7 research outputs found

    Multiple Retrieval Models and Regression Models for Prior Art Search

    Get PDF
    This paper presents the system called PATATRAS (PATent and Article Tracking, Retrieval and AnalysiS) realized for the IP track of CLEF 2009. Our approach presents three main characteristics: 1. The usage of multiple retrieval models (KL, Okapi) and term index definitions (lemma, phrase, concept) for the three languages considered in the present track (English, French, German) producing ten different sets of ranked results. 2. The merging of the different results based on multiple regression models using an additional validation set created from the patent collection. 3. The exploitation of patent metadata and of the citation structures for creating restricted initial working sets of patents and for producing a final re-ranking regression model. As we exploit specific metadata of the patent documents and the citation relations only at the creation of initial working sets and during the final post ranking step, our architecture remains generic and easy to extend

    A standard TMF modeling for Arabic patents

    Get PDF
    International audiencePatent applications are similarly structured worldwide. They consist of a cover page, a speci cation, claims, drawings (if necessary) and an abstract. In addition to their content (text, numbers and citations), all patent publications contain a relatively rich set of well-de ned metadata. In the Arabic world, there is no North African or Arabian Intellectual Property O ce and therefore no uniform collections of Arabic patents. In Tunisia, for example, there is no digital collection of patent documents and therefore no XML collections. In this context, we aim to create a TMF standardized model for scienti c patents and develop a generator of XML patent collections having a uniform and easy to use structure. To test our approach, we will use a collection of XML scienti c patent documents in three languages (Arabic, French, and English)

    GRISP: A Massive Multilingual Terminological Database for Scientific and Technical Domains

    Get PDF
    International audienceThe development of a multilingual terminology is a very long and costly process. We present the creation of a multilingual terminological database called GRISP covering multiple technical and scientific fields from various open resources. A crucial aspect is the merging of the different resources which is based in our proposal on the definition of a sound conceptual model, different domain mapping and the use of structural constraints and machine learning techniques for controlling the fusion process. The result is a massive terminological database of several millions terms, concepts, semantic relations and definitions. This resource has allowed us to improve significantly the mean average precision of an information retrieval system applied to a large collection of multilingual and multidomain patent documents

    RECUPERACIÓN DE PASAJES EN TEXTOS LEGALES Y PATENTES MULTILINGÜES

    Full text link
    En este trabajo se expone: la problemática de la recuperación de pasajes, el dominio de los textos legales y las patentes y su característica de diversidad idiomática. Se presentan técnicas para solucionar problemas de recuperación de información y se analizan dos participaciones en competencias con prepuestas de enfoques novedosos.Correa García, S. (2010). RECUPERACIÓN DE PASAJES EN TEXTOS LEGALES Y PATENTES MULTILINGÜES. http://hdl.handle.net/10251/14084Archivo delegad

    On Term Selection Techniques for Patent Prior Art Search

    No full text
    A patent is a set of exclusive rights granted to an inventor to protect his invention for a limited period of time. Patent prior art search involves finding previously granted patents, scientific articles, product descriptions, or any other published work that may be relevant to a new patent application. Many well-known information retrieval (IR) techniques (e.g., typical query expansion methods), which are proven effective for ad hoc search, are unsuccessful for patent prior art search. In this thesis, we mainly investigate the reasons that generic IR techniques are not effective for prior art search on the CLEF-IP test collection. First, we analyse the errors caused due to data curation and experimental settings like applying International Patent Classification codes assigned to the patent topics to filter the search results. Then, we investigate the influence of term selection on retrieval performance on the CLEF-IP prior art test collection, starting with the description section of the reference patent and using language models (LM) and BM25 scoring functions. We find that an oracular relevance feedback system, which extracts terms from the judged relevant documents far outperforms the baseline (i.e., 0.11 vs. 0.48) and performs twice as well on mean average precision (MAP) as the best participant in CLEF-IP 2010 (i.e., 0.22 vs. 0.48). We find a very clear term selection value threshold for use when choosing terms. We also notice that most of the useful feedback terms are actually present in the original query and hypothesise that the baseline system can be substantially improved by removing negative query terms. We try four simple automated approaches to identify negative terms for query reduction but we are unable to improve on the baseline performance with any of them. However, we show that a simple, minimal feedback interactive approach, where terms are selected from only the first retrieved relevant document outperforms the best result from CLEF-IP 2010, suggesting the promise of interactive methods for term selection in patent prior art search

    Automated Patent Categorization and Guided Patent Search using IPC as Inspired by MeSH and PubMed

    Get PDF
    The patent domain is a very important source of scientific information that is currently not used to its full potential. Searching for relevant patents is a complex task because the number of existing patents is very high and grows quickly, patent text is extremely complicated, and standard vocabulary is not used consistently or doesn’t even exist. As a consequence, pure keyword searches often fail to return satisfying results in the patent domain. Major companies employ patent professionals who are able to search patents effectively, but even they have to invest a lot of time and effort into their search. Academic scientists on the other hand do not have access to such resources and therefore often do not search patents at all, but they risk missing up-to-date information that will not be published in scientific publications until much later, if it is published at all. Document search on PubMed, the pre-eminent database for biomedical literature, relies on the annotation of its documents with relevant terms from the Medical Subject Headings ontology (MeSH) for improving recall through query expansion. Similarly, professional patent searches expand beyond keywords by including class codes from various patent classification systems. However, classification-based searches can only be performed effectively if the user has very detailed knowledge of the system, which is usually not the case for academic scientists. Consequently, we investigated methods to automatically identify relevant classes that can then be suggested to the user to expand their query. Since every patent is assigned at least one class code, it should be possible for these assignments to be used in a similar way as the MeSH annotations in PubMed. In order to develop a system for this task, it is necessary to have a good understanding of the properties of both classification systems. In order to gain such knowledge, we perform an in-depth comparative analysis of MeSH and the main patent classification system, the International Patent Classification (IPC). We investigate the hierarchical structures as well as the properties of the terms/classes respectively, and we compare the assignment of IPC codes to patents with the annotation of PubMed documents with MeSH terms. Our analysis shows that the hierarchies are structurally similar, but terms and annotations differ significantly. The most important differences concern the considerably higher complexity of the IPC class definitions compared to MeSH terms and the far lower number of class assignments to the average patent compared to the number of MeSH terms assigned to PubMed documents. As a result of these differences, problems are caused both for unexperienced patent searchers and professionals. On the one hand, the complex term system makes it very difficult for members of the former group to find any IPC classes that are relevant for their search task. On the other hand, the low number of IPC classes per patent points to incomplete class assignments by the patent office, therefore limiting the recall of the classification-based searches that are frequently performed by the latter group. We approach these problems from two directions: First, by automatically assigning additional patent classes to make up for the missing assignments, and second, by automatically retrieving relevant keywords and classes that are proposed to the user so they can expand their initial search. For the automated assignment of additional patent classes, we adapt an approach to the patent domain that was successfully used for the assignment of MeSH terms to PubMed abstracts. Each document is assigned a set of IPC classes by a large set of binary Maximum-Entropy classifiers. Our evaluation shows good performance by individual classifiers (precision/recall between 0:84 and 0:90), making the retrieval of additional relevant documents for specific IPC classes feasible. The assignment of additional classes to specific documents is more problematic, since the precision of our classifiers is not high enough to avoid false positives. However, we propose filtering methods that can help solve this problem. For the guided patent search, we demonstrate various methods to expand a user’s initial query. Our methods use both keywords and class codes that the user enters to retrieve additional relevant keywords and classes that are then suggested to the user. These additional query components are extracted from different sources such as patent text, IPC definitions, external vocabularies and co-occurrence data. The suggested expansions can help unexperienced users refine their queries with relevant IPC classes, and professionals can compose their complete query faster and more easily. We also present GoPatents, a patent retrieval prototype that incorporates some of our proposals and makes faceted browsing of a patent corpus possible
    corecore