behaviour in a normal and driving 

task condition. Different devices were used to perform this monitoring process, including 

cameras, microphones, and Controlled Area Network-Bus (CAN-Bus). Indeed, from the 

frontal video camera and the car CAN-Bus data, the researchers would be able to 

differentiate/discriminate between two main conditions, such as average and task driving 

conditions [23]. Controller Area Network Bus (CAN Bus) provides other information, such 

as steering wheel angle, brake value, and vehicle speed [23], [56]. The data thus collected 

non-invasively using CAN-Bus, video camera and microphone arrays are made available to 

model and understand drivers’ behaviour behind the steering wheel. A binary K-Nearest 

Neighbour classifier was used for the analysis of the data collected. Researchers found that 

the information provided by the frontal cameras made significant difference in segregating 

between the two conditions, with a small improvement in the classification result due to the 

CAN-Bus system  [23].  

Another group of researchers also used a non-invasive system to monitor the driver’s 

attention level, given that they perform secondary tasks. Using real driving scenarios using a 

multimodal approach of driving behaviour monitoring, based on the secondary task 

performed while the attention level was controlled, showed a variation in the driver’s 

attention due to this secondary task performance. Support vector machine using K-Nearest 

Neighbour (KNN) combined to a sequential floating forward selection (SFFS), where the last 

one was used as a dimensionality reduction algorithm [57].  

On the other hand, invasive sensors have been used to monitor drivers’ distraction levels. 

For example, the driver’s head pose, and eye gaze were used to understand and monitor his 

behaviour. Such monitoring tools include the use of monocular, infrared (IR) and stereo 

cameras to track driver distractions have been considered. Other forms of invasive sensors 

were used in the data collection process and included Electroencephalography (EEG), 

Electrocardiography (ECG), and Electrooculography (EOG,) which were necessary to 

estimate relevant biometric signals associated with distraction. In addition, a UTDrive 

platform was also used in buildings a multimodal database to gather actual driving conditions 

[57]. 

Nevertheless, a survey was also built to extract driving features of the internal state of the 

driver, which could result in uncomfortable and dangerous situations for him and other road 
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users. Statistical analysis was used to separate normal and abnormal driving behaviour, 

making this dataset available and a fascinating document in analysing the drivers’ behaviours 

[57]. Driver-controlled behavioural data were analysed, and abnormal driving behaviour was 

categorised using the jerk information, which ultimately allowed the group of researchers to 

classified abnormal and normal driving behaviours [58]. This research was conducted on a 

Mitsubishi Precision Co. Inc., DS6000 driving simulator, allowing the collection of this 

different type of data related to jerk behaviour [58].  

It has been stated that accidents occur primarily due to human error; thus, it is necessary to 

understand human behaviour to reduce accidents. It could be argued that the elimination of 

dangerous driving by identifying careless driver’s behaviour is essential. However, the 

driver’s behaviour, sickness, drowsiness, time constraints, and the environment [61]. 

Therefore, investigating the relationship between the internal state of the driver and the 

environment could give a holistic picture of the accidents and the conditions surrounding 

them. The study also showed that one of the main factors influencing human driving 

behaviour is the instability of the internal state of the driver. In order to have data under 

realistic driving conditions, such as freestyle, everyday driving and time constraints, 

researchers have developed a model using questionnaires to correlate driving behaviour and 

the internal state of the driver [61]. However, this research was also limited by the lack of a 

thorough understanding and information on the driver’s internal state, as admitted by the 

researchers. 

Profiling drivers’ behaviour has been performed to identify risky driving manoeuvresand 

improve drivers’ efficiency. In addition, monitoring and profiling of drivers have been 

applied in car insurance areas to have fair insurance premiums for customers. The driver data 

collection was performed through the use of mobile devices and telematics boxes. The 

researcher recorded data related to turning right and left manoeuvres, acceleration and 

deceleration manoeuvres. Finally, bumps and potholes in the road make this Android mobile 

a fair and accurate device in helping drivers be safe on the road for themselves and other cars 

in the surrounding  [59]. However, factors and metrics such as weather information, distance, 

speed distribution, and road topology (lanes, troughs, road conditions) could affect the 

driving behaviour, thus misleading vehicles to be detected as careless by the safety 

mechanisms. The data collected did not consider those, which can be considered some of the 

limitations of this study.  
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Drivers’ behaviour profiling through smartphone analysis of everyday driving and risky 

conditions by collecting driving traces from one point to another [59],  [60]. In contrast, in 

another study/research, it was proposed to detect risky behaviour by focusing on events rather 

than road traces and providing feedback, thus, allowing drivers to adapt their driving based 

on events [59]. Driver feedback dissemination has been used in the monitoring and correction 

of driver behaviours and bad driver habits. This was achieved by collecting driving data using 

phones in predefined vehicle positions and analysing acceleration, lane changing events, and 

braking. Driver classification was based on features such as acceleration variation jerk and 

maximum acceleration threshold  [61]. However, the driver feedback dissemination 

collection methodology does have its limitations due to the phone's positioning, which could 

be slightly modified by device vibration or user manipulation. In addition, the solution, as 

mentioned earlier, uses fixed thresholds in combination with different metrics such as braking 

events, acceleration, steering events, and manoeuvres in profiling the drivers’ behaviour. In 

contrast, this time, the features used include the acceleration, global positioning systems 

(GPS) data in the detection of road quality, such as potholes, bumps and traffic flow (stop-go 

or fluid) – events that can trigger unpredictable drivers’ behaviour  [62]. 

Other algorithms have been used to distinguish between normal driver’s behaviour and 

risky driving behaviour with metrics such as smooth acceleration and magnetometer data. 

The findings include detecting events such as braking, acceleration, aggressive steering and 

sudden manoeuvres [63]. It could be argued that risky driving behaviours can lead to a 

situation that could cost human lives. The Bayesian technique was used to classify drivers’ 

behaviour into risky or safe/average driver’s behaviour [64].  

2.4.3 Impact of ADAS on Drivers’ behaviour 

The impact of ADAS on the driver’s behaviour can be immensely positive in bringing 

tremendous changes in helping to improve human/driver’s behaviour, especially their 

involvement in road accidents. According to the research, significant factors influencing the 

cause of road accidents are vehicle, human and road conditions. One way to reduce road 

accidents is by profiling the vehicle driver using ADAS  [59]. ADAS relies on driving data 

from infrastructures and vehicles to infrastructures (V2I) collected through sensors, mobile 

devices and vehicles [65]. It is also stated that human error is the major influencing factor 

that causes road accidents, whilst the other two factors are road infrastructure and vehicle 

capabilities [66]. In addition, aggressive driving behaviour is different from driving 
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manoeuvres or events during a journey, like harsh braking and acceleration, lane changing 

and rapid turnings. It could be argued that the driver’s action, such as performing certain 

events, influences vehicle behaviour. According to researchers, in a VANET, the vehicle 

moves around with no boundaries on direction and speed, resulting in arbitrary motion, which 

poses great difficulties to researchers [67]. In contrast, sophisticated malware could control 

the vehicle, thus forcing it to act recklessly. This gives rise to concerns and asks for a 

possibility to differentiate between different occurrences. 

  Smartphones have been used in assessing, estimating, and evaluating driver’s 

behaviours [61],  [62],  [64],  [66]. The sensory data can generate driving behaviour profiles 

and categorise drivers according to events, such as acceleration, braking, turning, and lane-

changing during a journey [68]. Drivers’ behaviour profiles based on potential blackspots 

using data of vehicles that had previously passed a given road section for road safety analysis 

was used. This is a clustering approach in the categorization of drivers into specific driving 

styles and profiling of driving events that occur during a journey [64], [69], [70]. The crowd-

sourcing model has also been adopted to collect driving data in vehicle-to-infrastructure 

implementation, and analysis in real-time localised driving information is being broadcasted 

to vehicles within a range of infrastructure.  

Pattern-matching techniques in analysing driving events from acceleration data, whereby a 

smartphone was placed in a vehicle lying flat while pointing in the same direction of travel as 

the vehicle, profiling drivers. The result also showed a classification of drivers into 

aggressive (careless) and average [59], [65]. Driver’s behaviour can impact vehicle dynamics 

in various ways, and it can even disrupt vehicular network formation, such as platooning in a 

VANET. Vehicle to vehicle (V2V) communication can be attacked to disrupt the vehicle's 

behaviour, thus leading to communication that could endanger other moving vehicles on the 

road. For example, an attacker might perform a Sybil attack, resulting in the vehicle deviating 

from its platoon [71]. 

2.4.4 Drivers’ Behaviour Simulation  

Driving research has previously been done using a sophisticated driving research simulator 

called National Advanced Driving Simulator (NADS) [10]. However, the NADS is limited 

regarding realistic driving conditions that did not consider the context environment. 

Furthermore, driver behaviour simulation in traffic conditions has been analysed using 

microscopic models. Driver’s actions are influenced by factors such as traffic movements and 
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road causalities. The microscopic model analysis studies individual driver behaviour, 

connecting rear and front vehicles and cumulative macroscopic traffic [25]. The parameters 

of individual drivers have been used to represent unique driving behaviour; rules are further 

applied by relating the traffic state observed by the driver to the decision made by them. 

On the other hand, it could be argued that having a predefined rule will not capture a 

naturalistic driving behaviour before human decision making can be randomised. The 

Artificial Neural Network (ANN) technique on predefined driving rules using car following 

models involved measuring traffic state to drivers’ actions. However, ANN requires 

sufficient real-time data to capture the correlations between driver actions and traffic states 

effectively.  

In contrast, it should be noted that Naturalistic Truck Driving Study (NTDS) data 

conducted in Virginia Tech Transportation institute collected was used in the findings of 

truck drivers’ responses to cars following a traffic situation [26]. The research findings 

showed that driver behaviour differs in context, and driving actions could be influenced by 

the type of vehicle driven [29], [30]. Nevertheless, using only truck driver data could be 

regarded as some of the approach's limitations, as mentioned earlier. 

On the other hand, Lim and Yang  [55] collected abnormal driver data using state-of-the-

art sensor technology in a simulated driving environment to estimate driver states, such as 

cognitive distraction, visual distraction, driver drowsiness, and workload [72]. Detection 

algorithms in the detection of driver states, such as DL CNNs, have been applied in different 

fields of research, such as speech recognition and computer vision [27], [28], [73]. The 

researchers found out that DL was a promising approach compared to the dynamic Bayesian 

networks. However, Lim and Yang’s [55] proposed approach adopted a CNN technique 

performed solely on the image plane but did not consider driving dynamics and driver’s 

reaction. In addition, the model did not consider the context-awareness of the vehicle and the 

driver’s perception. Such omissions and choices could be considered as limitations to their 

research approach.  

Video coding of animal behaviour required analysing each frame individually by detecting 

animal body parts with further ML technique CNNs  [74]. In this study, the participants were 

giving predefined conditions to adhere to before the simulation took place. This is believed to 

introduce some bias in the study. Nonetheless, the research was conducted in a simulated 

environment that did not offer the same conditions as a natural driving environment, whereby 

other road users’ presence can significantly impact the driver state. These are some 
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limitations to this approach, including the need to analyse accurate driving data. A preferred 

solution to the limitation, as mentioned earlier, could be the use of DL CNNs that can 

recognise behavioural states from Images. In addition, there is also a need to estimate the 

degree of careless driver’s behaviour that can have severe consequences such as accidents.  

2.4.5 Classification Techniques of Drivers’ Behaviour  

Statistical observation techniques method using time series analysis has been used to 

classify driver’s behaviour in the differentiation between everyday driving from dangerous 

driving behaviour. Time-series data analysis of vehicle states with corresponding timestamps 

of fixed sampling rate and pattern emissions in profiling naturalistic driver’s behaviour [75]. 

The technique is based on manoeuvres and lane trajectories of a perceived vehicle in 

classifying a driver’s behaviour. Furthermore, a probabilistic model such as Hidden Markov 

Models (HMM) is applied in this classification task to classify dangerous driving behaviour 

and normal driving behaviour. The probabilistic technique takes into consideration driver’s 

behaviour such as driver distraction, fatigue driving, etc. This probabilistic technique can be 

Gaussian Mixture Model, Bayesian Network or the aforementioned Hidden Markov Models 

(HMM). The limitation of the adopted technique is its inability to detect driver’s behaviour 

events leading to chaotic manoeuvre that constitutes a dangerous driving behaviour. It could 

be argued that vehicle behaviour is impacted by their surrounding vehicles, making the 

driving environment challenging to predict and increasing the system's complexity.  

 

The Probabilistic Bayesian technique has been applied in detecting driver’s behaviour by 

observing driving manoeuvres and traffic context. A probabilistic model is efficient in 

distinguishing between probable and possible driver’s behaviour. Behavioural distribution of 

driver’s behaviour with an algorithm that computes the number of times driver hits the brake 

correcting vehicle speed at the proximity of intersections. Forghani et al [55] proposed using 

a probabilistic model designing in-vehicle driver-assisted systems that warn drivers to 

prevent collisions. The technique adopted involves simulation using naturalistic data, but it 

was limited to the isolation of the surrounding vehicles' impact on driver’s behaviour. 

Furthermore, several assumptions made limited the efficiency of the safety system to the 

prevention of only rear-end collision. The stochastic model of driver’s behaviour based on 

convex Markov chains (CMC) in tracking potential driver distractions and the predictions of 

car trajectory based on the estimation of driver’s behaviour in prevention of collision had 
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been adopted. Therefore, looking at the probability of random events using this stochastic 

model could be of paramount importance in studying driver’s behaviour. Nevertheless, other 

intelligent models were also considered in various studies, with different results, some of 

which improved precedent research.  

For example, the Statistical Gaussian Mixture Model (GMMs) has been used to identify 

multimodal features that can be used to separate normal driving behaviour from task driving 

conditions. Classification of the degree of secondary tasks according to the degree of 

distraction has been observed. GMM was used in quantifying actual deviations in drivers’ 

behaviour from expected standard driving patterns [57]. A regression model was proposed as 

a metric for characterizing the attention level of the driver.  

On the other hand, Hidden Markov Models (HMM) has been used to model dynamic 

processes of drivers during the phase transition period at high speed signalized intersections 

[76]. However, using a single deterministic model of driver’s behaviour is not efficient due to 

the unpredictability of human behaviour. Using stochastic techniques such as Markov Chain 

(MC), human behaviour-based prediction under varying distractions and environment was 

employed as a supplemental technique. In addition, a probabilistic driver model that predicts 

driver trajectories using a Convex-MC (CMC) model was used in another study to correct 

some of the limitations of the previous study [77], [78]. The mentioned above Markov chain 

entails the transition probabilities with convex uncertainty sets. Future Prediction of driver’s 

behaviour relies on vehicle environment, driver’s state and previous data such as steering 

manoeuvrescollected using a car simulator.  

Furthermore, Fuzzy Logic Methods can be used in simulating and predicting car-

following behaviour by employing an improved neuro-fuzzy inference system (ANFIS) 

model in analysing the reaction delays of drivers. In simulating the prediction of car-

following behaviour, the primary inputs to the ANFIS model were the reaction delays 

obtained from real-world data sets. Results from the simulation proved that the proposed 

model is highly realistic and compatible with real-world data.  

In a bid to effectively predict car-following behaviour for different lead and following 

vehicle types, the Neural Network Model [15] was proposed. The model’s performance was 

analysed with the use of real-world data from six vehicle types. Vehicle type following 

behaviour prediction was done using a multilayer feed-forward Backpropagation network 

(MLFF-BPN), where the inputs to the model were the vehicle type. The integration of the 

model into the simulation aided in studying the macroscopic behaviour of the model. 
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Regarding the attacks in the vehicle, this implies that the taxonomy of attack will vary 

according to the vehicle type.  

Trajectory Prediction is also an optimization technique that has been used in the 

detection of driving manoeuvresin real-time. Strategic behavioural trajectories deploy a 

knowledge-based cognitive architecture to model human drivers behaviour or predict future 

actions and cognitive load of human drivers behaviour [79]–[81].  

ML algorithms such as Bayesian classifiers, Artificial neural networks (ANNs), Decision 

trees and Support vector machines (SVM) have been applied to gather driving behaviour. The 

algorithms allow real-time monitoring of vehicle behaviour, real-time predictions, and 

notably coping with overlapping inter differences (average and careless vehicles) [82].  

Support Vector Machine (SVM) has been used in a study to monitor driving situations 

such as unintentional lane departure prediction associated with an alert system to warn the 

driver to ensure he improves his behaviour [83]. A binary SVM is deployed in the 

classification of the time series of selected variables. Training and testing of driver 

experiment data were performed using VIRTTEX, a device hydraulically powered in 6 

degrees of freedom moving driving simulator at Ford Motor Company. The SVM classifier 

achieved the following performance: sensitivity = 99.774% and specificity = 99.999% in 

predicting driver lane departure for each of the 22 drivers sampled. It should be noted that a 

non-linear kernel was used for the SVM classifier to achieve the separability of the driving 

data due to the complexity of the data structure.  

Predictive modelling such as sparse Bayesian learning in the classification of driver’s 

intent using lane change analysis from a camera view of the driver, internal vehicle sensors, 

lane position and trajectory. Indeed, a study using the Bayesian framework that assesses the 

criticality of the situation based on data monitoring the vehicle and its surroundings and the 

human behaviour related to the prediction that the driver intended to break to avoid a 

catastrophe or not. Using actual data from test driving performed by 28 different drivers over 

22 hrs in driving scenarios and in other case scenarios, a probabilistic model was built for the 

system preventative measures to be constructed based on different levels of distraction 

severity level and the driver behaviour, including his intent. One of the frameworks 

developed allowed the fusing of the predictive driver behaviour information with the vehicle, 

its surrounding information, and braking assistance. The results show that the framework is 

fit for assessing the criticality of the situation and the need for an intelligent vehicle safety 

system to intervene [78], [84], [85].  
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A survey on prediction models to detect driver’s behaviour has been conducted to 

ascertain driver’s actions and ensure the safety of people and compliance with driving 

regulations. Onboard diagnostic (OBD) information has been used to collect the vehicle 

speed change rate, throttle change rate, engine speed change rate, and engine load calculation. 

The data was analysed using AdaBoost algorithms to create the driving behaviour 

classification model [86], [87].  

It could be argued that the probabilistic approach relies on previous data to predict the 

outcomes. Relying on previous data to predict the future can sometimes be flawed; therefore, 

it is essential to get an algorithm to develop a real-time monitoring model. Nevertheless, 

different classification methods have been used to detect careless driving behaviour, but little 

has been done to prevent and classify maliciously infected vehicles. In addition, there are 

possible ways in which a maliciously infected vehicle could lead the vehicle to behave 

carelessly thus, resulting in false classification into careless driver’s behaviour.  

2.4.6 Driver Perceptions of the Road Environment 

Previous researchers have studied the relationship between accidents and human errors, 

and the results show that over 600,000 traffic accidents per year have led to severe problems. 

The number of yearly accidents is more than 70 million, and the eradication of traffic 

accidents has not been achieved [88]. In order to eradicate the persistent occurrence of 

accidents, several techniques have been applied to assist drivers by providing driving safety 

support systems and autonomous vehicles. Technology advancement has risen over the years 

in the area above, but there is still a need for limited human interaction to aid the decisions.  

According to Imamura and Asakawa [73], drivers’ ability to perceive hazards influences 

driving behaviour. Pattern analysis of driver pedal with that good pedal has detected 

dangerous driving behaviour in intersections [89]. Furthermore, risk perception was 

considered from risk acceptance (knowledge) and behavioural readiness (ability). The study 

further suggests classifying hazard perception in a driving situation with pedestrians' fault, 

driver’s fault, hiding and environmental factors. In addition, the classification of driver’s 

behaviour tendency has been listed as near-miss, disrespect accident, overconfidence, lack of 

confidence, and good balance. Another type of classification was performed that considers 

the risk awareness of the driver using heart rate changes in passenger and driver. Risk 

perception in driver’s ability in hazard situations by their knowledge for prediction and 

capability in accident avoidance was also investigated [89]. However, it could be argued that 
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the driver will react under specific circumstances. It is essential to ascertain whether a 

reaction is expected in deciding whether the driver might choose to swerve around an 

obstacle or whether automatic emergency braking should be initiated [90], [91]. Nevertheless, 

the study showed some limitations because the time of driver reaction to an eventual source 

of distraction should be ascertained, but the degree of reaction to the event or distraction from 

the ordinary course of driving needs to be measured. In preventing accidents, optimising the 

degree of driver’s reaction could help vehicles make intelligent decisions, such as prioritising 

and triggering the safety control mechanism.  

Driver’s aggression has been one of the significant factors in accident-related incidents in 

the driving environment. Aggressive behaviour from another driver or a pedestrian, such as 

hostile gestures, angry epithets, and strong words that can cause anger, elevated blood 

pressures, has led to accidents. In addition, the level of perception could differ from 

individual to individual, while factors such as race, age, gender could also be discriminative. 

A study has shown that gender differences influence anger in emotional processing in the 

driving environment [92]. The study showed that males are more sensitive to influence 

factors of cognitive component compared to women. Males are more likely to perform hostile 

actions such as sudden braking, overtaking, fuzzy road signs, succession red light, whilst 

females are more likely to be sensitive towards horn urging, encountered, careless curse and 

exhaust emissions. Group-specific targets have been used to detect the driver’s perception 

using a Drink and Drive simulation method. The simulation involved a younger audience 

who were intoxicated to drive a simulated car (gamification) in a static position. The result 

shows that the reaction and perception of drivers under the influence of alcohol could trigger 

intrinsic motivation to engage the young participants in gaming [93]. However, the 

simulation mentioned above was not carried out and did not achieve a result that could be a 

precise scientific finding related to drinking and driving, thus being an explicit limitation to 

this study. 

Tannahill et al  [94] stated that there are factors and parameters to be considered in the 

estimation of drivers’ behaviour and perception, such as environmental conditions, namely 

wind (speed), temperature, rain (wet road, windscreen wipers), time of day (daylight/dark). 

Their proposed system included the parameters mentioned above in developing a driver 

alerting system using real-time range estimation.  

Pugeault and Bowde [95] proposed a method to detect driver’s pre-attentiveness using a 

novel vision-based approach to autonomous driving that can predict and anticipate drivers’ 



  

 34  De Montfort University 

behaviour in real-time. The analysis entails analysis of visual scenes most predictive driving 

context or driver’s actions. Furthermore, the research focused on the driver’s behaviour on 

urban roads that requires different visual skills [96]. The research results showed that the 

vision-based approach could detect, predict, and even anticipate driver behaviour using 

preventive vision only in real-time. In addition, the model can detect the driver’s action 

related to braking and turning in over 80% of cases and estimate the driver’s steering angle 

accurately. 

2.4.7 Detection of Cognitive Drivers’ Behaviour                                           

Facial Geometry-Based Eye Region Detection 

The detection of cognitive distraction and sleepiness can be inferred from the facial 

geometry-based eye region detection by analysing the frequency of eye closure and eye 

blinking when the driver is zoning out. The analysis of the gaze estimation and driver’s 

deviation from the frontal view of driving or a context-aware situation can be used to infer 

the driver’s cognitive distraction. Face recognition is the most straightforward approach to 

detect gaze estimation or driver’s attention. The driver’s awareness can be measured using a 

method that tracks the pupil and estimates the driver's reaction time to events, while the 

vision field correlates strongly with the driver’s gaze [95].  

2.4.7.1 Gaze Estimation: Eye Tracking 

Detection and tracking facial features from face images with different facial expressions 

under various face orientations in real-time has been used in detecting cognitive distractions 

[97]. Eyes play a significant role in understanding a driver’s intentions and emotional states. 

The technique adopted measures the electric potential of the skin around the eyes, but this 

technique is intrusive and results in profound user acceptance. Alternatively, a non-intrusive 

eye tracker involves a camera that tracks and profiles the driver eye gaze and blinks rate in 

real-time then estimates and profiles the driver’s eyes blink rate. The cognitive distraction is 

detected by deviation from the driver profiled blink rate and the degree of reaction of the 

drivers towards events such as distraction or near-crashes. The reaction level of the driver to 

an event from innate cognitive distraction can be used to detect zoning out [97]. 
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2.4.7.2 Wearable Technology: Wearable glove system 

Innate emotions such as stressed mental workload could lead to temporal loss of 

concentration and vehicle control. Stress response could result from psychological thought, 

observing physiological reactions from respiration and heartbeat using biosensors that could 

disclose driver mental stress conditions in different driving conditions, including driving on 

highway and city [98], [99]. The innate emotions detection system uses the wearable glove 

system and consists of sensor module, hardware processing units, PPG sensor, inertial motion 

unit (IMU) sensor, MCU processing unit, analysis module, and alarm module implemented in 

end terminal application [99]. The studies showed to be more effective as monitoring systems 

with regards to monitoring driver’s cognitive behaviour and, for example, monitoring the 

stress level in real-time by detecting the physiological signal and steering wheel motion. The 

study established a strong impact of the stress on driver’s behaviour with over 95% accuracy 

level obtained by the SVM classifier.  

2.4.7.3 Electroencephalogram (EEG) 

Neurophysical signal such as Electroencephalogram (EEG) and brain activity has been 

used to understand the precursors of cognitive driving distraction at the psychological level 

[100]. EEG power spectrum is used to analyse spatial and temporal brain signal dynamics in 

monitoring driver states. The classifier was used on features extracted is Nearest Neighbour 

Decision Tree, Naïve Bayes, Random Forest and Support Vector Machines (SVM). In 

addition, Electrocardiogram (ECG), if embedded in the driver’s seat, can be used to detect 

cognitive distractions.  

Nevertheless, it should be noted that the proposed classifier will not detect cognitive 

distraction because cognitive detection requires sensors and having contact with the driver. 

This implies that this research will only focus on visual features using secondary data 

(TeleFOT data). Significantly, the classifier could be further applied in developing a driver 

monitoring system that can detect drivers induced by a stroke based on reaction time or driver 

state, which can be detected visually. For example, a stroke with symptoms such as 

coordination problems due to facial drooping, arm weakness, numbness and stiffness, legs 

stiffness, speech difficulty for a certain period can be inferred through image recognition 

technique. The argument could be the risk of a high level of false positives error. However, to 

reduce this type of error, the classifier could be tuned to detect the presence of multiple 

symptoms before triggering the alert system. The use mentioned above case will rely on 

image recognition and will require no contact.  
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2.4.8 Autonomous Vehicles and their Relationship to the Drivers’ 

Behaviour  

Autonomous vehicles are the future technology regarding the new type of vehicles on city 

roads and in the countryside. It is essential to understand their functioning concerning 

accidents limitation and avoidance. Research carried out so far has shown that autonomous 

vehicles do have limitations in perceiving obstacles and difficulty in identifying objects such 

as bicycles [101]. There will be a need for human intervention to subvert any form of 

accidents from happening in such occurrences. Thus, the driver state needs to be monitored in 

real-time. In addition, looking at the level of autonomy, achieving whole autonomy level for 

all the countries and terrains might take some time to get to perfection, achieving a zero-

accident tolerance. Therefore, drivers must remain in control or take-back control indeed 

failing. This boundary might be challenging to establish unless specified by the vehicle 

design specification, user manual including. 

Nevertheless, in certain conditions, it might also be challenging to allow a driver who 

shows apparent signs of tiredness, fatigue, etc., the detection of the driver’s behaviour will be 

necessary to avoid irreparable happening. For example, in some case scenarios, it will not be 

ideal for handing back the complete control of the vehicle to a driver who is showing 

apparent signs of tiredness or might be highly distracted by inside vehicle infotainment or 

such things. There should be a decent warning system to alert drivers of the risk he is taking 

and the danger he is exposing other road users to, in which case he shouldn’t if he was 

prompt to take over from the automated driving system. Thus, driver monitoring is still 

paramount. To even go further, the software should detect this type of case scenario, hence 

never allow or prompt this type of driver to take over from the automated driving system.  

The current projections in the field were that by 2018 there would be hands-off driving on 

certain motorways by autonomous vehicles for a maximum of around 3 minutes at a time 

[102]. This level of autonomy will be at level 4 (high automated vehicle), a more ADAS. For 

example, Telsa vehicles would warn if the user removed his hands from the steering wheel 

for more than 5 seconds in a hands-off driving situation. Presently, the regulations indicate or 

oblige users always to hold the steering wheel for all autonomous vehicles. In addition, the 

drivers will still be expected to take control in some circumstances if the technology fails. As 

a result of technology failure, Uber recently suspended their autonomous driving project due 

to an accident in Arizona [103]. Tesla pulled back 53,000 vehicles due to electronic braking 

systems failure in the Tesla Model X and Model S vehicles [104]. 



  

 37  De Montfort University 

However, it is essential to understand that research in the field should never stop, hence as 

a researcher, there should be continuous improvement of the technology and avoid these 

failures that will happen in the early days of applying this technology. Indeed, the application 

areas are so vast and could be a game-changer for human society. For example, the current 

research can also be integrated into autonomous vehicle technology and applied to health-

related issues, such as the driver behind the steering wheel is suddenly having a stroke. The 

example, as mentioned earlier, is a way the vehicle could detect and respond to such 

dangerous situations that could be crucial to driver safety and the safety of other road users, 

instead of focusing only on the management of the potential driver’s behaviour. This shows 

that the driver’s behaviour stated just as expected, careless or dangerous is not enough and 

should include some health-related issues that can benefit all, including the driver and the 

vehicle surrounding.  

Presently, autonomous vehicles cannot be fully integrated within the UK infrastructure, 

but an isolated test is being carried out on the motorway in Milton Keynes and Coventry In 

the UK [105]. The current road signage and layout standards vary widely depending on 

where you drive in road infrastructure. A brand new dual carriageway integrating several 

critical environmental factors needs to be laid out before autonomous cars can work 

adequately [102]. Furthermore, in a narrow countryside road environment, where no white 

lines defining the road's edge are visible, it will be challenging for an autonomous vehicle to 

work correctly. With such a road marking condition, the autonomous vehicles will have to 

revert the complete car control to the driver, and the driver’s state should be monitored. In 

addition, the roads will be covered with UK national speed limit such as 60mph in certain 

conditions. Therefore, for an autonomous vehicle to try to reach this speed limit, there should 

be several factors that have to be included and considered, making sure that extreme security 

conditions are met before it can take on this type of challenge irrespective of the twistiness of 

the roads it is driving on. All these scenarios will need to be trialled before vehicles full 

autonomy is reached as expected by all stakeholders, including road users and manufacturers. 

The classifier developed will have the ability to monitor the context environment and the 

driver state in real-time [75].  

Another critical stage in the projected timeline is moving closer to full autonomy by 2021 

and having motorways where the autonomous vehicle can take complete control and allow 

the driver to carry out reading tasks [102]. However, in a situation where the car is off such 

motorways, the classifier will be helpful for ADAS systems to aid drivers when they are in 
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control of the vehicle to determine whether it is safe to give the car/vehicle control back to 

the driver by monitoring the driver’s behaviour in real-time. Nevertheless, there is a risk that 

wrong users or drivers could exploit the automated driving features by drinking behind the 

steering. Such case scenarios should be monitored by the software and avoid giving complete 

control to such a driver.  

In state-of-the-art manufactured vehicles, for example, Volkswagen indicates that by 2021, 

autonomous vehicles can be used alongside non-autonomous vehicles on United Kingdom 

roads, keeping in mind that those vehicles would have restrictions as to what the drivers of 

the autonomous vehicle can and cannot do because of the risk of accidents due to other 

drivers on the road. Consequently, it will be necessary to detect and improve the system 

based on the dangerous driving behaviours of non-autonomous vehicles drivers and 

pedestrians. A far as research is concerned, two main types of self-driving cars will be on the 

road, including the highly automated vehicle where the driver will take control from time to 

time. The government believes that the existing licence and laws should still apply for this 

type of self-driving car in the UK. On the other hand, fully automated vehicles will need a 

new licence and legislation to be written to ensure the vehicle responsibility is total; however, 

the car owner should make sure that the software is up to date to avoid cyber-attack and 

software corruption [75]. Until that happens, for now, for the test on the UK road, the 

manufacturers and organisations wishing to carry out tests should make sure that manual 

override always exists with a test pilot sitting in the vehicle. Therefore, the drivers of a highly 

automated vehicle should not be allowed to read a book or to catch up with emails behind the 

steering wheel because of a probable system failure or an average (non-automated) car 

driver’s dangerous behaviour and the subsequent fatal injuries in the case of an accident [75]. 

In another recent study, experts revealed that by 2025, fully autonomous level 5 driverless 

cars would be available, but a steering wheel will still be present, implying that there will be 

the possibility for the driver to take complete control in some cases of system failure. 

Therefore, the driver’s behaviour classification and analysis will still be required [102]. In 

contrast, according to SAE International, the level of automation timeline suggest level 5 

autonomy will not be achieved until the 2030s; the forecast in the UK for production of fully 

autonomous (level4/5) vehicles is expected to be in 2025, and this will be 4% of the total 

number of the vehicle in the country [106]. 

The widespread use of autonomous vehicles in developed countries will increase the 

number of users, leading to massive cars traffic and congestion where human intervention 
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and control will still be required in some cases. On the other hand, the widespread 

autonomous cars can bring another issue related to youths avoiding taking a driving test. 

Indeed, it could be argued that youths are highly prone to distraction behind the steering 

wheel; thus, the classifier will help monitor the severity level of driver’s behaviour in real-

time concerning this segment of the driver population.  

Nonetheless, the widespread use of autonomous vehicles is further away than is generally 

thought to be the case, though there will be areas of automation; however, for the majority of 

road networks, although technically possible, it might take longer than planned for self-

driving cars to become a common thing that is widespread. Areas such as busy town centres 

or other complex urban scenes will most likely remain non-autonomous for longer. 

Developing countries such as South Africa, one of the most developed countries in Africa, 

will have to wait until 2040 before autonomous vehicles become a reality [107]. Therefore, 

the proposed classifier could be widely used in developing countries such as South Africa, 

Nigeria, Ivory Coast, Morocco, Thailand, etc., where level 1 to 4 automatic vehicle is 

scarcely used. 

The position and assumption that a fully autonomous vehicle will become a reality in a 

decade or two in the future is a debatable and robust argument. However, the analysis of 

driver behaviour in terms of usage of systems such as ADAS, intelligent algorithms, etc., will 

be still helpful in monitoring driver states whereby autonomous vehicles give control back to 

the driver in some context environment such as countryside roads are narrow without lane 

markers. Furthermore, the state of driver or passenger in autonomous vehicles can be 

monitored by an algorithm such as a classifier for health benefits, including a stroke detection 

where, in addition to taking over from the driver, the autonomous vehicle can make 

intelligent decisions, such as alerting emergency services or driving itself to the nearest 

hospital. The algorithm or classifier will still be handy if integrated into the autonomous 

vehicle with those mentioned earlier. Nevertheless, humans will still make decisions 

regardless of the type of vehicle use. Therefore, they should not rule out the possibility to 

choose between the following options, 1) a manual vehicle (level 0-2), 2) an automatic 

vehicle (level 3 to 4), and 3) a fully autonomous vehicle (level 5).  

2.5 Context-Aware Systems 

According to Bolchini et al [93], a context is a process of attributing meaning to a defined 

environment through the experience learnt over a certain period [108]. A context is any 
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information that can be characterized as an entity's situation [109]. Context has a significant 

impact on the ways machines and humans act and how they interact with things. In addition, 

context change can result in the change of the environment and the transformation that people 

will live and experience. Context is also an active process dealing with the way humans 

weave their experience within their environment to give it meaning [108].  

Shilit and Thiemer [96] supported that the context entails information about users 

locations, identities, objects presents in the surrounding environment [110]. VANET 

discussion has been prevalent around communications mechanisms in-vehicle networks (V2I, 

V2V). There have been some limitations in the context-aware information, such as road types 

and weather, impacting a driver's behaviour. However, researchers have used synonyms such 

as situation, background, and situation to describe context [111]. Furthermore, a computer 

system knowledge representation of its user’s environment has been ascribed to be context 

[112]. 

Brown [100], stated that context is based on users' location and identifies features present 

in the user’s environment [113]. In contrast, environment features or context can also play a 

key role in how a user interacts with the features that can be sensed. In addition, from an 

attacker’s perspective, context features can dictate the taxonomy of attacks in vehicle 

networks. To justify those, as mentioned earlier, in network communication, the physical 

environment in a particular situation is the context. Context can be subdivided into three i.) 

location of a user, ii) with whom the user is, and iii) available resources for the user [114]. 

Context can be the situation of a particular place or the impact the information about an 

environment can have on its user [115], [116]. Therefore, it could be argued that an entity 

will behave following its context-aware. Thus, in this case, the driver will behave following 

the driving situation, and the driving will be impacted by context-aware information such as 

pedestrians, road type, vehicles, weather.  

According to Gartner [103], Context is when something exists or happens [117]. In a 

traditional network penetration testing audit, one of the strategies adopted is to map out the 

design of the computer network before launching an attack using reconnaissance tools such 

as Nmap to probe the network. Dey and Abowd 1999, [106], [107] stated that computer 

sciences perceive context as just user locations [109]. Dey 1998 [98], defined context as 

information related to the features of an entity in a state [111]. An entity can be an object, a 

person or a place related to a present state. According to Bolchini [93], advanced context 

models can support context-aware applications used for interfaces.  
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2.5.1 Design of Context-Aware Systems  

This section describes the design, architecture, and framework behind context-aware 

systems. Context-aware systems can be implemented using different approaches that satisfy 

conditions and requirements, such as sensor location, user amount, and device resources. The 

design of context-aware system architecture is shaped under the methodology used to collect 

context data [118], [119]. 

According to Chen [110], there are three techniques used in the acquisition of context-

aware, which are detailed below:  

2.5.1.1 Direct sensor access 

 This technique entails embedded sensor devices with information-gathering capabilities. 

No added layer is needed to gain and process sensor data, and the sensor drivers are 

integrated into the application. However, the limitation of this technique is its unsuitability 

for distributed systems due to the components that do not enable the management of 

concurrent sensor access.  

2.5.1.2 Middleware infrastructure 

 The middleware architecture comprises layers of context-aware applications, employing 

encapsulation to hide low-level architectural and sensing details. The general architecture 

enhances scalability, reusability and extensibility and is a better approach than direct sensor 

access. This is because it has a modular design and employs strict encapsulation.  

2.5.1.3 Context Server 

The context server approach provides a distributed open-access feature that extends the 

middleware architecture by introducing a remote-access managing component [120]. 

2.5.2 Context-Aware Applications in ADAS Systems 

In-vehicle components/devices, such as an onboard infotainment system, can cause driver 

distractions in that drivers are obliged to interact with them, leading to dangerous and 

unlawful driving behaviour. Hence, detecting drivers’ distraction levels is a crucial part of 

autonomous driving and smart vehicles. In addition, driver behaviour is also affected by the 

driving context, with the context-aware influencing the perception and risk of the driver, 

underlining the need for a context-aware system that can identify and learn the behaviour of 

the driver in real-time. To this end, there is a need first to develop a definition of the context 

and what components form a context-aware application. For example, ADAS use in-vehicle 
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monitoring to evaluate driver distraction in certain situations, subsequently alerting the 

drivers and passengers to inherently dangerous scenarios. 

Being distracted is normal and can cause a decline in concentration, alertness, and reaction 

time, especially when driving. The development of ADAS has taken driver distraction into 

account, intending to avoid accidents and enhance road safety; the approaches used by ADAS 

can be categorised as either the vehicle-oriented approach or the driver-monitoring approach. 

Braunagel [14], showed how ADAS could allow the vehicle to take control from the driver 

when the situation requires it, proposes a system to classify driver distraction that will 

contribute to this process, especially in the case of semi-autonomous vehicles. Furthermore, 

Braunagel underlined the continuous responsibility of the driver in semi-autonomous 

vehicles. This responsibility is given to automated vehicles under certain conditions, allowing 

the driver to engage in secondary tasks, e.g., entertainment or resting [14], [15]. However, 

such a transfer during secondary tasks is regulated and not fully authorized, even in entirely 

autonomous vehicles. 

Moreover, ADAS alerts the driver when they have removed their hands from the steering 

wheel for autonomous vehicles. Consequently, drivers are forced by the vehicle to take 

control of the driving task when necessary. Regarding the driver’s readiness to perform such 

a takeover, Braunagel also developed an approach to ease the transition, namely driver 

monitoring, e.g., gaze guidance or increased deceleration [14]. Nonetheless, there are several 

scenarios in which the vehicles must control the driver, such as driver distraction or a lack of 

focus; hence, information on the severity of the driver distraction is critical. There is currently 

a significant gap in traffic accident risk assessment based on the predicted accident severity 

using Recurrent Neural Networks (RNN) [140]–[143]. Thus, instead of a mere detection 

approach,  

2.6 Long Short Term-Memory in Driver Distractions  

Predicting unsafe driving behaviour will strengthen safe driving practices. For example, 

research has shown that 20% of traffic accidents on monotonous roads are attributable to 

driver drowsiness originating from sleep deprivation. In detecting driver behaviour, both 

visual and non-visual features can be drawn upon. The former refers to eye movements and 

facial expressions, while the latter measures heart rate variability (HRV), grip pressure, and 

galvanic skin response [144]. Chakraborty and Nakano [145] used a driving simulator to 

explore cognitive distraction in drivers, evaluating normal and drivers’ secondary cognitive 
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tasks under several driving scenarios with various road conditions. The experimental results 

were recorded in time-series data, e.g., speed, accelerator strokes, and brake strokes, captured 

by onboard sensors and analysed by data mining algorithms. Yan et al [146] used a CNN to 

learn the features of a driver’s state, e.g., mouth, ears and eyes, and then predict their state of 

mind. The features were captured using a training dataset comprising four activities: 

everyday driving, eating, phone use, and falling asleep. The Face++ Research toolkit was 

used to localize drivers’ facial landmarks to enable feature detection. The study presented a 

classification accuracy of 95.56% for the abovementioned driver features [146]. Meanwhile, 

Le et al [147] detected such objects as phones and hands via an advanced DL approach. 

The authors’ proposed DL technique used Multiple Scale Faster-RCNN with an integrated 

standard Region Proposal Network (RPN) with maps entailing convolution feature maps, 

including Regions of Interest (RoI) pooling, conv4 and con3. They used data from the SHRP-

2 database, leading to reduced cost of testing, improved accuracy, and independent facial 

landmarking. Higher accuracy was achieved by MS-FRCNN based on DL compared to the 

similar yet faster R-CNN. Donahue et al [148] highlighted how RNN has become 

increasingly crucial in interpreting images in recurrent models that have sequences, i.e. time-

series data, as well as a visual representation. They also proposed using a Long-term 

Recurrent Convolutional Networks (LRCNs) architecture to facilitate visual recognition that 

can combine CNNs with long-range temporal recursion. Their architecture takes into account 

three difficulties of vision, i.e., activity recognition, image description, and video description, 

instantiating the sequential learning task of sequential input, static output 

, static input sequential output , and 

sequential input and output . At this moment, it is possible to 

apply the sequential input approach to NDS time-series data, e.g., speed or acceleration.  

2.7 Fuzzy Logic in Driver Distractions 

By enabling designers to model system controls with high complexity, fuzzy logic offers a 

non-complex method to reduce the uncertainty of knowledge-based systems concretely. For 

example, human behaviour, such as highly unpredictable driver behaviour, contains many 

uncertainties and is often measured using fuzzy logic. Research has shown that 95% of traffic 

accidents result from driver distraction due to abnormal behaviour [150]. As driver 

distractions vary substantially, estimating the severity of a particular distraction event is vital 

in the development of ADAS [1], and a system that can well predict driver distraction would 
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play a vital role in the prevention of traffic accidents; however, predicting driver distraction is 

challenging driver distractions are very difficult to predict. 

In previous research, Ohn-Bar et al [151] classified the activities of drivers based on head, 

eye and hand movements, captured via a Multiview vision framework based on two videos, 

one for the hands and the other for the head. However, this study only focused on one activity 

as well as hand control. Similarly, most studies on driver distraction detect and recognise 

activities primarily through individual activities instead of taking multi-class distractions into 

account; this leads to a reduced strength accident-prevention system. In related research, a 

system employing a fuzzy-logic model based on acceleration data from vehicle dynamics 

(vehicle jerks) could predict the severity of vehicle crashes [4]. In contrast, the system 

proposed here to detect and classify multi-class distractions draws on the factors of face 

orientation, hand position, distraction activity and prior driver distraction. Taking such factors 

into account is crucial to strengthening ADAS. In addition, a naturalistic driving study (NDS) 

is utilised as the driving dataset in place of distractions as perceived by the driver as it offers 

a more precise approach to measuring relevant activities or values. It is possible to classify 

multi-class distractions according to their level of severity. If the driver is focused on the 

road, has both hands on the wheel, knows road traffic signs and weather conditions, and 

follows traffic laws, they drive safely. 

In contrast, using only one hand to manipulate the wheel, using a phone, conversing with a 

passenger, glancing sideways and not focusing on the road ahead can be considered distracted 

or careless driving behaviour. Drivers are increasingly engaging in several such distracted 

driving behaviours at once, which can substantially adversely affect their driving. This 

highlights the urgency of developing a classification system for driver distraction severity, 

mainly as there is no clear distinction between careless and dangerous driving. 

NDS videos comprise image sequences (frames) that describe driver behaviour, 

facilitating the measurement of distracted behaviour using various metrics. A method is 

developed to predict driver distraction by drawing on such driving data images, combining 

various metrics utilising Image-Based Discrete Dynamic Bayesian Fuzzy Logic (Fuzzy 

Logic-DDB). Using this metric to validate the driver distraction severity model enables the 

classification of the severity level of driver distraction in situations necessitating a semi-

autonomous vehicle taking over, thus contributing to better ADAS. Sato and Akamatsu [152] 

showed that the difficulty of a driving task follows the driver's capacity and the demands 

posed by the task. An increased task burden alters the perception of the driver, thereby 
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temporarily reducing their ability. The authors also used fuzzy logic to describe specific 

driving behaviours based on driver perceptions and conditions, e.g., in terms of physical 

space, e.g., the felt speed and relative distance, and shifting traffic or road conditions. 

Nonetheless, this study only considered the consequences of distraction events, not how 

ADAS could be improved to mitigate distractions. 

Aksjonov et al [153] developed a fuzzy inference system based on simple matrix 

operations as a new technique to measure driver distraction when engaging in secondary 

tasks. The authors simulated various driver activities and evaluated the consequent 

performance regarding staying in the lane and maintaining the vehicle’s speed. However, 

they only considered text messaging as a secondary distraction. Meanwhile, Aksjonov et al 

[154], using a separate vehicle simulator for each driver, developed a new model of driver 

performance based on a neuro-fuzzy inference system that can be adapted to any driver. Their 

model had two inputs, namely the road speed limit and road curvature, which allowed speed 

errors and lane deviations to be predicted. Including 18 participants holding valid driving 

licences in their experiment, they used an Artificial Neural Network (ANN) that had 500 

neurons as well as a neuro-fuzzy inference system (ANFIS) with a membership function 

(MF), generating 81 rules after training. Eighty thousand nodes were gathered for the 

individual drivers, and the training and testing data respectively comprised 67% and 33%. 

They found that both ANFIS and ANN produced similar results, with the ANN performing 

better in prediction accuracy. Their input used three Membership Functions (MFs) while the 

system had two class inputs and one output, using nine rules for the fuzzy logic evaluator. 

Aksjonov et al,  [155] further proposed a technique to identify normal driving behaviour 

and evaluate errors due to secondary tasks and total distraction, using fuzzy logic algorithms 

to distinguish the two. The authors observed drivers being distracted by using their cell 

phones and measured how this affected their ability to follow speed limits and stay in their 

lane. They found that phone usage was responsible for 20% of driver distractions. Using the 

first publicly available dataset that contained more distraction identifiers than alternatives, 

Eraqi et al  [156] developed a system to identify driver distraction. This is based on a set of 

CNNs that was genetically weighted, whereby the classifier set weighted with a genetic 

algorithm offered significantly more classification confidence. Furthermore, they examined 

how different visual elements, such as face or hand position and skin segmentation, can affect 

distraction detection. Their eventual model was able to achieve 86.64% accuracy in real-time.   
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Aboueknaga et al [157] estimated driver posture using the distracted driver dataset, 

introducing a novel system that achieved 95.98% accuracy. While their CNN algorithm 

classified posture according to face or hand regions, among others, they did not account for 

the influence of multi-class distractions, which could have a severe effect on the distraction 

level. Riaz et al [158] used artificial human driver emotions to develop a system to evaluate 

driver distraction via fuzzy logic. They proposed that emotions take priority in the driver’s 

decision-making process. Furthermore, they developed the Enabled Cognitive Driver 

Assistance Model (ECDAM) to calculate the external factors and the driver’s distraction 

level. Once driver distraction crosses a certain threshold, the model initiates two sounds to 

alert the driver to appropriate actions. 

Meanwhile, Munyazikwiye et al [159] developed a model to predict the severity of a 

vehicle crash based on acceleration and other vehicle data. The crash dynamics were analysed 

using fuzzy logic, whereby they used the acceleration signal to create two inputs, namely car 

jerk and kinetic energy. They demonstrated that car jerk contributes more to the crash's 

severity than the vehicle’s kinetic energy. Nevertheless, preventing driver distractions that 

affect the vehicle dynamics in the lead-up to a crash is crucial to reducing the crash’s overall 

impact.  

Upadhya and Vinothina [160] defined various distraction parameters using fuzzy logic to 

analyse the likelihood of a traffic accident. Their factors included driver age, vehicle speed, 

driver’s alcohol consumption, and infotainment system usage. They revealed that various 

distractions contribute to accidents. However, they did not examine which distractions play a 

vital role, which could be considered a limitation of their research. Kim et al [161] developed 

a fuzzy logic system to predict and make decisions about the intentions of pedestrians based 

on their position, distance and direction of movement captured via computer vision. Their 

consequent pedestrian protection system was able to reduce the risk level of pedestrians. 

Despite this, there is still a need for a system that can correlate the driver's behaviour in 

responding to the pedestrian’s behaviour.  Salleh et al [162] proposed using ANFIS to create 

an estimation model that yields highly accurate results in various fields, including medicine, 

transportation and engineering. However, due to its complex structures, ANFIS is limited by 

its high computational cost. The authors suggested the removal of the fourth layer to mitigate 

the complexity.  

Dobbins and Fairclough [163] used Mamdani-based fuzzy logic to define various driving 

context categories by monitoring driver stress. They used only two context inputs, namely 
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traffic density and speed. They demonstrated the suitability of estimating the stress level 

based on human activity recognition (HAR) and the cognitive perspective via computer 

vision, electroencephalogram (ECG) and DL. Taken together, this underlines the possibility 

of preventing behaviour that can promote aggressive driving, e.g., speeding. Erdogan and 

Yavuz [164] further proposed integrating fuzzy logic into ADAS, specifically in lane tracking 

assistance, collision avoidance and Cruise Control (ACC). They drew on the monitoring of 

two key factors, namely vehicle speed and driver stress levels. However, their approach did 

not consider that high vehicle speeds do not inevitably lead to increased stress, nor did they 

consider other potentially confounding distractions, such as a driver talking on the phone 

while speeding, to get home more quickly. Such potentially influential emotions can be 

identified via image recognition, classifying these distractions according to their severity. The 

current study uses an NDS dataset with various driver activities, e.g., conversing with a 

passenger, using a phone for talking or texting, operating the radio. The primary focus was 

passenger conversation, texting, and talking on the phone, as these activities have been 

identified as common driver distractions. Furthermore, as these distractions can have erratic 

driving behaviour according to the context, multi-class distraction activity is also considered. 

2.8 Justification of Metrics  

2.8.1 Face Orientation 

Dong et al [17] measured drivers' fatigue from facial expressions and eye activity using 

physiological features. One of the metrics used is the number of times drivers touch their 

faces. It was stated that when drivers are tired, they exhibit less frequent head motions. Thus, 

measuring the frequency of face turns during a journey, the beginning duration depends on 

deduction from a consecutive number of frames. Hu et al [18] stated that careless driving is a 

significant cause of road accidents and tracked using images' face orientation and facial 

features. Infrared image technology was used in face region detection and facial feature 

detection. However, a single driver distraction is used, which is a limitation.  

Sato et al [19] inferred from driver body information states using driver distraction state, 

concertation state, and distraction state. The measures were looking out for near misses when 

approaching an intersection. Time-series of different eye-gaze movements and face 

orientations before the collision near-miss was logged. Rasouli et al 2018  [20] analyzed 

pedestrian behaviour at crossing points under various weather and road types. Their findings 

show that there is a strong correlation in the head orientation of pedestrians before crossing 
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intention. Pedestrians make an inference about traffic dynamics (vehicle seed), crosswalk 

(width), and pedestrian demographic impact pedestrian behaviour after the initial purpose of 

crossing has been displayed. The result shows interrelation in context elements, and one 

factor may decrease or increase the influence of other factors.  

Fasanmade et al [21] used a multi-class distraction to classify driver distraction into 

severity levels using driver physiological features. The approach involved the use of an image 

processing rule-based fuzzy logic system. It is found that a combination of face orientation 

and eye glance does increase the degree of driving distraction. Furthermore, results show that 

a driver's distraction can transition from careless driving to dangerous driving when a certain 

threshold is reached, and multi-class distraction occurs.  

2.8.2 Hand State 

The hands are vital in the perform driving tasks such as controlling steering and changing 

gears. During operating, the state of writing is critical in every changing context. Thus, 

monitoring its state is crucial in the prevention of accidents. Das et al [22] introduced a 

naturalistic driving study using bounding boxes and hands annotation to detect driving hands. 

The validation checked for false positives that may arise from illumination conditions, no-

hand objects of similar colour, occlusion, and truncation. For the detection, Aggregate 

Channel Features (ACF) was used as the detector, and the hand detector's accuracy was 

measured using precision call (PR) to evaluate parameter performance. The initial results 

suffered from missed detections and false positives; however, cross dataset comparison 

yielded better accuracy. Dong et al [23] stated that fatigued drivers assume more comfortable 

hand positions on the steering wheel. However, Carsten and Brookhius noted that the impact 

of cognitive distraction on driving performance differs from visual distraction. Visual 

distraction adversely impacts a driver's steering ability and lateral vehicle control, particularly 

car following. 

Le et al [24],  [25] used a novel multiple-scale region-based fully CNNs (MSRFCN) for 

human regions detection in illumination and low-resolution conditions. They used a pre-

trained network called the "Oxford" hand dataset and compared it with several hand detection 

approaches. The proposed MS-FRCN algorithm achieved an average precision and average 

recall of 95.1% and 94.5%. Besides, there is an improvement of AP / AR of 7% and 13%, 

respectively, to classify left and right hands. 
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2.8.3 Eye Glances 

According to an article by Taub [26], just two seconds of looking away from the road can 

be the difference between life-or-death. According to Peugeot's latest eye-tracking study, Car 

drivers take their eyes off the road in a one-hour trip about two miles when travelling in 

urban traffic. The French carmaker observed several drivers on 25 parallel six-mile drives, 

utilizing driver-used special glasses to investigate precisely where their eyes appeared when 

operating a range of SUV styles. The outcome results found that drivers' eyes off the road 

constitute about 7%. A one-hour driving speed of 30 mph is equivalent to driving 3,350 

meters with an eye glance off the road [27].  

Yuan et al [28] suggested classifying existing driving situations and forecasting off-road 

vehicle situations using Hidden Markov Model (HMM). The experiment was done using a 

driving simulator analysis involving 26 driver participants in three driving scenarios rural, 

urban, and motorway. Three different occlusion durations (0-s, 1-s, and 2-s) were added to 

measure the eyes-off-road durations. Results revealed that existing driving situations could be 

optimally defined using glance position sequences, with up to 89.3% accuracy. Moreover, the 

motorway was distinguishable with over 90% precision. Moreover, in the driver's eyes-off-

road period estimation, using HMM-based algorithms with two inputs as look duration and 

look position sequences gives the highest accuracy rate of 92.7%.  

Vehicles of 42 newly approved adolescent drivers are fitted with sensors, accelerometers, 

Global Positioning System(s) (GPS) to collect data continuously for 18 months period. 

Crashes and near-crashes (CNCs) situations were reported through the investigation of 

significantly elevated gravitational force incidents. Analysis of video has a duration of 6 

seconds previous to each CNC, and randomly sampled non-CNC road fragments were coded 

for the period of eye glances off the front road and occurrence of secondary mission 

participation. The chance (odds ratio) of CNC due to eye-glance activity was determined by 

contrasting the prevalence of secondary task participation and the length of off-road eyes 

before CNC with the prevalence and period of off-road looks non-CNC road segments. Crash 

incidence improved with the period of single most prolonged glimpse during all secondary 

tasks (OR = 3.8 for >2 s) and wireless secondary task presence (OR = 5.5 for >2 s). The 

single most extended glimpse offered a constant estimation of an accident's likelihood than 

absolute eyes off the forward roadway [29].  
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2.8.4 Road Type (Urban, Highway) 

 

Doshi et al [30] developed an algorithm that includes critical vehicle data such as the 

status of brake switch, throttle position, and wheel speed; and uses the inputs in calculating 

several parameters, namely; shifts per a given time interval, throttle variations, mean velocity, 

acceleration among others. The resulting calculated parameters help the algorithm identify 

the road type on which the assigned vehicle is travelling. This road identification process is 

achieved through parameter comparisons with reference values that define various road types. 

Additionally, the algorithm identifies a driver type using driver inputs such as gear shift 

patterns and a driver's handling of brake and accelerator pedals. Doshi's algorithm attained a 

"Receiver Operating Characteristic (ROC)" value of 85 % accuracy in road-type 

identification. 

Chai et al [31] conducted a behavioural analysis on road rage in China. The study showed 

an inverse proportionality between cases of road rage and lanes number on a given road. 

Thus, with fewer lanes, there are higher incidences of road rage. Additionally, the study 

revealed that road rage increased with an increase in the number of non-motorized vehicles. 

Road rage involved fewer trucks; daytimes had fewer incidences involving non-motorized 

vehicles, while more trucks were involved in road range on highways. A limitation in the 

study is that a small sample size of data was used, lacked demographic and environmental 

variables, necessitating a more detailed analysis in the future. To characterize road types and 

measure the degree of aggressiveness of drivers. Messeguer et al [32] designed and 

implemented a neural network-based algorithm to assist drivers by pointing out unacceptable 

driving behaviours as offering driving tips that would help improve fuel economy. Test 

results proved neural networks' ability to achieve a degree of precision in the classification of 

driver and road types.  

With context-aware playing a critical role in the accurate performance of various road 

classification and driver distraction identification algorithms, the useful context-aware 

collection is vital. Rakotonirainy et al and Khan [33],  [34] proposed a context-aware system 

for real-time collection and analysis of context-aware; related to a vehicle, the immediate 

environment, and the driver. The system also gathered information from filled questionnaires. 

A Bayesian network model was employed to analyse the context-aware through a learning 

model, facilitating the observation and prediction of a driver's future moves. The model 
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attained a high accuracy in predicting a driver's future behaviours and warning other road 

users.  

Methods for recognizing and classifying road traffic accidents' severity play essential roles 

in understanding accidents, causes, and possible mitigation strategies. To that effect, Jianfeng 

et al [35] designed a set theory-based accident recognition and classification method; that 

supports vector machines. Their model employed rough set theory in calculating the 

significance of driving environment, road, vehicle, and human attributes, with their results, 

show the model's ability to improve recognition accuracy and reduce computational 

workloads. This chapter’s limitation is that they have not considered human physical 

behaviour, i.e., the driver's face orientation. 

2.8.5 Weather 

Cai et al [13] developed a travel weather warning system (TWWS) similar to the Road 

Weather Information System (RWIS) for sharing weather safety information and disseminate 

safety warnings to drivers. This system is made up of risk estimate models that are based on 

extensive weather-related crash data. Weather-related data were collected using 

questionnaires, where drivers identified various risks while driving under different driving 

conditions. The severity of each wager is measured on a four-point scale that ranges from 

slight to catastrophic. Metrics such as the intensity of rain, traffic volume were considered. 

Malin et al 2019  [36] stated that rainy weather is a significant factor in traffic incidents, and 

the risk of accidents increases with poor road weather conditions.  Sherretz and Farhar [37] 

stated a positive linear correlation between rainfall and the frequency of road traffic crashes. 

Bergel-Hayat et al [38] revealed a significant correlation between an aggregate number of 

traffic accident injuries and weather variables. They observed that the correlations between 

these two parameters varied depending on road types. 

Brodsky and Hakkert [39] proposed measuring the risk of a road accident during rainy 

weather. The method shows a drastic rise in road traffic accident injuries during rainy 

weather compared to dry weather. The increased dangers, mainly when wet conditions follow 

a long dry season, are well known to drivers, as found by Knapper  [40], who, through 

sampling, found that drivers were aware and could recognize the risks. In assigning weights 

associated with weather conditions, expert opinion is needed on whether there is a correlation 

in weather scenarios with collision studies. 
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2.8.6 Speed 

Maintaining correct speed continues to be a challenge to many drivers. It is said that 

drivers who perform abuses of driving, such as speeding, crash more. Stradling and Auberlet 

[25],  [26] illustrated that vehicle trajectory variations may disclose valuable details on how 

spatial restrictions impact the behaviour of drivers (e.g., lateral location and speed). The 

findings revealed that the lateral location variability was more significant on the one side 

while driving on the crest vertical curve measure before encountering oncoming vehicles and 

narrower lane width. On the other hand, it was reduced according to the perceptual procedure 

used. Another study investigates the impact on drivers' vehicles' speed perception of multiple 

factors such as image size, speed, road shape, driving experience, and gender. 

Wu et al [164] examine the most miniature image scale (38% of the actual field of view), 

and speed calculations were the most reliable. The driving velocity was gradually 

undervalued as the image scale grew. Participants with driving expertise correctly measured 

the driving speed on both wide and narrow roads. However, those without driving experience 

had more considerable underestimates on broader roads. Furthermore, environmental 

conditions concerning speed performance have been highlighted by Bellis et al [165], who 

challenged the current policies and suggest they can intervene through teaching drivers about 

the relationship between inverse illuminance-speeding and measuring how better vehicle 

headlights and intelligent road lighting will attenuate speed. The real-world's speeding 

actions and its association with illuminance, an environmental property described as the 

incidence of luminous flux on a surface. Manser and Hancock [166] addressed the need to 

ascertain if the visual pattern and wall tunnel texture impact driving performance since 

maintaining correct speed continue to be a challenge to many drivers. The findings show that 

the relationship of speed by drivers and their reaction is impacted by the visual pattern and 

the tunnel walls' texture.  

2.8.7 Vehicle 

Mishra and Bajaj and Kamar and Patra [46],  [47] used the ML technique to predict 

drivers' driving patterns and their impact on social behaviour using CCTV cameras installed 

to monitor traffic. The observation was carried out during the day, and the metrics for 

measurement were instances of traffic violations due to aggressive patterns. Lee and Kum 

[48] proposed a feature-based lateral position estimation algorithm, which employs lateral 

positioning and stereo vision, irrespective of changes to viewpoints and obstructions - 
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resulting from pixel-wise feature extraction. The algorithm extracted vehicle images through 

image filtering, thresholding, and removing the ground portions from images captured from 

cameras. The algorithm's detection component employed a deep CNN with a speeded-up 

robust feature (SURF) to match successive image frames. They estimated the lateral position 

of ground points involved an inverse perspective mapping (IPM) algorithm. The testing and 

validation were done using urban and highway to attain zero mean error and standard 

deviation of 0.25m in lateral position estimation.  

Xu et al  [49] detected driver behaviour using car-following behaviours, which could 

change due to distraction, fatigue, drivers' habit, and surrounding traffic. On-Road trajectory 

data obtained in Beijing was used, and as a metric, distinctive driver states and car-following 

models were observed. This led to the prediction of the driver's velocity control with 

improved accuracy. Mittal [50] used object detection and a faster R-CNN model to detect 

different scale and size vehicles. An evaluation was performed using the FLIR_ADAS 

dataset for both RGB and thermal images. Gong et al  [51] proposed using the YOLOv3 

algorithm to detect the vehicle in thermal images. This led to a 65% higher accuracy and 

speed than the original YOLOv3-tiny. 

2.8.8 Pedestrians 

Kharjul et al [52], Introduces the implementation of an active protection automobile 

pedestrian identification device to minimize the amount and intensity of vehicle-pedestrian 

collisions. The authors present a pedestrian identification approach dependent on photos in 

this framework to segment pedestrian candidates from the picture. The method used is the 

Ada-Boost algorithm and cascading algorithm. They are confirming whether each claimant is 

a pedestrian. The Support Vector Machine (SVM) is specialized in identifying classifiers. 

The system sends input features mined from both the sample grey images and edge images to 

the device used for SVM training. Taiwan and Yamada [53],  [54] developed a tool for 

calculating a driver's knowledge and behaviour about pedestrian's position at the crosswalk 

and cross, especially at the direction of a left or right turn at an intersection. An appraisal 

carried out using objective evidence on automobiles' driving behaviour on public roads has 

been published.  

Rangesh et al  [55] examine the behaviour of pedestrians instead. In particular, from a 

solely vision-based point of view, the authors concentrate on detecting pedestrians engaging 

in secondary behaviours involving their mobile phones and related hand-held multimedia 
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devices, suggesting a pipeline integrating articulated human pose prediction and utilizing 

gradient-based picture features to detect the presence/absence of a smartphone in either hand 

of a pedestrian. A belief network encodes knowledge from multiple streams and their 

dependency on each other. This network is then used to forecast a likelihood score that 

suggests a subject's engagement with the device.  

Phan et al [56], Whenever a person emerges in front of the car, the authors intend to 

research the driver's actions. Also, two static parameters-based methods, which include 

Necessary Deceleration Parameter and Time-To-Collision were included in the problem and 

compared to the proposed approach, a technique applied to driving behaviour using the 

Hidden Markov Model (HMM) algorithm is used in characterizing the driver knowledge of 

pedestrians and the driver unawareness of pedestrians. Compared with basic ones, the 

outcome indicates a significant enhancement of the HMM-based process. 

2.8.9 Illumination (Day, Night) 

Clarke et al [57] observed that the rate and severity of road traffic crashes are influenced 

by data time. In their study, the visibility conditions under investigation included rainy and 

night driving, with the control test being dry daytime driving. Their findings on the increased 

rate and severity of crashes at night and rainy weather correspond with the conclusions of  

[58], which shows the risk of fatal crashes increased by a factor of four on night driving, as 

compared to daytime.  

2.8.10 Passenger talk 

Hole [166] asserted that talkative passengers appear to be less distracting than phone 

conversations, possibly because this passenger also functions as a second pair of eyes for the 

driver, thus moderating the degree of their interaction in the event of road hazards. Hence, 

less weight is assigned if the driver’s face is oriented towards the road. However, if the face 

is oriented away from the road to converse with the passenger directly, more weight is 

assigned, although less than for texting or phone usage, as outlined above. Reviewing 

empirical studies from the 1968-2012 period, Ferdinand and Menachemi [167] created a 

logistic regression model to reveal any relationship between drivers engaging in a secondary 

task and their performance. They revealed that around 29.2% of driver distractions could be 

attributed to conversations with a passenger [167].  
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Meanwhile, Foss and Goodwin [168] explored the issue of driver distraction in 

adolescents. They collected data on 52 high school student participants via unobtrusive event-

triggered data recorders that, when triggered, captured 20 seconds of audio, video, and 

vehicle kinematic information. They revealed that the largest single source of distraction was 

electronic devices, at 6.7%, followed by adjusting the vehicle's controls, at 6.2%, and 

grooming, at 3.8% [168]. The authors also estimated the driver distractions using a statistical 

approach, identifying, and counting how many distraction events occurred. 

Overall, there is a consensus that most driver distractions emanate from three different 

sources: physical, cognitive, and visual activities. Physical activities include using a phone, 

texting, and operating an infotainment system. Meanwhile, recognising distractions that could 

affect drivers’ cognitive abilities is crucial as these substantially impact drivers’ decision-

making. Texting, which could be considered a visual activity, is one such distraction. In 

addition, while driving is simultaneously a visual and cognitive activity, the visual aspect is 

paramount to perception or decision-making. Cognitive distraction can encompass conversing 

with a passenger or using a phone, while the subject matter and nature of the conversation 

can also have a considerable effect. It is possible to have a multi-level distraction that 

includes all three inputs; this strengthens the distraction’s severity level and degree. For 

instance, texting implies all types of distraction input happening concurrently, thereby 

representing a considerable threat to the driver’s behaviour. Distraction can also vary 

throughout the journey and can be measured using time-series data to assess the distraction 

frequency and duration in addition to the driver’s engagement level with the distraction’s 

source.  

2.8.11 Texting 

The NHTSA highlights texting as the distraction that most severely contributes to traffic 

accidents. Using a test case, the NHTSA demonstrated that 5 seconds of texting is equivalent 

to the driver closing their eyes while driving across a football field at 55 mph [169]. In light 

of this, Madden and Lenhart [13,14] showed that 28% of teens in their survey reported using 

mobile devices while driving, which critically affect their ability to drive. While 52% of teens 

said that texting while driving is not very common, they reported using a phone to conduct a 

conversation while driving. The survey findings underlined the dangers of taking one’s eyes 

off the road to text or otherwise use a phone. 
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2.8.12 Phone Usage 

Meanwhile, Hole [166] also found that hands-free phone usage represents a distraction 

similar to holding a phone because drivers visually imagine what is being discussed in the 

conversation. The author showed that the discussion type significantly impacts the driver’s 

mental processing and facial expression, potentially raising the distraction level. The research 

used the duration of use, type of discussion, and frequency of use during the journey. In 

contrast, an in-person conversation uses multiple non-verbal cues that reduce the mental 

demands of the conversation than it would be if held over the phone. Specifically, 

conversations over the phone are typically a lot more stressful as the need to imagine the 

discussion visually puts extra demands on the brain’s processing capacity, meaning that the 

driver may miss road hazards.  

Finally, Drews et al [172] explored how phone conversations and conversing with 

passengers while driving differed, specifically how drivers can tackle driving demands while 

holding either a phone conversation, an in-person conversation, or when there is no 

distraction. They demonstrated that more errors occur when using a phone compared to 

conversing with a passenger, in particular, a phone conversation impacts the driver's abilities, 

with their speech coordination reducing as part of a response to increased traffic demands. 

This indicates that conversations with passengers are unlike conversations via the phone, this 

is because the traffic conditions can become a conversation topic, thereby helping both 

vehicle occupants increase their awareness of their surroundings and the driving conditions 

themselves also directly affect the conversation, i.e., its complexity, thus mitigating the 

conversation’s adverse effects on the driver’s focus. In the current study, the weight of data 

according to the activity’s potential risk; thus, texting is considered the most dangerous, 

followed by using a phone and conversing with passengers. Nevertheless, there is a need to 

consider the possibility of an instance were talking to a passenger is combined with an 

additional distraction, thus representing a risk level equivalent to that of texting. 

2.9 Risk Assessment Analysis in Drivers Distraction  

Since newer technology, distracted drivers are one of the most significant problems 

occurring in road-related accidents. Intelligent transportation will soon allow vehicle takeover 

to semi-autonomous level 4, i.e., when out of necessity or by option, the vehicle takes control 

from the driver to commence driving activity. With vehicle takeover forthcoming, drivers 

will become heavily reliant on allowing the vehicle to perform more in-vehicle tasks, drivers 
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will become more relaxed, and distractions will occur more often, opening too many risks to 

the driver. Moreover, relevant context vehicle information will be utilised to help the driver. 

Such context-aware accounts for many areas relevant to the driver, including vehicle 

performance and environmental conditions, which directly affect the driver's safety. This 

implies a need for an ADAS that can mitigate the risks before an accident occurs and provide 

a qualitative- and quantitative-based risk assessment.  

An article by the European Commission for Mobility and road transport safety presents the 

fact that a significant percentile of road accidents occur when a driver is distracted, with 

common distractions such as handheld mobile devices, using the radio, eating, talking to 

passengers, smoking and glancing at in-vehicle navigation systems [1]. According to 

Kulkarni and Shinde [2], in-vehicle interfaces can also cause an overload to the driver. 

Additionally, fatigued drivers present a significant risk on the road. In recent years, drivers’ 

eyes became an efficient metric for measuring driver distraction, and driver’s ability in 

placing their eyes on the road during driving is crucial. A statistical analysis by the 

Department for Transport shows that out of the 1,456 cases in fatal car accidents, 383 of 

those cases involved careless tendencies by pedestrians, while 110 of the cases resulted from 

drivers’ reduced attention on the road [3]. Inexperienced drivers are a significant factor 

accounted for causing the number of road accidents to surge. Young inexperienced drivers 

are particularly at risk, while skilled drivers may change their tactics in good time and predict 

different driving scenarios [4] [5]. In comparison, the higher crash incidence by young 

drivers is attributed to low cognitive ability [6] and a loss of attention due to distractions [7].  

Furthermore, if knowledge transfer – particularly driving perception – were transferable 

from experienced to novice drivers, expectations would be that the novice drivers would 

better identify and mitigate driving risks, translating to lower crash incidences.  Risk 

mitigation is difficult to model as official accident reports are relatively undetermined due to 

the possibility of numerous definitions of distractions or a country simply not collecting the 

data [8].  Disparagingly, driver’s distractions can be impacted by the context-aware situation 

in which driving occurs. Thus, a novel context-aware risk model which uses intelligent image 

recognition to detect and form a risk matrix to profile drivers into distraction classifications 

can reduce the occurrence of an accident.  The drivers can be classified into three groups, i.e., 

safe, careless, and dangerous. Capturing the driver's behaviour is crucial in risk mitigation, 

developing context-aware ADAS systems that may influence the risk levels and prevent 

accidents. Moreover, a real-time novel risk assessment determines a driver's risk profile and 
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the development of the driver's distractions to work with multiple driving context influences 

such as auditory, visual, cognitive, and biomechanical distractions simultaneously.  

Risk assessment can be defined as an evaluation process applied in evaluating adverse 

effects that arise from a natural phenomenon, an activity or a substance [9]. Benedict stated 

that risk constitutes the likelihood and probability of the incidents [196], [197]. Relative Risk 

Ratio has been used in quantifying vehicle crashing risks under bad weather conditions; this 

requires a large dataset of crashes arising from adverse weather conditions [198]. However, 

using a risk matrix that combines probability and consequences has overcome the former 

method in popularity [196]. A risk matrix can be used to determine the level of driving risk. 

Understandably, most risk indicators related to drivers’ distractions has been modelled after 

the crash event.  According to Cai et al [156], certain studies have shown that driver’s 

subjective assessments of driving risks - particularly those related to various weather 

scenarios - are consistent with collision-based studies. In [156] the authors assumed that the 

driver’s perceived risks are consistent with the actual crash statistics; specifically for 

incidences related to rainy conditions. The main flaw of modelling driving risk assessment 

via post-crash data is the fact that it is a reaction strategy rather than prevention. 

Furthermore, different factors could impact the driving capability that could be extracted 

from the driving context. The driving context-aware that impact the driver can be from the 

driver, vehicle, and environment. The context-aware comprises weather, road, speed, 

manoeuvres, pedestrians, drivers state, braking.  However, inadequate data and facilities 

ensure an efficient and robust risk assessment model for driving context. This research 

proposes using a Naturalistic Driving Study (NDS) TeleFOT that is complete enough for the 

environment, vehicle, and driver monitoring. The proposed approach[64] used the 

mathematical model as: 

 

       (2.1) 

 

Where )  denotes a discrete model-dependent variable that represents the level of 

distraction's impact on driving. This variable's various impact levels include minor impact, 

overall impact, profound impact, and disastrous impact. The '  included in this variable 

represents the  driver with non-observable  Variables may include the volume of traffic, 

vehicle type, road type, and rain intensity. A non-observable variable was selected to fit a 
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logistic distribution for generating a continuous latent variable ), denoting the influence on 

driving.  

Another proposed approach is the Rank Order Cluster Analysis adopts that driving risk  

is sorted in ascending as indicated by . . . . . .. . Consideration of categories (G), 

including . . . . . ....  and satisfying , which can be denoted as 

. Consequently, diameter of , is calculated from the 

equation: 

 

            (2.2) 

 

Where  represents the mean driving risk, where the driving hazard is segmented into k 

segments expressed as: 

  = { },  = { }……..  = { 

}.             (2.3) 

Where the variable i satisfies the condition: 1 = { = n+1.  

There is also a minimal loss function with a recursion relationship represented by the 

formula: 

          (2.4) 

 

 Where b(n,k) denotes a special classification method:  

 

         (2.5) 

Furthermore,  denotes the method to minimize the loss function. Where n and k 

are given,  depicts the optimal driving risk categories.  

One of the patents held by MOVON Corporation [64] is a method to ensure the safety of 

drivers using a lane departure warning system based on image processing using a mono 

camera installed inside the car. A distinctive feature of the system is that it successfully 

processes several road conditions, including undesirable situations such as changing the 
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width of the road lane, the radius of its curve, the direction of the road and the complete 

absence of a road surface. 

The following observable parameters can characterize signs of attention deficit and fatigue 

in the driver: PERCLOS (PERcentage of eye CLOSure - a percentage of time the driver's 

eyes are closed) [65], turning the head to the left/right to the body, tilting the head forward 

relative to the body (the moment when the driver "nodding off"), duration of blinking of the 

eyelids, the frequency of the blinking of the eyelids, the degree of openness of the person's 

mouth (signs of yawning). In particular, for PERCLOS, there was a discrete number of 

parameters defined, namely: P70, i.e., 70% of the time the eyes were closed; P80, i.e., 80% of 

the time eyes were closed; and EYEMEAS (EM), the mean square percentage of the eyelid 

closure rating [65]. Furthermore, general information describing the vehicle driver helps 

explicitly identify the driver among all drivers who installed and using a particular 

monitoring software package but also helps to improve the search and ratio drivers with 

similar characteristics (general patterns among groups would help predict developing 

situations). This can be accessed via database, with weight coefficient applied since this is a 

“common” behaviour, but not this individual driver’s behaviour. 

Ginting H et al  [59] adopted the Likert scale in modelling individual coronary heart 

disease anxiety into different levels. The scale was used in implementing a 5-pointer scale. 

Lopez-Fernandez et al [60] used a scale in assessing problematic internet entertainment use 

scale for adolescents. The scale adopted is a self-administered scale for measuring 

behavioural addiction of online social network users and video gamers to the degree of 

severity. Drawing from the knowledge, this study formulates the distraction severity levels. 

Furthermore, the ratings of the severity level of distractions are designed using a 5-point scale 

as seen in Table 2 Driving Severity levels below, deduced using the Likert Scale [61]–[63]. 

 

Table 2-1: Driving severity levels 

Consequence Severity (0.0 – 

1.0) 

Risk 

Colo

ur 

Severity 

Levels 

Distraction  

Class 

No Distraction is observed. 0.0 Light 

Green 

No Impact Safe 

A Slight Distraction Observed 0.1-0.25 Green Slight Impact Safe 

Noticeable Distraction 0.25-0.399 Yello Low Safe 
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w 

Substantial Level of distraction 

detected 

0.4-0.599 dark 

yello

w 

Medium Careless 

Frequent level of distraction 0.6-0.79 Orang

e 

High Dangerous 

Casualty Prone 0.8-0.9 Dark 

Orang

e 

Very High Dangerous 

Severe Casualty Prone 0.9-1.0 Red Extreme 

 

Very 

Dangerous 

 

2.10 Summary 

In this chapter, a complete review of the state-of-art context-aware safety systems related 

to driver distractions. Throughout the chapter, different terms and themes were reviewed, 

giving a clearer idea of the work undertaken by others in the area to understand the research 

field better. For example, DL, deep vision, and computer vision were scrutinised, with some 

main algorithms developed in the field, leading to some up-to-date applications in research, 

industry, and all aspects of everyday life. The next chapter deals with the methodology 

chapter, where the focus will be on the methods, including technologies and algorithms used  

to complete this thesis. 
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CHAPTER 3. METHODOLOGY DEEP LEARNING AND 

COMPUTER VISION 

3.1 Methodology Overview  

The term methodology requires adopting a common approach that involves research 

leading to the research design [204]. On the other hand, research methodology is viewed as a 

strategic move favouring the research outcomes [205]. Wahyuni [206], supports that 

depending on the aims and objectives pursued by the research undertaken, the methodology 

chosen varies, and one must choose the methodology that best applies to his objectives. It is 

essential to mention that concerning research methodologies, two main choices exist. This 

includes the qualitative research methodology and the quantitative research methodology. 

The qualitative research methodology is related to research dealing with more theoretical 

assertion, with scarce or no use of experiment with logical steps leading to a conclusion using 

software to research outcomes. Conversely, [207] sustains that the quantitative research 

approach is more related to the inductive approach to quantitative study than empirical 

research studies, where the focus is on understanding human behaviours. Through this 

approach, experiments are completed, protocols are followed, numerical data collection is 

performed, performances are measured throughout the study, and analysed the results [208] . 

For the current research, the quantitive research methodology applied to the context-aware 

safety system for detecting and improving dangerous drivers’ behaviour related to their 

distraction levels is chosen to accomplish this research.  The rest of this chapter has the 

following structure: section 1) relates to the introductory part of the chapter, section 2) deals 

with the research methodology, where, after a brief definition of the chosen methodology is 

presented, section 3) offers a clear presentation of the research methods applied, section 4) 

highlights the research design to be implemented, section 5) provides a succinct summary of 

the whole chapter.    

3.2 Research Methodology        

3.2.1 Definition 

The notion of methodology refers to utilising research approaches and methods that lead to 

the steps applied in the research overall planning, including the research design and mainly 

objective dependent. Therefore, the research methodology chosen will depend on the aim of 



  

 63  De Montfort University 

your research; hence, it will vary based on the above, which also means that the researcher 

should select the research methodology that leads to the optimum outcome.   Concerning the 

research approach, the author has shown that two main approaches exist, including qualitative 

and quantitative research approaches, and it is down to the researcher to select the one that 

applies to it. That means that the researcher should address the choice of the methodology 

that will support the design and implementation of his research strategies. On the other hand, 

different authors have established that the research method is related to the techniques and 

tools used to investigate a given topic. This includes using either an experiment, case study, 

etc., as a research method to carry out a research study [209].  

3.2.2 Quantitative Research Approach 

The current thesis discusses utilising Artificial intelligence and ML techniques to classify 

driving behaviour in the current thesis. Research has shown that different research 

approaches can be used to carry out a study [207]. However, there are two primary questions 

and issues to be solved for this research. The first question will address how driving 

behaviour is classified, while the second will relate to measuring the degree of driving 

behaviour. The proposed research approach will adopt naturalistic driving data obtained from 

United Kingdom Field Operational Test TeleFOT [210] and will be further analysed using 

experimental research to guide research.  There are two possible steps involved in the 

demonstration of drivers’ behaviour. The first step is related to the analysis and evaluation 

using simulations, and the second step is dealing with the analysis and verification using 

operational field testing (FOT) [211]. Driver’s behaviour detection has mainly involved 

simulation measuring of traffic events, braking event that does not provide adequate context-

aware that will not fully explain drivers' perception of driving in a naturalistic environment.  

Implementing an actual vehicle is very expensive and will involve human participation; thus, 

there is a need for an alternative approach [211].  In addition, physical implementation will 

entail safety and ethical issues. However, research and the government has invested a lot in 

transportation systems. The government and other consurtiums has sponsored naturalistic 

driving data such as TeleFOT and UDRIVE [210], [212], [213]. An experiment involving the 

combination of Simulation and naturalistic data from Field Operation Trust (FOT) will be 

adopted to satisfy the research question.  
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3.2.3 Rationale Of Research Approach Selected 

The quantitative research approach was chosen for this thesis for different reasons; the 

main ones are related to the fact that empirical research was conducted. Hence data were 

gathered, process and analysed. Some of the steps involved are highlighted below: 

First, quantitative data were collected, including several driving hours, mainly using video 

recording or obtained from United Kingdom Field Operational Test TeleFOT [210]. The 

reason for this data extraction was to predict drivers’ behaviour in different driving case 

scenarios.  

Second, quantitative data pre-processing was carried out. Indeed, techniques were used to 

convert video recording into images or vice-versa.      

Third, quantitative analysis meant evaluating measurable and verifiable data to predict 

driver distractions  [208]. Mainly, drivers’ behaviour detection also meant the involvement of 

simulation to measure traffic events, driving in a naturalistic environment with less context-

awareness information available. The drivers’ behaviours detection can be done through the 

collection and analysis of driving data. 

3.3 Research Method (Simulation Research-Based) 

3.3.1 Research Method Selected  

The research method utilised in this thesis is the simulation research method, which is 

supported by different reasons. Indeed, a secondary naturalistic driving study data was 

utilised. Extracted, were different drivers selected that drove in different weather conditions 

with various driving styles. There were different categories of drivers selected, drivers 

qualified as “experienced” for those driving more than once, and “novice” for those driving 

only once were used to test different cars.  In the NDS data adopted the driving sessions were 

recorded using inside and outside cameras, and the videos data enhanced recorded version 

will be used to study a context-aware safety system for improving dangerous driver’s 

behaviours. In addition, the videos data were converted into several images, which were then 

cleaned and analysed using different image processing techniques. 

3.3.2 The Rationale of the Research Method Selected 

The experimental research method was selected for different reasons that are highlighted 

below.  
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First, an extraction of data from the NDS was performed selecting the drivers with 

different driving styles in various weather conditions.  

Second, videos data collected were converted into image data thanks to different image 

converter software such as ImageJ, FFMPEG, Video Proc, VLC player, etc.  

 The research method employed is based on the computer vision in intelligent 

transportation systems (ITS) that entails collecting and analysing data from videos and 

images used in decision making. The initial stage is the object detection and recognition 

stage, where algorithms can track the object in motion. The level of inference on the 

relationship between an object (human-object interaction, human behaviour, multi-objects) 

and context-aware is critical in decision making. The computer Vision domain of AI falls 

within the following areas: perception, visual sensing, and reasoning. In the intelligent 

transportation systems (ITS) context, drivers' reactions to the environment, such as in-vehicle 

and the outer vehicle, can determine their behaviours on the road. Therefore, the behavioural 

study will be developed based on collecting different driving sequences of several drivers. 

The data thus extracted will generally be video data that can later be converted into different 

formats, such as the conversion of videos into images, etc.     

3.4 Pilot Project: Image-Based Driver Activity Detection 

 

 

Figure 3-1 CNN-LSTM Process Flow 
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This section describes the experimental design and data processing for driver behaviour 

recognition. A CNN LSTM architecture uses a CNN for feature extraction on a given set of 

input data, combined with a Long Short-Term Memory Network, which supports sequence 

prediction. By design, a CNN LSTM was intended for handling visual time series prediction 

and generation of textual description from a given input sequence of images and video 

frames. CNN LSTM-DBN handles activity recognition through the generation of textual 

descriptions of activities identified in sequences of images.  The process flow for a CNN 

LSTM network comprises ten stages, each represented by a box in figure 3-1 above. The 

process flow starts with autonomous vehicle monitoring and ends at the ML classifier; in 

between, two process flows make up the internal operations of the model. The two flows 

represent the in-vehicle and out-vehicle flows. Each of the process flows are as follows. 

3.4.1 In-Vehicle Process Flow 

o In-vehicle video capture: the first stage of this process flow involves 

collecting the vehicle's interior data with a video from the onboard monitor.  

o Semantic Segmentation: the second stage of the in-vehicle process flow 

entails semantic segmentation of the driver’s features. This component 

extracts driver features such as driver activity, number of hands on the wheel, 

and face orientation off the road. Extracted driver features are then fed into a 

hybrid CNN-LSTM model as in-vehicle parameters. 

o Hybrid CNN-LSTM: the in-video frames from the semantic segmentation 

section are fed to the hybrid CNN-LSTM model. The CNN layer performs 

feature extraction on input data, while the LSTM performs sequence 

prediction and activity recognition. The model is tasked with identifying the 

type of distraction a driver experiences. Any identified activity is compared 

with historical data to recognise the distraction type and give it a distraction 

identifier fed to the dynamic Bayesian network. In essence, the hybrid CNN-

LSTM performs driver distraction recognition by analysing the extracted 

driver features where fuzzy sets for classification of the distraction by severity 

level are extracted. The fuzzy sets of distractions inform the model of the 

distraction ID, which is then fed to the Dynamic Bayesian model together with 

driver features, extracted by the deferential stage of the model.   
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o Image Frame Differencing: a copy of the video stream from the semantic 

segmentation section is fed to a frame differencing component, identifying and 

extracting the driver’s features.  

3.4.2 Out Vehicle Environment Monitoring Process Flow 

 The second process flow making up the entire CNN-LSTM Process Flow is the 

external  

o Out-vehicle/Environment monitors: this component collects data about the 

vehicle and the vehicle's external environment, such as speed, manoeuvres, 

and a video recording of the road and pedestrians. Two streams of data are 

obtained here, external video and vehicle data which includes speed and 

manoeuvres. 

o Fast R-CNN: the video recorded from the outside of the video is fed to a 

faster R-CNN, which analyses the frames to extract information related to road 

type, weather and identify pedestrians and the surrounding. Fast R-CNN 

detects regions that have objects of interest.  

o Differential: the differencing component receives data about driving speed, 

road type, weather and driving manoeuvres. The component relates the 

different variables; speed, road type and manoeuvres to generate critical 

context-aware.  

3.4.3 Dynamic Bayesian Model 

 The dynamic Bayesian model takes in three variables; distraction ID and driver features 

from the in-vehicle monitoring stream and context-awareness from the out-vehicle streams. 

With the three key inputs, the Dynamic Bayesian model performs severity classification by 

relating the variables to each other over adjacent time steps, outputting probabilistic data, 

which forms the basis of operations of the ML classifier.       

3.4.4 ML Classifier 

The last component of the model is the ML classifier, which takes in the probabilistic data, 

and performs prediction of the class of given data points, resulting in distraction 

classification. For this case, the classifier performs severity classification; given the outputs 

of the dynamic Bayesian network model, the classier approximates and maps the level of 
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distraction on a severity scale. The severity of distraction acts as the basis of whether the 

system takes over the vehicle's operations or not.  

Each TeleFOT Image is 1280 x720 with a width of 1280 pixels and 720 pixels, as depicted 

in Figure 3.2, which illustrates a sample of participant BL001, an enhanced image. The image 

was split into four frames using MATLAB representing In-vehicle (frontal view, side view) 

and Outer-vehicle (front and rear view), as shown in Figure 3.3. The driver point was 

determined based on a significant pre-defined point around the driver body region. The 

region around the head will indicate where the driver is; see Figure 3.4 and Figure 3.5. This 

enables us to perform further image segmentation to improve the accuracy of a head detection 

algorithm that ensures human recognition. We further classify the images into some of the 

distraction events that our algorithm will detect.  

  

Figure 3-2: Image Enhancement Single Hand on wheel vs. Double Hands on the wheel 

2. Autonomous Vehicle Monitoring Sample Image in the In-vehicle and Out-vehicle 

 

Figure 3-3: In-Vehicle vs. Outer-Vehicle 

3. Driver Feature Semantic Segmentation 

   

Figure 3-4: Image Segmentation (left) and the Contour Plot Driver state (right) 
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3.5 Contribution  

The contribution of this study is as follows. First, a novel DL severity level of drivers’ 

distraction identifies the degree of drivers’ distraction and ensures a transition vehicle take-

over. The existing approach focuses only on driver activity, not how severe the driver's 

behaviour is to make intelligent decisions. Our proposed system is and entails a hybrid-DL 

technique, namely CNN-DBN-LSTM.   

Second, the neural network (NN) technique LSTM and DBN will be applied on time-

series vehicles with frames from drivers’ distractions. The LSTM tracks changes and the 

sequence to sequence of driver distractions. The Dynamic Bayesian network enables the 

tracking of ongoing events and prediction of driver distractions. The model will be trained 

with pre-trained network Resnet-18 to recognise driving environment features. Third, a driver 

distraction risk assessment MDDRA model for semi-autonomous vehicles. Fourth, we 

automated the enhancement and segmentation of driver features from the raw images and 

extracted drivers’ distractions to achieve a high-level accuracy leading to a context-aware 

HMDDSM method for using the Hidden Markov Model to transition the driver to the vehicle. 

3.6 Research Design  

3.6.1 Introduction  

Some authors present the research design as the necessary steps of structuring a study, 

particularly a research study and a scientific work, to tackle research questions and bring the 

required answer to the research questions. Authors affirm that research design is related to the 

study's logical structure [214]. The necessity to identify and shape the evidence that will 

allow answering the research questions unambiguously will depend on the area of research 

and how to plan the empirical research planning. In addition, the research design also 

highlights how the research investigation is being conducted [215]. Therefore, the research 

design is central to the scientific research inquiry, allowing the researcher to carry out his 

research work by avoiding bias, random error and error variance related to the research [216]. 

The organisation of the current research design session can be structured as presented below; 

firstly, an introduction, followed by a generality on data collection, next the TeleFOT NDS 

data were visited, next gathering the TeleFOT data were dealt with. 
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3.6.2 Data Collection Techniques (Conversion Image to Video – Time-

Series Data)  

The table below shows the trial type (baseline, experienced and novice) for all 

participants. There are 27 different participants from the table below, with some of the 

participants repeated over different conditions. 

Table 3-1:Drivers Participants table 

Trail type 

Baseline Experienced Novice 

001 001 
 

002 
  

003 
  

004 004 
 

005 
  

006 006 
 

007 007 
 

  
029 

033 033 033 
  

034 
  

036 

037 037 037 

042 042 042 
  

043 
  

047 
  

059 
 

061 061 

063 063 063 

064 064 064 

067 067 067 
  

071 

074 074 074 
  

079 
 

080 080 

081 081 081 

083 083 083 
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088 088 088 

 

Some participants only appear once, some twice and some completed all three trials as 

depicted in the table above. However, the maximum number of different participants is 27. 

3.6.3 Video-Based Activity Recognition  

The sampling rate of the image was generated at 24 frames per second using the FFMPEG 

software.  This will ensure the tracking of events such as eyes glances that can occur within 

milliseconds. Xing et al [217] stated that eyes glance at the mirror can last from 0.5 to 1 

second. An example of images split and the segment is below in Figure 3.6. 

 

               

Figure 3-5: sample image enhanced and segmented 

3.6.4 Times-Series Data – Content Awareness System / Analysis 

The Pre-Processing of the time series data of the vehicle involves using the Race 

Technology software used to extract the vehicle time series data in CSV format. The 

following parameters were extracted from the CSV: time (s), long acceleration, latitude 

acceleration, vector acceleration, speed, distance, position X, position Y, video frame, video 

CPU, GPS latitude, and GPS longitude.  In Figure 3.7, an example is depicted below: 
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Figure 3-6: The algorithm suitable for time-series data 

3.6.5 The TeleFOT Naturalistic Driving Study (NDS) Dataset 

The Race Technology Data Analysis Software is the main application that comes with 

nearly all Race Technology products. The software can compute lap times and simple lap and 

sector times during the duration of a journey. The Race technology data analysis software is 

software used in the analysis of naturalistic driving data. Figure 3.8 below depicts an instance 

of a sample of the naturalistic driving video data analysis below. Furthermore, the capabilities 

of the Race technology software have features such as Controller Area Networks (CAN) with 

up to 100 variables with decoding of raw CAN, track maps, virtual dashboard, the complex 

calculation (speed and throttle averages), exporting data to spreadsheet and Matlab. The 

analysis involves annotating the driver’s behaviour that constitutes the attributes related to 

careless behaviour from indicators annotated from playing the video frame by frame.  

3.6.6 TeleFOT NDS Data Gathering the 

3.6.6.1 About TeleFOT NDS Data 

TeleFOT comprises the most significant European Field Operation Test (FOT) regarding 

the functionality of in-vehicle aftermarket and nomadic devices. The TeleFOT project 

commenced in 2008 and ended in 2012. The project's primary purpose was to improve 

Autonomous systems and cooperative systems in the Intelligent Transportation Systems 

environment [212], [218].  The project further addresses Field Operational Test (FOTs) issues 
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such as distraction, driving congestion, traffic efficiency, and travel speed controls.  TeleFOT 

also involved large scale trial conduction with a significant number of vehicles instrumented 

with data loggers. The large scale FOT (LFOT) was carried out at eight individual test sites in 

Europe, namely UK, Finland, Sweden, Germany, Greece, Italy, and Spain.  The Large scale 

FOT conducted involved vehicle collecting and recording driving data such as speed 

measuring, vehicle dynamics and vehicle positions. In 2011, TeleFOT –UK Detailed Field 

Operational Test (DFOT3) was launched to collect naturalistic drivers' behaviour without any 

predefined condition in the United Kingdom.  The test location was mainly in the East 

Midlands (Leicester, Coventry, Nottingham) area of the UK  and partnership with 

Loughborough University [210]. Initially, the challenging milestone in the methodology 

would have been getting real driving data.  

 

The summary of TeleFOT Naturalistic Driving Data (NDS) is as follows:   

• There are 27 individual driving participants  

• Consistent route for all drivers, including predominantly urban with a range of 

junction and traffic types. 

• Constant vehicle for all drivers using Ford Sedan 2008 MY model 

• Approximately 50 minutes to 1 hour of driving for each data ‘packet’ (some 

drivers have repeated drives, some only one drive) 

• Driving data packets up to 50 instances. 

• Naturalistic driving with predefined conditions applied to be that constant 

vehicle and 1 hour.  

• Linked four-channel video data of the front, rear, back, and side of the vehicle 

• video data with 100Hz Global Positioning Service (GPS) and accelerometer 

data 

3.6.6.2 TeleFOT NDS Video Channels 

There in Figure 3.7 is a 4 tiled video channels data provisioned for both outside the vehicle 

and inside the vehicle [210]. Video data is also synchronised to GPS and accelerometer data 

of the vehicle. Thus, at every frame vehicle accelerometer is logged. 
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Figure 3-7: Showing 4 video channels data provisioned for both outside and inside the vehicle 

 

3.6.6.3 TeleFOT NDS Data Formatting 

To get the data out of the RUN Race Technology File, one will need to use the export 

function – again, this will be in the manual for the software. one can export it into excel or a 

Matlab file format. All the variables that the software exports will probably not be used for 

context-aware. A lot will just record null values as there was not anything connected to the 

data channel. As a start, the following variables will be considered: 

Time [s] refers to the accumulated time from the first data record until the end of the 

records. This is recorded in seconds; however, as the data frequency is at 100Hz, we will 

need to run through 100 data records during one second. 

Long accel [g] – This records pure 100Hz data from a tri-axis accelerometer; the data is in 

g and is not filtered or interpolated in any way. Longitudinal accel will record both positive 

and negative acceleration (i.e., acceleration and braking). 

Lataccel [g] - This records pure 100Hz data from a tri-axis accelerometer; the data is in g 

and is not filtered or interpolated in any way. Lateral accel will record both positive and 

negative acceleration (i.e., cornering left and right). 

Speed – Recorded in miles per hour and calculated from the GPS signal. Unlike other 

systems, this is the vehicle speed over the ground, not wheel speed or road speed. 
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Video frame – This is the matched video for each line of data. As the data is recorded at 

100Hz and the video at 25Hz, the data will show blocks of four video frames (i.e. 100Hz / 

25Hz) 

GPS long [degs] – This is the longitudinal GPS position of the vehicle for each line in the 

data. The data is interpolated as the GPS sensor records at 20Hz and the data at 100Hz – 

therefore, the software interpolates vehicle positions between the actual records. 

GPS lat [degs] - This is the lateral GPS position of the vehicle for each line in the data. 

The data is interpolated as the GPS sensor records at 20Hz and the data at 100Hz – therefore, 

the software interpolates vehicle positions between the actual records. 

3.6.6.4 TeleFOT NDS Data Processing  

Data will be extracted from the video data using an export function to log data into an 

excel format. In addition, some of the driving data variables that will be explored are time, 

acceleration, speed, video frame, GPS longitude and latitude.  Ekambaram et al 2016 [219] 

extracted significant distraction of eye glances using only 10% (10 drivers selected) of the 

TeleFOT data. Some of the events that constitute eye glance distractions are (eyes off-road, at 

objects), eye closure. The research focused on the drivers’ faces and eyes in identifying the 

object or field of attention. On average, the participants had eyes off normal activity (looking 

forward) for only 7% of the total test duration, the highest being 13% and the lowest 4%. 

This result is from approximately 23 minutes of analysed data, from a trial lasting over an 

hour drawn from only nine drivers. Results further show several minutes of remarkably 

accurate eye glances reading found within hours of recordings of the naturalistic driving data.  

Ekambaram et al [219] further stated that manual review of the TeleFOT data video recording 

shows other distraction events available such as mouth events (Talking to the passenger, 

biting nails), Hand gestures(waving), Hand distractions (hand on leg, seat belt removal and 

adjustments), Head Movements (neck and head position)  etc.  Ciscal-Terry et al [220] used 

TeleFOT data to analyse drivers’ eye movements.  Morris et al 2011 [221] deduced drivers’ 

distractions from TeleFOT data by analysing the percentage of eyes that glances off-road. 

Franzen et al 2012 [222] used TeleFOT data to analyse wider distractions from outside the 

vehicle. Deducing from the TeleFOT data available, the events to be measured can be further 

narrowed down. For example, the severity level of a single event (eye glances on distraction 

sources) can be analysed. Another possible approach could be the severity level amongst 

multiple events (hands gesture, hand distractions, mouth events, head movements, eye 

glances).  
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This research would focus on the frame-by-frame image processing from the naturalistic 

driving video data captured at a minimum threshold of 24 frames per second (FPS).  

However, it should be noted that the duration of distraction events to be detected will guide 

the number of frames to be filtered and analysed. Realistically, the minimum severity 

threshold required for an event to be considered careless or dangerous driving will be 

justified. For example, detecting an event instance such as hand gesture event (seat belt 

adjustment, wave to passers, panel adjustment) for 10 seconds. The frames realised in this 

period of 10 seconds would be 24 x 10 seconds = 240 frames.  Distractions and inattention 

events that can be detected from the TeleFOT are aided through the driver’s eyes, mouth, and 

hands (Region of Interests (ROI)). Events such as eye glances, hand gestures, and mouth 

events can be significantly detected; the degree or threshold of the events mentioned above 

will classify driving behaviour. Furthermore, a severity model will also be developed. In this 

research, the events to be detected and classified will be narrowed down to eye glance, face 

orientation and hand gestures.  

3.6.6.5 TeleFOT Video Coding Taxonomy 

The video coding taxonomy in the table below has been drawn up from video analysis of 1 

hr 04 minutes Naturalistic driving data around the city of Leicester. In addition, the glossary 

of data variables for fatal and accidents causation database has been consulted to complete 

the distraction[219,221,222] [223]. However, it should be noted that the list is non-exhaustive 

as the research is still at its preliminary stage.  

 

Table 3-2: Showing the Naturalistic Driving data around the city of Leicester [210,219, 220, 221] 

                                                           Distraction 

Distraction type Code Description or Notes Occurrence 

ratings 

Primary (P) or 

Secondary (S) 

distraction 

Left Mirror 20 glancing to the left side mirror - P 

Left Window 30 glance sideways at the left window - P 

Wave to passing 

drivers 

42 The driver looks at and waves to a 

passing vehicle either as a greeting 

or gesture of thanks. 

- S 

Right Mirror 40 Any glance to the right-side mirror 5 P 

Rear view Mirror 60 Any glance to the rear-view mirror  8 P 
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Interior Object 80  Looking at an identifiable object in 

the vehicle other than a cell phone. 

Such includes items as food etc 

2 S 

Talk to Passenger 11 The driver is talking to a passenger 

sitting in the passenger’s seat 

3 S 

look at Passenger 12 The driver is looking at (and talking) 

to the passenger 

4 S 

Forward 10 Glancing out the straight-forward 

windshield. 

5 P 

adjust seat belt 13 Adjusting seat belt. Assumes driver 

is looking at and may reach for an 

object 

- P 

Right Window 50 Any glance to the right-side window - P 

Adjusting clothing 15 The driver puts on or takes off - part 

of the clothing.  

- S 

Adjust in seat 24 Driver adjusting his position in the 

driver’s seat 

- S 

Look at GPS 

navigation systems 

90 The driver interacts with an after-

market GPS device that is mounted 

on the windscreen. 

6 S 

Look at outside 

vehicle or person,  

40 The driver looks outside the vehicle 

to another person or vehicle at any 

critical situations 

- S 

Look out rear 41 The driver turns around and looks 

out the rear window. It must be 

apparent that the driver is looking 

out the window 

- P 

Hand gestures 43 The driver uses hand gestures, 

usually during speech (can include 

pointing) 

- S 

Hands-on gearstick 44 Driver rests a hand on brake or gear 

sticks 

- S 

Hand on leg 45 Driver rests a hand on the leg - S 

Arm on windows 46 Driver relaxes arm on the window - S 
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3.6.7 TeleFOT Data Sampling Size  

The role of this sampling is to have an idea of the data type used and how using different 

sample sizes can be determinant for the analysis to be conducted on this dataset. Indeed, the 

different data types gathered and the data size will substantially affect the analysis process. 

Therefore, sampling is an essential part of the data analysis to come. 

 

Table 3-3: Showing a TeleFOT Data Sampling size 

TELEFOT 

PARTICIPANTS 

Baseline (BL), 

Experienced (E), 

Novice (N) 

VIDEO LENGTH  IMAGE 

STATISTICS  

DATA POINT 

(IMAGE 

STATISTICS X 

4) 

001 BL001 01:13:00 105,109 420436 

 E001 00:33:40 48,485 193940 

033 BL033 01:10:55 106,398 425592 

 E033 00:38:13 57,334 229336 

 N033 00:18:20 27,512 110048 

074 BL074 00:33:45 48,605 194420 

 E074 00:44:41 64,360 257440 

 N074 01:33:13 134,219 536876 

081 BL081 00:33:43 48,562 194248 

 E081 00:34:24 49,556 198224 

 N081 01:39:59 106,534 426136 

083 BL083 00:33:43 48,562 194248 

 E083 00:35:26 51,039 204156 

 N083 00:57:58 83,470 333880 

088 BL088 00:35:00 50,405 201620 

 E088 00:42:17 60,904 243616 

 N088 01:29:05 128,271 513084 

TOTAL   1,219,325 4,877,300 

 

3.6.8 TeleFOT Splitting Dataset (Training, Testing, and Evaluation) 

The compelling feature of the network is its simplicity of the network layer in 

convolutional structure. However, it needs to be trained with considerable training data: 



  

 79  De Montfort University 

objects of different events must occur at every frame analysed.  For the training, we generate 

thousands of images from each video at 25 frame MPS at the size of 1280x720. The TeleFOT 

data has been subdivided into the following 75% constitutes the training data, 15% testing 

and 10% for evaluation.   We divided the images into the training images into 40% positive 

samples and 60% negatives samples.  Positive samples are a sample with the event of interest 

to be identified within the object bounding boxes. The negative sample is realised when the 

bounding box does not intersect the object of interest. For the training, the crop is sampled in 

a distributed manner to ensure the whole image of the object is detected. The TeleFOT NDS 

dataset is quite large, weighing in at 138GB for the training images, 13GB for the testing 

images, and 6.3GB for the validation images. The test directory contains (as the name 

applies) 100,000 images (100 data points for each of the 1,000 classes) for our testing split.  

Training the classifier for object detection requires several samples from each image, 40% 

for positive and 60% for negatives. Negative samples constitute bounding boxes with less 

than similarity than ground truth object boxes with a degree of 0.2(20%) similarity. Positives 

samples should fall within the object bounding box with 0.6(60%) similarity.  Localization is 

complicated than classification when training; however, to address the issue, starting with a 

model with high-quality weights is crucial. The network will first be trained for the 

classification and weights of layers reused. Localization involves fine-tuning the 

convolutional layers in the whole network.  

3.6.9 Dataset 2: American University Cairo Driver Distraction Dataset - v2 

We used secondary data from American University in Cairo Driver Distraction Dataset 

(AUCDDD) V2 obtained from the Machine Intelligence group at the American University in 

Cairo [129,130]. The dataset is the first publicly available dataset for distracted driver 

detection. The study involves 44 participants from 7 different countries: Egypt (37), Germany 

(2), USA (1), Canada (1), Uganda (1), Palestine (1), and Morocco (1). Out of all participants, 

29 were males, and 15 were females. Some drivers participated in more than one recording 

session with different periods, driving conditions, and wearing different clothes. Videos were 

shot in 5 different cars: Proton Gen2, Mitsubishi Lancer, Nissan Sunny, KIA Carens, and a 

prototyping car. We extracted 14,478 frames distributed over the following classes: Safe 

Driving (2,986), Phone Right (1,256), Phone Left (1,320), Text Right (1,718), Text Left 

(1,124), Adjusting Radio (1,123), Drinking (1,076), Hair or Makeup (1,044), Reaching 

Behind (1,034), and Talking to Passenger (1,797).  The dataset satisfies research question 2, 

which contains distractions classified into careless or Dangerous driving.  The first process is 
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to perform a data cleaning by manually inspecting the video files with the eye and giving a 

distraction label for each frame. The transitional actions between each consecutive distraction 

type are manually removed. The Table below shows samples for the ten classes in our 

secondary dataset. 

 

Table 3-4: Dataset 2 – AUCDDD - Distracted Driver Dataset v2 

DISTRACTION EVENT CLASSES FRAMES STATISTICS  

Safe Driving c0 2,986 

Phone Right c1 1,256 

Phone Left c2 1,320 

Text Right c3 1,718 

Text Left c4 1,124 

Adjusting Radio c5 1,123 

Drinking c6 1,076 

Hair or Makeup c7 1,044 

Reaching Behind c8 1,034 

Talking to Passengers c9 1,797 

3.6.10 Justification of Context-Aware drivers’ distractions Measurements 

Wierwille et al [224]  measured the response time in braking to measure the drivers’ 

behaviour. Smith et al, [225], [225], the present research examined associations between poor 

driving behaviour (DB), driving when fatigued (DF), risk-taking (RT) and road traffic 

accidents (RTAs). The study involved a cross-sectional online survey of clients of an 

insurance company. The survey measured DB (speeding, distraction, lapses of attention and 

aggression), RT and frequency of driving when fatigued (DF, driving late at night, prolonged 

driving, driving after a demanding working day and driving with a cold). Speed Metrics using 

maximum speed (speed limit) and mean speed standard deviations. The use of driving speed 

and speed violations. This entails monitoring drivers’ behaviour data and, in correlation, 

braking events during driving can be used. Incidents can be used to measure driver’s 

behaviour and driver’s aggression. However, the application area of this research is to 

prevent events that can lead to accidents. 

Nabi et al [226] studied a behavioural pattern that could impact human behaviour called 

Type A behaviour pattern (TABP), characterised by impatience, time urgency, and hostility 

also linked with coronary heart disease. It has been debated that TABP is linked with risky 
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driving behaviours, resulting in road traffic accidents RTAs. The methodology involved 

using participants reported maximum speed limits in different road types such as rural roads 

and highways. 

Simmons-Morton et al, 2011 [227] stated gravitation force (g-force) elevation resulting 

from sudden deceleration or acceleration and hard turns are essential measures of risky 

driving. The high g-force rapid acceleration and deceleration can also reduce the amount of 

time to respond to hazards and increase the loss of vehicle control. Risky driving associated 

with elevated g -force events were assessed: longitudinal deceleration/hard braking (≤ − 0.45 

g ); longitudinal acceleration/rapid starts (≥  0.35 g ), hard left (≤ − 0.50 g) and hard right 

turns (≥  0.50 g), and yaw (± 6 degrees within 3 seconds). A collision avoidance rule is meant 

to manoeuvre by giving 3 to 4 seconds distance between the vehicles before braking events. 

However, this is suitable under excellent weather conditions and normal traffic conditions. 

3.7 AI and ML Techniques  

3.7.1 Deep Learning  

Deep Learning is a sub-topic of ML that relies on learning representation from data which 

uses learning successive layers for increasingly meaningful representations. DL allows 

computational models composed of multiple processing layers to learn data representations 

with multiple levels of abstraction. The layers are like neural networks structured in layers 

one after another. DL has been applied to image classification, speech recognition, 

handwriting transcription, text processing, speech recognition, and digital assistants.  

According to Goodfellow [228], some problematic representation can require a nearly 

human-level understanding of the data using DL. This has been applied primarily in cases 

whereby neural networks were shallow and can represent only one or two layers of 

representations. Using this neural network has been reduced by methods such as Support 

Vector Machines (SVMs) or Random Forests. DL enables computer systems to build 

complex concepts out of more straightforward concepts.  

3.7.2 CNN  

3.7.2.1 Definition 

DL-CNN is a multilayer perception (MLP) mathematical function that maps some set of 

the input value to output values. These functions are actualized by composing many more 
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specific functions [228]. CNN method is entirely an unsupervised feature learning that solves 

complex problems.  

Deep convolutional nets have brought about breakthroughs in processing images, video, 

speech and audio; however recurrent nets have emphasized sequential data such as text and 

speech [229]. Machine-learning systems are used to identify objects in images, transcribe 

speech into text, match news items, posts or products with users’ interests, and select relevant 

search results. Increasingly, these applications make use of a class of techniques called DL.  

Conventional machine-learning techniques were limited in their ability to process 

biological data in their raw form. For decades, constructing a pattern-recognition or machine-

learning system required careful engineering and considerable domain expertise to design a 

feature extractor that transformed the raw data (such as the pixel values of an image) into a 

suitable internal representation or feature vector from which the learning subsystem, often a 

classifier, could detect or classify patterns in the input. For classification tasks, higher layers 

of representation amplify aspects of the input that are important for discrimination and 

suppress irrelevant variations. An image, for example, comes in the form of an array of pixel 

values, and the learned features in the first layer of representation typically represent the 

presence or absence of edges at particular orientations and locations in the image [229]. In 

addition to beating records in image recognition and speech recognition, it has beaten other 

machine-learning techniques at predicting the activity of potential drug molecules8, analysing 

particle accelerator data, reconstructing brain circuits, and predicting the effects of mutations 

in non-coding DNA on gene expression and disease. Perhaps more surprisingly, DL has 

produced promising results for various tasks in natural language understanding, particularly 

topic classification, sentiment analysis, question answering and language translation.  

 

3.7.2.2 CNN Architecture: Convolutional Layers  

Convolution neural network is applying ML technique in computer vision-related 

problems such as object recognition. CNN consist of pooling layers and alternating 

convolution, as shown in Figure 3.9. Multiple weighted inputs are be assigned with a bias to 

the learning features that involve image segmentation [230].  
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Figure 3-8: CNN Layers 

Multiple hidden layers can be densely connected, and that makes inference challenging. 

Hinton and Osindero [231] eliminates the challenge using a method called complementary 

priors. This is achieved through a fast and greedy algorithm that learns deep one layer when 

given that the top two layers form an undirected associative memory.  The fast, greedy 

algorithm slows the learning procedures that fine-tune the weight using a contrastive wake-

sleep algorithm. In this research, the driver’s behaviour can be of multiple labels, and context 

perceptions are dynamic and real. However, as the number of parameters increases, 

scalability becomes difficult. In addition, variation learning requires all the parameters to be 

learned together.  The fast and greedy learning algorithm can quickly learn multiple set of 

parameters, with the capability to learn from the deep network with millions of parameters 

and many hidden layers.  

Furthermore, deep belief networks are unsupervised learning and can be applied to 

labelled data through learning models that generate both data and labels.  

3.8 Long Short-Term Memory 

3.8.1 Definition 

LSTM layer is a recurrent neural network (RNN) layer that supports time-series and 

sequence data in a network. The layer performs additive interactions, which can help improve 

gradient flow over long sequences during training. LSTM layers are best used for 

learning dependencies from distant time steps.  The LSTM is used in the prediction of the 

drivers’ distractions  

3.8.2 Sequence Input Layers  

The sequence input layer inputs sequence data to a network. The sequence input layer is 

created using the sequence input layer. An LSTM layer is a recurrent neural network (RNN) 
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layer that supports a network's time-series and sequence data. The layer performs additive 

interactions, which can help improve gradient flow over long sequences during training. 

LSTM layers are best used for learning dependencies from distant time steps.  LSTM layers 

are best used for learning dependencies from distant time steps. The learnable weights of the 

LSTM network are input weights , recurrent weights , and bias .  

                                                                  (3.1) 

Where i, f, g, and o denote the input gate, forget gate, layer input, and output gate. 

The cell state at time step t is given by, 

 

                                                     (3.2) 

  

Where  denotes the element-wise multiplication of vector (Hadamard product).  

The hidden output state at time step t is given by, 

 

                                                       (3.3) 

 

                                                                (3.4) 

                                                                (3.5) 

                                                                (3.6) 

                                                                (3.7) 

                          (3.8) 

 

3.9 Dynamic Bayesian Network 

DBN is a directed acyclic graph representing conditional independence between a set of 

random variables, which deals with uncertain information and probabilistic inference upon 

receiving evidence. It consists of nodes representing the random variables and arcs 

representing the conditional independence between variables. 
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Figure 3-9: Dynamic Bayesian Network: Driver Distraction Leve 

3.10 Severity Level Drivers’ Behaviour System Framework 

Learning and predicting driving behaviour are challenging due to complex factors needed 

to model context-aware with the driver’s behaviour. In Figure 3.10 above, we present an 

architecture that could be used to learn, analyse and make decisions based on driver’s 

context-aware and Drivers’ behaviour.    

3.10.1.1 Context-aware Driver Distraction Severity Classification Architecture 

Figure 3.11 presents the complete Architecture of the proposed Context-aware Driver 

Distraction Severity Classification model. 
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Figure 3-10: The Context-aware Driver Distraction Severity Classification Architecture. 
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3.11 Fuzzy Logic 

Fuzzy Logic Methods using an improved neuro-fuzzy inference system (ANFIS) model 

could be used to simulate and predict the car-following behaviour based on the reaction delay 

of the driver-vehicle unit. The reaction delay is used as an input in this model, while other 

model inputs and outputs were chosen concerning this parameter. Using the real-world’s 

collected data, the performance of the model was evaluated. This model was also compared 

with the responses of existing ANFIS car following models[232]. The simulation results 

showed that the proposed model has very close compatibility with the real-world data and 

reflects the traffic flow situation in a more realistic way, which was a significant 

improvement. 

3.12 Hidden Markov Model 

A hidden Markov model (HMM) is a statistical model used to describe the transformation 

of observable events that rely on internal factors, which cannot be observed directly. The 

invisible factor underlies the observation is called a ‘state’, and the observed event is called a 

‘symbol’[13], [17]. 

3.13 Imagenet Evolution 

It has been founded that DL broke out from the use of ImageNet evolution. Deeper neural 

networks are difficult to train; He et al [233] presented a residual learning framework to 

enable the training of extensive networks. The approach involved using the ImageNet dataset 

to evaluate residual nets with a depth of 152 layers. This approach resulted in a 3.57% error 

on the ImageNet test set. The result also presents an analysis of the classification task on 

CIFAR-10 with 100 and 1000 layers.  According to Szegedy et al [234], a deep CNN 

architecture named inception was used for the classification and detection in ImageNet 

Large-Scale Visual Recognition. Improved results in ML increase computational power, large 

datasets, but it is mainly due to efficient algorithms. In a large dataset, increasing the number 

of layers and dropouts is to address overfitting. The inception method uses an optimal sparse 

structure that improves dense blocks through neural networks for computer vision.  The 

limitation to this object detection methodology is the lack of utilizing context nor performing 

bounding box regression.  Krizzhevsky et al [235] adopted a deep CNN to classify 1.2 

million images in the ImageNet into 1000 different classes.  The test data achieved an error 

rate of 37.5% and 17.0% at top-1 and top-5, respectively. 
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Furthermore, it has been stated that Deep CNN is an effective neural network for up to 60 

million parameters, and 650,000 neurons can be achieved using 5 CNN layers.  However, 

there is other new pre-trained network architecture such as ResNet (5,10,18,50),  GoogleNet 

and MobileNet. However, Resnet-18 will be adopted for this research due to the quality of 

the dataset and computational resources. Most important, the ResNet gives the best accuracy 

compared with other models [223]. 

3.14 Deep Learning (DL) 

3.14.1 DL Technologies Supporting the Design CNN Architecture  

DL methods are learning methods that use multiple levels of representation, obtained by 

composing nonlinear but straightforward modules that transform the representation at one 

level given raw input into a representation at a higher, slightly more abstract level. Using a 

general-purpose learning procedure rather than manual labelling, the layers are learned from 

data LeCun et al [236]. According to Goodfellow et al [237], DL is a subfield of ML -DL 

entails perceptron algorithm, which will be used in automatic learning and assigning weights 

in the classification of inputs as depicted in figure 3.12 below. This approach will be applied 

in solving the research gaps. For example, weights will be assigned to drivers’ distraction to 

classification and transitioning of vehicle take-over.  

 

Figure 3-11: Simple Perceptron Network Architecture (Rosebrock, 2017) 
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3.14.2 AI Technologies Supporting the Design  

3.14.2.1 Convolution Neural Networks 

Yan et al [238] proposed a CNN-based model trained with six classes of labelled data, 

which learns, detects and predicts driver distraction and fatigue from analysing a driver's ears, 

mouth and eyes movements. Their model achieved 95.56% performance accuracy. Similarly, 

Le et al [121] developed a Multiple Scale Faster-RCNN approaches for detecting cell phone 

usage by drivers and steering wheel handling. The method achieved state-of-the-art accuracy 

in detecting cell phone usage. Yuen et al [239] used a CNN-based method to observe faces, 

localize landmarks, and estimate head pose. Yuen et al [239] improved face detection by 

using a deep CNN-based approach, which performs discrete head pose estimation and 

performed better compared to baseline methods. Muhlbacher-Karrer et al [240] proposed 

another CNN-based method that detects the state of a driver; distraction, tiredness and stress. 

The approach detects a driver's hand actions on a steering wheel using a “capacitive-based 

wireless hand detection sensor”.  Vora et al [241] introduced a CNN system that performs 

driver gaze zone estimation. Yan et al [120] recognized driver’s inattention using a CNN to 

learn and predict driver state features such as the eyes, mouth and ear. The detection of the 

features as mentioned earlier was done by training dataset that consists of four activities 

everyday driving, cell phone usage, eating and falling asleep. Detection was achieved using a 

Face++ Research toolkit that localizes the facial landmarks on drivers. Results yielded a 

95.56% accuracy in classifying the driver’s mouth, ear and eye [120]. Le et al [121] used an 

advanced DL approach that detects objects such as hands, cell-phone usage. 

3.14.2.2 Fast Recurrent Convolution Neural Network (Fast RCNN) 

Le et al [121] proposed a DL technique that features a Multiple Scale Faster-RCNN 

integrated with a standard Region Proposal Network (RPN), which features maps that entails 

convolution feature maps such as ROI pooling, conv4 and con3. The data adopted is from 

SHRP-2 databases, and results yielded a reduced testing cost, better accuracy and 

independent facial landmarking. The DL-based MS-FRCNN achieved higher accuracy than 

similar Faster R-CNN. Donahue et al [122] stated that Recurrent Neural networks had gained 

recognition in the image interpretation for recurrent models for tasks with sequences (time 

series data) and visual representation. They also proposed a Long-term Recurrent 

Convolutional Networks (LRCNs) architecture for visual recognition that combines 

convolutional layers and long-range temporal recursion. The architecture considers three 
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vision difficulties (activity recognition, image description, and video description) and 

instantiates the following sequential learning task, namely Sequential input, static output 

( 1 2 1 2( , ,.... ) ( , ,.... )t tx x x y y y
), Static input sequential output ( 1 2( , ,.... )tx y y y

) Sequential 

input and output ( 1 2 1 2( , ,.... ) ( , ,.... )t tx x x y y y
).   The aforementioned sequential input 

approach can be applied in time-series data such as speed, acceleration in the Naturalistic 

driving study (NDS). 

3.15 Summary  

This chapter carefully investigates the methodology adopted in the present study. In this 

regard, a quantitative data analysis approach is applied in a time-series dataset, images, and 

videos, monitoring driver behaviour through these recorded data. The chapter also highlights 

the main algorithms, techniques and models supporting this research. These mainly revolve 

around algorithms, such as Convolutional Neural Network (CNN) as the DL algorithm, 

Fuzzy-logic, Hidden Markov Model, DBN as the AI algorithm, and Long Short-Term 

Memory (LSTM) as the computer vision algorithm, which is related to the analysis of driver 

behaviour. The choice of the research method is also justified and is developed around two 

methods, namely simulation and Field Operational Testing (FOT). Indeed, one of the primary 

datasets used in this study is TeleFOT, one of the most extensive European datasets related to 

monitoring and improving autonomous and cooperative systems in the ITS context.   
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CHAPTER 4. CONTEXT-AWARE DRIVER DISTRACTION 

SEVERITY CLASSIFICATION USING LSTM 

4.1 Chapter Objectives 

• To introduce a novel multi-event driver distraction detection system based on events 

information (RoI) and using context-aware parameters. 

• To propose a severity level classification system of driver behaviour applying LSTM 

to implement a probabilistic model. 

• To propose a method to predict driver distraction activity from times series data of 

participants from naturalistic driving.  

• The design of proposed deep recurrent neural network using the non-linear 

autoregressive with exogenous inputs. 

4.2 Synopsis  

ADAS play a vital role in ensuring the safety of passengers and drivers in both private 

vehicles and public transportation systems. This chapter entails applying a DL method to 

classify driver distraction behaviour based on parameters of context-awareness, namely 

speed, manoeuvre, and event type. Driver distraction is examined via video coding taxonomy 

using event information on regions of interest, including eye gaze estimation, facial 

orientation, and hand gestures. Meanwhile, the severity of driver distraction is classified 

using a novel probabilistic (Bayesian) model drawn from an LSTM. Furthermore, there is an 

approach for further classification of driver distraction severity using frame-based context 

data derived from the multi-view TeleFOT naturalistic driving study (NDS) dataset. The 

presented methodology enables driver distraction severity to be predicted using recurrent 

deep neural network layers trained on time-series data. 

This chapter’s contribution is its proposal of a frame-based metric to measure driver 

distraction severity via linear transformation; the classification of severity levels through 

LSTM; the experimental validation of a frame-based model of severity; and the use of 

naturalistic driving study data to develop and test an classification system that will enable the 

vehicle to take over from the driver based on the driver distraction severity level. This system 

would be a helpful component in ADAS. This chapter also involves using a Dynamic 

Bayesian Network model to predict the driver’s distraction.   
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4.3 Introduction 

A proposed prevention system based on data from the secondary Naturalistic Driving 

Study (NDS) TeleFOT to driver distraction reduces the likelihood of traffic accidents. To this 

end, 27 subjects are assessed, and the TeleFOT data usage is explored to identify any existing 

events in the dataset. Specifically, using linear transformation to propose a frame-based 

driver distraction severity metric and develop an architecture to classify driver distraction in 

levels of severity based on LSTM. The validation of the proposed model via experimentation 

using naturalistic driving to develop and test the classification system for vehicle take-over 

based on the driver distraction severity level. This system will contribute to the existing 

ADAS. The focus is on driver distraction monitoring via context-awareness, analysed using 

LSTM in a Recurrent Neural Network (RNN). It will be possible to apply the system to the 

evaluation of driver behaviour, thereby facilitating systems that can prevent or correct driver 

distraction according to the distraction severity level. This evaluation can be subjective 

according to the event duration and frequency; hence, the proposed system takes both driver 

distractions and context-awareness information into account. 

4.4 Context-Aware Driver Distraction Severity 

Table 4.1 presents the distractions detected in participant BL_001 in the Virginia Tech 

Transport Institute (VTTI) standard distraction taxonomy [242]. Each distraction event (ID) 

is assigned a unique number and coded by the frame number. Therefore, each distraction is 

identified in each frame. The system of taxonomy coding is derived from the VTTI, and the 

limitations in capturing driver distraction are addressed through the development of the 

minimum required attention (MIRA) theory. The code sections are not sequential in 

BL_001’s video coding data (context-aware), and only the analysed distraction codes are 

logged. Table 4.1 is derived from the MIRA standard video coding taxonomy. 

Table 4-1: Driver Distractions 

Distraction type Distracti

on Type 

ID 

Description MIRA 

# 

Left mirror 2 Any left side-mirror glance   

Left window 3 Any glance to the left-side window (looking at junctions, else 

40) 

 

Right mirror 4 Any glance at the right side-mirror  7 

Right window 5 Any glance to the right-side window (looking at junctions, else  



  

 92  De Montfort University 

40) 

Rear-view mirror 6 Any glance at the rear-view mirror 8 

Instrument cluster 7 Any glance at the instrument cluster located beneath the 

dashboard, e.g., speedometer, control stalks, and steering wheel 

 

Interior object 8 Any glance at an object in the vehicle is different from a mobile 

phone. Objects may include personal items brought in by the 

participant 

2 

Look at passenger 12 Driver looking at (and talking to) passenger. 3 

Look outside 

vehicle either 

through 

windscreen or 

side window 

40 The driver looks at another vehicle, person, animal, or 

undetermined object outside the vehicle (not checking at 

junctions, else 3 or 5) 

 

 

In classifying the driver distraction severity, there will be considerations of the following 

context-aware variables: 

• Distraction Type: The driver distraction events/occurrences are listed in Table 

4.1.  

• Speed: Recorded in miles per hour and derived from the GPS signal; here, vehicle 

over the ground speed, not wheel speed or road speed, is the case in other systems. 

• Manoeuvres: Indicating the vehicle stopped (‘S’), turning (‘T’) or otherwise in 

Table 4.2. 

 

Table 4-2: Manoeuvres 

Manoeuvre (Column 9) 

Type Code Notes  

Stopping or Stopped S(1) Code only when the vehicle is coming to a stop or is very slow-moving; 

once the vehicle moves off, stop coding—no S codes to be used with the 

following. 

P 

Turning T(2) This identifies the moment the vehicle enters the actual manoeuvre – the 

first movement on the steering wheel or when the vehicle crosses the 

giveaway line; always ends with the last record for each ‘event’. 

P 
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4.5 Context-Aware Driver Distraction Severity Classification Architecture 

In Figure 4.1 below is the architecture for the context-aware driver distraction severity 

architecture.  

 

Source: ON-BOARD 
CAMERAS

Multi-level Distraction 
Detection(FastRCNN)

Frames

LSTM – Severity prediction

Dynamic Bayesian/DAG 
for severity 

Classification

2-D Distraction Detection

Vehicle 
Takeover 
Control

Control 
Signals

Implementation

Contextual 
Information(Speed 
Acceleration etc.)

 

Figure 4-1: The Context-aware Driver Distraction Severity Classification Architecture 

4.6 Dynamic Bayesian Network 

According to the DBN, the driver distraction severity level is classified as seen in figure 

4.2. 

• Distraction Type: The driver distraction event/occurrence identified as a 

distraction.  

• Speed: Recorded in miles per hour and estimated from the GPS signal. Unlike 

previous systems, this refers to vehicle speed over the ground rather than wheel 

speed or road speed. 

• Manoeuvres: This indicates whether the vehicle is stopped (‘S’), turning (‘T’) or 

otherwise. 
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    (4.1) 

 

Where are severity probability at time t, severity probability at t-1, and distraction probability at t. 

 computation of the   frame-based severity metric denoted To classify driver distraction 

using the direct acyclic graph (DAG). 

 

Speed/
Accel.

Distraction 
Types

Consecutive 
Frame-
based 

Occurences

Distraction 
prob. (t)

Manoevres

Contextual 
Prob. (t-1)

Severity 
Probability

(t)

Severity 
Probability

(t-1)

 

Figure 4-2: The Dynamic Bayesian network for severity classification. 

4.7 LSTM-Based Driver Distraction Severity Classification  

An LSTM layer represents an RNN layer supporting time-series and sequence data within 

a given network, conducting summative interaction that promotes gradient flow throughout 

long sequences during the training process. These layers are highly suitable for pattern 

learning or capturing dependencies based on distance (time) steps. In the LSTM network for 

driver distraction severity, the learnable weights are the input weights , the recurrent 

weights , and the bias . The sequence input layer, created using the sequence input layer, 

inputs time-series data into the driver distraction severity LSTM network. 

           (4.2)  

  

, and are the input gate, forget gate, layer input, and output gate. The frame cell state 

at time step t is given by: 

       (4.3)   
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Where  denotes the element-wise multiplication of the vector (Hadamard product).  

The hidden output state at the time (frame) step t is given by: 

        (4.4)   

      (4.5) 

      (4.6) 

      (4.7) 

      (4.8) 

The  is the sigmoid function, where   

          (4.9) 

4.8 LSTM Architecture 

The LSTM architecture below in figure 4.3, showing the features forget, update, and output.  

  

Figure 4-3: Frame-based Data Flow at Time Step t (LSTM Layer) 

4.9 Experimental Results  

Based on experiments in MATLAB 2019a, the development of the driver distraction 

severity model adopts the use of a non-linear autoregressive exogenous (NARX) neural 

network or LSTM for classification, accuracy, and precision (see Figure 4.3). The RNN uses 

ten hidden neurons and a delay of 2. Figure. 4.4. presents the response from the deep RNN 

(LSTM network) developed to classify driver distraction severity based on the distraction 

taxonomy in conjunction with participant BL_001’s naturalistic data in figure 4.4. Table 4.4 

presents the dataset selection based on the distractions listed in Table 4.1 above (section 4.1). 

f g i o

ht-1

ct-1

ht

ct

xt
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Table 4-3: Statistical Frequency of Distraction in the Video Frames of Driver BL001 

Distraction type Distraction 

Type ID 

Description  Statistics of 

Frame 

Look outside the vehicle, 

either through windscreen 

or side window 

40 The driver looks at another vehicle, person, 

animal, or undetermined object outside the 

vehicle (not checking at junctions, else 3 or 5) 

3643 

Interior Object 8 Any glance at an object in the vehicle that is not a 

mobile phone; the object may include personal 

items brought in by the participant 

148 

Right Mirror 4 Any glance at the right side-mirror   1024 

Left Mirror 2 Any glance at the left side-mirror  179 

Rear-view Mirror 6 Any glance at the rear-view mirror 38 

Look at Passenger  12 Driver looking at (and talking to) a passenger 148 

Left Window 3 Any glance at the left-side window (looking at 

junctions, else 40) 

44 

Right Window 5 Any glance at the right-side window (looking at 

junctions, else 40) 

439 

Instrument Cluster 7 Any glance at the instrument cluster beneath the 

dashboard, e.g., the speedometer, control stalks, 

and steering wheel. 

61 

 

 

Figure 4-4: Naturalistic Driving study for participant BL001 
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4.9.1 TeleFOT Data Selection  

The input (training data) represents a 1912 x 4 matrix consisting of dynamic data, i.e. the 

1912 timesteps of 4 elements. The selected data are context, namely speed/acceleration, 

manoeuvres, distraction type, and event information. Meanwhile, the target of ‘severity’ is a 

1912 x 1 matrix, constituting the severity classification’s computed probabilities, i.e. 1912 

timesteps of 1 element. The Levenberg-Marquardt (trainlm) is adopted as the training 

algorithm, requiring more memory yet less time. Once the generalization ceases to improve, 

indicated through an increased mean square error (MSE) of the validation samples, the 

training automatically stops. 

 

 

Figure 4-5: The LSTM Network Implementation 

4.9.2 Validation And Testing of The TeleFOT Data 

Training: Table III gives the training data provided to the network, which is adjusted 

based on its MSE. To enhance the quality of the results, 75% of the frame-based training data 

were selected to train the LSTM.  

Validation: These data are utilised to estimate the network generalization and cease 

training once the generalization has stopped improving. 15% of the data are used in the 

validation. 

Testing: These data do not affect the training and thus supply an independent measure to 

evaluate the network's performance during and after training. 15% of the data are used for 

testing, as presented in Table 4.5.  
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Table 4-4: LSTM Design and Implementation 

 

 

 

 

 

 

4.9.3 Times-Series Response of The LSTM Network for Driver Distraction 

Severity  

Figure 4.6 portrays the time series response plot. The small prediction errors support the 

adequacy of the prediction responses obtained for the intelligent filter.  

 

 

Figure 4-6: Time-Series Response of the LSTM Network for Driver Distraction Severity 

Figure 4.7 shows the Auto-correlation error plot, which signifies the input-error 

correlations.  The value of correlation that stands out is zero lag; the confidence unit (degree 

of confidence) falls below 0, which depicts is a strong correlation (positive correlation).  

 

 Target 

Values  

Mean Square Error 

(MSE)  

Regressio

n R 

Training 1338 6.67462e-4 9.90168e-

1 

Validation 287 5.41263e-4 9.92007e-

1 

Testing 287 9.62103e-4 9.86073e-

1 



  

 99  De Montfort University 

 

Figure 4-7: Error Auto-Correlation plot 

Figure 4.8 depicts the input-output correlation errors regarding the target variable. The 

filter utilizes the initial values to predict the appropriate output and how the errors correlate 

with the input sequence concerning the target variable. As the autocorrelation values have 

about zero-correlation Lag, there is a 95% confidence limit which makes the prediction 

contains no errors. 

 

 

 

Figure 4-8: Input Error Autocorrelation 

4.9.4 Performance  

4.9.4.1 Performance/Response:  

The network’s performance (MSE) starts at 0.0327 and, after the 27th epochs, stops at 

0.000541. Figure 4.8 above graphically presents the driver distraction severity model’s 
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response, comparing the (training, validation and testing) targets of the time-series (frame-

based) data and the actual outputs. Following the 27th  epoch, the error validation is repeated 

many times. As the error shows no sign of reducing, the test is halted at 35 epochs.  

As shown in Figure 4.9, the error repeat that begins at epoch 27th shows data over-fitting. 

Hence, epoch 27th is chosen as the base, with its weights selected as the final weights. 

Furthermore, six iterations are run in the validation check to enhance the filter’s performance; 

as the error does not reduce, the testing is halted at epoch 35th. 

4.9.4.2 Training/Validation Accuracy 

The Levenberg-Marquardt training algorithm needs more memory but less time to perform 

the training. It also improves performance by using the gradient-descent method. In training, 

the accuracy begins at 0.523 and started repeat at the 27th epoch with an accuracy of 99.0168. 

Once the generalization ceases to improve, the training was stopped based on the validation 

samples' MSE and Accuracy. This occurs at epoch 32, with a validation check time of 6 secs 

and validation Accuracy of 98.60%, as shown in Figure 4.9.  

 

Figure 4-9: LSTM Training and Validation Accuracy using the Gradient Descent Method. 

Figure 4.10 presents the MSE plot against the epochs, demonstrating an improved 

performance for every iteration between 1 and 27. Nevertheless, based on the MSE, 

performance shows no improvement between iterations 27 and 32. The best validation 

performance and MSE begin at 0.881 and decline to an error value of 0.000541. Notably, the 

three lines respectively depict the training, validation and testing steps. In this case, to avoid 
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over-fitting the dataset, the training cycle is ongoing until the point at which training reduces 

the validation cycle’s prediction errors. 

 

 

Figure 4-10: MSE vs Epochs 

The samples were divided into 1338 points for training, 287 points for validation, and 287 

for testing. Figure 4.11 presents an error histogram with 20 bins for the training, testing and 

validation. As the values are well-distributed around 0, there are no fitting errors.  
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Figure 4-11: Error histogram with 20 bins 

Figure 4.12 performs a comparison between the output variables and target variables in the 

training, validation and testing steps. “Target variables” is “Measured Comprehensive 

Strength, “Output values” is “Predicted Comprehensive Strength”, while “R” gives the 

efficiency of the model. “R” shows that the model has acceptable accuracy in the training and 

validation cycles. Thus, the R values for training, validation and testing are, respectively, 

6.15265e-1, 5.80725e-1 and 5.97079e-1, evidencing the model's efficiency. Meanwhile, 

because there is a non-linear relationship between the input and the variables that configure 

the parameters, there are fewer errors, and the prediction’s accuracy is perfect 

 

Figure 4-12: Training validation and testing 
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4.10 Summary 

The development of a driver distraction severity prediction system substantially enhances 

the use of DL algorithms in classifying driver distractions. Based on LSTM, the testing 

dataset of this system shows a good MSE while also demonstrating effective classification. 

The proposed approach's assessment is based on a sample of the user testing data, comprising 

25% of the images taken for one participant. The following chapter reviews the context data 

and determines how to automatically detect driver distraction to classify its severity based on 

a hybrid CNN-LSTM. In addition, the algorithm is reworked to incorporate more context-

aware on the environment. Finally, the chapter explores the future applicability of integrating 

the algorithm into ADAS in semi-autonomous vehicles to allow these transitioning from the  

driver in situations that demand it.
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CHAPTER 5. A FUZZY-LOGIC APPROACH TO DYNAMIC 

BAYESIAN SEVERITY LEVEL CLASSIFICATION OF 

DRIVER DISTRACTION 

5.1 Synopsis  

As distractions are a significant factor causing traffic accidents by affecting both the 

driver’s behaviour the dynamics of the vehicle, their detection and classification are critical to 

preventing traffic accidents. For example, knowledge of the severity of driver distraction can 

help develop techniques to prevent accidents, such as transferring control to a level 4 semi-

autonomous vehicle once a high driver distraction severity has been identified. Strengthening 

ADAS is key to enhancing road safety for all users. Here, drawing on a contiguous set of 

video frames from the Naturalistic Driving AUCDDD, a new technique is proposed to predict 

driver distraction severity based on an expert knowledge rule system.  A Multi-class 

distraction system would be developed that incorporates face orientation, driver activities, the 

driver’s hands, and any previous driver distraction to develop a severity classification model 

using a discrete dynamic Bayesian (dDDB). 

Meanwhile, the severity levels of multiple classes of distractions are classified as safe, 

careless or dangerous driving using a Mamdani-based fuzzy system. This allows a semi-

autonomous vehicle to take over from the driver if a high driver distraction severity is 

reached. Findings indicate that some forms of driver distraction can quickly shift from 

careless driving to dangerous driving in a multi-class distraction context. 

This chapter makes the following main contributions: 

• A rule-based driver distraction detection and classification system  

• A severity classification system based on a Dynamic Bayesian Fuzzy logic model 

• A system for classifying driver distraction based on the severity level, i.e. safe, 

careless and dangerous driving. 

5.2 Dataset And Data Transformation   

The dataset is extracted from the AUCDDD V2, was obtained via the Machine 

Intelligence group at the American University in Cairo (MI-AUC) [243]. This is the first 

publicly available distracted driver detection and was drawn from a study of 44 participants 

(29 male, 15 female) in seven countries, namely Egypt (37), Germany (2), USA (1), Canada 
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(1), Uganda (1), Palestine (1), and Morocco (1). Some of the participants were recorded more 

than once, i.e., under various driving conditions, and dressed differently. The recordings were 

made in five car models: Proton Gen2, Mitsubishi Lancer, Nissan Sunny, KIA Carens, and a 

prototype car. This research involved the extraction of 14,478 frames from the classes of safe 

driving (2,986), phone right (1,256), phone left (1,320), text right (1,718), text left (1,124), 

operating radio (1,123), drinking (1,076), hair or makeup (1,044), reaching behind (1,034), 

and talking to passenger (1,797). 

The video files were manually inspected, and a distraction label was assigned to each 

frame. Any transitional actions that occurred between each consecutive type of distraction 

type were removed by hand. Table 5.1 presents three of the ten dataset classes that were 

utilised in this study. The chosen frame statistics are those containing driver activities such as 

Phone rights, Text rights and talking to passengers in sequence for a given period.  

 

 
Table 5-1: Distraction Events Classes and Frame Number 

DISTRACTION EVENT CLASSES FRAME NUMBER 

Phoning 1,256 

Texting 1,718 

Talking 1,797 

 

5.3 Selection And Extraction of Distraction Features 

The images in the dataset are labelled based on the driver's activities observed in the video 

following the extraction of the features according to the distraction class. The images are 

subsequently tabulated in the form of ground truth labels and regions of interest (RoI) by 

employing MATLAB’s 2019b Image Labeler Toolbox and Graphical User Interface (GUI) 

editor; these are then placed in fuzzy sets to classify each distraction according to its level of 

severity. In total, 150 images receive a label with at least one of three observed behaviours, 

i.e. face orientation, driver activity, and hands-on the wheel. 

The ground truth label for a driver talking to a passenger as per the dataset is presented in 

Figure 5.1. The driver engages in a multi-class activity: talking to the passenger with their 

face oriented away from the road and both hands holding the wheel. Meanwhile, Figure 5.2 

presents the driver similarly engaging in a multi-class activity, talking to the passenger, again 

with the face oriented away from the road, yet with only one hand on the wheel. Figure 5.3 
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shows the driver engaging in multi-class activity, namely talking to the passenger with their 

face oriented towards the road and both of their hands at the wheel. Figure 5.4 depicts an 

additional multi-class activity, namely texting with the face oriented towards the road and one 

hand at the wheel, while Figure 5.5 involves speaking on the phone with the face oriented 

away from the road and only one hand no the wheel. On a few occasions, the driver was 

observed to be having their face oriented away from the road with both hands on the wheel 

while talking on the telephone for 1 second (25 fps). 

 

 

Figure 5-1: Ground truth label of driver activity: talking to a passenger, face orientation off-road, both hands on 

the wheel 

 

 
Figure 5-2: Ground truth label of driver activity: talking to a passenger, single hand on the wheel 

 

 

 
Figure 5-3: Ground truth label of driver activity: talking to a passenger, face orientation, both hands on the  

wheel 

 

 
Figure 5-4: Ground truth label of driver activity: texting, face orientation on the road, a single hand on the wheel 
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Figure 5-5: Ground truth label of driver activity: phoning, face orientation off-road, a single hand on the wheel 

5.4 Dynamic Bayesian Model Used to Classify Severity 

Adopting a dynamic Bayesian model to classify severity based on distractions existing in the dataset in 

terms of those physiological features that the algorithm can detect. The fuzzy set has four inputs: hands, 

face orientation, driver activity, and last driver activity. The first frame of change is set at r = 0; r increases 

if there is no alteration to the distraction profile compared to the previous frame. Thus, the r-value is the 

first time a distraction occurs. A distraction’s severity is calculated by ( . α), where α is the distraction 

likelihood function determining for how long the distraction has repeated;  is the likelihood of the first 

occurrence of a distraction in a frame; and  is the existing evidence. 

5.4.1  Dynamic Bayesian Fuzzy-Logic Model 

Drawing on probability distribution components, namely the likelihood of future distraction 

and prior beliefs or observations of previous distractions in the dataset, construct the formal 

distraction severity. Thus, one may generate a distraction severity predictive system through 

the proper use of dynamic Bayesian methodology.  

5.4.2 Distraction Type Likelihood Function 

To assess the distraction type likelihood function, the probability of the same distraction type 

pattern occurring over a specific number of sequential (i.e., contiguous) frames is computed 

using 

 

,     (5.1) 

where  is the likelihood that a new distraction will first occur during the exponential 

function is the likelihood of its continuing to occur in subsequent frames, where r > 0. 



  

 108  De Montfort University 

5.4.3 Observation of Driver Distraction Features  

Previous evidence drawn from ground truth labelling of the belief comprises the second 

probability component in the driver distraction severity classification model, thereby 

allowing the driver distraction features to be observed. Defining this probability function as: 

. (5.2) 

 weighting the likelihood of a particular distraction severity level using the normalizing 

constant , i.e., taking into account how significantly each observatory dataset element is 

thought to contribute to the classification of the distraction severity level ( = number of 

observable events). 

Here, face orientation , driver activity And hands-on the wheel  are all normalized 

between the interval [0,1], thereby representing existing evidence of the distraction features 

of the driver, that is, facial orientation, activity (talking, phoning, texting), and hand gestures 

(either one or two hands at the wheel). Finally, formulating the prediction of the overall 

distraction severity level classification as a discrete Dynamic Bayesian network (DDBN) 

model: 

. (5.3)  

This model is used to generate the test dataset based on the larger Distracted Driver Dataset. 

At this moment, there is the assumption that a severity probability of zero for the first 

timestamp (t = 0) in the video frame. If this is the first occurrence of the distraction feature 

pattern, i.e., , then the severity is computed using only the probability; the severity 

probability is computed for future occurrences using the abovementioned DDBN model. The 

thus transformed test data represent the groundwork for assessing the novel inference system 

based on fuzzy logic to determine the severity of certain driver activities that cause 

distraction. 

5.5 Fuzzy-Based Dynamic Bayesian Model  

The degree of distraction severity can shift from careless driving to dangerous driving if a 

secondary distraction occurs within a given time. There should be a justifiable minimum 
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threshold for a distraction’s severity level to be classed as either “safe,” “careless,” or 

“dangerous”. For example, a 10-second hand gesture (adjusting the seat belt or control panel, 

waving at pedestrians) could be considered careless. Here, outlined are various measures to 

describe driving performance based on several physiological features: face orientation, hands, 

and type of distraction, with the latter, refers explicitly to talking, phoning, and testing 

because of the associated cognitive distraction. For instance, the severity of a multi-class 

distraction can be measured based on the length of the driver’s conversation and additional 

factors, e.g., hand gestures or face orientation. The frame rate is a result of this used to 

calculate the time, that is, 25 fps. Thus, the driver’s conversation length is measured using a 

sequence of frames containing the “talking” distraction type. The coding is designed to allow 

the classification decision to be made once the threshold of 125 consecutive frames 

(equivalent to 5 seconds) has been achieved. 

5.6 Implementation and Results 

Figure 5.6 presents the system developed here, which is derived from the Mamdani fuzzy 

inference model. The Mamdani approach is frequently employed in expert knowledge 

acquisition as it clarifies the human experience with more excellent intuition, making it ideal 

for examining decision-making that contains uncertainties demanding the knowledge of 

human experts.  

 

Figure 5-6: Mamdani inference model 

Using the Mamdani approach to simulate actual driver performance and behaviour while 

driving. At this moment, giving each input a value and a certain number of MFs and then 

comparing the remaining inputs. The multi-inference Mamdani fuzzy model strives to detect 

multi-class distractions, enabling it to classify driving as safe, careless, or dangerous. The 

previous literature was used to produce the rule generation process, and previous studies on 

the specific distraction types were used to justify the weighting of each distraction. The 

labelling of the RoI comprises the feature extraction method and is integrated with the 

generated fuzzy rules. The distraction training data comprise classes containing the activities 
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of talking, using the phone, and texting. The dataset is subsequently divided into subclasses, 

i.e., one hand at the wheel, speaking to the passenger, and orienting the face away from the 

road; the same procedure is performed on the testing data used in the validation. The rules are 

then inputted into the fuzzy inference engine, which employs Mamdani inference in line with 

the model architecture to detect distractions. MATLAB 2019b ground truth labelling is used 

to pre-process the data for feature extraction. In addition, each classification is assigned the 

MFs, associations, and rules. Finally, the rules for each driver distraction classification are 

tested using the testing data.  

The distraction severity level measures the extent to which a driver distraction event 

affects driving performance. Classifying driver distractions into levels of severity plays a 

crucial role in transferring control to a semi-autonomous vehicle once a set distraction 

threshold has been reached. Following the abovementioned steps, the fuzzification process 

decomposes input and output into at least one fuzzy set. While it is possible to use several 

curve and table types, the most typical are triangular or trapezoidal-shaped MFs, as they can 

be more easily represented in the embedded controllers. Figure 5.7 presents the system of 

fuzzy sets for input using triangular MFs, whereby each fuzzy set is distributed across a 

region of input (or output) values plotted against membership. The scope is restricted to those 

activities that induce driver distractions, employing four parameters to detect the level of 

severity: face orientation , driver activity , number of hands on the wheel And 

previous driver activity . 

Table 5-2: Driving severity level for membership functions 

Description Membership 

Function Range 

Example of Driver Membership Functions Distraction 

Severity Level 
 

No distraction is 

observed 

0 - 0.25 Talking to the passenger, two hands on wheel or 

single hand on the wheel, face orientation on 

road 
 

Safe 

Substantial level of 

distraction detected 
 

0.25 - 0.75 Texting for less than 2 seconds, a single hand on 

the wheel 

Careless 

High level of 

distraction 
 

0.75 - 1 Texting for more than 2 seconds but less than 5 

seconds, a single hand on the wheel 
 

Dangerous 
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Figure 5-7: Inputs and membership functions. 

A. MULTI-CLASS DRIVER DISTRACTION SEVERITY SCALE 

Driver distraction is primarily analysed via the detection of the driver’s activities. However, 

as driving uses physiological features with different levels of coordination, the effect of these 

actions are not always the same. Furthermore, they hypothesise that the severity level 

classification can cause any driver distraction to have a different impact. Testing this 

hypothesis by drawing on the previous literature in chapter 2 to justify the metrics for the 

various distraction types found in the dataset [17,18]. The severity level’s category comprises 

the output of elements as represented by the MFs: safe driving = 0 - 0.25, referring to safe 

driving behaviour with a credible false distraction and an acceptable distraction event, e.g., 

changing gears; careless driving = 0.25 - 0.75, referring to a multi-class distraction event or a 
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distraction combination; and dangerous driving = 0.75 - 1.0, referring to a highly critical 

distraction. 

5.7 Rule-Based System 

A rule base on fuzzy logic controls the output variable. A fuzzy rule is a simple IF-THEN 

rule that has both a condition and a conclusion. Table 5.2 above presents an example of fuzzy 

rules that classify the driver’s distraction into severity levels. In Figure 5.3. A sample of 3 of 

16 rules for the Mamdani fuzzy logic inference system to detect the severity level of a driver 

distraction is presented in the following: 

Table 5-3: Fuzzy Rule Base 

Rule Face 

Orientation 

Driver Activity Hands Previous Driver 

Activity 
 

Severity 

1 (system 1) Forward No talking to the 

passenger 

Two 

Hands 

Safe Driving 0-0.25 Safe Driving 

9 (system 1) Sideways 
 

Talking to passenger Two 

Hands 

Safe Driving 0.25-0.75 Dangerous 

Driving 

16 (system 

1) 

Forward Talking with passenger Single 

Hand 
 

Safe Driving 0.75-1 Dangerous 

Driving 

1 (system 2) Forward Not texting passenger Two hands Safe Driving 0-0.25 Safe Driving 

9 (system 2) Sideways Texting with passenger Two 

Hands 

Safe Driving 0.25-0.75 Dangerous 

Driving 

16 (system 

2) 

Forward Texting with passenger Single 

Hand 

Safe Driving 0.75-1 Dangerous 

Driving 

1 (system 3) Forward Not phoning passenger Two 

Hands 

Safe Driving 0-0.25 Safe Driving 

9 (system 3) Sideways Phoning passenger Two 

Hands 

Safe Driving 0.25-0.75 Dangerous 

Driving 

16 (system 

3) 

Forward Phoning passenger Single 

Hand 

Safe Driving 0.25-0.75 Dangerous 

Driving 

5.8 Results and Discussion  

This section covers the frame-based rule-based fuzzy logic for driver distraction severity 

classification in terms of the outcome. The results for driver distraction are assessed through 

testing an unobserved dataset without fuzzy rules.  
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5.8.1 Surface Plots   

Figure 5.8(A) presents a plot comparing face orientation with the driver’s previous 

activity. At this moment, a yellow plateau region can be discerned, indicating uniform driver 

distraction severity. The sheer increase in blue is due to the orientation of the face shifting at 

around 0.4; in other words, the driver’s face – and hence, gaze – is no longer on the road, 

resulting in a higher distraction severity level. The region with the blue curve demonstrates 

the driver's distraction with their face oriented towards the road, primarily between 0 and 0.4. 

Subsequently, there is a shift to a higher distraction severity level, with the driver orienting 

their face away from the road. This type of distraction is different even when the participant 

knows the road, particularly with multi-class distractions, e.g., the driver looks sideways 

more often. In addition, findings show that careless driving occurred more frequently than 

dangerous driving. A driver engaged in a conversation while orienting their face away from 

the road for longer than 5 seconds; such behaviour represents a critically severe distraction 

and can cause a fatal accident. 

 

Figure 5-8: A,B,C. Surface plots for talking 

Figure 5.8(B) compares face orientation with the driver activity of talking, whereby 

certain sections emerge. While dark blue signifies safe driving, cyan appears when the driver 

begins to engage the passenger in conversation; this represents a high level of distraction and 

can result in careless driving. However, it becomes dangerous driving once the driver stops 

looking at the road with a higher severity level.   

Figure 5.8(C) graphs the position of the hands against the driver’s face orientation. The 

curved area coloured blue indicates a sharp increase in the level of severity. Furthermore, the 

region coloured yellow portray enhanced distraction severity level due to the face being 

oriented away from the road. 
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Figure 5-9: A,B,C. Surface plots for phoning 

Figure 5.9(A) shows the impact on the distraction severity resulting from the driver’s face 

orientation in phoning for a long duration. There is a further sharp increase at 0.4 as the 

driver takes their eyes off the road. Figure 5.9(B) indicates that the driver frequently orients 

their face away from the road when speaking on the phone, causing a higher level of 

distraction severity. Figure 5.9(C) portrays the face oriented away from the road, continuing 

until 0.4, when it changes and is directed towards the road. Furthermore, a brief occurrence of 

only one hand on the wheel is observed during the activity. Subsequently, there are occasions 

when there are no hands on the wheel; this represents a dramatic increase in the severity of 

the driver distraction.  

Figure 5.10(A) depicts how the orientation of the driver’s face contributes substantially to 

the distraction severity level of texting. This level is further increased by having a 

combination of texting and face orientation off the road. Meanwhile, as shown in Figure 

5.10(B), the driver continuously engages in the texting activity for 2 seconds, increasing the 

severity level even further. Figure 5.10(C) similarly shows the driver having no hands on the 

wheel at 0.3, in addition to orienting their face away from the road, thereby sharply 

increasing the driver distraction severity level; this is classed as dangerous driving. Taken 

together, these plots demonstrate the correlation between the driver distraction severity level 

and the activity, i.e., talking and texting, as the probability of the driver’s eyes being off the 

road increases.  

 

Figure 5-10: A,B,C. Surface plots for texting 

Table 5.2 presents the definitions of the input values collected from the image labels 

dataset. The values are extracted from the labels and transferred into binary values, whereby 
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0 = false and 1 = true. The driver’s previous activity is identified based on the previous 

frame.  

5.8.2 Root Mean Squared Error 

Tables 5.5, 5.6, and 5.7 respectively give the input test data for the multi-level distractions, 

the distraction severity level of the previous frames, and the outputs of the defuzzification 

methods.  Adoption of the following defuzzification methods: Smallest of Maxima (SOM), 

with the defuzzified value being used as the element with the lowest membership values; 

Middle of Maxima (MOM), with the defuzzified value being used as the element with the 

median membership values; largest of Maxima (LOM), with the largest element from all 

membership values; centroid defuzzification, i.e. returning the centre of the area under the 

curve; and bisector, referring to the vertical line splitting the region into two sub-regions that 

each have an equal area. 

Table 5-4: Driving Severity Levels for The Membership Functions 

Face 

Orientation(fo) 

Driver Activity (da) Hands (ha) Previous Driver 

Activity (pda) 

0 1 1 0 

0 0 1 0.06666666 

0 0 1 0.06666666 

0 1 1 0.33333333 

0 1 1 0.44444444 

0 1 1 0.5 

0 1 1 0.53333333 

0 1 1 0.55555555 

0 1 1 0.57142857 

 

Table 5.5 presents the values related to using the phone analysed in this scenario, with 

both MOM and centroid defuzzification yielding the results with the highest accuracy. LOM 

and SOM perform less well regarding the driving severity level because they only select 

extreme cases, generating an exaggerated crisp value. Specifically, LOM leads to an 

extremely high value, and SOM generates an extremely low value; these do not match the 

severity levels observed in either the weights or the MFs.  

Table 5-5: Driving distraction severity defuzzification crisp output values for talking, using multiple methods 

CENTROID BISECTOR MOM SOM LOM 

0.494678671 0 0.495 0.12 0.87 
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0.466961833 0.47 0.495 0.1 0.89 

0.466961833 0.47 0.495 0.1 0.89 

0.596267826 0.64 0.82 0.64 1 

0.71235178 0.76 0.82 0.64 1 

0.807455156 0.81 0.82 0.64 1 

0.807455156 0.81 0.82 0.64 1 

0.81177008 0.81 0.83 0.66 1 

 

Table 5-6: Driving distraction severity defuzzification crisp values for phoning, using multiple methods. 

CENTROID BISECTOR MOM SOM LOM 

0.494667 0.49 0.495 0.13 0.86 

0.470227 0.47 0.495 0.11 0.88 

0.470227 0.47 0.495 0.11 0.88 

0.591258 0.63 0.825 0.65 1 

0.708797 0.76 0.825 0.65 1 

0.809211 0.81 0.825 0.65 1 

0.809211 0.81 0.825 0.65 1 

0.81177 0.81 0.83 0.66 1 

 

Table 5-7: Driving distraction severity defuzzification crisp output values for texting, using multiple methods 

CENTROID BISECTOR MOM SOM LOM 

0.494679 0.49 0.495 0.12 0.87 

0.467124 0.47 0.495 0.1 0.89 

0.467124 0.47 0.495 0.1 0.89 

0.588455 0.63 0.82 0.64 1 

0.706695 0.75 0.82 0.64 1 

0.806618 0.81 0.82 0.64 1 

0.806618 0.81 0.82 0.64 1 

0.81177 
 

0.81 
 

0.83 
 

0.66 
 

1 
 

 

 

Table 5-8: Driving distraction severity levels for the membership functions 

Defuzzification RMSE Driver Activity 
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Method Value 

CENTROID 0.32 Talking 

CENTROID 0.31 Texting 

CENTROID 0.32 Phoning 

 

 

Similar results based on the dataset are reported in Table 5.6; in this case, the centroid, 

bisector and MOM defuzzification crisp values best match the weights. The test demonstrates 

that the severity of the distraction rises with increasing duration. Recalling Table 5.4, it can 

be known that the number of continuous frames impacts the subsequent severity level. This is 

observed in the PDA column: the numbers steadily increase, yet they decrease with the 

severity level when that activity ceases. The crisp value output for the activity of texting is 

presented in Table 5.7. While the values are to those found for using the phone and talking, 

this activity has the highest severity level. Centroid, bisector, and MOM are the most accurate 

defuzzification methods here. 

 The calculation of the root mean squares is based on the dataset for the timeframes 1-47, 

and the severity levels of the driver distractions were estimated by computing the Root Mean 

Square Error (RMSE), based on the model of previous distraction severity:  

 , (4) 

da, i is the predicted value of driver activity, PDA, i is the previous driver activity (cf. 

Tables 6.5-6.7), and n is the data. According to the observed timeframes, the predicted value 

for the output defuzzification method is Centroid, as it most accurately reads the weights that 

have been assigned to the rules. Table 5.8 gives the results for the RMSE value with the most 

accurate error prediction for the previous and present severity frames. After comparing the 

Sugeno and Mamdani approaches, the latter shows better performance in this context 

regarding complexity, restrictive rules, accuracy, and modelling structure. Mamdani has a 

substantial advantage over Sugeno as it does not need all possible rule combinations to build 

the fuzzy rule base. Hence, Mamdani can non-linearly relate inputs with outputs via 

occasions of sharp transitions in distraction severity that range from high to low or low to 

high, as captured by the fuzzy membership functions. The outcome is a shift, with the semi-

autonomous vehicle taking over from the driver once a given threshold has been reached.  

In contrast, unsupervised learning based on classification techniques via a set of rules can 

profile the driver based on the distraction severity level. The classification methods construct 
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rules by identifying patterns in the previous data of the driver or by predicting instances of 

driver distraction, particularly if the driver has already been monitored and profiled in a 

relevant setting. In addition, it should be possible to combine hybrid fuzzy-DL methods, such 

as CNNs.  

5.9 Classifying the Distraction Severity Level from Careless to Dangerous 

Certain driving behaviour elements must be identified and assessed before classifying a 

driver as careless. Adopted from the Crown Prosecution Service and Police charging 

standard, this non-exhaustive list of careless driving behaviours includes driving too close, 

lapses in attention, fatigue, falling asleep, using a phone, talking to passengers, missing traffic 

lights or signs, unsafe overtaking, and missing other vehicles or pedestrians [246]. Based on 

the driving law and CPS 1996 [11], inattention, referring to more than a very brief lack of 

attention, signifies careless driving and a longer lack of attention is considered dangerous 

driving. While the degree of distraction, i.e., inattention, could be considered subjective, in 

some instances, some of these behaviours imply careless driving, while in other – extreme – 

cases, they would be classed as dangerous driving.  In addition, careless driving can shift to 

dangerous driving according to the driver’s distraction severity level.   

Thus, the question emerges at what point a driver’s behaviour should be considered 

normal, careless, or dangerous. This highlights the need for a metric of the careless driving 

degree, thereby allowing a severity level to be assigned to potential incidents. This would 

facilitate the development of an ADAS system determined by the severity level of careless 

driving behaviour.  Based on the existing literature, as well as the contribution above, the 

following is the most fitting way to define careless driving in the modern context of 

intelligent transport systems (ITS): 

“Careless driving behaviour is a driving act that entails a deviation from normal driving 

behaviour, either by driver actions or emanating from an entity, such as a malicious cyber 

attacker, pedestrians, or the environment, which could be influencing the driver’s behaviour 

and leading them not to give reasonable consideration to others, and thus, resulting in careless 

driving that can cause a casualty.” 

This chapter highlights a novel approach by drawing on real driving data to identify 

careless driving behaviour, specifically driver inattention, thereby providing realistic results. 

Table 5.9 compares the various events and distraction types that characterise careless and 

dangerous driving.  
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Table 5-9: Careless and Dangerous Driving Classification (RTA 1988) 

CARELESS DRIVING  DANGEROUS DRIVING  

Driving too Close Fast Racing 

Inattention Lapses of Fatigue Aggressive Driving  

Nodding Off (Eyes Closed) Ignoring Traffic Lights  

Mobile Phone Use Violating Road Signs 

Talking to Passengers Dangerous Overtaking 

Failure to See Traffic Lights Ignoring vehicle faults 

Unsafe Overtaking  Drowsiness Eyes Closed 

Failure to See other vehicle and Pedestrians  Distraction (Handheld Phone) 

 Inattention Lapses 

 

Table 5.9 demonstrates that talking to passengers in conjunction with a multi-level 

distraction can cause a shift from careless driving to dangerous driving. The outcome of this 

study thus confirms the fact that careless driving can soon lead to dangerous driving. 

5.10 Summary 

In this chapter, there is an introduction of a method of evaluating driver distraction using 

fuzzy set theory. A rule-based fuzzy system was derived from an NDS dataset to detect multi-

class distractions in image sequences. The severity levels of these multi-class distractions 

were calculated by combining the driver’s activity, face orientation, number of hands on the 

wheel and previous activity. The inference system was able to classify a multi-class 

distraction’s severity using various metrics, including the distraction’s type, duration, and 

frequency. Findings show that the fuzzy logic inference system can detect and classify such 

multi-class distractions into either safe, careless, or dangerous driving. This method could be 

employed in developing ADAS to address the issue of driver distraction. Notably, while the 

previous literature demonstrates that texting and talking on the phone are more dangerous 

than careless driving behaviour, findings show that, as part of a multi-class distraction, 

talking to a passenger with the face oriented away from the road is nearly as dangerous as 

texting with the face oriented away from the road. This is because drivers who engage in 

conversations with their passengers tend to look away from the road, leading to a similar 

distraction degree for both activities. This chapter has contributed to the body of literature by 

facilitating the determination of a threshold at which a semi-autonomous vehicle should take 

over from the driver to become a level 4 semi-autonomous vehicle. In future research, the 

aim is to employ a neural network to classify driver distractions. 
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CHAPTER 6. MDDRA: A NOVEL CONTEXT-AWARE 

QUANTITATIVE RISK ASSESSMENT MODEL FOR 

SEVERITY LEVEL CLASSIFICATION 

6.1 Introduction 

Since the emergence of new in-vehicle technologies, distracted drivers have become a 

central problem in road accidents. Meanwhile, intelligent transportation systems will soon 

allow vehicles to control a semi-autonomous level 4 (or the level approved by the authorities) 

out of either necessity or driver choice. Thus, drivers may become more reliant on having the 

vehicle perform in-vehicle tasks, meaning they will become more relaxed and more 

distracted, thereby opening up many risks. In light of this, relevant context-aware (including 

vehicle performance and environmental conditions, which have direct implications for driver 

safety) can be utilized to help the driver account for many situations. This implies a need for 

an ADAS to mitigate risks before an accident occurs by providing a qualitative- and 

quantitative-based risk assessment. 

The European Commission for Mobility and Road Transport Safety highlights that a 

significant proportion of road accidents occur when the driver is distracted, with common 

distractions encompassing handheld mobile devices, using the radio, eating, talking to 

passengers, smoking, and glancing in-vehicle navigation systems [247]. According to 

Kulkarni and Shinde [248], in-vehicle interfaces can also overload the driver. Additionally, 

fatigued drivers present a significant risk on the road. In recent years, the driver's eyes have 

become an efficient metric for measuring driver distraction, and the driver's ability to keep 

their eyes on the road is crucial. A statistical analysis by the Department for Transport shows 

that out of 1,456 fatal car accidents, 383 involved careless tendencies by pedestrians, while 

110 resulted from drivers' reduced attention on the road [249]. Inexperienced drivers are 

another significant factor that has caused the number of road accidents to surge. Young and 

inexperienced drivers are particularly at risk, unlike skilled drivers, who adjust their driving 

strategy in time and predict different driving scenarios [250]. Compared to young drivers, the 

higher crash incidence is attributed to low cognitive ability [251] and a loss of attention due 

to distraction [252].  
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So there is a strong need for driver’s risk assessment [7], which can provide an easy 

control shift to automatic driving, especially when the driver is intoxicated, unconscious or 

not available in the situation. Although, risk mitigation is tricker and challenging to model as 

official accident reports are relatively undetermined due to the possibility of numerous 

definitions of distractions or a country simply not collecting the data [253]. Furthermore, 

driver distraction can be influenced by the situation in which the driving occurs. Thus, there 

is a significant gap in the available mechanism that accommodates the context-aware risk 

model. The model should be concise enough with intelligent image recognition to detect and 

form a risk matrix to profile drivers into distraction classifications. This can reduce the 

occurrence of an accident by a significant margin.  A plethora of literature is available [254]–

[259] on the importance and urgency of driving risk mitigation techniques to prevent driving 

behaviour-related accidents and shift the control. For a false proof robust alert system, the 

precise classification of driving behaviour is needed. However, to the best of our knowledge, 

the current works lack complexity, rigidness, synthesized dataset, are more focused on a 

particular side of perspective (vehicle, driver, or environment), false-positive classes, and low 

accuracy. 

Drivers can be classified into three groups, namely safe, careless, and dangerous drivers. 

Capturing driver behaviour is crucial to risk mitigation and developing context-aware ADAS 

may influence the risk levels and prevent accidents. Moreover, a real-time novel risk 

assessment determines both a driver's risk profile and the development of potential driver 

distraction, simultaneously working with multiple driving context influences, such as 

auditory, visual, cognitive, and biomechanical distractions. 

Consequently, the critical contributions of this study are: 

• Development of a definition of a severity level for driver distraction. 

• A frame-by-frame analysis of driver behaviour severity level in an ADAS. 

• A proposed model for characterizing driver behaviour considering context factors 

such as speed, acceleration, and surrounding vehicles. 

• Development of the MDDRA model for driving behaviour and its evaluation using 

ML. 

6.2 Risk Assessment Related to Driver’s Distraction 

Risk assessment can be defined as a process evaluating the adverse effects of a natural 

phenomenon, activity, or substance [260]. Berdica stated that risk constitutes the likelihood 
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and probability of an incident occurring [261], [262]. Relative risk ratio has been used to 

quantify vehicle crashing risks under bad weather conditions; its calculation requires a large 

dataset of crashes arising from adverse weather conditions [263]. However, using a risk 

matrix, which combines probability and consequences, has overcome the former method in 

popularity [261]. A risk matrix can be used to determine the level of driving risk.  

Understandably, most risk indicators related to driver distractions have been modeled after 

crash events. However, the main flaw in modeling driving risk assessment via post-crash data 

is that it is a reaction strategy rather than a prevention method. 

According to Cai et al [264], certain studies have shown that a driver's subjective 

assessment of the driving risks – particularly those related to various weather scenarios – is 

consistent with collision-based studies. In [264], the authors assumed that the driver's 

perceived risks are consistent with the actual crash statistics, especially for incidences related 

to rainy conditions.  Various factors can impact driving capability; these can be extracted 

from the driving context, i.e., the driver, vehicle, and environment, including the weather, 

road, speed, manoeuvres, pedestrians, driver state, and braking. However, there is currently a 

lack of adequate data and facilities to ensure the development and implementation of an 

efficient and robust risk assessment model for the driving context. In response to this, this 

chapter proposes using the Naturalistic Driving Study TeleFOT, which is sufficiently 

complete for the environment, vehicle, and driver monitoring. The proposed approach uses 

the following mathematical model 

 

                                                  (6.1) 

 

Where ) denotes a discrete model-dependent variable that represents the level of a 

distraction's impact on driving. This variable's various impact levels include minor impact, 

overall impact, profound impact, and disastrous impact. The '  included in this variable 

represents the  driver with non-observable  Variables, including the volume of traffic, 

vehicle type, road type, and rain intensity. A non-observable variable is selected to fit a 

logistic distribution for generating a continuous latent variable  denoting the influence on 

driving.   Another proposed approach is the Rank Order Cluster Analysis, which sorts driving 

risk  in ascending order, as indicated by . Consideration of categories 
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, including and satisfying  can be denoted as 

}. Consequently, the diameter of ), is calculated from the 

equation: 

 

         (6.2) 

 

Where  represents the mean driving risk, and the driving hazard is segmented into  

segments, expressed as; 

 

                                             (6.3) 

 

Where the variable satisfies the following condition: 

 

        (6.4) 

 

There is also a minimal loss function with a recursion relationship represented by the 

equation: 

 

      (6.5) 

 

Where  denotes a special classification method. This loss function can be further 

explained as: 

 

     (6.6) 

 

Here,  denotes the method to minimize the loss function; where  and  are given, 

 depicts the optimal driving risk categories. However, our proposed model assumes 
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that driving is a discrete and time-series event; therefore, it takes the risk in the previous 

frame to compute the severity level of driving risk in the current frame. Furthermore, we 

consider the sequence of occurrence and the duration of the distracted driving event in 

computing risk. We address the limitations, thereby enhancing our proposed model.  

6.3 The Multi-Class Driver Distraction Risk Assessment (MDDRA) Model  

This section examines the perceived severity of naturalistic driving, thereby showing 

varying levels of human-perceived severity. Driver distraction can have a different impact on 

driving behaviour, and it can thus be classified as safe, careless, or dangerous. Basing on the 

previous literature, we developed and tested our hypothesis that driver behaviour based on 

driver distraction has different severity levels, as seen in the justification of metrics in chapter 

2 and table 6-1. We then justify the weighting metrics for the distractions present in the 

TeleFOT dataset. The following observable parameters can characterize signs of attention 

deficit and fatigue in the driver: PERCLOS (PERcentage of eye CLOSure, i.e., the 

percentage of the time the driver's eyes are closed) [265], turning the head to the left/right to 

the body, tilting the head forward relative to the body (the moment when the driver is 

"nodding off"), duration and frequency of blinking, and the degree of openness of the 

person's mouth (a sign of yawning). In particular, for PERCLOS, there was a discrete number 

of parameters defined, namely P70, which is the proportion of time for which the eyes were 

closed of at least 70%; P80, which is the proportion of time for which the eyes were closed of 

at least 80%; and EYEMEAS (EM), which is the mean square percentage of the eyelid 

closure rating [265]. 

Furthermore, general information describing a driver helps to not only explicitly identify 

that driver among all other drivers who installed and used a particular monitoring software 

package, but it also helps to improve the search for and classification of drivers with similar 

characteristics (general patterns among groups would help to predict developing situations). 

This can be accessed via the database, with a weight coefficient applied since this is a 

"common" behaviour rather than an individual driver's behaviour. 

Ginting et al [266] adopted a 5-point Likert scale to model anxiety about individual 

coronary heart disease at different levels. Lopez-Fernandez et al [267] also used a scale in 

assessing problematic internet entertainment among adolescents. The scale adopted was a 

self-administered scale for measuring the degree of severity of the behavioural addiction of 

online social network users and video gamers. Based on this, the formulation of the 
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distraction severity levels. At this moment, the ratings of the severity level of distractions 

were designed using a 5-point Likert-type scale, as seen in Table I below [268]–[270]. 

 

The proposed model considered the severity level of driver distraction based on an 

observation of their driving history. While this can be unpredictable, we opted to analyze the 

driver's behaviour frame by frame to obtain intricate details. The following steps were taken: 

• Decompose the video to a frame-by-frame level. 

• Study each frame to assess its severity level. 

• Aggregate the previous severity level of frames to the current frame severity level. 

• Provide a precise class of severity based on the calculated severity level. 

The following, outlining the essential aspects of our model for accessing the severity level 

of driver distraction. We acquired the knowledge and data by observing and analyzing 

individual frames from the input source. We began by formulating the risk assessment based 

on driver behaviour according to P = {p1, p2, p3, p(n..)}, as described in Table 6-1. Each 

parameter Pi is characterized by some set of action  with each 

action ai having a weight . 

 

Table 6-1: Parameters & Weightings 

# Parameter Maximum Weight Action Weight 

1 State of Hand 

2 

Double hands 0 

Single hand 1 

No hands 2 

2 Road Type 3 Urban 1 

Dual 2 

Highway 3 

3 Face Orientation 2 On road 1 

Off road 2 

4 Illumination 1 Day 1 

Night 2 

5 Eye Gaze 2 Eyes on road 0 

Eyes off-road 1 

Eyes shut 2 

6 Weather 3 Dry 1 

Rain 2 

Snow 3 
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7 Manoeuvres 2 Stopped 0 

Turning 1 

Moving 2 

8 Surroundings 2 Vehicle not present 0 

Vehicle present 1 

9 Pedestrians 2 Pedestrian not present 0 

Pedestrian present 1 

10 Speed Urban 30 mph Single carriage 

60 mph Dual 

carriage/motorway 70 mph 

(Speed * Road 

Type)/210 

Urban Single 

carriage Dual 

Carriage 

Highway 

 

The next stage identified the severity levels according to severity rates, respective colour 

for identification, and classification label. For instance, if the severity is 0.0, the risk colour 

will be right green; no distraction from the driver has been observed, and it will have no 

impact on the driver’s life. While, if the severity level is 0.9 or above, the risk colour will be 

red, and it will mean that a severe causality can be expected, and it is hazardous to keep 

driving. Table 6-2 provides these details along with the relevant consequences. 

 

Table 6-2:  Driving severity levels 

Severity 

(0.0 – 1.0) 

Risk Color Severity Levels Distraction  

Class 

Consequences 

0.0 Light Green No Impact Safe No distraction observed 

0.1-0.25 Green Slight Impact Safe Slight distraction observed 

0.25-0.399 Yellow Low Safe Noticeable/substantial distraction 

0.4-0.599 Dark Yellow Medium Careless Level of distraction detected 

0.6-0.79 Orange High Dangerous Frequent level of distraction 

0.8-0.9 Dark Orange Very High 
 

Dangerous 
 

Casualty prone 

0.9-1.0 Red Extreme Extremely Dangerous Severe casualty Prone 

 

6.3.1 Risk Assessment Matrix 

An approach to the computation of risk assessment in a quantitative model uses a Risk 

Assessment Matrix's graphical tool. The risk matrix involves calculating the magnitude of the 

potential consequences scaled on the vertical axis (levels of probability) of these 

consequences occurring; technically, the probability of these consequences occurs on the 

horizontal axis. This facilitates an increase in the visibility of risk and impacts on the 



  

 127  De Montfort University 

decision-making.   The risk is computed by calculating the  of 

Occurrence Likelihood: The likelihood depicts the probability of a driver's distraction being 

related to their context-awareness. Consequences/Severity Level: The occurrence of multi-

class context-aware distractions is classified into severity levels of distraction.  

6.3.2 Probability 

Probability is the measure of the likelihood that an event will occur. For example, a 

possible aggregation can measure the number of times a driver experiences a particular 

distraction during a driving course. The driver may be profiled according to the distraction 

severity level at the end of the driving course. 

6.3.3 Likelihood 

The likelihood levels can be described as frequency values (duration course) and state 

values (every frame). Four impact levels are considered in this chapter, namely no impact, 

low impact, medium impact, and high impact; when an effect has no impact, the likelihood 

score is one, and the likelihood of that distraction observes no distraction or a distraction that 

has not currently occurred. When a slight distraction is detected, the impact is low, with a 

score of 2. A medium result is considered when a minor distraction has occurred, and the 

score is then set to 3; 4 implies a medium to significant distraction occurrence. More impacts 

can be seen in Tables 6-3 below. 

 

Table 6-3: Severity Risk Matrix 

CONSEQUENCES 

Extreme 7 7 14 21 28 

Very High 6 6 12 18 24 

High 5 5 10 15 20 

Medium 4 4 8 12 16 

Low 3 3 6 9 12 

Slight/Very low 2 2 4 6 8 

No Impact 1 1 2 3 4 

 

The risk assessment values and their likelihood are explained in Table IV. 
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Table 6-4: Severity Risk Assessment Matrix 

Risk Assessment Matrix Likelihood 

1 No distraction is observed or occurred yet 

2 A slight distraction has been observed 

3 A minor distraction has occurred 

4 A medium or major distraction has occurred 

 

 The proposed model is implemented using a weighted average of the parameters to 

compute the severity levels per frame, as depicted in Table 6-4. These weights are capped by 

the maximum number that a parameter can take. For example, we take "State of Hand" as a 

parameter and grade it as 0 - double hands, 1- single hand, 2- no hands. If the value of a given 

frame for this parameter is x, then the weighted value is  since the maximum value, this 

parameter can take 2.  Let us generalize this for any parameter xi with a maximum value mi as 

follows: 

Severity level =>   Where  is the number of parameters we took into 

consideration. 

6.3.4 Special Considerations 

One of the patents held by MOVON Corporation [271] to ensure drivers' safety is a lane 

departure warning system based on image processing using a mono camera installed inside 

the car. A distinctive feature of the system is that it successfully processes several road 

conditions, including undesirable situations such as changing the width of the road lane, the 

radius of its curve, the direction of the road, and the complete absence of a road surface. 

We realize that speed depends on the road type; hence, multiplying it with the weight of 

its road for speed. There is consideration of road types in the UK as this conforms to the 

source of the dataset. For the metric of road types, the threshold is defined according to the 

speed limit allowable on the road type, i.e., urban, single carriage, and motorway at 30 mph, 

60 mph, and 70 mph, respectively.  Furthermore, we define the following context data: 

• Vehicle  and driver data with probabilities  

• Environmental data with probabilities   

• Speed  

• Surrounding  
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• Pedestrians  

 

We formulate the following equations. The speed is computed as described in equation 7, 

for example, given that the national speed limit of UK is 70 mph and the maximum road type 

weight, and the score is 3: 

 

         (6.7) 

 

We understand there are different data points in each frame; thus, the severity level of a 

given frame with k data points is:      

)   (6.8) 

 

We now compute the aggregate severity (S*) of a given frame given the last  frames. 

This is achieved by taking the average of the current frame's severity score compared to the 

severity score of the last  frames: 

 

        (6.9) 

 

The verification and validation processes for the proposed model typically include both 

computational and physical aspects. To assess the degree of adequacy of the numerical 

modelling, the following steps can be performed: 1) Determine the order of convergence of 

numerical solutions in comparison with a numerical solution using a reduced number of 

parameters; and 2) assess the sensitivity of the sampling algorithm to various uncertainties, 

including parameter constraints, grid adaptation to real measurements and boundary 

conditions. Furthermore, validation assumes a careful comparison of the numerical 

calculation results of the phenomenon under study with experimental data to obtain an 

answer to the question "is the numerical solution correct?". Thus, a comparative analysis of 

the model with all the conditions, including the uncertainties associated with missing 

parameters and boundary conditions from the real world and computational points of view, is 

carried out. A few methods can be used for model validation purposes: 
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a. Evaluate the loss function; the squared error loss function applied to each training dataset 

can be used. This is referred to as L2 Loss, which is the square of the differences between 

the actual and the predicted values: 

 

         (6.10) 

 

b. Simulate the system to compare the real output  with the (noise-free) model output; 

this could involve a Bayesian approach. 

c. Investigate frequency response, poles, zeros, and their uncertainty. 

d. Analyze prediction errors (residuals) via a cross-correlation test: Are the residuals 

uncorrelated with the input? 

e. Apply the model to unseen data (cross-validation). This strategy may be helpful since it 

establishes the robustness of the proposed model. It can also provide the basis for the 

hybrid cross-correlation validation since there is a need to separately investigate how the 

inputs and outputs are correlated and how this correlation is affected by our modelling 

scheme; 

f. Apply an "Inverse Problem," i.e., acquire a solution to the problem and solve the inverse 

case to obtain the output parameters. This will help to validate the assigned weight 

coefficients and the overall parameterization scheme. In our case, the reliability of our 

modelling is tested by the following methods in section F below: 

Cross-correlation test to analyze the residuals.  

Hybrid cross-correlation test on the data obtained over two separate datasets, with the 

analysis, separately applied to the inputs and outputs. 

 

6.4 Experimental Methods 

A discrete-time model is proposed for the application of ML to detect the pattern in time-

series driver distraction data. Consequently, the development of a model for predicting a 

driver's severity level based on distraction. The MDDRA model architecture illustrates the 

state flow of the data and system modules that constitute the entire system. The architecture 

is made up of six states: 
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6.4.1 Six States of MDDRA architecture 

6.4.1.1 Data Collection 

Figure 6-1 below shows that there is a collection of all required data (from vehicle and 

driver) using multiple sensors and video recorders. Sensor-based data, including road type, 

driver movements, driver face and head direction, vehicle speed, weather, and the 

surrounding driving environment, are collected on a real-time basis.  

6.4.1.2 Object Extraction 

This architecture module extracts distraction state information (gaze at something else, 

Overspeed, etc.), including the changing state of the distraction, and feeds it into a 

probabilistic model for labelling. 

6.4.1.3 Data Labelling 

The probabilistic model is further applied to the labelled extracted data, then used to train 

the system's core engine before the ML model is applied. 

6.4.1.4 Real-time Monitoring 

Context-aware real-time data from the real-time driving video streams of the internal and 

external sensors of the vehicle are monitored. The data are further analyzed, and feature 

extraction of both the driver and vehicle state-based data is performed; this is then fed into 

the ML model. 

6.4.1.5 ML Model 

The ML model takes in state-based data (eye gaze, state of the hand, speed, face 

orientation, manoeuvre) and training datasets to predict the level of distraction. The resultant 

model is the probability of the occurrence of driver distraction in the current distraction frame 

state ,  measured as the state transition from the previous frame state, denoted as 

. If the severity of distraction is high, vehicle takeover operations take effect. 

6.4.1.6 Vehicle Takeover 

The severity level informs the decision to perform a vehicle takeover of the distraction 

detected by the ML. If the distraction passes the threshold, i.e., transitions from careless to 

dangerous, then the decision for the vehicle to transition from driver to vehicle is triggered. 
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Figure 6-1: MDDRA Model Architecture 

As depicted in Figure 6.2 below, a DBN is an extension of a Bayesian network that uses 

the time (dynamic) concept in modelling sequential time-series observations. It also uses a 

probabilistic inference model in handling uncertain information. An acyclic graphic 

represents the conditional independent and latent temporal variables discretely and 

continuously. For this case, the inference from the DBN is derived from three fundamental 

classes of nodes. Namely, driver features nodes, distraction identifiers, and context data. 

These inputs are represented in this model by nodes such as the state changes of the driver, 

consisting of 5 central nodes, namely face orientation, speed, manoeuvres, eye gaze, and state 

of the hands. The environmental changes node, consisting of road type, weather, and time of 

day, forms part of the context input data into the model and data on pedestrians and the 

surrounding environment. The final input is the distraction identifier derived from the 

analysis of the driver features by a hybrid CNN-LSTM. The output of this acyclic graph is a 

severity score, which measures the degree of the driver's distraction extracted from the driver 

features and context-aware. 
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Figure 6-2: Context-aware probabilistic model for severity classification 

6.4.2 Dataset 

The TeleFOT Naturalistic driving study dataset is a European Field Operation Test (FOT) 

[272]. The project was designed to enhance research on intelligent transportation systems 

[273] [274]. The experiment was conducted in the UK and involved 27 participants [274]. 

Each driving video consists of four video channels that monitor in-vehicle and out-vehicle 

parameters, including face orientation, eye gaze, and hand position. The dataset consists of 

time-series data. 

 

 

Figure 6-3: TeleFOT Dataset 

6.4.3 Probabilistic Data Model 

 Considering the driver distraction state's changes frame by frame, as depicted in Figure 

6.2 above. Technically, our proposed Context-aware probabilistic model for severity 

classification can be described as the probability of the occurrence of driver distraction in the 
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current frame state  from the previous frame state . So, there exists 

the probability of the occurrence of distractions in the environmental state , if 

the current frame state  changes from the previous frame state . The proposed extended 

dynamic Bayesian model includes several environmental variables such as road type, 

weather, and day. In order to compute the probability severity scores 

, here is a utilizing the dynamic linear model (Eq. 11) and 

which is a combination of the state change of driver distraction  environmental changes 

, distraction identification , pedestrians , and surroundings . 

 

 

         (6.11) 

  

6.4.4 Interdependencies Test 

 

We can apply the developed interdependency test for road type and its impact on driving 

speed. For example, in Table 6-4, the regression analysis coefficient is calculated as 

0.529134, implying a significantly positive relationship. We assume that the driver would 

drive within the UK speed limit. The dataset of the driver may be more biased towards a 

degree of severity compared to other databases. Thus, it is necessary to validate the model 

using a regression model to test the interdependencies. We perform a correlation analysis 

between driver distraction and the severity classification of the distraction. Also, we conduct 

a multi-linear regression analysis to estimate the influence of driver distraction on the degree 

of severity classification. 
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Figure 6-4: Distraction Interdependence State Diagram 

6.4.5 Data Normalization 

 

Logging and normalization of the vehicle's speed synchronously with the distraction state 

frame; thus, the time-series data of the vehicle are correlated at every frame. Subsequently, a 

regression analysis is conducted to validate our hypothesis, as seen in the results section. The 

severity level classification of the baseline drivers (baseline drivers in the original dataset) is 

likely to have a lower mean than experienced drivers. Furthermore, regression analysis 

indicates the mean of the in-vehicle parameters, mean vehicle data, and mean environmental 

data to produce the safe severity level. Meanwhile, in professional drivers, the safe severity 

level is likely to be more than the baseline. However, in other parameters, like per frame, 

severity means an aggregate severity means. In contrast, the statistical analysis of all the 

parameters contributes significantly towards the severity level considered safe, careless, or 

dangerous. However, only the vehicle speed distribution across the journey and its relation to 

the road type and driver distraction severity level has a substantial impact, with an intercept 

of 0.556982, as seen in Table 6-6. 

 

6.4.6 Results of the Model Validation Procedure 

 

To provide basic information about the variables in the dataset, the descriptive statistics 

for one of the simulated events (driver 1, event 1) are presented in Table 6-5. The mean, 

median, kurtosis, and skewness values are calculated by using equations 12-16. 
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         (6.12) 

 

      (6.13) 

  

Where  is an ordered list of values in the data set, and  denotes the values in the data set 

(count). For a univariate data  the formula for skewness is: 

 

         (6.14) 

 

 Where  Shows the mean,  is the standard deviation, and  is the number of data points. 

Note that in computing the skewness, the  is computed with in the denominator rather 

than .  

 

        (6.15) 

 

         (6.16) 

 

The results of these metrics suggest that this is a symmetrical distribution. This reflects 

how the data were modelled. It would be valuable to deploy this model using real data from 

the video sensor to access the accurate distribution of parameters, such as face orientation and 

eye gaze, and then analyze the results. 

 
 

Table 6-5: Descriptive statistics 

Mean 0.513049625 

Standard Error 0.007304311 

Median 0.508023896 

Standard Deviation 0.118456024 
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Sample Variance 0.01403183 

Kurtosis 0.057262351 

Skewness 0.217203269 

Range 0.725482175 

Minimum 0.162361126 

Maximum 0.887843301 

Sum 134.9320515 

Count 263 

Largest (1) 0.887843301 

Smallest (1) 0.162361126 

Confidence Level (95.0%) 0.014382625 

 

In order to validate the model, its predictions are tested using correlation analysis, as 

suggested in Section 6.3.4. This technique is typically used to test relationships between 

quantitative or categorical variables. Correlation coefficients have a value of between -1 and 

1. A "0" value means no relationship between the variables, while -1 or 1 means a perfect 

negative or positive correlation (negative or positive correlation here refers to the type of 

graph the relationship will produce). 

 

Table 6-6:Correlation coefficients 

State of Hand 0.425847 

Road Type 0.363796 

Face Orientation 0.420461 

Time of day 0.224532 

Eye Gaze 0.296584 

Weather 0.247372 

Maneuver 0.323121 

Speed 0.053056 

Surrounding 0.441935 

Pedestrians 0.255076 

 

From table 6-6 above, it is clear that there is a positive correlation with all but one of the 

parameters used in the model, namely the speed of the vehicle. The model is also tested 

across multiple events, and the results demonstrate a consistent lack of correlation with 

vehicle speed. This might indicate a need for a wider speed span in the dataset or better 

represent the model's influence if this does not affect the results. The speed span is evenly 

distributed due to driving conforming to the speed obtainable on the road.  

6.5 Results and Analysis 

Implementing our model and architecture in Figure 6.1 was carried out to determine which 

ML model will best predict driver distraction to aid vehicle take over decision-making. 
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Furthermore, to avoid biases, the experiment results were determined using different ML 

algorithms on the dataset. This is analyzed using the scatter plot and confusion matrix of the 

predicted class.  

6.5.1 Interdependency Test using Regression Analysis 

The regression analysis was performed on the following three context-aware features: 

a. The in-vehicle features related to the driver distraction such as hand moment, gaze; 

b. The vehicle features such as vehicle speed, manoeuvres; 

c. The environmental features such as pedestrians, vehicles, weather. 

There is a need to test the association and interdependencies between a pair of distractions. 

We applied a regression to the prediction of driver distraction divided into severity levels. 

Here, we further tested the relationship between distractions by classifying distraction into 

either in-vehicle, context-aware, or environmental distraction. 

6.5.1.1 Driver Distraction 

The driver distraction features consist of state of hand, face orientation, and eye gaze. 

Figure 6.5 depicts driver distraction, showing a strong relationship between eye gaze on the 

road (Eye Gaze 0), face orientation off-road, single hand on the wheel, and a high severity 

level score of distraction leading to dangerous driving. Eyes shut, face orientation on the 

road, and double hands-on wheel also significantly impact the severity score. 

 

Figure 6-5: In-Vehicle State of Hand, Eye Gaze and Face Orientation. 

Table 6-7 presents the in-vehicle distractions regarding the prediction of the severity 

score. Based on the P-value of 0.758, the probability of the state of hands to predict 

distraction severity is low. The intercept of 0.529134, which is highly significant, suggests a 
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relationship between the state of hands, face orientation, and eye gaze. The statistical 

predictors use the t-statistics and P-values of each distraction. The lower P-value of 0.249 for 

face orientation shows a highly significant predictor of the severity score. The coefficient of 

determination is 0.005668. 

 

Table 6-7: Driver Distractions Regression analysis 

Intercepts Estimated Standard Error T-Value P Value 

State of Hand 0.015526   0.015526   34.080 0.758 

Face Orientation 0.1-0.25 0.014414   -1.156 0.249 

Eye Gaze 0.002045 0.008981 0.228 0.820 
 

Intercept 0.529134 0.015526   34.080 <2e-16 

 

 

6.5.1.2 Environmental Distraction 

Figure 6.6 shows that dry weather, a dual carriageway, and a bright day achieved the 

maximum dangerous severity score, while rainy weather, double carriageway, and night 

produced a slightly riskier situation. Snowy conditions on the highway and night had the 

highest degree of influence on the severity score.  

 

 

Figure 6-6: Road Type, Time of Day, and Weather 

The results in Table 6-8 show environmental distraction in the prediction of the severity 

score. The low P-value of 0.175 for the road type shows that road type significantly impacts 

the prediction. The environment intercept of 0.556982 showed a significant association 

between the severity score and the outcome distraction road type, time of day, and weather. 
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However, the least average P-value of 0.5897 was the least compared to the other distraction 

classifications. The least residual standard error with 0.1165, the smallest of all the residual 

standard errors, indicates that this model best fits the data. 

 

Table 6-8:Environment regression analysis 

Intercepts Estimated Standard Error T-Value P Value 

Road Type   -0.011838    0.008702   -1.360     0.175     

Time of Day -0.011848    0.008579 -0.215 0.830 

Weather -0.002086 0.009035 -0.231     0.818     

Intercept 0.556982    0.031870 17.477 <2e-16 

 

 

Figure 6.7 shows five instances of vehicle presence and pedestrian presence resulting in a 

hazardous distraction classification, which means if there are vehicles or pedestrians present 

in the surroundings, the chances of driver’s distraction are significant. 

 

 

Figure 6-7: Pedestrian and Surrounding (Vehicle Presence). 

Table 6-9 presents the environmental distractions to the prediction of the severity score. 

Based on the P-value of 0.532, the probability of the surroundings influencing the prediction 

is low. The intercept of 0.529157, which is significant, suggests a relationship between 

surroundings and pedestrians. The statistical predictors use each distraction's t-statistics and 

P-values. The lower P-value of 0.532 for the surroundings (vehicle presence) is a highly 

significant predictor of the severity score. However, the P-value of 0.830 of pedestrians 

suggests no association between pedestrians and the severity score. 

 



  

 141  De Montfort University 

Table 6-9: External distractions regression analysis 

Intercepts Estimated Standard Error T-Value P Value 

Surrounding   -0.009065 0.014502 -0.625 0.532 

Pedestrians 0.003121 0.014487 0.215 0.830     

Intercept 0.529157 0.013145 40.255 <2e-16 

 

6.5.1.3 Vehicle Distractions 

Vehicle distractions include manoeuvres and speed. Figure 6.8 shows the distraction 

within the speed range of 23 mph to 26.2 mph due to a high frequency of speed manoeuvres. 

There are a few outliers with very high severity and very high danger levels. 

 

Figure 6-8: Vehicle, Speed and Manoeuvre. 

The results in Table 6-10 show the influence of vehicle distractions on predicting a 

severity score. Based on the P-value of 0.855, the probability of speed influencing the 

prediction is low because the driver stays within the speed limit. However, during 

manoeuvres, there is a higher degree of significance. The intercept of 0.695812, which is 

highly significant, suggests a strong relationship between speed and manoeuvre. The 

statistical predictors use the t-statistics and P-values of each distraction. The lower P-value of 

0.815 for manoeuvres shows a highly significant predictor of the severity score. 

 

Table 6-10:Vehicle Distractions Regression analysis 

Intercepts Estimated Standard Error T-Value P Value 

Speed   -0.009065 0.035983 -0.183 0.855 

Manoeuvre 0.002050 0.008758 0.234 0.815 

Intercept 0.695812 0.941042 0.739 0.460 
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In this case, the driver is tested with the previous severity score and the predicted actual 

severity score of the next video frame; in this experiment, the driver's overall performance is 

tested throughout the drive, whereby there are a total of 262 frames, which is the equivalent 

of approximately 11 seconds. In Figure 6.9, we can assume that the driver has maintained a 

primarily constant careless driving behaviour. Furthermore, the regression analysis shows a 

strong correlation between the previous severity and the current severity scores.   

 

Figure 6-9: Severity Score, Previous Severity Score and Video Frames 

The results presented in Table 6-11 depict the influence of in-vehicle distractions on 

predicting the severity score. Based on the P-value with the lower value of 0.990, the state of 

hand's probability predicts a low score. The intercept of 1.828e, which is highly significant, 

suggests a relationship between the sequence of video frames and the previous severity score. 

 

 

Table 6-11: Severity Score Regression analysis 

Intercepts Estimated Standard Error T-Value P Value 

Video Frames   -1.329e-06   1.024e-04   -0.013     0.990     

Previous Severity Score 9.618e-01   9.618e-01   5.812 1.8e-08 

Intercept 1.828e-02   1.828e-02   0.196     0.845     

 

6.5.2 ML Model  

Different ML models are implemented, such as discriminant, naïve Bayes, SVM, K-

Means Nearest Neighbour (KNN), and Ensemble ML. To better evaluate the performance, 

the classification results are compared in Table 6-12. 
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Table 6-12: Classification Performance 

Classifiers Model Type Accuracy Prediction Speed(~obs/sec) Training Time (sec) 

KNN   Fine KNN 79.1 2700 4.4574 

 Medium KNN 78.3 2500 3.5617 

KNN Coarse 59.3 2500 4.4974 

KNN Cosine 80.6 2600 4.368 

KNN Cubic 76.4 2000 4.239 

KNN Weighted KNN 80.6 2500 3.975 

Discriminant Linear Discriminant  90.9 2700 3.5265 

 Quadratic Discriminant  82.9 2500 5.2346 

Naïve Bayes Gaussian Naïve Bayes 93.2 3000 5.0814 

 Kernel Naïve Bayes  90.1 1500 5.9402 

SVM Linear SVM 92.0 2400 4.9151 

 Quadratic SVM 92.4 2300 4.8007 

Cubic SVM 92.4 2300 4.6915 

Fine Gaussian SVM 58.6 2200 5.7229 

Medium Gaussian SVM 85.2 2100 5.5983 

Coarse Gaussian SVM 77.2 2300 5.4722 

Ensemble  Boosted Trees 58.6 3600 4.5331 

 Bagged Trees 96.2 1000 6.3019 

Subspace Discriminant 92.4 780 6.8675 

Subspace KNN 79.8 600 6.7319 

RUSBoosted Trees 74.5 2900 4.6438 
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Figure 6-10: Confusion Matrix 

 In figure 6.10, the first two diagonal cells show the percentage of correct classification by 

the trained network. For example, 142 frames are correctly classified as careless. This 

corresponds to 99% of the 262 frames. Similarly, 80 cases are correctly classified as 

dangerous, corresponding to 96% of all the edges. Three dangerous and three safe instances 

are incorrectly classified, corresponding to 12% of all 264 frames in the data. Similarly, one 

of the careless structures is incorrectly classified, corresponding to 1% of all the data. Out of 

148 careless predictions, 99% are correct, and 1% are wrong. Out of 80 dangerous 

predictions, 96% are correct, and 4% are wrong. Out of 35 safe cases, 92% are correctly 

predicted as safe, and 8% false. 

6.5.3 Scatter Plot 

Figure 6.11 shows a strong, linear association between the previous severity score and the 

observed severity score. In this case, the driver appears to progress from safe driving to 

dangerous driving, and the scatter plots made 355 correct predictions from the 263 total 

observations. In Figure 6.10, the consideration of the use of three observations, namely safe, 

careless and dangerous. The example predictors are given the severity score of 0.8373, which 

is predicted with a hazardous class and entails ten predictors. Furthermore, the results show 

that the intercept of the severity score of 0.6 and 8 observations is realised, considered 

careless. The severity score of 0.39 and 4 comments refers to a safe driving prediction, a 

correct classification.  
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The scatter plot predicts 74 safe driving instances, 142 careless driving instances, and 134 

dangerous driving instances. In total, we have 355 total predictions for the Ensemble Bagged 

Trees. Finally, 13 numbers return a safe classification with 62 predictors. Other classification 

models, such as linear SVM, produced nine negative predictions, while Gaussian Naïve 

Bayes returned nine cases of negative predictions. In this case, the authors consider adopting 

Ensemble Bagged Trees to provide the best accuracy, with seven negative predictions. 

 

 

 

Figure 6-11: Scatter Plot 

 

The Kruskal–Wallis rank was obtained using ML algorithms to confirm accuracy, training 

time, and prediction time; these are presented in Table 6-13. It can be observed that ensemble 

learning with the Bagged model obtained the highest mean rank of 21 compared to the other 

variants of that model and the other state-of-the-art ML algorithms. However, the mean rank 

for prediction and training time are 3 and 19, respectively. This phenomenon indicates that 

Bagged's complex fitness function helps extract rich feature vectors for classification. As 

opposed to Bagged Trees, ensemble learning with the Boosted Trees model obtained the 

highest mean rank of 21 than the other variants of that model and other state-of-the-art ML 

algorithms. This phenomenon shows that Boosted Trees' linear fitness function helps extract 

poor feature vectors for classification. Furthermore, the linear discriminant variant obtained 

the lowest mean rank of 1 in training time, with 90% accuracy.   

The linear functions were evaluated using the previous severity score and the next video 

frame's expected total severity score. Gaussian Naïve Bayes appeared as the second-best 
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algorithm for performance compared to others, except for Bagged Trees. The average mean 

rank gained by Gaussian Naïve Bayes is 20, with 93.2% accuracy and a z-score of 1.49. 

 

Table 6-13: Kruskal- Wallis ranks were obtained using ML algorithms to confirm accuracy, training, and 

prediction. 

 

6.5.4  Time Complexity 

Safety in intelligent transportation systems (ITS) is critical and having a fast ML model to 

make an efficient decision is crucial for road user safety. The linear discriminant gave the 

shortest training time of 3.5265, allowing faster decision-making. However, when predicting 

speed observed per second, the results showed ~3600 obs/sec. 

 KRUSKAL–WALLIS AVE RANKS Z 

SCORE MODEL  MEDIAN ACCURACY  PREDICTION 

SPEED(APPX -

OBS/SECONDS) 

TRAINING 

TIME 

(SECONDS) 

BAGGED TREES 96.2 21 3 19 1.65 

BOOSTED TREES 58.6 1.5 21 8 -1.57 

COARSE GAUSSIAN SVM 77.2 6 9 15 -0.83 

CUBIC SVM 92.4 18 9 10 1.16 

FINE GAUSSIAN SVM 58.6 1.5 7 17 -1.57 

FINE KNN 79.1 8 17.5 6 -0.5 

GAUSSIAN NAÏVE BAYES 93.2 20 20 13 1.49 

KERNEL NAÏVE BAYES 90.1 14 4 18 0.5 

KNN COARSE 59.3 3 13.5 7 -1.32 

KNN COSINE 80.6 10.5 16 5 -0.08 

KNN CUBIC 76.4 5 5 4 -0.99 

KNN WEIGHTED KNN 80.6 10.5 13.5 3 -0.08 

LINEAR DISCRIMINANT 90.9 15 17.5 1 0.66 

LINEAR SVM 92 16 11 12 0.83 

MEDIUM GAUSSIAN SVM 85.2 13 6 16 0.33 

MEDIUM KNN 78.3 7 13.5 2 -0.66 

QUADRATIC 

DISCRIMINANT 

82.9 12 13.5 14 0.17 

QUADRATIC SVM 92.4 18 9 11 1.16 

RUSBOOSTED TREES 74.5 4 19 9 -1.16 

SUBSPACE DISCRIMINANT 92.4 18 2 21 1.16 

SUBSPACE KNN 79.8 9 1 20 -0.33 
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Each classifier's residual value is examined by calculating the mean difference of training 

time and prediction time.  Figure 6.12 shows that training time is an independent factor and 

indicates no significant deviation from the prediction time. Residual values (cf. y-axis) show 

that the prediction was exceedingly low. Fitted values (refer to the x-axis) show that the 

prediction was significantly accurate; 0 on the y-axis indicates a 100% correct positive rate. 

Figure 6.12 shows that the fitted line's intercept and slope values are projections for the 

distribution's position and residual parameters, respectively. Simultaneously, the percentage 

on the y axis is helpful for the probability curve since the sample variance approximates the 

accuracy, prediction time, and training time obtained using several ML algorithms. 

Furthermore, the histogram of residual values indicates the distance between the observed 

prediction time from the mean of each classifier's total time for training. The significant 

residual value between -200 and +300 (refer to figure 6.12) shows an optimal configuration 

for the proposed framework when employing ML variants. 

 

 

Figure 6-12: Show the comparison of accuracy across multiple ML models 
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Figure 6-13: Residual Plots for Prediction Speed (~obs/sec) vs Training Time (sec) 

6.6 Discussion 

This chapter deals with the problem by employing ML. The authors have proposed a novel 

and robust Multi-class Driver Distraction Risk Assessment (MDDRA) model. The model has 

tackled the driver with almost possible variants such as the current state of hand, which 

means whether the driver uses double hands, single hands, or no hands at all. Similarly, the 

type of the road on which the vehicle is running, the face orientation is on the road or off-

road, whether it is a daytime or nighttime, the eye gaze of the driver, if the weather is dry, 

rain, or snowy, what is the current manoeuvre, the surrounding vehicles, speed of the vehicle, 

speed of the surrounding vehicle, and the pedestrians. The suggested model, MDDRA, 

considers vehicle, driver, and environmental data during a journey to categorize drivers into a 

risk matrix such as safe, careless, and dangerous.  

The proposed model offers flexibility to adjust parameters and weights to consider each 

event's specific severity level. Real-world data was collected using the Field Operation Test 

(TeleFOT), which consisted of drivers using the same routes in the East Midlands, UK. The 

results have a massive potential to reduce road accidents caused by driver's distractions. We 

have also tested the correlation of driver's distraction (In-vehicle, vehicle, and environment 

distractions) on severity classification against continuous driver's distraction severity score. 

Furthermore, we have applied several ML techniques to classify and predict driver's 

distraction according to severity levels to aid transitioning from driver to vehicle.  

As implemented with different ML models such as Discriminant, Naïve Bayes, Support 

Vector Machine (SVM), K-Means Nearest Neighbour (KNN) Ensemble ML for 

classification. The above figure shows the comparison of accuracy by applying these models. 
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It can be seen that the Bagged Trees-based Ensemble model has provided the highest 

accuracy of 96.2% for classification, while fine Gaussian SVM and Boosted Trees-based 

ensemble methods have resulted in the lowest accuracy of 58.6% for the classification task. 

The comparison of various ML models is shown in Figure 6.13. 

The graph in Figure 6.14 compares the accuracy value of the proposed MDDRA, the work 

of Mengtao Zhu et al [275], the work proposed by Yanli Ma et al [276], and the work of 

Tianchi Liu et al [277]. It can be seen that the proposed model has outperformed the current 

state of the arts in the multi-class distraction prediction. Moreover, the model has achieved an 

accuracy of 96.21%, while the current state of the art claimed accuracy of 95.87%, which is 

lower than our proposed methodology. Although Tianchi Liu et al [277] have achieved 

slightly higher accuracy, they have worked on a binary classification problem. The multi-

class classification is a more complex task than a simple binary classification model, the 

model state-of-the-art with excellent results in more than eight classes. Furthermore, the 

proposed model has provided fast results as high as 3600 observations per second, making 

the proposed model accurate but robust in terms of speed. 

 

Figure 6-14: Shows the comparison of accuracy provided by MADDRA with the current state of the arts 

6.7 Summary 

A plethora of literature on the importance and urgency of driving risk mitigation 

techniques to prevent driving behaviour-related accidents. For a false proof robust alert 

system, the precise classification of driving behaviour is needed. However, to the best of our 

knowledge, the current works lack complexity, rigidness, synthesized dataset, are more 

focused on a particular side of perspective (vehicle, driver, or environment), false-positive 

classes, and low accuracy.  This chapter aimed to provide a novel Multi-Class Driver 

Distraction Risk Assessment model that considers the vehicle, driver, and environmental data 

during a journey to categorize the driver on a risk matrix as safe, careless, or dangerous. The 
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MDDRA model offers flexibility in adjusting the parameters and weights to consider each 

event's specific severity level. Real-world data were collected using the Field Operation Test 

(TeleFOT), consisting of drivers using the same routes in the East Midlands, United 

Kingdom (UK). The results showed that it is possible to reduce road accidents caused by 

driver distraction. We also tested the correlation between distraction (driver, vehicle, and 

environment) and the classification severity based on a continuous distraction severity score. 

Furthermore, we applied ML techniques to classify and predict driver distraction 

according to severity levels to aid the transition of control from the driver to the vehicle 

(vehicle takeover) when a situation is deemed risky. The experimental results obtained using 

various ML algorithms have shown improved results than the baseline and previous 

literature. The algorithm with the best performance was Ensemble Bagged Trees, which gave 

an accuracy of 96.2%. 

However, this approach's limitation is that DL will produce better results regarding speed 

performance than an ML technique.  The in-vehicle regression analysis result had a higher 

degree of correlation and was highly significant. The MDDRA model can be adjusted to fit 

any distraction risk assessment considering the driver, vehicle, and environmental contexts. 

In assigning weights to pedestrians on the road, we did not consider accidents or vehicles are 

hitting the pedestrians. However, the results of the regression show that vehicle distraction 

constitutes a higher level of significance. Factors such as sample size and data spread may 

have influenced the regression analysis's P-value results. Confidence intervals around the 

sample statistics would yield a better result than P-values alone. In addition, adopting CNN-

DBN-LSTM techniques in detecting and classifying multi-class driver distraction would 

yield more effective and efficient results. Finally, considering the accuracy over time-

complexity, the best ML model adopted is the Bagged Trees. 



  

 151  De Montfort University 

 

CHAPTER 7. A MULTI-CLASS CONTEXT-AWARE 

DRIVER DISTRACTION SEVERITY CLASSIFICATION 

USING AN HYBRID CNN-DBN-LSTM NETWORK 

7.1 Synopsis 

ADAS is a critical component in semi-autonomous vehicles and vital to the safety of 

vehicle drivers and public road transportation systems. In this chapter, presented is a hybrid 

DL technique that detects and classifies drivers’ distractions using a multi-class Context-

Aware drivers’ distractions (event types-hand state, face orientation, eye glances) in 

combination with several context-awareness parameters: speed, weather, manoeuvre, 

surroundings, GPS position, accelerometer, and road type.  Furthermore, a novel probabilistic 

DBN model based on the Fast-Recurrent CNN and LSTM network is developed to detect and 

classify driver’s distraction into severity levels and use frame-based context data from the 

multi-view TeleFOT naturalistic driving study (NDS) data monitoring to classify the severity 

of driver distractions. The proposed methodology entails FRCNN trained to detect the 

driver’s distraction, recurrent neural network layers LSTM trained to predict driver 

distraction severity from time-series data, and a probabilistic DBN calculates probability 

from probability with changing times and frames.  This chapter entails multi-class 

distractions that, when combined with context-aware, leads to a severity level that can be 

further classified into safe, careless or dangerous driving. The model involves a Hidden 

Markov Driver Distraction Severity Model (HMDDSM) for transitioning the driver to the 

vehicle when a distraction level is reached. Validation of these results was performed using a 

cross-validation method applied to an unseen driver dataset 

7.2 Background  

Intelligent Transportation Systems is highly utilized to share drivers' behaviour and 

vehicle safety information such as collision warning, weather condition, accident occurrence, 

emergency brake light, and blind-spot warning [1]. In addition, vehicle information such as 

direction, speed, acceleration, signal intersections is also shared to prevent accidents. 

However, drivers do react to context-aware while driving. Thus, there is a need for real-time 

context-aware systems to prevent accidents.  



  

 152  De Montfort University 

According to (NHTSA) driver distraction is a crucial contribution to many road traffic 

accidents. National Highway Traffic Safety Administration (NHTSA) identified increased 

distraction from in-vehicle electronic devices and published guidelines to discourage 

excessive distraction by electronic devices in vehicles [2]. Furthermore, the vehicle user 

interface presents information overload to drivers, leading to distractions and causing 

accidents. Infotainment Systems are highly automated and requires a complex operation. 

Thus, diversion of visual attention of the driver away from observing his driving environment 

is crucial [3]. Driving is predominantly visual and manually by the hands (steering wheel and 

gear shift) and my feet (acceleration, braking).  However, the driver inputs(eye gaze, hands) 

are often positioned in different states and sometimes perform tasks simultaneously [4]. Thus, 

a limitation is that the driver's input that constitutes distraction can have a different severity 

level.    

It has been estimated that 94% of accidents result from drivers error, and about 75% is 

from drivers decision errors [5]. Furthermore, in research and survey conducted about the 

causes of road accidents, 55% were due to careless driving.  

Critically, driver distractions could be influenced by in-vehicle components (In-vehicle 

devices), thus making the driver perform an act that leads to careless driving behaviour 

thereby, breaching driving laws. For example, infotainment system operation while driving 

could result in driver distraction. Drivers distractions detection is vital for many different 

applications in the domain of intelligent vehicles and autonomous driving.  

Driving Context influences the behaviour and reaction of drivers. Also, context-aware 

changes affect the driver’s perceptions and risk levels. These challenges need a real-time 

context-aware system that can be applied to detect and learn driver’s behaviour in real-time. 

There is a need to define a context and the components of a context-aware application to 

implement such a system. In ADAS, capturing driver’s distraction in scenarios such as in-

vehicle monitoring can be used to alert humans inside the vehicle when dangerous situations 

arise. Distraction is part of people’s everyday lives, and it reduces reaction time, 

concentration and alertness in a driving environment. Drivers distractions have led to ADAS 

development to improve driving safety and reduce accidents. Prevention of traffic accidents 

using ADAS can be categorised into driver monitoring or vehicle-oriented approach. 

According to Braunagel [6], stated ADAS system could aid the vehicle to take over in 

longitude and control situations which have led to our proposed systems for a severity model 

for drivers distractions to aid vehicle situation most especially in Semi-autonomous vehicles. 

Brauagel, further stated that the driver is responsible for the vehicle in semi-autonomous 



  

 153  De Montfort University 

vehicles all the time. The driver's responsibility is transferred to an automated vehicle in 

some scenarios thus, enabling the driver to perform secondary tasks (reading, watching 

movies, sleeping) [6], [7]. Performing secondary tasks are still being regulated and not fully 

authorized, even in fully autonomous vehicles. 

Furthermore, ADAS in autonomous vehicles has been designed to alert the driver when 

hands are not steering. This led to drivers taking over situations whereby the vehicle forces 

driver to take over driving tasks. Bruanagel resolved the above readiness of the driver in 

easing the transition of the driver taking over control without reducing the driver’s take-over 

readiness [6]. The approach used entail driver monitoring through features such as gaze 

guidance or increased decelerations. 

Nevertheless, there can be scenarios where the vehicle needs to take over from the driver; 

this is probably due to the driver being distracted and not giving utmost concentration to 

driving activity; thus, having a degree of driving distraction according to severity level is 

crucial. A significant gap is the risk assessment of road accidents using severity prediction of 

traffic accidents with Recurrent Neural Network (RNN) [8]–[11]. The proposed prevention 

system rather than a detection approach leads to a system to prevent distraction that can lead 

to accidents.  In this research, the utilization of secondary naturalistic driving study (NDS) 

data TeleFOT with 27 subjects and explore some of the TeleFOT data usages to determine 

the events in the TeleFOT data.  

The main contributions of this chapter are: 

• Proposed a frame-based severity metric of Drivers distractions using a linear 

transformation.  

• Proposed architecture for a Multi-classification of drivers’ distractions into severity 

level using CNN and LSTM.  

• Dynamic Bayesian Network model for forecasting and prediction of driver distraction.  

• Integration of the MDDRA risk assessment model  

• Hidden Markov Model  Driver Distraction Severity Model (HMDDSM) 

• Validation of frame-based severity model using cross-validation.  

An approach towards a classification system of vehicles transitioning from driver to 

vehicle according to driver’s distraction severity level will be developed and tested on 

naturalistic driving study data. In addition, having such a system can be helpful in ADAS 

systems. This chapter focused on driver distraction monitoring using Context-aware drivers’ 

distraction and analysed with LSTM a Recurrent Neural Network (RNN). The proposed 
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systems can be further applied in adaptation to driver’s behaviour, leading to a preventive and 

corrective system for drivers’ distractions based on the severity. Though, this can be 

subjective to the frequency and duration in which the event occurred. The proposed severity 

classifier considers the driver's distractions and considers context-aware information. 

7.2.1 TeleFOT Data Analysis 

TeleFOT NDS comprises the most significant European Field Operation Test (FOT) 

regarding the functionality of in-vehicle aftermarket and nomadic devices. The project's 

primary purpose was to improve Autonomous systems and cooperative systems in the 

Intelligent Transportation Systems environment [11], [23]. The FOT involved vehicle 

collecting and recording driving data such as speed measuring, vehicle dynamics and vehicle 

positions. This chapter considered the TeleFOT NDS study in the UK jurisdiction, launched 

in 2011 to collect naturalistic driver behaviour without any predefined condition in the United 

Kingdom. The test location was mainly in the East Midlands (Leicester, Coventry, 

Nottingham) area of the UK and partnership with Loughborough University [279]. The 

TeleFOT NDS study involved 27 participants(subjects), with some participants, repeated 

over different conditions. The trial type conditions are Baseline, Experienced and Novice.  

7.2.2 Data Sampling Size  

This driver sampling size will evaluate the developed algorithm using the driver not 

involved in the training.  

Table 7-1:Data Sampling Size 

TeleFOT 

PARTICIPANTS 

Baseline (BL), 

Experienced(E), 

Novice (N) 

VIDEO 

LENGTH 

IMAGE 

STATISTICS 

DATA POINT 

(IMAGE 

STATISTICS X 

4) 

001 BL001 01:13:00 105,109 
420436 

 E001 00:33:40 48,485 
193940 

033 BL033 01:10:55 106,398 
425592 

 E033 00:38:13 57,334 229336 

 N033 00:18:20 27,512 
110048 

074 BL074 00:33:45 48,605 
194420 

 E074 00:44:41 64,360 
257440 
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 N074 01:33:13 134,219 
536876 

081 BL081 00:33:43 48,562 
194248 

 E081 00:34:24 49,556 
198224 

 N081 01:39:59 106,534 
426136 

083 BL083 00:33:43 48,562 
194248 

 E083 00:35:26 51,039 
204156 

 N083 00:57:58 83,470 
333880 

088 BL088 00:35:00 50,405 
201620 

 E088 00:42:17 60,904 
243616 

 N088 01:29:05 128,271 
513084 

TOTAL   1,219,325 

 

4,877,300 

 

 

7.2.3 Context-Aware Threshold Mathematical Model for the Degree of 

Careless to Dangerous Driving 

Two approaches could be implemented in the classification of the distraction, namely 

threshold detection and profile-based detection. The threshold detection involves tracking the 

duration of events and the number of occurrences of the specific distraction type during 

driving. In addition, if the duration and occurrence of distraction surpass a reasonable number 

as described in the justification section of metrics above, then a level of distraction is 

assumed based on the threshold. However, some distractions can instantly reach an optimum 

severity level; thus, there is a need for a detection and classification system. Another 

approach is a profile-based that characterises the driver's past behaviour and detects 

significant deviations from the expected safe driving profile of the driver. 

Furthermore, a profile may consist of a set of parameters. Just a single parameter may not 

be sufficient to classify the driver distraction; thus, a multi-class distraction event detection 

and classification is needed—Matrix Table Metrics Weightings Threshold Severity Level as 

depicted in chapters 5 and 6. In section 7.2.4-6 are tables depicting the metric tables for the 

distractions considered.  
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7.2.4 Driver Context In-vehicle (Hand State, Eye’s Gaze, and Face 

Orientation) 

Table 7-2: Driver Context-Aware 

Distraction Type Distraction Type 

States 

Threshold Weight 

Hand Single Hand Duration 1 

Double Hands Duration 2 

No Hand Duration 0 

Face Orientation Face Orientation On the 

road 

Normal 1 

Face Orientation Off road Duration of glance 2 

Eyes Gaze Eyes on Road Normal 1 

Eyes off Road Duration of glance off-

road 

2 

Eyes Shut Duration of event 3 

 

7.2.5 Environment Context-aware 

Table 7-3: Environment Context-aware 

Environment Values Thresholds 

Road type Urban 0 - 30 

Highway and Motorway 30 -70 

Dual carriageway 70 > 

Weather Day Degree of brightness 

Night dark 

Manoeuvres Stopped Static 

turning Speed towards a turning 

Surrounding Vehicle Front/rear or vehicle 

Pedestrian Front/rear and vehicle state. 
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7.2.6 Vehicle Context-aware  

Table 7-4: Vehicle Context-aware 

 Value  Thresholds  Measures Weight 

Speed 0-30mph Road Type Urban Vehicle state, 

Speed, Location 

tracking GPS, 

Positioning 

Urban 30mph- 

 30-70 Road Type 

Highway 

speed limit and 

road type 

Single carriage 60mph 

 

 70 Dual Carriage speed limit and 

road type 

Dual 

carriage/motorway 

70mph 

 

7.3 Multi-Class Driver Distraction Risk Assessment (MDDRA)  

This section will examine the perceived severity of naturalistic driving, thus showing 

varying levels of human-perceived severity.  The driver’s distraction does have a different 

impact that can be classified into safe, careless or dangerous. This is achieved by testing our 

hypothesis that driver’s behaviour and driver’s distraction having different severity levels by 

inferring from literature as seen in section A above. Then justification of weights, metrics for 

distractions present in the TeleFOT dataset.  

The MDDRA involves a weighted average of the parameters to compute the severity 

levels per frame, as depicted in Table III.  

1. These weights are capped by the maximum number a parameter can take. 

a. For example, taking "State of Hand" as a parameter, grade it as follows: (0 - 

double hands, 1- single hand, 2- no hands). If the value of a given frame for 

this parameter is x, then the weighted value is x/2 since the maximum value 

this parameter can take is 2.  

2. Let us generalize this for any parameter xi with maximum value mi as follows: 

a. Severity Level =>   where n is the number of parameters, we 

considered  

3. Special considerations 
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a.  Notification that speed should depend on the road type; hence, multiply it 

with the weight of its Road for speed. Consideration is given to road type in 

the UK, which conforms to the source of the dataset. For the metric of road 

types, we defined the threshold according to the speed limit allowable on the 

road type urban, single carriage and motorway with 30mph, 60mph and 

70mph, respectively.   

Furthermore, we defined the following context data as follows: 

• Vehicle(V) and Driver data with probabilities P(V) = {v1, v2, …, vm} 

• Environment data with probabilities P(E) = {e1, e2, …, en},  

• Speed a 

• Surrounding P(S) 

• Pedestrians P(Pe) 

The equation is formulated as follow: 

1. The speed is computed as follows: 

a. Give the national speed limit of UK is 70mph, and the maximum road type 

score is 3 

Average Speed = (Speed * Road Type) / (Max Speed * Max Road Type) 

 

                                                                    (7.1) 

 

1.  There are different data points in each; thus, the severity level of a given frame with 

k data points is below.      

)                  (7.2) 

 

2. Now compute the aggregate severity (S*) of a given frame given the last  frames. 

This is achieved by taking the average of the current frame’s severity score than the 

severity score of last  frames 

)                                                              (7.3) 
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Table 7-5: Parameters & Weightings 

# Parameter Maximum Weight Distraction State 

Type 

Weight 

 1 State of Hand 

2 

Double hands 0 

Single hand 1 

No hands 2 

2 Road Type 3 Urban 1 

Dual 2 

Highway 3 

3 Face Orientation 2 On road 1 

Off road 2 

4 Illumination 1 Day 1 

Night 2 

5 Eye Gaze 2 Eyes on road 0 

Eyes off-road 1 

Eyes shut 2 

6 Weather 3 Dry 1 

Rain 2 

Snow 3 

7 Manoeuvre 2 Stopped 0 

Turning 1 

Moving 2 

8 Surroundings 2 Vehicle not present 0 

Vehicle present 1 

9 Pedestrians 2 Pedestrian not 

present 

0 

Pedestrian’s present 1 

10 Speed Urban 30mph- Single 

carriage 60mph Dual 

carriage/motorway  

70mph 

(Speed * Road 

Type)/300 

Urban Single 

carriage 

Dual 

Carriage 

Highway  

 

7.4 Distraction Detection and Methodologies  

Here presented a detailed description of our detection and classification approach, which 

entail a hybrid algorithm CNN-DBN-LSTM respectively. The classification driving 

distractions from images entails combining a pre-trained image classification model with an 
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LSTM network. The approach is a sequence-to-sequence of images labelled into the class of 

the distraction type. We manually extract the features using a single label approach detection 

a single distraction type in the CNN-LSTM method. In contrast, we used a multi-label 

approach to extract features for each frame in the fuzzy logic section. We train an LSTM for 

the prediction and classification into severity levels. The approach of the methodology is 

depicted as follows. In addition, the DBN will be used in the prediction of the severity of 

distractions.  

7.4.1 Data Pre-processing 

Many software tools were used for data pre-processing. These tools aid in generating 

video data, conversions, thresholding, splitting the video data and conversions to formats that 

could be processed. The tools used includes:  

7.4.1.1 Race Technology Software 

TeleFOT driving data videos was generated via the Race Technology Software, which 

included times-series data of the vehicle. This aids in knowing the vehicle data at every 

frame.  

7.4.1.2 Matlab Tools  

Colour Threshold: this tool is used in segmenting image pixels based on colours to 

make it easier to analyse the image. The tool converts a given image into a binary 

image that the algorithm can then handle.  

Image Acquisition: this tool helps in retrieving images to be analysed from the 

source for further processing. The tool has advanced capabilities to extract image 

frames from a video stream, to facilitate processing.  

Image Batch Processor: to facilitate quick batch processing of images, the image 

batch processor was used. The tool facilitates the processing of images from a 

folder, thus speeding up the process. 

Image Labeller: the labeller tool facilitates marking rectangular regions of interest 

on images with scene labels, pixel ROI labels, and polyline ROI labels. This tool 

was applied in the labelling of the region of interest (RoI).   

Image Region Analyser: this tool was used to measure various properties of an 

image and display tabulated information and create other binary images by filtering 

regions of interest.  
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Feature extraction: there is noise removal involved to increase the accuracy of eye 

gaze or glances detection.  

7.4.1.3 ETL data processing  

Image Segmenter: the tool was used to segment the images and create 

segmentation masks using automatic, semi-automatic and manual algorithms.  The 

tool aided in segmenting the labelled ROI on images as depicted in 7.1 and 7.2, 

respectively. Each TeleFOT Image is 1280x720 with a width of 1280 pixels and a 

height of 720 pixels as depicted in 1a and 1b, which illustrates a sample of 

participant BL001, an enhanced image.  

Image Splitting: The image was split into four frames using MATLAB 

representing In-vehicle (frontal view, side view) and Outer-vehicle (front and rear 

view). The input images of the CNN and contains the raw pixel values of the 

images. The local receptive fields (LRF) comprise four inputs relative to the 

TeleFOT datasets; the drivers view in the dataset is depicted as follows: Inside 

Frontal View (IFV), Inside Side View (ISV), Outside Rear View (ORV) and Frontal 

View (OFV).  A mathematical representation of the LRF is as follows: 

  

Views (V) =  IFV, ISV, ORV, OFV  

LRF   IFV, ISV, ORV, OFV  

LRF  P(V) - ∅   Possible outcomes is  where n denotes the number of views 

and the possible outcome is 15 states.  

 

 

Figure 7-1: Image Enhancement: 
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The driver point was determined based on a significant pre-defined point around the driver 

body region. The region around the head will be used in indicating where the driver is. This 

enables us to perform further image segmentation to improve the accuracy of a head 

detection algorithm that ensures human recognition. We further classify the images into some 

of the distraction events that our algorithm will detect.  

  

Figure 7-2: Image Enhancement Single Hand-on wheel vs. Double Hands-on wheel 

7.4.2 Autonomous Vehicle Monitoring Sample Image in the In-vehicle and 

Out-vehicle 

Figure 7.3 shows the vehicle monitoring image samples from the In-vehicle and the view 

of the Out-vehicle (Figure 7.4). 

 

Figure 7-3: In-Vehicle 
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Figure 7-4: Outer-Vehicle 

7.5 Driver Feature Semantic Segmentation 

Figure 7.5 depicts the image enhancement of the sample image and feature extraction 

alongside the driver’s state plot. 

 

Figure 7-5: Image Segmentation Contour Plot of Driver state 

Image Viewer: as the name suggests, the tool finds usage in visualizing the images.  

FFMPEG: this is open-source with many libraries for handling various multimedia 

streams and files. For this project, FFMPEG was used to convert video to images at 

a rate of 25 fps.  

VIDEOPROC: this is a video editing software suite that enables video cutting, 

cropping, merging, rotating and compressing. The tool was used in the splitting of 

video into equal lengths for training. In addition, the tool was used in the 

enhancement of the driver’s video quality into a 4K resolution since the driving 

videos are dated.  

IMAGEJ: Image Sequence is a Java-based image processing software. This tool 

was used to convert the sequence of frames to video at the rate of 25 fps in this 

project. Afterwards, the converted images were saved into AVI format.  
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7.5.1.1 Model Preparations and Transfer lLarning 

Several pre-trained network models can be adopted as the CNN Architectures, multi-layer 

neural networks designed to recognise visual patterns from images. ConvNets have millions 

of parameters and a lot of hidden layers. For this, Resnet18 and Resnet50 are out-of-the-box 

types of CNN classifiers. 

7.6 CNN-LSTM-DBN Process Flow 

A CNN LSTM architecture uses a CNN for feature extraction on a given input data set, 

combined with a Long Short-Term Memory Network, which supports sequence prediction. 

By design, a CNN LSTM was intended for handling visual time series prediction and 

generation of textual description from a given input sequence of images and video frames. 

CNN LSTM handles activity recognition by generating textual descriptions of activities 

identified in sequences of images. The process flow for a CNN LSTM network comprises ten 

stages, each represented by a box in figure 7.6 below. The process flow starts with 

autonomous vehicle monitoring and ends at the ML classifier; in between, two process flows 

make up the internal operations of the model. The two flows represent the in-vehicle and out-

vehicle flows. Each of the process flows are as follows 

7.6.1 In-Vehicle Video Capture 

 The first stage of this process flow involves collecting the vehicle's interior data with a 

video from the onboard monitor.  

7.6.2 Semantic Segmentation 

The second stage of the in-vehicle process flow entails semantic segmentation of the 

driver’s features. This component extracts driver features such as driver activity, number of 

hands on the wheel, and face orientation off the road. Extracted driver features are then fed 

into a hybrid CNN-LSTM model as in-vehicle packets. 

7.6.3 Hybrid CNN-LSTM 

The in- vehicle packets from the semantic segmentation section are fed to the hybrid 

CNN-LSTM model. The CNN layer performs feature extraction on input data, while the 

LSTM performs sequence prediction and activity recognition. The model is tasked with 

identifying the type of distraction a driver experiences. Any identified activity is compared 

with historical data to recognise the distraction type and give it a distraction identifier fed to 
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the dynamic Bayesian network. In essence, the hybrid CNN-LSTM performs driver 

distraction recognition by analysing the extracted driver features, where fuzzy sets for 

classification of the distraction by severity level are extracted. The fuzzy sets of distractions 

inform the model of the distraction ID, which is then fed to the Dynamic Bayesian model 

together with driver features, extracted by the deferential stage of the model.   

7.6.4 Frame Differencing 

 A copy of the video stream from the semantic segmentation section is fed to a frame 

differencing component, which identifies and extracts the driver’s feature of hands on the 

steering wheel. Out-vehicle environment monitoring process flow: the second process flow 

making up the entire CNN-LSTM Process Flow is the external  

7.6.5 Out-vehicle/Environment monitors 

This component collects data about the vehicle and the vehicle's external environment, 

such as speed, manoeuvres, and a video recording of the road and pedestrians. Two streams 

of data are obtained here, external video and vehicle data which includes speed and 

manoeuvres. 

7.6.6 Faster R-CNN 

The video recorded from the outside is fed to a faster R-CNN, which analyses the frames 

to extract information related to road type, weather and identify pedestrians and the 

surrounding. Faster R-CNN detects regions that have objects of interest.  

7.6.7 Differential 

 The differencing component receives data about driving speed, road type, weather and 

driving manoeuvres. The component relates the different variables; speed, road type and 

manoeuvres to generate critical context-aware.  

7.6.8 Dynamic Bayesian Model 

The dynamic Bayesian model takes in three variables; distraction ID and driver features 

from the in-vehicle monitoring stream and context-aware from the out-vehicle streams.  With 

the three key inputs, the Dynamic Bayesian model performs severity classification by relating 

the variables to each other over adjacent time steps, outputting probabilistic data, which 

forms the basis of operations of the ML classifier.  
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7.6.9 ML Classifier 

The last component of the model is the ML classifier, which takes in the probabilistic data, 

and performs prediction of the class of given data points, resulting in distraction 

classification. For this case, the classifier performs severity classification; given the outputs 

of the dynamic Bayesian network model, the classier approximates and maps the level of 

distraction on a severity scale. The severity of distraction acts as the basis of whether the 

system takes over the vehicle's operations or not.  

 

 

Figure 7-6: CNN-LSTM-DBN Process Flow 

Figure 7.7 detailed the proposed process flow chart for in-vehicle (Figure 7.7a) and out 

vehicle (Figure 7.7b).  
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                   Figure 7-7a: In-vehicle          Figure 7-8b:  Outer-vehicle (left) 

7.7 Dynamic Bayesian Network (Data) Model 

The dynamic Bayesian Network Model is made up of seven components. The first 

component is a Fast R-CNN, designed to handle context-awareness and physiological data. 

The component receives a video stream from the outside of the vehicle, analyses it to detect 

objects in the video stream, such as pedestrians, neighbouring vehicles and any other external 

object around the moving vehicle. By design, the Fast R-CNN uses two networks for object 

detection; a region proposal network (RPN), which generates region proposals, and the 

second network in RPN regions to detect objects. 

7.7.1 Bounding Boxes 

The second component of the architecture employs the bounding boxes approach; each 

detected object is annotated using bounding boxes annotators. These annotations are placed 

around key driver features such as the driver’s face, eyes, hands, external objects such as 

pedestrians, obstacles and vehicles on the road.  
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7.7.2 Frame-by-Frame Face and Eye’s Tracking 

having established objects of interest and outlined them using bounding boxes, this 

component keeps track of frame-by-frame changes in the state of the detected and boxed 

objects. Any change is tracked and fed to the dynamic Bayesian network model.   

7.7.3 CNN-LSTM 

 This system component analyses video streams from a vehicle's interior and exterior to 

identify distractions experienced by a driver. The CNN layer performs feature extraction on 

input data, while the LSTM enables sequence prediction. The CNN-LSTM is, therefore, able 

to perform activity recognition which is critical for this architecture. In this case, CNN-

LSTM is employed to analyse context data and identify driver distraction and send the type 

of distraction to the dynamic Bayesian network model in a distraction ID. In essence, this 

component informs the DBN of the kind of distraction that a driver is experiencing at any 

given time.  

7.7.4 Dynamic Bayesian Network Model 

 Information about identified objects that have already been annotated using bounding 

boxes and tracked changes are fed to this module, the dynamic Bayesian network model. 

Dynamic Bayesian model relates the variables to each other over adjacent time steps, often 

called a two-time-slice BN. For this case, the DBN takes in three variables; the identified 

objects with their bounding boxes tracked changes of the objects in the form of frame-by-

frame object tracking information and a distraction identifier from the CNN-LSTM module. 

The complete architecture of the DBN model is given below in Figure 7.8. 

7.7.5 ML Classifier 

 The last step in this architecture entails distraction classification. In classification, 

prediction of the class of given data points is performed. For this case, the classifier performs 

severity classification; given the outputs of the dynamic Bayesian network model, the classier 

approximates and maps the level of distraction on a severity scale. Depending on how severe 

the distraction is, the system may take corrective measures, including vehicle takeover.  
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Figure 7-9: Dynamic Bayesian Network (Data) Model 

7.8 Context-Aware Architecture  

CNN LSTM is built as a 3-tier architecture system, consisting of a Sensing layer, a logic 

layer and an application layer.  The proposed 3-tier architecture system can be seen in Figure 

7.9. 

7.8.1 The sensing layers 

Being the lowest layer handles data collection from in-vehicle and out-vehicle video 

capture and sensors components. In-Vehicle data is collected using a dashboard camera, 

which video streams to a CNN and LSTM layer that handles driver features extraction. On 

the other hand, the out-vehicle data is collected from various sensors and video recorders, 

including accelerometer, speed gauge, weather data, maps and video recording. The out-

vehicle data forms the context data, while the in-vehicle constitutes the driver features.  

7.8.2 Logic Layer 

The context and driver feature data streams are fed to the Dynamic Bayesian model in the 

logic layer of the architecture. The Bayesian model takes historical data and, with several 

computation steps, performs severity classification, outputting probabilistic data, which 

forms the basis of operations of the ML classifier and for fuzzy regression inference.  
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7.8.3 Application Layer 

The ensemble and the validator feed the application layer components, making the prudent 

decision on vehicle takeover. The regression fuzzy, on the other hand, feeds the application 

layer with the severity classification probability.  

CNN + LSTM  Layers

History

In-Vehichle

Dynamic Bayesian 
Network Model

Severity classification Prob. Vehicle takeover decision

Ensemble ML classifier
Regression tree, Fuzzy 

inference

Validation mechanism

Out-Vehichle

Video stream

Speed

Accelerometer

Weather Map

Traffic

Contextual data

Features selection data

 

Figure 7-10: 3-tier Context-aware architecture for driver distraction 

7.9 Novel DL-Based Driver Distraction Severity Model 

The severity threshold will be deduced using metrics such as time, frequency and 

behaviour. The drivers' behaviour can be profiled based on previous data, and prediction of 

drivers’ behaviour can be inferred from the previous. However, there are uncertainties in 

driver’s behaviour which is hard to predict, such as cognitive distractions. Thus, we adopted a 

proactive approach in forecasting the distraction severity level.  
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Video-Based CNN-LSTM Based driving distraction detection and classification  

The conversion of the sequence of images of the driver’s distractions into a single video at 

the streaming rate of 25 frames per seconds video can be considered a generalization of the 

image data in which a temporal component is inherent to a sequence of images. We 

generalised the 2-dimensional spatial convolutions into 3-dimensional Spatio-temporal 

convolutions; thus, each frame in the video can be considered an image, and one, therefore, 

receives a sequence of images in time. Each of the image sizes is 224 x 224 x 3, and a total of 

no. Frames received. The size of the video segment is 224 x 224 x frame no x 3.  The 3-

dimensional capture enables us to capture the colour channel since the dataset is now a video. 

The sequential data set (e.g., text) requires 1- dimensional convolutions, an image data set 

requires 2-dimensional convolutions, and a video data set requires 3-dimensional 

convolutions. However, 3-dimensional convolutions add only a limited amount to what one 

can achieve by averaging the classification of individual frames by image classifiers. 

Furthermore, motion adds a tiny amount to information available in the individual frame 

for classification purposes. Finally, the 3-dimensional CNN is suitable for relatively shorter 

video segments (half seconds) but might not be suitable for longer videos. In longer videos, a 

better approach combines recurrent neural networks (LSTM) with CNNs. For example, the 2-

dimensional convolutional over individual frames, but a recurrent network carries over states 

from one frame to the next. Another approach is adopting 3-dimensional CNNs over short 

segments of video and linking them up with recurrent units. Thus, this helps in identifying 

actions over longer time horizons.  

In addition, the use of LSTM has been an idea in the case of storing information from 

previous values and exploit the time dependencies between the samples. We compute the 

current frame severity considering the severity in the previous frame, which is the 

combination of CNN and LSTM. The Dataset is a naturalistic driving study dataset collected 

over successive periods characterized as a Time Series. The model developed is based on 

CNN-LSTM, which detects and passes the previous hidden state to the next step of the 

sequence. Lastly, we applied DBN for the prediction of distraction [280]. 
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ALGORITHM 7.1:  Multi-class Distraction Severity Classification and Takeover System 

1 Begin 

2               Input: TeleFOT Data (Driving data)   

              // In and out video streams from data acquisition devices. 

3               Output: SC (severity classification)  

4               For i in nFrames  do 

5                               

6                              

7                            

  

                           // Image Split, Segmentation, enhancement, 

                           //noise removal, ROIs 

8                             

9                             

10               end for 

11    

               // detect and track driver, distraction type eyes and face orientation. 

12   

13   

14   

15                  

16 { }   

               // the feature vector for distraction severity 

17   

               // using a novel risk assessment method, compute the severity score (class) 

18                . // Probabilistic (Data) Model 

19   

               // Apply trained ensemble Machine learning (Bayes) classifier 
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20                // Training a Hidden Markov Driver distraction model using the Baum-Welch and 

                Viterbi algorithm to analyse Takeover's decision-making.   

21 End 

 

7.9.1 Face and Eye’s Point-tracking using Kanade Lucas Tomasi (KLT) 

The point tracker object in our framework tracks a set of points (x-y coordinates) using the 

Kanade-Lucas-Tomasi (KLT) feature-tracking algorithm. Then, apply the point tracker for 

face and eye tracking, video stabilization, and camera motion estimation. It works well for 

tracking faces and eye’s that do not change shape and those that exhibit a specific visual 

texture (Figure 7.10). The point tracker is often used for short-term tracking as part of a 

larger tracking framework. 

 

 

Figure 7-11: Face and eyepoint tracking 

7.9.2  Semantic segmentation for Context-awareness  

A semantic segmentation network for context objects classifies every pixel in a distraction 

frame from OV, which is segmented by class. An essential application for semantic 

segmentation is road segmentation for autonomous driving; we used the CamVid dataset [2] 

from the University of Cambridge and distracted driver video frames captured from OV for 

training. This dataset is a collection of images containing street-level views obtained while 

driving and from TeleFOT datasets. The complete dataset provides pixel-level labels for 32 

semantic classes, including car, pedestrian, and road. This creates the Deeplab v3+ network 

with weights initialized from a pre-trained Resnet-18 network. ResNet-18 is an efficient 
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network that is well suited for applications with limited processing resources. The Labelled 

pixels for the training of the Semantic segmentation network can be seen in Figure 7.11. 

 

Figure 7-12: Labelled pixels for the training of Semantic segmentation network 

7.9.3 Training of Semantic segmentation network 

The training of Semantic segmentation network, i.e., Fast R-CNN was done, the accuracy 

graph (Figure 7.12), loss graph (Figure 7.13) can be seen below. While Figure 7.14 shows the 

frequency of occurrences of environment detections in the training set. 

 

Figure 7-13: Fast R-CNN training model 

 

Figure 7-14: Fast R-CNN loss function during training 
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Figure 7-15: frequency of occurrences of environment detections in the training set 

Table 7-6: Validation Results 

GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore 

 0.89416  0.86257  0.66641 0.83109 0.69922   

  

Table 7-7:  Fast R-CNN classification accuracy 

 Accuracy The intersection of 

union (IoU) 

MeanBEScore 

    Sky            0.93824      0.90821       0.90645   

    Building       0.81932     0.79479     0.64927   

    Pole           0.76297      0.24525       0.58579   

    Road           0.94568      0.93048       0.81708   

    Pavement       0.89163      0.74731       0.76321   

    Tree           0.88847      0.77611       0.73491   

    SignSymbol     0.76303      0.42155       0.53403   

    Fence          0.81325      0.58934       0.58114   

    Car            0.92007      0.79514       0.75216   

    Pedestrian     0.85778      0.47054       0.63498   

    Bicyclist      0.88784      0.65182       0.60337   

 

7.9.3.1 Blob Processing: State of Hands on the Steering Wheel 

The image below (Figure 7.16) provides an overview of blob processing for the state of 

hands. 
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Figure 7-16: blob processing state of hands 

7.9.3.2 CNN-LSTM-DBN Classifier 

The dynamic Bayesian Network classifier is made up of seven components. 

The first component is a Faster RCNN, designed to handle context-awareness and 

physiological data. The component receives a video stream from the outside of the vehicle, 

analyses it to detect objects in the video stream, such as pedestrians, neighbouring vehicles 

and any other external object around the moving vehicle. By design, the Faster R-CNN uses 

two networks for object detection; a region proposal network (RPN) that generates region 

proposals and a second network that takes in the regions from RPN to detect objects. 
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Bounding Boxes: The second component of the architecture employs the bounding boxes 

approach; each detected object is annotated using bounding boxes annotators. These 

annotations are placed around key driver features such as the driver’s face, eyes, hands, 

external objects such as pedestrians, obstacles and vehicles on the road.  

Frame-by-frame face and eye’s tracking: having established objects of interest and 

outlined them using bounding boxes, this component now keeps track of frame-by-frame 

changes in the state of the detected and boxed objects. Any change is tracked and fed to the 

dynamic Bayesian network model.  

CNN-LSTM: this system component analyses video streams from the interior and 

exterior to identify distractions experienced by a driver. The CNN layer performs feature 

extraction on input data by design, while the LSTM enables sequence prediction. The CNN-

LSTM is, therefore, able to perform activity recognition which is critical for this architecture. 

In this case, CNN-LSTM is employed to analyse context data and identify driver distraction 

and send the type of distraction to the dynamic Bayesian network model in a distraction ID. 

In essence, this component informs the DBN of the kind of distraction that a driver is 

experiencing at any given time.  

Dynamic Bayesian Network model: information about identified objects that have 

already been annotated using bounding boxes, as well as tracked changes are fed to this 

module; the dynamic Bayesian network model. Dynamic Bayesian model relates the 

variables to each other over adjacent time steps; often called a two-time-slice BN. For this 

case, the DBN takes in three variables; the identified objects with their bounding boxes 

tracked changes in the form of frame-by-frame object tracking information and a distraction 

identifier that comes from the CNN-LSTM module. Figure 7.17 provides a Dynamic 

Bayesian Network (Data) Classifier. 

ML Classifier: the last step in this architecture entails distraction classification. In 

classification, prediction of the class of given data points is performed. For this case, the 

classifier performs severity classification; given the outputs of the dynamic Bayesian network 

model, the classier approximates and maps the level of distraction on a severity scale. 

Depending on how severe the distraction is, the system may take corrective measures, 

including vehicle takeover.  
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Figure 7-17: Dynamic Bayesian Network (Data) Classifier 

7.9.3.3 HMDDSM:  A Model for Decision-Making in Vehicle Transitioning 

The architecture shown below in Fig 7.18 is for individual driving, applying the ML 

learning classification of severity. The model (Fig. 7.19 and Fig.7.20 adapt to the driver's 

severity level of the driver’s distraction behaviour. However, if the drivers are not distracted 

frequently, the vehicle takes no-decision.  We can now compute for a driver the decision for 

transitioning as seen in the model below.  

The following components and assumptions specify the Hidden Markov Driver 

Distraction Severity Model (HMDDSM):  

 

 a transition probability matrix A each  representing the probability 

of moving from severity state  to state j, s.t.   ∀i.                    

 is the sequence of T observations (distinct) each one drawn from a timed 

vocabulary                                                                                             
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 is a sequence of observation likelihoods, also called emission probabilities, 

each expressing the probability of an observation  being generated from a severity 

classification state  from symbol set  

π = {π1, π2} an initial probability distribution over driver distraction severity states. πi is 

the probability that the Markov chain will start in state i. Some states j can have π j = 0. This 

means that they cannot be initial severity states. Also, .                             

• The probability of a particular driver severity state depends only on the previous 

severity state as with a first-order Markov chain:  

• The probability of an output observation oi depends only on the driver severity state 

that produced the observation qi and not on any other severity states or any other 

observations:  

We solve the HMDDSM problem for vehicle transition in three steps: 

• HMDDSM Learning using the Baum-Welch algorithm: Given an observation 

sequence O for the driver and the set of possible severity states in the HMM, learn the 

HMDDSM parameters A and B. 

• Computing Likelihood for vehicle transition: Given an HMDDSM λ = (A, B) and an 

observation sequence , determine the likelihood  

• Decoding the driver severity states using Viterbi algorithm: Given as input an 

HMDDSM and a sequence of observations , find the 

most probable sequence of severity states  To support decision 

making for the switch from driver to ADAS. 

Tables 7.8 and 7.9 below show the transmission and emission probabilities for the hidden 

Markov driver distraction severity model of driver 001 in the TeleFOT data) 



  

 180  De Montfort University 

 

Figure 7-18: Hidden Markov Driver distraction model for Decision-making in-vehicle transitioning (between 

driver and ADAS). 
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Figure 7-19: Observation likelihood for distraction severity events in vehicle transitioning between driver and 

semi-autonomous vehicle 
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Figure 7-20: Estimating the transmission and emission probabilities (HMM) 

 

Table 7-8: Estimated transmission (TR) probabilities for distraction severity of Driver 001 

    0.9767     0.0233 

    0.1538     0.8462 

 

Table 7-9: Estimated emission (E) probabilities for distraction severity of Driver 001 

0.1379     0.1609   0.1839     0.1724     0.2299     0.1149 

0.0769     0.1538     0.0769     0.0769     0.2308     0.3846 

 

7.10 Summary 

A hidden Markov model has been adopted to decide how much dangerous driving is 

detected and more petite than careless driving. Thus, if less towards careless then driver 

continues. If more dangerous overall, then autonomous vehicles take over. The internal 

mechanism, time observation data based on how long or time-series. How long of the 

probabilities at the same time. The decision making ensures that the one that is more 

advantageous the car leans on. If the after running the frame-data and if severity less than 

careless then the driving continues and if dangerous the transitioning of drivers to the vehicle 

in semi-autonomous vehicles. 



  

 182  De Montfort University 

CHAPTER 8. THE EVALUATION, COMPARISON AND 

DISCUSSION WITH RELATED WORK 

 

8.1 Case Study 1: Evaluation of Single Class Based on DL Models  

This case study will complete evaluation of the outcome of proposed context-aware driver 

distraction severity classification using LSTM, DBN-LSTM and provide a comparison with 

related works.  

8.1.1 Performance and Response 

The network’s performance (MSE) starts at 0.0327 and, after ten iterations or epochs, 

stops at 0.000541. Figure 8.1 graphically presents the driver distraction severity model’s 

response; a comparison is performed between the (training, validation and testing) targets of 

the time-series (frame-based) data and the actual outputs. Following epoch 5, the error 

validation is repeated five times. As the error shows no sign of reducing, the test is halted at 

ten epochs. As shown in Figure 8.1, the error repeat that begins at epoch 4 shows data over-

fitting. Hence, epoch five is chosen as the base, with its weights selected as the final weights. 

Furthermore, six iterations are run in the validation check to enhance the filter’s performance; 

as the error does not reduce, the testing is halted at epoch 10. 

8.1.2 Training and Validation 

The Levenberg-Marquardt training algorithm needs more memory but less time to perform 

the training. It also improves performance by using the gradient-descent method. In training, 

the gradient begins at 0.141 and stops at 0.000219. Once the generalization ceases to 

improve, the training automatically stops based on the MSE of the validation samples. This 

occurs at epoch 10, with a validation check time of 6 secs, as shown in Figure 8.1.  
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Figure 8-1:   LSTM Training Using the Gradient Descent Method. 

8.1.3 Discussion Related to The Combination of DBN-LSTM 

As already discussed in the literature section, a massive amount of work has been done on 

driver's distraction classification and driving severity identification; however, having a 

complete algorithm that deals with the problem is crucial. Chapter 4 of this study uses time-

series data provided by TeleFOT to monitor driver's distraction.  A Context-Aware drivers 

distraction model is proposed using DBN-LSTM.  The proposed systems can be further 

applied in adaptation to driver's behaviour, leading to a preventive and corrective system for 

drivers' distractions based on the severity. Though, this can be subjective to the frequency 

and duration in which the event occurred. However, the MDDRA model can keep track of 

distraction state changes and the frequency and duration of distraction. The proposed severity 

classifier considers the driver's distractions and considers context-aware information.  

Figure 8.2 below provided the comparative analysis of our proposed Context-Aware 

DBN-LSTM model with the most recent work of Kouchak, S. M., & Gaffar, A. [281] in the 

driver's distraction task by using time-series data. The graph compares MSE for training, test, 

and validation for the baseline model, provided by them, the Stacked LSTM model, and our 

proposed Context-Aware DBN-LSTM model. The Blue bar shows the baseline model from 

Kouchak, S. M., & Gaffar, [281] 's work; the orange bar shows the stacked LSTM, while the 

grey bar shows our proposed methodology. It can be seen that the proposed MSE is far less 

than the recent state-of-the-art works.  
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Figure 8.2: Shows the comparison of our proposed method with the current state of the arts. 

Similarly, Figure 8.3 below presents a detailed comparison of Jie Chen et al [282] work, 

Wollmer, Martin, et al [283]  work, Olabiyi, Oluatobi, et al [284] 's work, and proposed work 

for the task of driver's distraction. The graph clearly shows that the accuracy of the proposed 

Context-Aware DBN-LSTM model is superior to all the previous models. The proposed work 

is unique as previous studies have utilized LSTM but for different serval purposes.  Jie Chen 

et al [282] suggested a driver distraction recognition method by utilizing the power of 

temporal context with the LSTM network's help. Olabiyi, Oluatobi, et al [284] suggested a 

similar methodology for driver distraction prediction by exploiting a Recurrent Neural 

Network. Finally, Wollmer, Martin, et al [283] discussed an LSTM based driver's distraction 

method. It can be seen from the figure below that the proposed model outperformed all the 

previous method's accuracy. 
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Figure 8.3: The comparative analysis of proposed methodology with the recent approaches in terms of accuracy 

8.2 Case study 2: Evaluation Using Different Fuzzy Logic Model Sugeno  

This evaluation entails comparing the Mamdani fuzzy logic model adopted in chapter 5 

against the ANFIS Sugeno Model. The results of the Mamdani are depicted in Table 8.2 

below.  

Table 8-1: Training data 9/47 frames 

Face Orientation(fo) Driver Activity (da) Hands (ha) Previous Driver Activity (pda) 

0 1 1 0 

0 0 1 0.06666666 

0 0 1 0.06666666 

0 1 1 0.33333333 

0 1 1 0.44444444 

0 1 1 0.5 

0 1 1 0.53333333 

0 1 1 0.55555555 

0 1 1 0.57142857 

 

The gradual increase is evident from the Mamdani defuzzification methods, most 

importantly, centroid and bisector have clear visibility starting from 0.5 danger, gradually 
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increasing further to 0.70 then finally reaching 0.80, this shows that by using the previous 

driver activity for a prolonged amount of time the severity of danger that the driver is in will 

be increased. 

 

Table 8-2: Mamadani 

CENTROID BISECTOR MOM SOM LOM 

0.494678671 0 0.495 0.12 0.87 

0.466961833 0.47 0.495 0.1 0.89 

0.466961833 0.47 0.495 0.1 0.89 

0.596267826 0.64 0.82 0.64 1 

0.71235178 0.76 0.82 0.64 1 

0.807455156 0.81 0.82 0.64 1 

0.807455156 0.81 0.82 0.64 1 

0.81177008 0.81 0.83 0.66 1 

 

In the Sugeno comparison, the adoption of ML type of Fuzzy neural network (FNN), also 

known as Neuro-Fuzzy Inference System (ANFIS) Seguno, was applied to the same input 

image-based parameters for the Mamdani based system. The output of the ANFIS has been 

compared to show similar results and slightly better performance in few instances over 

Mamdani.  In the Sugeno method, the Wtaver defuzzification method proved to also have a 

gradual increase with some numbers not rising to the amount that would react fast enough for 

level 4 semi-autonomous takeover.   

An example of this would be that in the centroid defuzzification method table 8.3 of 

Mamdani, the 5th value down “0.71235178” would be equivalent to “0.5” on the weighted 

average (Wtaver) method in the Sugeno Table 8.4; this could be very severe as the transition 

would not happen as can be seen in chapter 5.  This implies that the Membership function 

(MF) output the transfer to dangerous driving happens at 0.75; therefore, the ANFIS trained 

data would ignore this level of drivers severity, leading to an accident. Furthermore, the 

Weighted Sum(Wtsum). 

 

Table 8-3: Sugeno Deffuzication Method Wtaver  and Wtsum 

Wtaver Wtsum 

0.479 0.5 

0.479 0 

0.5 0 
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0.499 0.613 

0.5 0.788 

0.807 0.877 

0.809 0.693 

0.811 0.793 

 

Figure 8.4 below depicts the ANFIS neural network designed with 100 Hidden Neurons with a delay of 4.  

 

 

Figure 8.4: ANFIS Neural Network Implementation 

 

The inputs (training data) is the same as the input of Mamdani, representing discrete data 

of 47 consecutive frames consisting of a driver with distractions such as face orientation, eyes 

gaze, and hands state.  

8.2.1 Training 

 The performance of the ANFIS systems is described in Table 8.4 below, with the network 

showing its mean square error (MSE). 75% of the dataset was assigned for training purposes.  

8.2.2 Testing 

Training constitutes 15% of the dataset, and it is used. 

8.2.3 Validation 

The validation is used in measuring network generalization and stops when generalization 

stops improving. 15% of the dataset is used for validation. 
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Table 8-4: Training, Testing, Validation 

 

 

 

 

 

 

8.3 Results & Discussion 

8.3.1 Performance Measures 

The network's performance Mean Square Error (MSE) started at 0.037, stopped at 

0.025968 after 19 epochs, and stopped training at 100 epochs.  In Fig.11, the response of the 

severity distraction model is depicted graphically whereby the targets (training, validation 

and testing) of the consecutive image-based data is compared with the actual outputs. 

8.3.2  Training/Validation 

The training algorithm Sugeno ANFIS required less time to train but needed more 

memory. The algorithm applies the gradient-descent method to improve performance. In 

training, as seen in Figure 8.5, the gradient started at 0.037 and stopped at 0.025. Training 

automatically stops when the generalization stops improving at 100 epochs, as indicated by 

an increase in the mean square error of the validation samples; this happened at epoch 19, as 

seen in Figure below. The plot of MSE against the epochs showing the improvement in 

performance at every iteration from 1 to 19. However, the performance does not improve 

based on the MSE from iterations 19 to 100. 

 

Figure 8.5 Training Performance 

 Target Values 

Training 26 

Validation 13 

Testing 13 
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In Figure. 8.6 and Figure 8.7 Training and Testing output are shown below the 39 matches 

picked by the Sugeno and the six missed data points in blue as shown in the figure. The level 

of accuracy of the Sugeno is relatively close to Mamdani 

 

 

 

Figure 8.6 Training data FIS output 

 

The testing data output result is shown below in Figure depicts the average testing error to 

be 0.25968 and generated with a Linear type Membership Function (MF) and Generate FIS 

of trapmf.  

 

 

Figure 8.7: Testing data output 

8.3.3 Comparison of Sugeno and Mamdani  

Table 8.6 shows Sugeno RMSE results below if compared with that of Mamdami Table 

8.7. The Wtaver produced the same results for the phoning and talking.  

Table 8-5: Sugeno RMSE 

Defuzzification Method RMSE Value 

Wtsum 0.291 
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Wtaver 0.327 

 

 

Table 8-6: driving distraction severity levels for the membership functions 

Defuzzification Method RMSE Value Driver Activity 

CENTROID 0.32 Talking 

CENTROID 0.31 Texting 

CENTROID 0.32 Phoning 

 

However, Mamdani is a better choice in this context since rules and weights were created 

based on expert knowledge. This approach is the idea in the context of semi-autonomous 

drivers where drivers can be different. For example, a comparison of how dangerous a driver 

is compared with another driver is possible. For instance, driving for 1-minute driving for 

Mamdani is sufficient, unlike Sugeno, which may require more than 5 minutes of sufficient 

data. However, ANFIS can take crisp input in membership function (MF) and generate rules. 

In contrast, the rules generated by the fuzzy inference systems (FIS) were 81 in number 

compared with 48 of Mamdani. This may lead to a high computational cost, complex 

structure and gradient learning. Thus, a less rule-based Fuzzy system requiring less 

computational resources to make decisions is the best approach. ANFIS may lead to false 

positives (FP) if overfitting, unlike the Mamdani system, thus, the accuracy.  

Comparing these approaches suggests that the Mamdani approach is superior in restrictive 

rules, modelling structure, and accuracy. A clear advantage Mamdani has over Sugeno is that 

not all possible rule combination is required to construct the fuzzy rule base. Thus, Mamdani 

can relate inputs and outputs in a non-linear manner through instances of sharp transitions 

through high to low and low to high value captured by the fuzzy membership functions.  The 

actual outcome is to change from semi-autonomous take over from the driver when a certain 

threshold is reached.  

8.3.4 Discussion Related to the Discrete Dynamic Bayesian  

In Chapter 6, the methodology involves using an expert knowledge rule system to predict 

the severity of distraction in a contiguous set of video frames using the Naturalistic Driving 

American University of Cairo distraction Dataset. A multiclass distraction system comprises 

the face orientation, drivers' activities, hands, and previous driver distraction; a severity 

classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a 
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Mamdani-based fuzzy system was implemented to detect multiclass distractions into a 

severity level of safe, careless, or dangerous driving. Thus, if a high level of severity is 

reached, the semi-autonomous vehicle will take control. Although much literature is available 

on the topic, most recent and state-of-art are based on deep, complex neural networks that 

require high computation complexity and a massive amount of energy resources. At the same 

time, few works have exploited the similar idea of fuzzy logic for the prescribed task and 

claimed excellent results. The table below shows the compression of the top recent fuzzy-

based methods with our proposed methodology. 

 

Table 8-7: Presents the collective comparison of the proposed model with the current state of the arts 

Reference Method RMSE Classes 

Aksjonov, Andrei, et al 

[285] 

ANN with Fuzzy logic 0.52 Phone only 

Riaz, Faisal, et al [286] Cognitive Agent-Based 

Computing with Fuzzy logic 

0.48 Phone only 

Aksjonov, Andrei, et al 

[287] 

ML with Fuzzy Logic 0.38 Radio, Media, Telephone, 

Navigation 

Ou, Chaojie, et al [288] DL and Fuzzy Inferencing 0.49 Phone only 

Fuzzy-logic-DDBN Mamdani-based fuzzy system 0.32 Talking, Texting, Phoning 

 

Table 8.8 above shows a comparison of RMSE and the number of tackled classes. It can 

be seen that the proposed Fuzzy-logic DDBN methodology has been applied to three classes 

of distractions and provided the lowest RMSE. For a clear view, the results from the relevant 

studies have been visualized as bars below in Figure 8.8. 
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Figure 8.8 shows the comparative analysis of the proposed model in terms of RMSE with current literature 

As it can be seen that the developed fuzzy-logic DDBN method has outperformed others 

and provided excellent results with minimal computation complexity and excellent energy 

efficiency. 

8.4 Case Study 3: Evaluation for the MDDRA 

 The evaluation of chapter 6 Statistics validation and evaluation of the model performed 

the test using Kruskal Wallis and cross-correlation validation. To provide basic information 

about variables in a dataset, descriptive statistics for one of the simulated events (driver 1, 

event 1) is presented in Table 8.9 below. From this table, values of Mean, Median, Kurtosis 

and Skewness suggest that this is a case of symmetrical distribution. This might reflect on 

how the data were modelled as it is manually labelled before training and applied. 

Table 8-8:Descriptive statistics 

Mean 0.513049625 

Standard Error 0.007304311 

Median 0.508023896 

Standard Deviation 0.118456024 

Sample Variance 0.01403183 

Kurtosis 0.057262351 

Skewness 0.217203269 

Range 0.725482175 

Minimum 0.162361126 

Maximum 0.887843301 

Sum 134.9320515 



  

 193  De Montfort University 

Count 263 

Largest(1) 0.887843301 

Smallest(1) 0.162361126 

Confidence Level (95.0%) 0.014382625 

 

Invalidating the model, the model predictions were tested using correlation analysis as 

suggested in Section 6.3 above.  This technique is used in testing the relationship between 

categorical variables or quantitative variables. In addition, correlation coefficients with a 

value between -1 and 1 are ideal. However, a value of 0 denotes no relationship at all. On the 

other hand, -1 and 1 imply a perfect negative or positive correlation.  

 

Table 8-9: Correlation coefficients 

State of Hand 0.425847 

Road Type 0.363796 

Face Orientation 0.420461 

Time of day 0.224532 

Eye Gaze 0.296584 

Weather 0.247372 

Manoeuvre 0.323121 

Speed 0.053056 

Surrounding 0.441935 

Pedestrians 0.255076 

  

From table 8.10 above, it is clear that there is a positive correlation with all but one parameter 

used in the model. This parameter is the velocity of the vehicle. 

The model was also tested across multiple events, and the results demonstrated a consistent 

lack of correlation with velocity. This might indicate either a need for a wider velocity span 

to be present in the dataset or, if this will not affect results, to better represent velocity 

influence in the model.  

Kruskal Wallis rank obtained using ML algorithms to confirm the performance in terms of 

accuracy, training time, and prediction time are presented in Table 8.11 below. It can be 

observed that ensemble learning with the Bagged model obtained the highest mean rank of 21 

compared to the other variants of that model and other state-of-the-art ML algorithms. 

However, the mean rank for prediction and training time are 3 and 19, respectively.  This ML 

algorithm indicates that Bagged's complex fitness function helps extract rich feature vectors 
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to classify. As opposed to Bagged Trees, ensemble learning with Boosted Trees model 

obtained the highest mean rank of 21 compared to the other variants of that model and other 

state-of-the-art ML algorithms. This entails that the linear fitness function used in Boosted 

helps to extract short feature vectors to classify. Furthermore, the Linear Discriminant variant 

obtained the lowest mean rank of 1 in training time with 90 % accuracy.   

Linear functions are evaluated using the previous severity score and the next video frame's 

expected total severity score. Gaussian Naïve Bayes appeared as the 2nd best algorithm that 

performed well except for Bagged Trees. The average mean rank gained by Gaussian Naïve 

Bayes is 20, with 93.2 % accuracy and a z-score of 1.49. 

 

Table 8-10: Kruskal- Wallis ranks obtained using ML algorithms to confirm the performance concerning 

accuracy, training time and prediction time 

 Kruskal-Wallis Average Ranks  

Z 

score 

Model  Me

dian 

Accur

acy  

Prediction 

Speed(~obs/sec) 

Training 

Time (sec) 

Bagged Trees 96.2 21 3 19 1.65 

Boosted Trees 58.6 1.5 21 8 -1.57 

Coarse Gaussian SVM 77.2 6 9 15 -0.83 

Cubic SVM 92.4 18 9 10 1.16 

Fine Gaussian SVM 58.6 1.5 7 17 -1.57 

Fine KNN 79.1 8 17.5 6 -0.5 

Gaussian Naïve Bayes 93.2 20 20 13 1.49 

Kernel Naïve Bayes 90.1 14 4 18 0.5 

KNN Coarse 59.3 3 13.5 7 -1.32 

KNN Cosine 80.6 10.5 16 5 -0.08 

KNN Cubic 76.4 5 5 4 -0.99 

KNN Weighted KNN 80.6 10.5 13.5 3 -0.08 

Linear Discriminant 90.9 15 17.5 1 0.66 

Linear SVM 92 16 11 12 0.83 

Medium Gaussian SVM 85.2 13 6 16 0.33 

Medium KNN 78.3 7 13.5 2 -0.66 

Quadratic Discriminant 82.9 12 13.5 14 0.17 

Quadratic SVM 92.4 18 9 11 1.16 

RUSBoosted Trees 74.5 4 19 9 -1.16 

Subspace Discriminant 92.4 18 2 21 1.16 

Subspace KNN 79.8 9 1 20 -0.33 
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8.4.1 DISCUSSION RELATED TO THE MDDRA RISK ASSESSMENT 

MODEL 

In chapter 6 ML model was deployed for the classification of drivers’ distraction. The 

authors have proposed a novel and robust Multiclass Driver Distraction Risk Assessment 

(MDDRA) model. The model has tackled the driver with almost possible variants such as the 

current state of hand, which means whether the driver uses double hands, single hands, or no 

hands at all. Similarly, the type of the road on which the vehicle is running, the face 

orientation is on the road or off-road, whether it is a daytime or night time, the eye gaze of 

the driver, if the weather is dry, rain, or snowy, what is current manoeuvre is, the surrounding 

vehicles, speed of the vehicle, speed of the surrounding vehicle, and the pedestrians. The 

suggested model, MDDRA, considers vehicle, driver, and environmental context-aware 

situations during a journey to categorize drivers into risk matrices such as safe, careless, and 

dangerous. The proposed model offers flexibility to adjust parameters and weights to 

consider each event's specific severity level. Real-world data was collected using the Field 

Operation Test (TeleFOT), which consisted of drivers using the same routes in the East 

Midlands, UK. The results have a massive potential to reduce road accidents caused by 

driver's distractions. Also, a test of the correlation of driver's distraction (In-vehicle, vehicle, 

and environment distractions) on severity classification against continuous driver's distraction 

severity score was performed. 

Furthermore, several ML techniques are adopted to classify and predict driver's distraction 

according to severity levels to aid transitioning from driver to vehicle. Figure 8.9 shows all 

implemented ML models such as Discriminant, Naïve Bayes, Support Vector Machine 

(SVM), K-Means Nearest Neighbour (KNN) Ensemble ML task of classification. The above 

figure shows the comparison of accuracy by applying these models. It can be seen that the 

Bagged Trees-based Ensemble model has provided the highest accuracy of 96.2% for 

classification, while fine Gaussian SVM and Boosted Trees-based ensemble methods have 

resulted in the lowest accuracy of 58.6% for the classification task. 
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Figure 8.9: Show the comparison of accuracy across multiple ml models 

Figure 8.10 above is a comparison of the optimum classifier accuracy result of the 

proposed MDDRA, with the works of Mengtao Zhu et al [275],  Yanli Ma et al [276], and  

Tianchi Liu et al [277]. It can be seen that the proposed model has outperformed the current 

state-of-the-art in the multiclass distraction prediction. Moreover, the model has achieved an 

accuracy of 96.21%, while the current state-of-the-art claimed accuracy of 95.87%, which is 

lower than our proposed model. Although Tianchi Liu et al [277] have achieved slightly 

higher accuracy(97.21%), they have worked on a binary classification problem. As multiclass 

classification is a more complex task than a simple binary classification model, the MDDRA 

model state-of-the-art yielded excellent results in more than eight classes. Furthermore, the 

proposed model has provided fast results as high as 3600 observations per second, making 

the proposed model accurate but robust in terms of speed. 
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Figure 8.10: Shows the comparison of accuracy provided by MDDRA with the current state-of-the-art. 

8.4.2 Evaluation of Model Using Unknown Driver and Applying K-Folds 

Validation  

The evaluation in the section is the outcome of chapter 7, which uses K-folds cross-

validation for evaluation. The evaluation results are as depicted in Table 8.12 below, and the 

validation accuracy resulted in an accuracy of 90.92% with a learning rate of 9e-05. Despite 

the quality of the dataset, the model still yielded a high result.   

Table 8-11: Validation results 

Validation 

Accuracy 

Epochs Iterations Maximum 

Iterations 

Learning 

Rate 

90.92% 30/30 1550 /1560 1560 9e-05 

 

Figure 8.11 below shows the training accuracy of the model, and its starting accuracy is 

from 10% 
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Figure 8.11: Fast-RCNN Training model 

 

Depicted below in Figure 8.12 is the Fast RCNN training model; the loss flattens out when 

it got ten and gradually stabilizes from 10 epochs onwards on the horizontal axis.  

 

Figure 8.12: Fast-RCNN Loss Function 

8.4.3 Discussion Related to the Hybrid Model Cnn-Lstm-Dbn   

Chapter 7 presents a hybrid DL technique that detects and classifies drivers' distractions 

using a multiclass Context-Aware drivers' distraction (event types-hand state, face 

orientation, eye glances), in combination with several context-aware parameters: speed, 

weather, manoeuvre, surroundings, GPS position, accelerometer, and road type.  

Furthermore, a novel probabilistic DBN model based on the Fast-Recurrent CNN (FRCNN) 

and Long short-term memory (LSTM) network is developed to detect and classify driver's 
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distractions into severity levels. The proposed methodology entails DL CNN trained to detect 

the driver's distraction, recurrent neural network layers LSTM trained to predict driver 

distraction severity from time-series data, and a probabilistic DBN calculates severity from 

probability with changing times and frames.  This research entails multiclass distractions that, 

when combined with context-aware, leads to a severity level that can be further classified into 

safe, careless, or dangerous driving. 

Figure 8.13 below compares the work of Li Li et al [289], Arief Koesdwiady et al [290], 

Duy Tran et al [291], and Yang Xing et al [292] with our proposed Hybrid CNN-DBN-

LSTM model. It can be seen that the proposed model outperforms others in terms of 

accuracy. The method is a unique blend of CNN-LSTM-DBN. In this methodology, a hybrid 

CNN-LSTM architecture exploits a CNN power for feature extraction on a given set of input 

data, combined with a Long Short-Term Memory Network, which supports sequence 

prediction. By design, a CNN-LSTM was intended for handling visual time series prediction 

and generation of textual description from a given input sequence of images and video 

frames. In particular, CNN-LSTM handles activity recognition by generating textual 

descriptions of activities identified in sequences of images. 

The results are robust and accurate because the proposed model is an intelligent fusion of 

various latest architecture that combines the power and effectively solves the problem. For 

example, in a hybrid CNN-LSTM for feature extraction and tie series prediction, the 

identified activity is compared with historical data to recognize the distraction type and give 

it a distraction identifier fed to the dynamic Bayesian network. In essence, the hybrid CNN-

LSTM performs driver distraction recognition by analyzing the extracted driver features, 

where fuzzy sets for classification of the distraction by severity level are extracted. The fuzzy 

sets of distractions inform the model of the distraction ID, which is then fed to the Dynamic 

Bayesian model and driver features extracted by the model's deferential stage.  Finally, the 

Out-vehicle environment monitoring process flow comprises Faster R-CNN to identify road 

type, weather and track pedestrians and the surrounding. A Differential component that 

receives data about driving speed, road type, weather, and driving manoeuvres, a Dynamic 

Bayesian model performs severity classification by relating the variables to each other over 

adjacent time steps, outputting probabilistic data, which forms the basis of operations of the 

ML classifier. The complete setup makes the proposed model one of a kind with robust and 

accurate results compared to the current literature.  
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Figure 8.13 Comparison of accuracy provided by Hybrid CNN-DBN-LSTM with the current state of the arts 

Figure 8.14 below shows a resultant picture of the applied Fast-RCNN model, and the 

results are robust and accurate. The model has detected face orientation and eyes so the eye 

glance and face orientation can be tracked easily. 

 

 

Figure 8.147: Detected Faces using Fast-RCNN 

 Similar results have been identified for the detection of the out-environment.  Table 8.13 

below provides the accuracies of detected classes. 

Table 8-12: Context-aware environment detection and classification 

Class Accuracy Class Accuracy 

Sky 0.90821 Tree 0.88847 

Building 0.81932 Sign Symbol 0.76303 

Pole 0.76297 Fence 0.81325 
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Road 0.94568 Car 0.92007 

Pavement 0.89163 Pedestrian 0.85778 

Sky 0.90821 Tree 0.88847 

 

The accuracy of the proposed classes is comparable with the original faster-RCNN 

network. As the number of classes is far less than the original COCO dataset, that is why the 

employed model has shown such a robust performance than the original faster-RCNN. 

8.5 Summary 

There has been a comparison with numerous existing works and how the developed model 

outperforms the work of others in most cases. However, other algorithms achieved higher 

accuracy because of the distractions and parameters they applied their algorithm and model 

were less than the proposed models in this research.
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CHAPTER 9. CONCLUSION AND FUTURE WORK   

9.1 Introduction  

There is a rise in the adoption of artificial intelligence in autonomous systems, mainly in 

autonomous vehicles and computer vision applications. In autonomous vehicles, every year, 

the world hinges closer to level 5 in a present-day society with the increasing adoption of 

mobile devices that can be used for entertainment and often used while driving, leading to a 

high distraction rate. Thus, needing A.I. systems in managing our lives as humans, the 

application area of the developed methods in this research is not limited to A.V. but also in 

flying cars, healthcare, and commercial industries. This research has its applications and 

limitations, which has been covered in this chapter. 

9.2 Contribution to Knowledge  

• The development of a novel ADAS framework that classifies driver distractions into 

severity levels to aid vehicle take-over. 

• The development and evaluation of a mathematical model that classifies driver 

behaviour according to severity levels using thresholds. 

• The definition of a threshold safety system classifies driver behaviour into careless 

and dangerous driving, thus enabling an autonomous vehicle to take over from the 

driver or know when it is safe to return autonomy to the driver.  

• A novel MDDRA risk assessment model for the classification of driver distractions 

using ML algorithms. 

• The development of a novel 3-phase parallel Fast-CNN architecture to address each 

physiological attribute.   

• The development of a context-aware situation and using output from the parallel 

FCNN via a novel three-tier FCNN-DBN-LSTM that detects and classify driver’s 

distraction into the severity level of distractions. 

• The development of a Fuzzy-Logic-DDBN model for the classification of driver 

distraction. 

• Development of a Hidden Markov Driver Distraction Severity Model (HMDDSM) 

for classification of driver distractions.  
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9.3 Research Limitations  

9.3.1 Lack of Cognitive Distraction 

Cognitive distraction does occur when the driver is not paying attention to the course of 

driving. Chapter 5, distraction such as talking to a passenger, a cognitive distraction, was 

identified in the dataset. However, this is our DL algorithms detected a visual kind of 

distraction.  Furthermore, cameras and sensors embedded with a computer vision algorithm 

can detect when drivers talk to passengers.  Moreover, non-visual related cognitive 

distraction can be detected using electroencephalogram (EEG) and Electrocardiogram 

(ECGs), which detect heart rhythms that can inform the research other factors that can impact 

the driver's behaviour. Electroencephalogram can be used in the detection of the electrical 

activity of the brain.  

In contrast, it could be further argued that a degree of reaction to an external context can 

infer cognitive distraction. There are three main types of distractions Visual, Manual, and 

Cognitive. Visual distraction constitutes taking your eyes off the road.  Manual entails the 

driver taking hands off the wheel, and cognitive constitutes taking your mind off the driving 

course. Thus, the researchers have only covered visual and manual-related distractions. A 

notable instance of cognitive distraction, such as talking to the passenger, was studied.  

Almahasneh et al [293], examined cognitive distraction using a simulator collecting 

behavioural data via EEG. The experiment involves two simulated driving sessions 

undergone by forty-two participants. The results showed that driving performance decreased 

during the execution of distractor tasks.  

9.3.2 Lack of Vehicle Dynamics Detection Limitation 

One factor impacting ADAS systems' accuracy is vehicle dynamics, which may occur due 

to road models and road surfaces. Thus, in this research, vehicle dynamics have not been 

considered.  However, to investigate the impact of the vehicle dynamics model, 

implementation testbeds could be adopted. Two vehicle dynamics models that could be 

adopted in future work are namely Dymola and VeSyMA.  

9.3.3 Ineffectiveness of Vehicle Braking System Due to The Proximity of 

The Vehicle to Pedestrian's  

The Uber accident was due to radar detection and object at a distance, but a flaw is that the 

vehicle's braking system is not triggered promptly. A possible model to calibrate pedestrians' 
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proximity to the vehicle and the vehicle speed using frame rate can prevent accidents and 

enable the vehicle braking system to kick in early.  

9.3.4 Real-Life Deployment in Vehicle 

An algorithm needs to be thoroughly tested; otherwise, the ADAS cannot be deployed in 

the real world, as it can involve a threat to human life.  Moreover, proper testing could help 

mitigate this threat, and a Proof of Concept (PoC) would help mitigate deployment issues 

concerning computational resources.     

The mitigation technique that could be implemented to address the computational resource 

issues could be using embedded systems, for example, Raspberry Pi. The Raspberry Pi uses 

limited computational power, although it has a small CPU that is unsuitable for DL-based 

applications, crucial for safety-critical and timely decisions required with high accuracy.  

Nvidia has established a simulator equipped with GPUs to mitigate this deficiency by 

including more sensors-based deployment capabilities like LiDAR and RADAR. The Nvidia 

system can be easily deployed in different context scenarios.  In addition, the Virtual Reality 

concept can be utilised in the simulations in the form of a context-aware environment before 

the real-time deployment.   

Moreover, the Nvidia Drive Constellation can be made available to a Drive Sim for 

sensors, Constellation vehicle, a software stack of autonomous vehicles. The Nvidia Drive 

Constellation is well designed robust simulator for testing an autonomous vehicle before road 

deployment [294]. It is a cost-effective approach that could help to save resources in terms of 

cost and human lives. This test could not be conducted as secondary data, and the cost of 

acquiring massive resources was not possible. Moreover, such expensive systems are not 

publicly available to researchers and academia.   

9.3.5 Dataset Limitations  

The TeleFOT dataset is outdated. The quality of the camera used in the data collection is 

not advanced as what is available today. Essentially, this made it challenging to detect eye 

gaze estimation. Thus, the picture quality of the pixels in the dot per inch is not up to 5 

megapixels given the data's age. Enhancement with the data processing tool did not yield the 

best even after converting into a 4K resolution. However, this is solved using the 

segmentation technique.  Besides, some of the data of the participants are corrupted.  

Besides the AUCDDD, there is not vehicle data present in the dataset. Thus, only the 

driver distraction features were observed.  
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9.4 Alternative Data Source 

One of the research limitations of this research is the dataset's quality because the dataset 

is dated.  However, some of the data sources were contracted during this study. However, the 

data sources were out of the budget available, and some were undergoing examination. Thus, 

there was no access to researchers that were not part of the consortium of the study.  Future 

research students may consider this source for the data set.  Some data sources are UDRIVE, 

100-car study, Naturalistic teen driving study, SHRP2, Oxford Robot Car Data Set, 8-truck 

naturalistic driving study, AMUSE, UAH Drive set.  

9.5 Future Work  

Future work will involve deploying the algorithm in ADAS, and another possible future 

work is enhancing the DL algorithm using a combination of Fuzzy logic and DL techniques. 

Besides, the speed of the model in making decisions will be analyzed.  Fuzzy logic has 

limitations when it comes to incomplete data. Thus, a DL approach could be a better 

approach. There is possible integration of cognitive distraction and vehicle dynamics in 

future work.  

9.6 Potential Application Area 

9.6.1 Prevention Systems of Driver With Malicious Intent using Vehicle 

Take-Over  

Additionally, an incident that had provided a baseline for this project was the recent 

protest of "Black lives Matter," in which the New York Police Department (NYPD) 

deliberately hit protesters in New York City  [295]. This incident should have been avoided if 

some vehicle take-over methods can prevent such malicious drivers' intent amongst the 

NYPD police. The proposed algorithm in this thesis can detect aggressive driving when 

multi-class distraction is considered and promptly take over the driver's control. As well as a 

FERC model using in the detection of facial expressions could be integrated to increase the 

classification accuracy and prevent the increase in false positives alarms.   

9.6.2 Possible Real-Life Implementation and Deployment of ADAS 

Algorithm  

The developed architecture and model have been presented to Roll Royce and Airbus. The 

possible suggestion of deploying the model for monitoring of pilots in the cockpit. In 
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addition, we are presently implementing the model into the Nvidia AVX product for proof of 

concept. Evaluation of the accuracy and validation, confidence level to the accuracy of result 

using Bayesian deep learning can be adopted in the future. Future work may entail integrating 

Federated Learning, which can be integrated with Reinforcement learning to ensure the 

model learning in real-time with little data. The semi-autonomous vehicle can continue to 

improve or fine-tunes even when the vehicle is parked and can transition to fully autonomous 

with time. This implies that the vehicle will be generating data on the fly, which improves the 

reaction. The use of edge computing rather than sending data to the cloud is also the best, 

with data being pruned and weights being normalised to increase speed, accuracy(reduced 

loss function and noise removal) and reduce complexity.  

9.6.3 Hybrid Techniques Fuzzy- DL Technique 

The proposed model to measure the degree of driver distraction in semi-autonomous 

vehicles to aid transitioning of control to the autonomous vehicle has been done in this work. 

Furthermore, the proposal of an enhanced ADAS safety of vehicle drivers using Fuzzy logic 

rule-based multi-class drivers' distraction for classifying driver's distraction into severity 

levels from safe, careless, and dangerous driving when a degree of distraction is reached has 

been developed. However, having a hybrid system that combines a neuro-fuzzy 

convolutional-based approach would be a better approach. The result shows instances of 

correlation that drivers' distraction transitions from being careless to dangerous driving in a 

multi-class distraction context.  

9.7 Conclusion 

ADAS has been a critical component in vehicles and vital to the safety of vehicle drivers 

and public road transportation systems. This first part of the proposed thesis presents a DL-

based technique that classifies drivers' distraction behaviour using three context-aware 

parameters: speed, manoeuvre, and event type—using a video coding taxonomy, studying 

drivers' distractions based on events information from Regions of Interest (RoI), such as hand 

gestures, facial orientation, and eye gaze estimation. Furthermore, a novel probabilistic 

(dynamic Bayesian network) model based on the Long short-term memory (LSTM) network 

is developed for classifying driver's distraction severity. This thesis also proposes using 

frame-based context data from the multi-view TeleFOT naturalistic driving study (NDS) data 

monitoring to classify the severity of driver distractions. The proposed methodology entails 
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recurrent deep neural network layers trained to predict driver distraction severity from time-

series data. 

 It is well established that the detection and classification of driver distractions are crucial 

in preventing road accidents. These distractions impact both driver behaviour and vehicle 

dynamics. Knowing the degree of driver distraction can aid in accident prevention 

techniques, including transitioning control to a semi-autonomous vehicle level when a high 

distraction severity level is reached. Thus, ADAS enhancement is critical in-vehicle drivers' 

and other road users' safety. In the second part of the thesis, a novel methodology is 

introduced, using an expert knowledge rule system to predict the severity of distraction in a 

contiguous set of video frames using the Naturalistic AUCDDD. A multi-class distraction 

system comprises the face orientation, drivers' activities, hands, and previous driver 

distraction. A severity classification model is developed as a discrete dynamic Bayesian. 

Furthermore, a Mamdani-based fuzzy system was implemented to detect multi-class 

distractions into a severity level of safe, careless, or dangerous driving. Thus, if a high level 

of severity is reached, the semi-autonomous vehicle will take control. The result further 

shows that some driver's distractions may quickly transition from careless to dangerous 

driving in a multi-class distraction context.  

Similarly, risk mitigation techniques are crucial to preventing driving behaviour-related 

accidents; the third part of the thesis provides a novel Multi-Class Driver Distraction Risk 

Assessment model. MDDRA considers vehicle, driver, and environmental data during a 

journey to categorize drivers into a risk matrix such as safe, careless, and dangerous. The 

model offers flexibility to adjust parameters and weights to consider each event into a 

specific severity level. Real-world data was collected using the Field Operation Test 

(TeleFOT), which consisted of drivers using the same routes in the East Midlands, U.K. The 

results conclude that it is possible to reduce road accidents caused by driver's distractions. 

Also, the correlation of driver's distraction (In-vehicle, vehicle, and environment distractions) 

is tested on severity classification against continuous driver's distraction severity score. The 

applied ML techniques classify and predict driver's distraction according to severity levels to 

aid transitioning from driver to vehicle.  The algorithm that gave the best performance is 

Ensemble Bagged Trees which observed an accuracy of 96.2%. 

The thesis's final chapter provides ADAS, a critical component in semi-autonomous 

vehicles and vital to vehicle drivers and public road transportation systems. In the last 

chapter, the present is a hybrid DL technique that detects and classifies drivers' distractions 

using a multi-class Context-Aware drivers' distraction (event types-hand state, face 
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orientation, eye glances) in combination with several context-awareness parameters: speed, 

weather, manoeuvre, surroundings, GPS position, accelerometer, and road type.  

Furthermore, a novel probabilistic DBN model based on the FRCNN and LSTM network is 

developed for detection and classifying driver's distraction into severity levels. The thesis 

presents frame-based context data from the multi-view TeleFOT NDS data monitoring to 

classify the severity of driver distractions. Our proposed methodology entails DL-CNN 

trained to detect the driver's distraction, recurrent neural network layers LSTM trained to 

predict driver distraction severity from time-series data, and a probabilistic DBN that 

calculates severity from probability with changing times and frames.  This research entails 

multi-class distractions that, when combined with context-aware, leads to a severity level that 

can be further classified into safe, careless, or dangerous driving. 

Furthermore, an HMM is used in the take-over of transitioning from driver to semi-

autonomous vehicle. The model is called the Hidden Markov Driver Severity Model 

(HMDDSM). Validation of these results was performed using a k-folds validation method 

applied to an unseen driver dataset.  
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APPENDIX  

 

Appendix 1: Detect and Track Faces 

%% detectAndTrackFaces 

% Automatically detects and tracks multiple faces in a webcam-acquired 

% video stream.  

  

  

%% Instantiate video device, face detector, and KLT object tracker 

%vidObj = webcam; 

vidObj= VideoReader('C:\Users\bami\Documents\MATLAB\Dataset\2\28205-

28467.avi'); 

faceDetector = vision.CascadeObjectDetector('EyePairBig'); % Finds faces by default 

%eyeDetector = vision.CascadeObjectDetector; % Finds faces by default 

tracker = MultiObjectTrackerKLT; 

  

%% Get a frame for frame-size information 

frame = read(vidObj,1); 

frameSize = size(frame); 

  

%% Create a video player instance 

videoPlayer  = vision.VideoPlayer('Position',[240 200 fliplr(frameSize(1:2)+30)]); 

  

%% Iterate until we have successfully detected a face 

bboxes = []; 

%bbox1=[]; 

while isempty(bboxes)&& hasFrame(vidObj) 

    framergb = readFrame(vidObj); 

    frame = rgb2gray(framergb); 

    bboxes = faceDetector.step(frame); 

    %bbox1 = eyeDetector.step(frame); 

end 
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tracker.addDetections(frame, bboxes); 

%tracker.addDetections(frame, bbox1); 

  

%% And loop until the player is closed 

frameNumber = 0; 

  

disp('Press Ctrl-C to exit...'); 

while hasFrame(vidObj) 

     

    framergb = readFrame(vidObj); 

    frame = rgb2gray(framergb); 

     

    if mod(frameNumber, 10) == 0 

        % (Re)detect faces. 

        % 

        % NOTE: face detection is more expensive than imresize; we can 

        % speed up the implementation by reacquiring faces using a 

        % downsampled frame: 

        % bboxes = faceDetector.step(frame); 

        bboxes = 2 * faceDetector.step(imresize(frame, 0.5)); 

        if ~isempty(bboxes) 

            tracker.addDetections(frame, bboxes); 

            %tracker1.addDetections(frame, bbox1); 

        end 

    else 

        % Track faces 

        tracker.track(frame); 

        

    end 

     

    % Display bounding boxes and tracked points. 

    displayFrame = insertObjectAnnotation(framergb, 'rectangle',... 

        tracker.Bboxes, tracker.BoxIds); 

    displayFrame = insertMarker(displayFrame, tracker.Points); 
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    videoPlayer.step(displayFrame); 

  

    frameNumber = frameNumber + 1; 

end 

  

%% Clean up 

release(videoPlayer); 

 

 

Appendix 2: Deep Segmentation 

%% CNN  

resnet18(); 

%% Load Pre-trained Data 

pretrainedURL = 

'https://www.mathworks.com/supportfiles/vision/data/deeplabv3plusResnet18CamVid.mat'; 

pretrainedFolder = fullfile(tempdir,'pretrainedNetwork'); 

pretrainedNetwork = fullfile(pretrainedFolder,'deeplabv3plusResnet18CamVid.mat');  

if ~exist(pretrainedNetwork,'file') 

    mkdir(pretrainedFolder); 

    disp('Downloading pretrained network (58 MB)...'); 

    websave(pretrainedNetwork,pretrainedURL); 

end 

%%  

imageURL = 

'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip'; 

labelURL = 

'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip'; 

  

outputFolder = fullfile(tempdir,'CamVid');  

labelsZip = fullfile(outputFolder,'labels.zip'); 

imagesZip = fullfile(outputFolder,'images.zip'); 

  

if ~exist(labelsZip, 'file') || ~exist(imagesZip,'file')    
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    mkdir(outputFolder) 

        

    disp('Downloading 16 MB CamVid dataset labels...');  

    websave(labelsZip, labelURL); 

    unzip(labelsZip, fullfile(outputFolder,'labels')); 

     

    disp('Downloading 557 MB CamVid dataset images...');   

    websave(imagesZip, imageURL);        

    unzip(imagesZip, fullfile(outputFolder,'images'));     

end 

%% 

imgDir = fullfile(outputFolder,'images','701_StillsRaw_full'); 

imds = imageDatastore(imgDir); 

%% 

I = readimage(imds,559); 

I = histeq(I); 

imshow(I) 

%% 

    classes = [ 

        "Sky" 

    "Building" 

    "Pole" 

    "Road" 

    "Pavement" 

    "Tree" 

    "SignSymbol" 

    "Fence" 

    "Car" 

    "Pedestrian" 

    "Bicyclist" 

    ]; 

%% 

labelIDs = camvidPixelLabelIDs(); 

labelDir = fullfile(outputFolder,'labels'); 
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pxds = pixelLabelDatastore(labelDir,classes,labelIDs); 

%% 

C = readimage(pxds,559); 

cmap = camvidColorMap; 

B = labeloverlay(I,C,'ColorMap',cmap); 

imshow(B) 

pixelLabelColorbar(cmap,classes); 

%% 

tbl = countEachLabel(pxds); 

frequency = tbl.PixelCount/sum(tbl.PixelCount);bar(1:numel(classes),frequency) 

xticks(1:numel(classes))  

xticklabels(tbl.Name) 

xtickangle(45) 

ylabel('Frequency'); 

%% 

[imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] = 

partitionCamVidData(imds,pxds); 

numTrainingImages = numel(imdsTrain.Files); 

numValImages = numel(imdsVal.Files); 

numTestingImages = numel(imdsTest.Files); 

% Specify the network image size. This is typically the same as the traing image sizes. 

imageSize = [720 960 3]; 

  

% Specify the number of classes. 

numClasses = numel(classes); 

  

% Create DeepLab v3+. 

lgraph = deeplabv3plusLayers(imageSize, numClasses, "resnet18"); 

%% 

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount; 

classWeights = median(imageFreq) ./ imageFreq; 

pxLayer = 

pixelClassificationLayer('Name','labels','Classes',tbl.Name,'ClassWeights',classWeights); 

lgraph = replaceLayer(lgraph,"classification",pxLayer); 
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%%% Define validation data. 

pximdsVal = pixelLabelImageDatastore(imdsVal,pxdsVal); 

  

% Define training options.  

options = trainingOptions('sgdm', ... 

    'LearnRateSchedule','piecewise',... 

    'LearnRateDropPeriod',10,... 

    'LearnRateDropFactor',0.3,... 

    'Momentum',0.9, ... 

    'InitialLearnRate',1e-3, ... 

    'L2Regularization',0.005, ... 

    'ValidationData',pximdsVal,... 

    'MaxEpochs',30, ...   

    'MiniBatchSize',8, ... 

    'Shuffle','every-epoch', ... 

    'CheckpointPath', tempdir, ... 

    'VerboseFrequency',2,... 

    'Plots','training-progress',... 

    'ValidationPatience', 4); 

%% 

augmenter = imageDataAugmenter('RandXReflection',true,... 

    'RandXTranslation',[-10 10],'RandYTranslation',[-10 10]); 

pximds = pixelLabelImageDatastore(imdsTrain,pxdsTrain, ... 

    'DataAugmentation',augmenter); 

  

doTraining = true; 

if doTraining     

    [net, info] = trainNetwork(pximds,lgraph,options); 

else 

    data = load(pretrainedNetwork);  

    net = data.net; 

end 
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%% 

I = readimage(imdsTest,35); 

C = semanticseg(I, net); 

B = labeloverlay(I,C,'Colormap',cmap,'Transparency',0.4); 

imshow(B) 

pixelLabelColorbar(cmap, classes); 

expectedResult = readimage(pxdsTest,35); 

actual = uint8(C); 

expected = uint8(expectedResult); 

imshowpair(actual, expected); 

%% 

iou = jaccard(C,expectedResult); 

table(classes,iou); 

%% 

pxdsResults = semanticseg(imdsTest,net, ... 

    'MiniBatchSize',4, ... 

    'WriteLocation',tempdir, ... 

    'Verbose',false); 

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest,'Verbose',false); 

metrics.DataSetMetrics 

metrics.ClassMetrics 

 

 

Appendix 3: Hidden Markov driver severity model 

%% Hidden Markov driver severity model for vehichle transition 

% transition probabilities between low severity states and high severity states 

% emmission probability on symbols {k1,k2} from hugh to high, high to low  

% based on observations t={t1,t2,t3} 

  

trans = [0.95,0.05;    % Based on TeleFOT Data for Driver 001 

          0.10,0.90]; 

 emis = [1/6 1/6 1/6 1/6 1/6 1/6; 

    1/10 1/10 1/10 1/10 1/10 1/2]; 

[seq,states] = hmmgenerate(100,trans,emis); 
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[estTR,estE] = hmmtrain(seq,trans,emis); 

[estimateTR,estimateE] = hmmestimate(seq, states); 

estimatesStates = ... 

   hmmviterbi(seq,estimateTR,estimateE,... 

              'Statenames',{'Low';'High'}); 

 

 

Appendix 4: Noise Removal 

function Ioutput=Removenoise(I) 

PSF = fspecial('gaussian',3,5); 

%PSF = fspecial('disk',2); % optimise 

%PSF = fspecial('prewitt'); 

%PSF = fspecial('sobel'); 

%PSF= fspecial('motion',4,6); 

%PSF= fspecial('laplacian',0.65); 

INITPSF=ones(size(PSF)); 

%output=deconvblind(I, INITPSF, 8); 

Ioutput=deconvlucy(I, INITPSF, 8); 

 

 

 

Appendix 5: CNN LSTM 

%% 

netCNN=googlenet; 

cnnLayers=layerGraph(netCNN); 

%% 

inputSize = netCNN.Layers(1).InputSize(1:2); 

averageImage = netCNN.Layers(1).Mean; 

  

inputLayer = sequenceInputLayer([inputSize 3], ... 

    'Normalization','zerocenter', ... 

    'Mean',averageImage, ... 

    'Name','input'); 

%% 
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layerNames = ["data" "pool5-drop_7x7_s1" "loss3-classifier" "prob" "output"]; 

cnnLayers = removeLayers(cnnLayers,layerNames); 

  

%% 

layers = [ 

    inputLayer 

    sequenceFoldingLayer('Name','fold')]; 

  

lgraph = addLayers(cnnLayers,layers); 

lgraph = connectLayers(lgraph,"fold/out","conv1-7x7_s2"); 

%% 

lstmLayers = netLSTM.Layers; 

lstmLayers(1) = []; 

%% 

layers = [ 

    sequenceUnfoldingLayer('Name','unfold') 

    flattenLayer('Name','flatten') 

    lstmLayers]; 

  

lgraph = addLayers(lgraph,layers); 

lgraph = connectLayers(lgraph,"pool5-7x7_s1","unfold/in"); 

%% 

lgraph = connectLayers(lgraph,"fold/miniBatchSize","unfold/miniBatchSize"); 

%% 

analyzeNetwork(lgraph); 

net = assembleNetwork(lgraph); 

 

 

Appendix 6: Image enhancement 

% The base settings 

function BI2 = image_enhancement(A) 

  

Lab=rgb2lab(A); 

Linv=imcomplement(Lab(:,:,1) ./100); 
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Lenv=imcomplement(imreducehaze(imadjust(Linv),'Method','approxdcp','ContrastEnhanc

ement','boost', 'AtmosphericLight',0.95,'BoostAmount',0.9)); 

%Lenv=imcomplement(imreducehaze(Linv,'Method','approxdcp','ContrastEnhancement','

none', 'AtmosphericLight', 0.95)); 

Labenv(:,:,3)=Lab(:,:,3) * 4.5; 

Labenv(:,:,2)=Lab(:,:,2) * 3.5; 

Labenv(:,:,1)=adapthisteq(Lenv) .* 99; 

C=lab2rgb(Labenv); 

BI2=imguidedfilter(C,A); 

%BI=trim_image3(BI2);  

  

 

Appendix 7: Split Frame  

function out = SplitFrame(X) 

  

%LowerHalf = [0.5 359.5 1275 361]; 

LowerHalf1=[0.5 359.5 633 361]; 

%UpperHalf = [5.16101694915278 0.5 1275.33898305085 360.762711864407]; 

out=imcrop (X, LowerHalf1); 

  

%UpperHalf = [5.16101694915278 0.5 1275.33898305085 360.762711864407]; 

%UpperHalf1=[0.5 0.5 633 361]; 

%UpperHalf2= [647.5 0.5 633 361]; 

%LowerHalf = [0.5 359.5 1275 361]; 

%LowerHalf1=[0.5 359.5 633 361]; 

%LowerHalf2= [647.5 359.5 633 361]; 

 

 

 

Appendix 8:Bayesian Series Model 

function [PosteriorMdl,X] = bayestimeseriesmodel(x,y) 

%Main contribution: predictor using MDDRA severity score(IEEE Access) 

% x, y time series data 

numseries = 3; % enter number of series here 
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numlags = 4;  % time lag 

PriorMdl = bayesvarm(numseries,numlags); 

%PriorMdl = bayesvarm(numseries,numlags,'ModelType','conjugate') 

[PosteriorMdl,Summary] = estimate(PriorMdl,x,y); 

% Access the 95% equitailed credible interval of the regression coefficient 

X=Summary.CI95(:,:); 

  

%% yF = forecast(PosteriorMdl,XF); to be used for driver severity score forecast 

 

 

 

 

Appendix 9: fuzzy logic dbn 

 

%% 

%%filename = ('IntelligentEnvironment.xls'); 

%%testData = xlsread(filename) 

filename = ('newdatasheet.xls'); 

testData = xlsread(filename); 

 

% Declare a new FIS 

a = newfis('AlexSystem'); 

 

% Input variable: Time of Year (Days) 

a = addvar(a, 'input', 'Face_Orientation', [0 1]); 

a = addmf(a, 'input', 1, 'Forward', 'trimf', [-0.9 -0.1 0.4199 0.9]); 

a = addmf(a, 'input', 1, 'Sideways', 'trimf', [0.0973 0.6136 1.1 1.9]); 

 

 

 

% Input variable: Time of Day (Mins) 

a = addvar(a, 'input', 'Drivers_Distractions', [0 1]); 

a = addmf(a, 'input', 2, 'Not Texting', 'trapmf', [-0.9 -0.1 0.4991 0.9]); 

a = addmf(a, 'input', 2, 'Texting', 'trapmf', [0.55 0.554 1.05 1.45]); 
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% Input variable: Outdoor Temp (C) 

a = addvar(a, 'input', 'Hands', [0 1]); 

a = addmf(a, 'input', 3, 'two_hands', 'trimf', [-0.9 -0.1 0.4991 0.9]); 

a = addmf(a, 'input', 3, 'One Hand', 'trimf', [0.102 0.5273 1.1 1.9]); 

 

% Input variable: Drivers Distractions Temp 

a = addvar(a, 'input', 'Previous Driver Distraction', [0 1]); 

a = addmf(a, 'input', 4, 'Safe_Driving', 'trapmf', [-0.45 -0.05 0.3424 0.45]); 

a = addmf(a, 'input', 4, 'Careless_Driving', 'trapmf', [0.05 0.369 0.645 0.95]); 

a = addmf(a, 'input', 4, 'Dangerous_Driving', 'trapmf', [0.518 0.664 1.041 1.42]); 

 

 

 

% Output variable: Heating (%) 

a=addvar(a,'output','Driving_Risk_Severity (%)',[0 1]); 

 

a = addmf(a, 'output', 1, 'Safe_Driving', 'trimf', [-0.416666666666667 0 

0.416666666666667]); 

a = addmf(a,'output',1,'Careless_Driving','trimf',[0.0780423280423282 

0.494708994708995 0.911375661375662]); 

a = addmf(a,'output',1,'Dangerous_Driving','trimf',[0.583333333333333 1 

1.41666666666667]); 

 

% Create rules for the FIS, the last value is for AND or OR 

 

 

rule1 = [1 1 1 1 1 1 1]; 

rule2 = [1 1 2 1 2 0.35 1]; 

rule3 = [1 2 1 2 3 0.44 1]; 

rule4 = [1 2 2 3 3 1 1]; 

rule5 = [1 1 1 3 2 0.85 1]; 

rule6 = [1 1 2 2 1 0.6 1]; 
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rule7 = [2 1 1 1 1 0.35 1]; 

rule8 = [2 1 2 1 2 0.60 1]; 

rule9 = [2 2 1 2 3 0.70 1]; 

rule10 = [2 2 2 3 3 1 1]; 

rule11 = [2 2 1 3 2 0.85 1]; 

rule12 = [2 2 1 2 1 0.60 1]; %Mrn & C = High 

rule13 = [1 2 1 1 2 0.35 1]; 

rule14 = [1 2 2 1 2 0.60 1]; 

rule15 = [1 1 1 1 2 0.20 1]; 

rule16 = [1 2 2 2 3 0.85 1]; 

 

 

% Pass the rules to an rule59 = [3 0 5 1 1 1];array 

%ruleList = [rule1;rule2;rule3;rule4;rule5;rulrule59 = [3 0 5 1 1 1];e6;rule7;rule8;rule9]; 

ruleList = [rule1; rule2; rule3; rule4;... 

rule5; rule6; rule7; rule8; rule9; rule10;... 

rule11; rule12; rule13; rule14; rule15; rule16;]; 

 

% Add the rules to the FIS 

a = addrule(a,ruleList); 

 

% Print the rules to the workspace 

rules = showrule(a) 

 

% Set the defuzzification method 

%a.defuzzMethod = 'centroid'; 

%a.defuzzMethod = 'bisector'; 

%a.defuzzMethod = 'mom'; 

%a.defuzzMethod = 'som'; 

a.defuzzMethod = 'lom'; 

 

for i=1:size(testData,1) 

eval = evalfis([testData(i, 1), testData(i, 2), testData(i, 3) , testData(i, 4) ], a); 
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fprintf('%d) In(1): %.2f, In(2) %.2f, In(3) %.2f, In(4) : %.2f => Out: %.2f 

\n\n',i,testData(i, 1),testData(i, 2),testData(i, 3),testData(i, 4), eval); 

xlswrite('newdatasheet.xls', eval, 1, sprintf('F%f',i+1)); 

end 

 

ruleview(a) 

 

figure(1) 

subplot(3,2,1), plotmf(a, 'input', 1) 

subplot(3,2,2), plotmf(a, 'input', 2) 

subplot(3,2,3), plotmf(a, 'input', 3) 

subplot(3,2,4), plotmf(a, 'input', 4) 

subplot(3,2,5), plotmf(a, 'output', 1) 

 

 

surfview(a) 

[System] 

Name='AlexSystem2NewTOOLBOXwtexting' 

Type='mamdani' 

Version=2.0 

NumInputs=4 

NumOutputs=1 

NumRules=12 

AndMethod='min' 

OrMethod='max' 

ImpMethod='min' 

AggMethod='max' 

DefuzzMethod='centroid' 

 

[Input1] 

Name='Face_Orientation' 

Range=[0 1] 

NumMFs=2 

MF1='Forward':'trimf',[-1 0 1] 
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MF2='Sideways':'trimf',[-0.00269541778975735 0.997304582210243 1.99730458221024] 

 

[Input2] 

Name='Drivers_Distractions' 

Range=[0 1] 

NumMFs=2 

MF1='not_talking_with_passanger':'trapmf',[-0.9 -0.1 0.499119718309859 0.9] 

MF2='texting':'trapmf',[0.55 0.554 1.05 1.45] 

 

[Input3] 

Name='Hands' 

Range=[0 1] 

NumMFs=2 

MF1='Two_Hands':'trimf',[-1 0 1] 

MF2='One_Hand':'trimf',[0.00179694519317164 1.00179694519317 2.00179694519317] 

 

[Input4] 

Name='Previous_Risk_Severity' 

Range=[0 1] 

NumMFs=3 

MF1='Safe_Driving':'trapmf',[-0.45 -0.05 0.342429577464789 0.45] 

MF2='Careless_Driving':'trapmf',[0.05 0.369 0.645 0.95] 

MF3='Dangerous_Driving':'trapmf',[0.518 0.664 1.04137323943662 1.42] 

 

[Output1] 

Name='Driving_Risk_Severity' 

Range=[0 1] 

NumMFs=3 

MF1='Safe_Driving':'trimf',[-0.416666666666667 0 0.416666666666667] 

MF2='Careless_Driving':'trimf',[0.0780423280423282 0.494708994708995 

0.911375661375662] 

MF3='Dangerous_Driving':'trimf',[0.583333333333333 1 1.41666666666667] 

 

[Rules] 



  

 254  De Montfort University 

1 1 1 1, 1 (1) : 1 

1 1 2 1, 2 (1) : 1 

1 2 1 2, 3 (1) : 1 

1 2 2 3, 3 (1) : 1 

1 1 1 3, 2 (1) : 1 

1 1 2 2, 1 (1) : 1 

2 1 1 1, 1 (1) : 1 

2 1 2 1, 2 (1) : 1 

2 2 1 2, 3 (1) : 1 

2 2 2 3, 3 (1) : 1 

2 2 1 3, 2 (1) : 1 

2 2 1 2, 1 (1) : 1 

 

 

 

 

 

 

 

 


