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Abstract

The patent domain is a very important source of scientific information that is currently not used to its

full potential. Searching for relevant patents is a complex task because the number of existing patents

is very high and grows quickly, patent text is extremely complicated, and standard vocabulary is not

used consistently or doesn’t even exist. As a consequence, pure keyword searches often fail to return

satisfying results in the patent domain. Major companies employ patent professionals who are able to

search patents effectively, but even they have to invest a lot of time and effort into their search. Academic

scientists on the other hand do not have access to such resources and therefore often do not search patents

at all, but they risk missing up-to-date information that will not be published in scientific publications

until much later, if it is published at all.

Document search on PubMed, the pre-eminent database for biomedical literature, relies on the an-

notation of its documents with relevant terms from the Medical Subject Headings ontology (MeSH) for

improving recall through query expansion. Similarly, professional patent searches expand beyond key-

words by including class codes from various patent classification systems. However, classification-based

searches can only be performed effectively if the user has very detailed knowledge of the system, which

is usually not the case for academic scientists. Consequently, we investigated methods to automatically

identify relevant classes that can then be suggested to the user to expand their query. Since every patent

is assigned at least one class code, it should be possible for these assignments to be used in a similar way

as the MeSH annotations in PubMed.

In order to develop a system for this task, it is necessary to have a good understanding of the properties

of both classification systems. In order to gain such knowledge, we perform an in-depth comparative

analysis of MeSH and the main patent classification system, the International Patent Classification (IPC).

We investigate the hierarchical structures as well as the properties of the terms/classes respectively, and

we compare the assignment of IPC codes to patents with the annotation of PubMed documents with

MeSH terms. Our analysis shows that the hierarchies are structurally similar, but terms and annotations

differ significantly. The most important differences concern the considerably higher complexity of the

IPC class definitions compared to MeSH terms and the far lower number of class assignments to the

average patent compared to the number of MeSH terms assigned to PubMed documents.

As a result of these differences, problems are caused both for unexperienced patent searchers and pro-

fessionals. On the one hand, the complex term system makes it very difficult for members of the former

group to find any IPC classes that are relevant for their search task. On the other hand, the low number of

IPC classes per patent points to incomplete class assignments by the patent office, therefore limiting the

recall of the classification-based searches that are frequently performed by the latter group. We approach

these problems from two directions: First, by automatically assigning additional patent classes to make

up for the missing assignments, and second, by automatically retrieving relevant keywords and classes

that are proposed to the user so they can expand their initial search.

For the automated assignment of additional patent classes, we adapt an approach to the patent domain

that was successfully used for the assignment of MeSH terms to PubMed abstracts. Each document is

assigned a set of IPC classes by a large set of binary Maximum-Entropy classifiers. Our evaluation shows

good performance by individual classifiers (precision/recall between 0.84 and 0.90), making the retrieval

of additional relevant documents for specific IPC classes feasible. The assignment of additional classes
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to specific documents is more problematic, since the precision of our classifiers is not high enough to

avoid false positives. However, we propose filtering methods that can help solve this problem.

For the guided patent search, we demonstrate various methods to expand a user’s initial query. Our

methods use both keywords and class codes that the user enters to retrieve additional relevant keywords

and classes that are then suggested to the user. These additional query components are extracted from

different sources such as patent text, IPC definitions, external vocabularies and co-occurrence data. The

suggested expansions can help unexperienced users refine their queries with relevant IPC classes, and

professionals can compose their complete query faster and more easily. We also present GoPatents, a

patent retrieval prototype that incorporates some of our proposals and makes faceted browsing of a patent

corpus possible.
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1 Introduction

As evidenced by a growing number of reports about various high-profile patent trials in recent years,

having the necessary information about all relevant competitor patents can be vital to a company’s

interests. At the same time, patents can also be a valuable source for academic research, since

current research results are often first published in a patent and only afterwards (or never) in a

journal. Experts have estimated that only 10-15% of the patent content is also described in other

publications, and that 80-90% of all scientific knowledge is contained in patents [1]. Despite that

potential, most academic researchers are to our knowledge not using patents, presumably due to

the high complexity of the domain.

As we will show in Section 2.1, this complexity is in part due to the high and fast-growing

number of existing patent documents (about 80 million [2]). Additionally, these documents are

not always available in English, which makes finding all relevant documents extremely difficult.

But even for the documents with English-language versions, there are some unique challenges that

separate the patent domain from most other document types. While it is not unusual to rely

mainly on keywords for searching most other document corpora, this approach does not return

satisfactory results for many patent search tasks. Not all information is contained in text, it is

often also necessary to consider the images in the patent, e.g., for chemical formulas. Section

2.3 describes some problems with the patent text itself: Many patents are very long, and so are

individual sentences of the patent. Different sections of the patent text are written in completely

different styles, patent authors don’t always use standard terminology (or it may not even exist),

and many patents are written in very unspecific language. The problem has been summarized

by the European Patent Office (EPO) in the following way, using the term “patentese” for the

unconventional language style that is typically only used in patents: “Newcomers to intellectual

property are often surprised or even shocked at the way words or phrases familiar in everyday

language are used very differently in the world of patents. Grammatical constructions that would

be unthinkable in everyday speech or writing are used routinely in patentese. Patentese has words

which do not even exist in ordinary languages. Furthermore patentese exists in every conceivable

natural language version” [3].

As a result of these problems, professional patent searches usually don’t rely exclusively on

keywords. Various metadata (e.g., the inventors or assignees of the patents) can be used to filter
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or expand the results of an initial search, and can therefore be considered valuable resources that

set patents apart from other document types. However, the most important way to improve pure

keyword searches is through the use of classification information. All patents are assigned classes

from expansive classification systems in order to categorize them according to the type of invention

they represent (cf. Section 2.4). This information can also be used to filter or expand search results,

but in order to make the most of these possibilities, the searcher must have detailed knowledge

about the classification system. Unfortunately, this is not the case for many academic researchers.

Even for professional patent searchers, the process of constructing and refining patent queries is

quite complicated and time-consuming.

Consequently, it is desirable to offer a) an easier option for scientists to formulate high-quality

patent queries and b) a system that assists patent professionals in completing their initial queries.

A system for this task would ideally be able to both complete the user’s initial keyword query and

propose relevant expansions based on classification information. In order to provide such assistance,

it is important to have a clear understanding of the properties of patent classification systems. We

therefore carry out an in-depth investigation of the most common patent classification system,

the International Patent Classification (IPC). We examine both its internal properties (namely its

classes and the hierarchic structure) and the way its classes are assigned to patent documents. As

a point of comparison, we perform the equivalent analyses on the controlled vocabulary “Medical

Subject Headings” (MeSH) that is used to annotate all document abstracts on the biomedical

literature database PubMed. As Section 2.5 will demonstrate, MeSH is already used to improve

search results on PubMed by automatically expanding user queries and offering additional search

functionality.

As a solution to problems we discovered through our analysis, we propose two approaches: a

system for the automated assignment of additional classes to patent documents and a guided patent

search system that assists the user by offering query expansion suggestions. Suggestions are given

in the form of both additional keywords and additional IPC classes, and they are retrieved from

patent texts, IPC class definitions and class co-occurrence data or using existing knowledge from

external sources.
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1.1 Thesis outline

Following this introduction, this thesis is organized as follows:

• Chapter 2 gives a more detailed overview of the patent domain and describes the problems

that are addressed by this thesis. These problems include the high number of patent doc-

uments, the special properties of the text that make keyword search problematic and the

complicated classification systems that are used to improve patent search. Additionally, we

give a short introduction to existing (non-patent) document search engines that are already

using classification systems to improve the search results. We conclude the chapter with an

overview of previously published work that is relevant to this thesis.

• Chapter 3 describes our comparison of two annotation/classification systems for different

document types: IPC classes assigned to patents and MeSH terms assigned to PubMed

documents. We compare the hierarchies as well as the terms of both systems, and we then

investigate differences in the way that documents are annotated. As a consequence of our

analysis, we identify potentially problematic aspects for patent search. After that, the two

following chapters propose solutions to these problems.

• In Chapter 4, we present our effort to assign additional classes to existing patents using a

large set of binary Maximum-Entropy classifiers. We describe our method in detail, and we

evaluate our results based on existing classification data. Positive and negative aspects of our

categorization results are identified, and we discuss ways to improve the results by filtering

them appropriately for different applications of our system.

• Chapter 5 describes different proposals for assisting both professional and unexperienced

patent searchers. We present methods to suggest additional keywords as well as classes based

on initial user queries. The possible sources of the suggestions include patent text, class

definitions, external knowledge sources and co-occurrence information. We also introduce

our prototype system GoPatents that incorporates some of our proposed methods.

• Chapter 6 describes the methods used in the three preceding chapters (i.e., for the comparison

MeSH-IPC, automated patent categorization and guided patent search) in more technical

detail.

11



• The thesis is concluded in Chapter 7 with summaries of the existing problems and our ap-

proaches to solving them.
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2 Background

Summary

The annual number of patent applications
has been rising for decades, reaching a new
record in 2011 with more than two million
applications worldwide. In total, the num-
ber of existing patent documents has sur-
passed 80 million, with almost 8 million
patents in force by 2011; all these num-
bers are expected to rise further.
In addition to the high number of doc-
uments, patents have some unique char-
acteristics that cause problems for patent
search. Patent text is often extremely
complicated, text styles differ between
sections and authors, and standard vocab-
ulary is avoided by some authors or may
not even exist yet. These problems ne-
cessitate the use of classification informa-
tion in addition to keywords. Many dif-
ferent classification systems can be used
and combined for this purpose, with most
systems being based on the International
Patent Classification.

Other document annotation systems have
been used to improve document search in
other domains. The controlled vocabulary
“Medical Subject Headings” serves this
purpose for multiple efforts to offer differ-
ent or better search functionality for the
biomedical literature database PubMed,
making it a logical point of comparison for
our goal of improving patent search with
the help of classification information.
Among the related work, efforts to au-
tomatically categorize patents have with
one exception not yet attempted to use
the complete hierarchy down to the sub-
group level. Patent retrieval systems often
include the option to use classification in-
formation for search, but in most cases it
is not implemented in a way to make its
use convenient for the searcher, and addi-
tional relevant classes or keywords are not
suggested.

Parts of this chapter were previously published in:

• Daniel Eisinger, Thomas Wächter, Markus Bundschus, Ulrich Wieneke, Michael
Schroeder. Analysis of MeSH and IPC as a Prerequisite for Guided Patent Search.
Bio-Ontologies 2012. http://bio-ontologies.knowledgeblog.org/346

• Daniel Eisinger, George Tsatsaronis, Markus Bundschus, Ulrich Wieneke, Michael
Schroeder. Automated Patent Categorization and Guided Patent Search using IPC
as Inspired by MeSH and PubMed. Journal of Biomedical Semantics 2013, 4:S1.
http://www.jbiomedsem.com/content/4/S1/S3
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As has been mentioned in Chapter 1, there are numerous specific complications for patent

search compared with other more conventional sources. This chapter will investigate these issues

in more detail. The first section gives information on the number of existing patent documents

and the growth of the domain, and the following sections examine the special properties of patent

text and patent classification systems. After presenting the basic ideas behind the use of document

annotations for search improvement, the chapter is concluded with a presentation of related work.

2.1 Patent statistics

The number of patent applications continues to rise, for the first time surpassing two million

worldwide in 2011 alone [4]. As Figure 1 shows, this number has grown each year since 1995, with

two notable exceptions in 2002 and 2009 due to economical crises. After growth had been slowing

down since 2005, the growth rate increased greatly after 2009, surpassing 7% in both 2010 and

2011. These growth rates represent the strongest two consecutive years since at least 1995, which

is especially remarkable considering the continued effects of the global financial crisis.

Figure 1: Number of patent applications worldwide 1995-2011 (adapted from [4]). With two
exceptions, the number of applications has grown each year.

Figure 2 shows the long-term trend for the five top patent offices according to their 2011 total

application numbers. It reveals that while extreme increases in China play a large role in the overall

increase, all other top offices except Japan have also been contributing. China surpassed the United

States in 2011, becoming the largest patent office in the world according to the number of received

applications. Japan on the other hand reached its peak around 2000 already and has since then

14



been surpassed by both the US and China. The European and Korean patent offices are far below

the top three, but have also for the most part shown moderate but continuous growth during the

last three decades.

Figure 2: Trend in patent applications for top five offices (adapted from [4]). Application numbers
have been growing extremely fast in China for the last decade, and all offices except Japan show
strong growth over the last two decades.

While the number of patent applications is a good indicator for trends in the patent world,

it is also important to look at the number of granted patents. As shown in Figure 3, the basic

trend in the number of granted patents is similar to the situation for applications shown in Figure

1. While the succession of weak and strong years isn’t completely identical, both data sets show

strong growth in 2010 and 2011 after a number of weaker years. In 2011, a new record was set

with almost one million grants.

There is no reliable data on the total number of existing patent documents, but it was estimated

to be about 50 million by 2006 already [1], and the European patent database Espacenet contained

almost 80 million documents as of late 2012 [2]. However, many of these documents correspond

to patents that expired (either due to the patent protection ending or the patent owner failing to

pay the renewal fees) or to applications that have been rejected or are still under consideration.

The number of patents that were in force worldwide in 2011 was estimated to be 7.88 million, up

from 6.88 million three years previously [4]. The ten offices with the largest number of patents

in force are presented in Figure 4 with the respective numbers of patents. The US are the clear

leader in this category with more than 2.1 million active patents, and Japan with more than 1.5

15



Figure 3: Number of patents granted worldwide 1995-2011 (adapted from [4]). With the exception
of the years 1997 and 2000, the number of patent grants has grown each year.

million is still far ahead of China despite its decline in applications over the last decade (cf. Figure

2). Figure 4 also ranks the major European countries according to their active patents, showing

Germany ahead of the United Kingdom and France as the top three. Note that the fact that a

patent is not in force does not have to mean that it is not relevant. If an application is pending,

it may still become a valid patent, and the content of expired patents can be very important for

determining prior art. The number of documents in a comprehensive patent corpus is therefore

extremely large.

Figure 4: Number of patents in force worldwide 2011 for top ten offices (adapted from [4]).
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All statistical figures in this section were adapted from the 2012 edition of the World Intellectual

Property Indicators report [4] that was published by the World Intellectual Property Organization

(WIPO)1. The represented data are taken from the WIPO Statistics Database that is based on

information supplied by national and regional patent offices from around the world. Missing data

(usually from small offices) are estimated for the world totals, potentially leading to small errors.

However, since the available data covers 98% of all data, estimation errors should not have a major

effect.

2.2 Patent search types

Patent search is an extremely complicated and time-intensive search task. According to a survey

among 81 patent professionals [5,6], the average amount of time needed to complete a single search

task is 12 hours, with complicated tasks taking up to 40 hours. There are a number of vastly

different motivations for performing patent search, and also a number of slightly different ways to

define the resulting different search types (cf. [3, 7–12]). It is very important that patent search is

conducted appropriate to the search type, since it has a large influence on the required recall and

precision of the search, and the search strategy must therefore be tailored to the objective of the

search [12–14]. The following list gives a brief overview of different objectives and the consequences

for the search process.

• The “technology survey”/“state of the art search”/“patent landscape search” is supposed to

give a broad overview over a specific field before a company invests resources into research

projects or enters into licensing agreements. Other applications for this search type include

competitor analysis, technology trend watch and the compilation of country or enterprise

statistics [9]. Since this search type is not required to deliver comprehensive results, tech-

nology surveys are supposed to be the least complex and time-consuming patent searches.

Precision is therefore more important than recall.

• The “infringement/clearance/freedom to operate search” is supposed to evaluate legal risks

caused by the introduction of a new product. Its purpose is the search for patents that the

new product may infringe upon. Since a single missed patent could cause very serious legal

and financial problems later, this search type has a strong need for high recall. Therefore, it

1http://www.wipo.int/portal/index.html.en
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often necessitates a very elaborate and time-consuming search strategy.

• The “novelty/patentability search” looks for previous patents that may be in conflict with

a new patent application. It is usually carried out both by the company before applying

for a patent and by the patent examiner after that. On the one hand, prior art found by

the company can be used to phrase the claims in a way that will distinguish the patent

from existing ones and therefore raise the likelihood of its acceptance. On the other hand,

the patent examiner uses the prior art that resulted from their search to decide whether

the patent application fulfills the novelty requirement that is necessary for the patent to be

granted. It is very important to find any existing prior art, since missing anything might

result in an erroneously accepted patent and could therefore lead to legal problems for the

company later.

• The “validity/invalidity search” can be considered a variation of the patentability search.

The main difference concerns the source document for the search, which is an already granted

patent in this case; the objective is either to judge the value of a patent or to find a way to

invalidate a competitor’s patent. If relevant elements of a patent had been patented before

its application, it is possible to get the granted patent protection removed by legal means.

The term “prior art search” is also frequently used to describe a patent search type, especially

for the search that is performed by the patent examiner in order to determine whether the patent

should be granted. However, it is not always made clear if it is used in this way (as a synonym for a

patentability search) or as a generic term that also describes infringement and invalidity searches.

It should be noted that for most of these patent searches, other types of text are also relevant.

According to Article 54(2) of the European Patent Convention (EPC), “prior art” comprises “ev-

erything made available to the public, in writing, by public use, or otherwise, before the filing date

of a patent application” [15]. The patent laws of the USA and of Japan also have corresponding ar-

ticles. This means if the content of a new patent application was previously published in a scientific

journal, the patent will not be granted - regardless of whether the author of the publication is an

employee of the company applying for the patent or some third party with the same idea. Despite

the relevance of other types of text, this thesis is concentrated on improving patent search since

there are numerous well-known options for searching most other document sources. The following

section investigates special properties of the text used in patents.

18



2.3 Patent text

In addition to the high number of patents, the text of individual patents is also often fairly long.

An average length of almost 4, 000 words per full-text patent was calculated by Iwayama et al. [16]

for a test collection of Japanese patents, and the standard variance of over 3, 000 words showed

that there is also a high amount of variation in patent lengths. The longest patent consisted of

over 250, 000 words, and the highest number of unique words in a patent was over 29, 000.

Patent text has some special characteristics separating it from most texts from other sources.

One key point is the language used in different fields of the patent: While the abstract is usually

written in a fairly clear and natural way, the claims have a very rigid structure and are written in

a very technical language style, as evidenced by the patent excerpt provided in Figure 5.

Additionally, each claim is required to be defined in a single sentence, leading to long and compli-

cated grammatical constructions that chain multiple sentences and cause problems for grammatical

parsers. Parapatics et al. [17] used the well-known Stanford Natural Language Parser on the claims

of a small test corpus and reported large differences between the results for independent claims (e.g.,

Claim 1 in Figure 5) and those for less complex dependent claims that refer to and extend other

claims (e.g., Claims 2 and 3 in Figure 5). While dependent claims contained less than 35 words

on average and were almost always parsed correctly, independent claims contained more than 120

words, and the proportion of successful parses dropped by 20-50% depending on the heap size. In

other words, claims are often quite hard to understand - for human readers as well as computers.

Unfortunately, the claims section is arguably the most important part of the patent [8], since it is

the legal basis of all patent protection [18].

The different text styles can lead to significant differences of the vocabulary used in different

sections of the patent [19]. Additionally, authors from completely different backgrounds are involved

in writing patents, and the technical fields covered by the patents also vary considerably [18]. The

consistency of vocabularies between different patents is therefore also very low, leading to further

issues for natural language processing (NLP) tasks [20].

A further complication is caused by the different author intentions compared to research papers:

While scientists usually have the goal to inform as many people as possible about their findings,

many patent authors have the opposite goal. A patent assignee is granted timed exclusive rights

to use and license the patented invention, but in exchange for that privilege they have to publish
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Figure 5: Beginning of claims section from US patent 4656917, “Musical instrument support”.

detailed information about it. Competitors may be able to use that information to find out more

about the technological processes used by the assignee, and possibly even to “design around” the

patent - reaching the same goal without violating the patent. Therefore, obvious search keywords

are often intentionally omitted from patents and replaced by very specialized vocabulary, making

the retrieval of relevant patents difficult [21]. On the other hand, many companies also use very

unspecific vocabulary in order to make the scope of their patents as broad as possible. As an

example, the images and text description of US patent 4656917 make it clear that the patented

invention is intended for guitars. Despite that, the claims text of the patent (cf. Figure 5) only

mentions “stringed musical instruments”; this prevents potential competitors from applying the

same principle to violins or other string instruments. Lastly, since patents describe new inventions,

it can’t be avoided that new terminology has to be introduced in some cases. Since different

inventors are often working on similar new technologies simultaneously, different terms will be

20



introduced for the same subject before the technology becomes mature enough to have an accepted

common vocabulary. In many cases, multiple different terms remain in use by different authors [22].

As a result of all these factors, finding most or all relevant keywords for a particular patent search

will at the very least require a large investment of time and effort.

Consequently, professional patent searches usually don’t rely exclusively on keywords. While

much information is contained in the text parts (mainly title, abstract, claims and description),

it is often also necessary to pay attention to the included drawings and various metadata (e.g.,

inventor, assignee). Most importantly however, the use of classification information can improve

pure keyword searches considerably and is therefore an integral part of most professional patent

searches [23]. The following section will therefore provide an overview of the most important patent

classification systems as well as further details about the benefits (and potential problems) their

use can bring to patent search.

2.4 Patent classification systems

As a consequence of the problems with keywords, professional searchers have long been using

classification information [24, 25] - either for expanding keyword-based searches or for filtering

overly large result sets. Patents are classified into hierarchical systems of categories by patent offices

according to the type of invention they represent. This work will concentrate on the International

Patent Classification (IPC)2 since it is the best-known and most widely spread classification system

[26]; it is used by over 100 patent-issuing bodies worldwide [27] and contains around 70, 000 classes.

For more details on the IPC, see Section 2.4.1. In addition to that, most other important systems

are directly based on it; they take the IPC hierarchy and add additional subclasses.

That way, the “Deutsche Feinklassifikation” (DEKLA) adds nearly 40, 000 subdivisions to the

German version of the IPC [28] (but there is no official English translation), the European Classifi-

cation (ECLA) basically doubles the size of the IPC to more than 132, 000 classes, and the Japanese

File Index (FI) contains about 170, 000 classes [1]. Despite their large size, there are additional

refinements for both the European and Japanese systems. The little-known “In Computer Only”

(ICO) index terms were developed at the EPO and can be used for information of secondary im-

portance or to index additional aspects of an invention [26, 29]. They were mainly intended for

internal use by patent officers, but have been included in a number of patent databases offered by

2http://www.wipo.int/classifications/ipc/en
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commercial providers like Derwent, Questel or STN. The number of codes had already surpassed

106, 000 in 2010, making their size comparable to the complete ECLA itself. The ICO term hier-

archy mirrors ECLA to a certain degree: Each ECLA section (A to H) has an corresponding ICO

section (K to T), but not all classes from the main system have equivalent ICO classes. Similarly,

the so-called F-terms3 are used to index aspects of Japanese patents that are not completely cov-

ered by the assigned FI codes. As explained by Iwayama et al., technological fields (“themes”)

are defined as sets of FI codes with individual collections of viewpoints relevant for the theme,

and there is a list of possible elements for each viewpoint [30]. For example, the theme “Dental

Preparations” (4C089) is relevant for the FI code A61K 6/00 (“Preparations for dentistry”) and all

its subcodes until A61K 6/10. The seven viewpoints for theme 4C089 include aspects like “Purpose

of use”, “Metal component” and “Inorganic component”. Each of these viewpoints has between

eight and 20 elements, e.g., “containing silicon” and “containing phosphorus” for the viewpoint

“Inorganic component”. This additional data is supposed to give a more complete overview of the

contents of the classified patent than it would be possible when only using the classification system

by itself. A more detailed example for the connection between File Index and F-terms is presented

by Wolter [26].

An important system that is entirely separate from the IPC is the United States Patent Clas-

sification (USPC), containing more than 150, 000 classes4. The US Patent and Trademark Office

(USPTO) offers a US-to-IPC conversion tool, but it is only intended for giving hints about poten-

tially relevant classes; the systems are too different to make a direct concordance possible. The

USPC is arguably the most complicated system, with different classes being based on different

classification principles and very unintuitive class codes that do not reflect the hierarchical position

of classes for the most part [31,32]. Even experienced patent searchers confess to having problems

with finding the right classes for their search and complain about a decline in quality in recent

versions of the system [26]. Possibly partially in response to such concerns, the USPTO and the

European Patent Office (EPO) reached an agreement in 2010 to create a new system based on

ECLA and integrating elements from both ICO and USPC. This new system is called Cooperative

Patent Classification (CPC)5 and contains about 250, 000 entries in its first version that was for-

3http://www5.ipdl.inpit.go.jp/pmgs1/pmgs1/!frame E?hs=1&gb=2&dep=1
4http://www.uspto.gov/patents/resources/classification/overview.pdf
5http://www.cooperativepatentclassification.org/about.html
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mally launched in January 2013. It has now replaced both ECLA and USPC and is used by more

than 45 patent offices worldwide according to the USPTO6. The State Intellectual Property Office

of the People’s Republic of China (SIPO) was announced as an additional cooperation partner in

June 20137, and the first updated CPC scheme (2013.07) was released in July8. However, only a

minority of detailed class definitions has been made publicly available as of early August 2013. It

is not yet clear if the introduction of CPC will make former systems ECLA and USPC redundant,

or if they will still be used for searching older patent corpora. It has also been pointed out that

the new system can only improve the previous situation if the examiners from both patent offices

can be trained to use it in the same way [26].

The Derwent World Patent Index (DWPI) Classification9 is a commercial product that is in-

tended to improve the performance of patent retrieval tools. The DWPI Classification isn’t directly

based on the IPC, but some sections are closely aligned to it. Relevant classes are added manually

to patents by experts in their fields. The number of classes is considerably smaller than for the

major official systems, but we were unable to find the exact number, and we could not calculate

it ourselves since the system is not freely available. Derwent’s approach of having experts assign

classes from its private system is supposed to compensate for a problem that was already recog-

nized decades ago [33]: different interpretations of the scope of IPC classes or different classification

philosophies can lead to inconsistent and missing class assignments [9], especially between interna-

tional patent offices. The following paragraph presents more detailed analyses of this problem, and

Table 1 gives an overview of all classification systems we introduced.

As mentioned before, classification information is the most important element of patent searches

apart from keywords. Becks et al. report drastic recall improvements for patent retrieval from the

inclusion of classification information [34]. Parisi et al. recommend the use of classification in-

formation in searches, but they warn that the assigned class codes may not always be the most

appropriate ones, going so far as to say that existing assignments may be “subjective, incom-

plete or inconsistent and sometimes even random” due to overworked patent examiners [35]. In

a practice-oriented article on chemical patent search, Annies investigates the coverage of different

classification systems for patents about chemical formulations [23]. He points out that the inclusion

6http://www.uspto.gov/news/pr/2013/13-01.jsp
7http://www.epo.org/news-issues/news/2013/20130604.html
8http://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions.html
9http://ip-science.thomsonreuters.com/support/patents/dwpiref/reftools/classification/
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System name Approx. # of entries Main region Type of system based on IPC

IPC 70, 000 international main classification =
ECLA 130, 000 Europe main classification directly
ICO 110, 000 Europe additional indexing indirectly

File Index 170, 000 Japan main classification directly
F-Terms 350, 000 Japan additional indexing indirectly
DEKLA 110, 000 Germany main classification directly
USPC 150, 000 United States main classification no
CPC 250, 000 United States / Europe main classification directly

DWPI ? international (separate) main cl. partially

Table 1: Major patent classification systems. Most systems contain between 110, 000 and 170, 000
classes and are directly or indirectly based on the IPC.

of classification information is crucial when searching for formulation types and dosage forms due

to the non-standardized wording describing the inventions in this domain. However, just using one

classification system may not be enough to retrieve a comprehensive result set since the coverage

of different systems varies greatly: For a set of patent documents about chemical formulations and

dosage forms indexed either with Derwent Manual Codes or IPC, only a minor proportion of the

documents was indexed with the respective relevant classes from both systems (36% for pharmaceu-

tical formulations and just 19% for agrochemical formulations). He concludes that the inconsistent

application of the different classification systems necessitates the addition of as many codes as

possible for improving search results. In a detailed overview of the practical implications of using

the different systems we explained above for patent search, Wolter makes the same argument [26].

He argues that the advantages of combining multiple classification systems make up for the high

difficulty and large necessary time investment of finding the relevant classes in multiple systems.

These advantages include the option to find patents from more countries (especially Japan), the

potential identification of additional subject matter that might not be included in the searchable

text and the possibility to search for different aspects of inventions that may be covered in dif-

ferent ways by the various systems. In a case study searching for prior art on the anti-ulcer drug

pantoprazole, Emmerich compares the results of full-text patent searches with value-added patent

information such as DWPI and reports that the use of this additional information is essential for

all searches with high commercial relevance [36]. Other case studies have recommended the use

of classification information for searches concerning antibodies [37] and biopharmaceuticals [38].

Despite the described advantages of using multiple systems, the IPC is still described as “one very
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important arrow in a patent searcher’s quiver” with its general use remaining “uncontested” [26].

We will give a short introduction to the IPC in the following section.

2.4.1 International Patent Classification

The first version of the IPC was published in 1968; it was initially updated roughly in five year

intervals. After a major reform effort, the eighth IPC version entered into force in 2006. After this,

the frequency of updates became significantly higher; the currently valid version, IPC-2013.01, is

already the seventeenth version. However, the majority of the changes after IPC8 did not alter

the structure of the hierarchy significantly, and a lot of existing patent data still carries IPC codes

according to that version. For that reason, the majority of our work is based on IPC8. It contains

69487 entries in up to 14 hierarchy levels; that number has risen to 71644 entries in the 2013 version.

The IPC hierarchy for all versions is divided into eight sections that correspond to very general

categories such as “Human necessities” (Section A) or “Chemistry; metallurgy” (Section C). Table

2 shows an overview of all eight sections of the IPC. Each section is made up of numerous classes

(e.g., A61), and each class contains multiple subclasses such as A61K. Each subclass is again divided

into main groups (e.g., A61K 38/00), and for most main groups there are additional subgroups such

as A61K 38/17. The definitions for these hierarchy entries are listed in Table 3; a more detailed

description of the hierarchy can be found in the WIPO-published “Guide to the IPC”10. Despite

its specific meaning in IPC terminology, we will use the term “classes” as an umbrella term for all

individual entries of the IPC instead of the correct term for the respective level of the hierarchy, in

order to improve readability.

Section Definition

A Human necessities
B Performing operations; transporting
C Chemistry; metallurgy
D Textiles; paper
E Fixed constructions
F Mechanical engineering; lighting; heating; weapons; blasting
G Physics
H Electricity

Table 2: IPC sections with definitions. The sections correspond to a very broad categorization of
patents.

10http://www.wipo.int/classifications/ipc/en/guide/guide ipc.pdf
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As the class examples in the previous paragraph show, individual entries of the IPC hierarchy

are mainly represented by alphanumeric codes. The corresponding definitions are complicated and

often depend on each other. Table 3 shows the complete definition tree for subgroup A61K 38/17

from the example above. The class hierarchy and the definitions will be investigated in more detail

in Sections 3.1 and 3.2.

Class code Definition

A Human necessities
A61 Medical or veterinary science; hygiene

A61K Preparations for medical, dental or toilet purposes
A61K 38/00 Medicinal preparations containing peptides
A61K 38/16 Peptides having more than 20 amino acids; gastrins; somato-

statins; melanotropins; derivatives thereof
A61K 38/17 from animals; from humans

Table 3: IPC definition tree for class A61K 38/17. Definitions can be long and complicated and
depend on each other.

This example illustrates the necessity to also consider the superordinate code definitions in order

to understand what kind of invention is represented by the given code. The definition “from animals;

from humans” is not useful by itself, but combining it with the superordinate code definitions results

in a clear description of the category represented by the code. It also shows that the code alone

does not accurately represent the hierarchy in all cases: While class 38/17 is directly subordinate

to 38/16, there is no direct hierarchical connection between classes 38/16 and 38/15 (definition:

“Depsipeptides; derivatives thereof”). Finding the most relevant classification codes to be used for

search therefore constitutes a significant challenge, especially for users with little experience.

As a consequence of the high complexity of searching patents, major pharma companies employ

patent professionals to relieve their scientists of this difficult and time-consuming task. Their patent

searches often combine keywords and classification codes (and possibly additional metadata) in a

single query. Many researchers without access to such resources ignore patents in favor of more

accessible scientific literature. However, as we mentioned above, they thereby risk missing a lot of

current research results. This study intends to investigate ways for

1. assisting patent professionals in finding the relevant elements (keywords and classification

codes) for their search queries more efficiently and

2. enabling non-professionals to start using patents as an important additional information
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source.

Due to the problems for keyword search caused by the complexities of patent text (cf. Section

2.3), we focused on the use of classification information for these tasks. The idea of using existing

annotations to improve document search has already been successfully implemented for other text

domains, as the short overview in the following section shows.

2.5 Improving document search using term annotations

There are numerous examples for term annotation systems - controlled vocabularies, taxonomies

or ontologies - that are used in the biomedical domain for assisting document search. Many text

mining and document retrieval applications rely on text annotations with terms from existing

term systems - either by using existing manual annotations or by automatically assigning relevant

terms. These document annotations can be used to directly improve document search: If the user

query contains one or more annotation terms, documents that were assigned these terms can be

considered relevant for the query even if the terms are not contained in the text. Section 2.5.1

shows an example of this functionality in the biomedical literature database PubMed.

Other systems make use of document annotations by offering faceted search (also called faceted

browsing) functionality to users. This means that the resulting documents can be filtered according

to their annotation terms, allowing the user to quickly and easily reach a result set with very high

relevance. This is especially useful if the annotation systems are hierarchically organized, since

this adds the possibility of choosing more specific or more general filter terms in reaction to the

results of the search. The search engine GoPubMed11 offers an alternative entry to the documents

available via PubMed and offers faceted browsing of search results using the terms from Medical

Subject Headings (MeSH) and Gene Ontology (GO) as well as a protein database. Users can

immediately see which of the terms from these three systems were assigned to the result documents

most frequently and choose a combination of relevant terms with a small number of clicks [39,40].

Figure 6 shows a small part of the term annotations for an example search result. The “M” and “G”

letters to the left of the terms tell the user whether the term is from MeSH or Gene Ontology, and

the numbers to the right give the number of documents among the result set that were annotated

with the respective term. In the figure, the user has decided to restrict the search to documents

about coronary vessels and filter out documents with a connection to stem cell development. The

11http://gopubmed.com/web/gopubmed/
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Figure 6: Faceted search with GoPubMed. Excerpt from result page showing the option to filter
the result set by including or excluding MeSH or GO terms.

system EBIMed12 also accepts PubMed queries and annotates the resulting documents with GO

terms and protein names, but its goal is the identification of related pairs of terms rather than

a set of relevant documents [41]. Its sister application Whatizit13 asks the user to enter a query

in the form of a text passage and offers sets of modules for different text analysis tasks such as

the annotation with relevant terms from different collections, the identification of relations between

terms and the retrieval of related PubMed abstracts [42]. All these systems are mainly or exclusively

intended for use with PubMed documents; there is no comparable system for patents.

In order to test the validity of our approach of using patent classification information for these

tasks, we analyzed the code assignment in the patent domain and compared it with the assignment

of Medical Subject Headings to documents in the biomedical literature database PubMed. Although

PubMed has a considerably more narrow focus than the patents do, we consider this comparison a

12www.ebi.ac.uk/Rebholz-srv/ebimed
13http://www.ebi.ac.uk/webservices/whatizit
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useful approach for the following reasons: First, PubMed represents (to our knowledge) the largest

freely accessible collection of scientific documents (or more precisely, abstracts) indexed with a

controlled vocabulary, making it a natural target for our comparison of document annotations.

Second, as we will describe in the next section in more detail, the assigned terms are already used

for improving PubMed searches, mirroring our plan for the IPC codes. And third, although our

patent corpus contains patents from many different fields, it is our main objective to improve patent

search for the biomedical domain.

2.5.1 Medical Subject Headings

The Medical Subject Headings (MeSH) are a controlled vocabulary thesaurus of biomedical terms

curated by the National Library of Medicine (NLM). MeSH was first published in 1960, at the time

containing 4300 descriptors. It is now updated annually, and the newest version of the hierarchy,

MeSH 2013, contains 26853 headings. However, the hierarchy tree of MeSH allows for the same

heading to appear more than once, and therefore the tree contains 54095 entries in total. The hier-

archy starts with 16 relatively broad categories such as “Anatomy” or “Organisms” and gets much

more specific (e.g., “Olfactory Receptor Neurons” or “Locusta migratoria”) in deeper hierarchical

levels. However, due to the considerably smaller focus of MeSH compared to IPC, the main trees

are already much more specific than the IPC section definitions (cf. Table 2). Table 4 shows the

root terms of the MeSH main trees.

The MeSH terms are used in the biomedical literature database PubMed as a document indexing

system, i.e., for annotating documents with relevant terms that describe their content. The PubMed

database contains more than 22 million citations, 90% of which have MeSH annotations14. PubMed

users can therefore restrict their search to documents that have been annotated with some very

specific terms in which they are interested. On top of that, MeSH terms are used to automatically

improve the recall of PubMed searches through query expansion: By mapping keywords from a

search query to MeSH terms, relevant documents are included in the search results even if they

only contain synonyms or hyponyms of the original keyword. As an example, Figure 7 shows how

the system expands the simple query “heart attack”. Searching with the expanded query returned

194, 209 hits on August 6, 2013, of which only 1.5% contained the exact phrase “heart attack”.

That means that the search results for the initial user query would have been very lacking without

14http://nnlm.gov/training/resources/meshtri.pdf
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Tree Root term

A Anatomy
B Organisms
C Diseases
D Chemicals and Drugs
E Analytical, Diagnostic and Therapeutic Techniques and

Equipment
F Psychiatry and Psychology
G Phenomena and Processes
H Disciplines and Occupations
I Anthropology, Education, Sociology and Social Phenomena
J Technology, Industry, Agriculture
K Humanities
L Information Science
M Named Groups
N Health Care
V Publication Characteristics
Z Geographicals

Table 4: MeSH main trees. The root terms are more specific than the IPC section definitions.

the automated inclusion of MeSH information. As a result, even PubMed users who are completely

unfamiliar with MeSH can benefit from the search improvements it makes possible.

Figure 7: Automated query expansion on PubMed website. The unspecific search query “heart
attack” is automatically expanded into the corresponding more comprehensive query.
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Although the patent domain also lists manually assigned and therefore presumably highly ac-

curate categories for each document in the form of IPC classes, a similar use of the system has not

previously been investigated. We believe that there are two possible benefits to such an approach:

First, since most scientists are unfamiliar with the intricacies of the patent domain, it is desirable

to offer them an easier option to formulate patent queries that include classification information -

as we described in Section 2.3, relying on keyword queries leads to insufficient results in most cases.

Second, professional patent searchers have to invest a lot of time and effort into composing complete

queries, and would therefore benefit greatly from a system that helps them with this complicated

task. In order to provide such assistance, it is important to have a clear understanding of the

properties of both classification systems. In this thesis, we therefore investigate differences between

the IPC and the established MeSH hierarchy and their implications for patent search. As a solution

to problems we discovered through our analysis, we propose two approaches: a system for the au-

tomated assignment of additional classes to patent documents and a guided patent search system

that assists the user by offering query expansion suggestions derived from class co-occurrence data

or using existing knowledge from external sources.

2.6 Related work

The importance of MeSH for the biomedical field has led to extensive research. Apart from the

efforts to use the MeSH annotations to improve PubMed search functionality [39, 41, 42] that we

described in Section 2.5, there are mature approaches for automatically assigning MeSH terms

to documents, and MeSH terms are successfully used for query expansion. Trieschnigg et al.

investigate multiple MeSH classification systems and report that a K-Nearest Neighbor approach

clearly outperforms the other systems, but its classification speed is relatively low (around a second

per abstract) and it is not well-suited for assigning rarely used MeSH terms [43]. For the same

task, Tsatsaronis et al. present a fast system based on Maximum-Entropy classification that offers

very high accuracy [44]; we will describe their system in more detail in Sections 4.1 and 4.2. MeSH

has also been used in combination with patents, e.g., for tagging diseases [45].

IPC-related research is much more limited than for MeSH, but scientific interest has been

growing over the last decade. As we described in Sections 2.3 and 2.4, there are a number of

publications about the professional approach to patent search and classification information, many

of which identify problems and suggest solutions [11,14,23,26,35–38]. However, there is no published
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in-depth analysis of either hierarchy and no systematic comparison of both hierarchies, although

there are some papers dealing with MeSH [46,47] or IPC [25,48–50] in a more general way.

2.6.1 Patent categorization

Giving the correct classification codes to patent applications is a very important task for the

examiners working at patent offices. It is needed both internally and externally: Internally, it

represents a prerequisite for assigning the application to an expert in its field. Krier et al. describe

the process that was previously in place at the EPO for this task [51]: Three well-trained pre-

classifiers (technical staff) were able to pre-classify all applications before more highly-qualified

specialists made the exact classification decision. Increasing technological complexity has made it

impossible for such a small group to accurately decide upon the pre-classification of today’s wide

variety of applications. To make matters worse, errors in this process are consuming a lot of time

from highly-qualified patent examiners and are therefore very expensive for the patent office. Apart

from these internal needs of patent offices, the correct classification of patent documents is also

extremely important for external patent searchers. As described in Section 2.3, the addition of

classification information to patent queries is often necessary for finding all relevant results. Of

course, the effectiveness of using classification information for search relies on the correctness of the

classification data. Since it is also a complicated and time-consuming task, the need for automation

in the patent categorization process has been recognized since the late 1950s [52], and the recent

growth in patent numbers (cf. Section 2.1) has made that need even more urgent.

Since patent offices suffer most from these problems, it is not surprising that most early research

had direct connections to patent offices. Larkey et al. describe a tool developed for patent examiners

at the USPTO at the end of the last century [53]. It was able to propose appropriate classes for

a patent using k-nearest neighbor classification (i.e., based on the assigned classes of existing

patents containing similar terminology). At the EPO, Krier et al. evaluated multiple (unnamed)

commercial systems for patent categorization without giving any details about the methods that

were used by those systems [51]. Their tests were carried out in the late 1990s and early 2000s and

suggested that automatic pre-classification to a very high hierarchical level was already possible,

but results for deeper levels were still far from satisfactory. At WIPO, the problems of patent

categorization were investigated in the early 2000s as part of the CLAIMS project [54]. Fall et

al. [55] tried classifying the patent documents from the WIPO-alpha test collection using multiple
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different machine learning methods. The WIPO-alpha collection contains about 75, 000 English-

language patents in 114 classes and 451 subclasses. They reported categorization precision of up

to 55% for the top prediction on the class level and up to 41% on the subclass level and concluded

that support vector machines outperformed other algorithms such as Naive Bayes and k-nearest

neighbor. For the same project, Fall et al. investigated the applicability of their results to German

patents [56]. For a small corpus of almost 80, 000 German-language documents and a set of 115

classes and 367 subclasses, they reported similar results as for the English corpus. Neither study

evaluated classification precision below the subclass level.

In later years, different workshops such as the Japanese NTCIR [30] and more recently the

CLEF-IP evaluation track [57] added patent categorization tasks. While the workshops NTCIR-

5 [30] and NTCIR-6 [58] both had patent classification tasks concentrating on the Japanese F-term

system (for an explanation see Section 2.4), later NTCIR workshops switched to IPC [59]. Li et al.

participated in the F-term classification subtask [60], using support vector machines with varying

parameters. They reported a surprising finding: Including information about the F-term hierarchy

made the results considerably worse, although hierarchical information had led to improvements

on other hierarchical classification tasks [61, 62]. The results from the published approaches vary

depending on the hierarchical level that was used: Trappey et al. [63] report precision values slightly

above 0.9 for a small subset of IPC subclasses and main groups, Tikk et al. [64] correctly identify

up to 37% of main groups, and Verberne et al. [65] reach an F1-score of 0.7 for the subclass level

in their best run. To our knowledge, there is only one prior effort to classify patents down to

the lowest level of the IPC: Chen et al. [66] use an elaborate three-phase approach to reach 36%

accuracy for that difficult task. We will describe their method in detail in Chapter 4 where we

introduce the method we used for the same task.

In addition to these efforts for reproducing existing class assignments, there are some approaches

to patent categorization that were not based on existing systems: Lai et al. describe a method

for the automatic construction of a classification system for patents from a very specific field (e.g.,

the semiconductor foundry industry) [67], and Loh et al. investigate the automatic assignment of

patents to a new classification system based on the innovation methodology TRIZ [68].
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2.6.2 Patent retrieval

Although it is our goal to assist patent searchers in finding the patents they are looking for, we are

more focused on helping them formulate the queries than on the actual patent retrieval. However,

since this is an active research topic that is closely connected to our goal, we will give a basic

overview of a broad variety of existing approaches for this task.

While early systems for retrieving patent documents were already developed in the 1970s [69],

the number of publications related to patent retrieval has grown considerably in recent years. The

majority of the existing research into patent retrieval systems has concentrated on prior art search.

The proposed systems often expect as input an existing patent or patent application and produce

a ranked list of similar patents as output. This task was also a part of several patent-related

workshops such as the patent retrieval task at NTCIR [70], the prior art candidates search task at

CLEF-IP [71] and the prior art task at TREC-CHEM [72]. The systems differ greatly in the input

they are expecting (e.g., complete patents, only the text fields, only the claims section, or even

non-patent texts) and therefore also in the elements that are used in their retrieval methods (e.g.,

text only, citation information, classification information, information about inventors/assignees).

In an early approach to solving the prior art task, Osborn et al. use the SMART information

retrieval system [73,74] with additional shallow NLP techniques to find similar patents to a query

patent [75]. A more advanced system is presented by Takaki et al.: Documents are divided into

“subtopics” (i.e., thematically coherent text fragments), similar documents are retrieved for each

subtopic, and the results are combined into one ranked list of documents [76]. Graf et al. generate

prior art queries by contrasting the distributions of shared terms in related as well as unrelated

pairs of documents [77], while Xue et al. evaluate a number of different features (e.g., patent field

and weighting method) for extracting useful query words [78,79]. Magdy and Jones examine three

different strategies for automatic query expansion, but report no general improvement in the quality

of the resulting ranking [80]. The same can be said for experiments on extending the commonly

used “bag of words” approach by taking dependency triples into account [81, 82], and Becks et

al. even report significant decreases in both precision and recall as a result of using linguistic

phrases instead of terms [83]. Cluster-based language models were also shown to lead to marginal

improvements at best [84].

Mase et al. only use the claims section of the query patent to extract query terms; the resulting
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ranking is then combined from two different searches, a broad recall-oriented search on the full

texts and a second narrower precision-oriented search just on the claims sections [20]. The same

method was also reported to have a small positive effect on retrieval from a large set of patents from

the chemistry domain by Gobeill et al., but the same experiment revealed a larger improvement

from analyzing the citations [85]. Citation analysis is also used by Fujii et al. in an approach that

combines a text-based retrieval method with a citation score into a combined result ranking [86],

and Lopez and Romary take this approach a step further by also including the citation texts [87,88].

The latter approach performed best among all competitors of the CLEF-IP 2010 Prior Art Patent

Search Task, followed by a relatively simple system by Magdy and Jones that also combined citation

analysis with standard information retrieval techniques [89,90].

Szarvas et al. combine standard text-based document retrieval with IPC assignment information

[91], and Mahdabi et al. investigate different approaches to creating a “query model” representing

the patent in question, using different patent fields as well as IPC information [21]. The IPC

assignments are also the basis of a new vector space model for patent retrieval proposed by Chen et

al. [92, 93]. Instead of using document-term vectors as in most traditional approaches, document-

category vectors are calculated based on the common vocabulary of patents with the same assigned

class.

Bashir and Rauber argue that a high number of relevant patents are not retrieved with current

systems [94]. To improve the retrievability of these patents, they propose expanding automatically

generated queries using pseudo relevance feedback. The problem of differences in retrievability

of patents was also examined by Bache [95], and it is shown that retrieval models taking term

frequencies into account (in this case tf-idf and a version of Okapi-BM25) are much better than

Boolean search in this context. However, Boolean search is still the basis of most patent search

engines, and professional users consider Boolean operators the most important search functionality

of a patent retrieval system [5,6].

This chapter has introduced the patent domain by giving statistics on patent numbers and

describing different search types and their requirements. The special properties of the patent

texts as well as the different classification systems were explained with regard to their effect on
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patent search. Additionally, we examined previous approaches that use document annotations

to implement new and improved search functionality; many approaches concentrate on PubMed

documents and the corresponding MeSH annotations. Therefore, we will compare MeSH and IPC

and their respective annotations to PubMed abstracts and EPO patents in the following chapter.
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3 Comparative analysis of MeSH and IPC

Summary

Both MeSH and IPC are hierarchi-
cal systems used for the annota-
tion/classification of documents. The
hierarchies are fairly similar in size and
structure, although there are some differ-
ences in the relationship between terms
and hierarchy entries.
The differences between the terms them-
selves are larger: IPC is focused on class
codes while MeSH emphasizes terms, IPC
definitions are longer, more complicated
and less self-contained than MeSH head-
ings, and are therefore much less likely to
appear in the text.

The main differences between both sys-
tems concern their assignment to docu-
ments: The set of MeSH terms assigned
to a single PubMed document is usually
much larger and much more diverse than
the set of IPC classes assigned to a patent.
Consequently, there are limits to the cur-
rent usage of classification information for
patent search: The complexity of the sys-
tem makes finding the relevant classes
difficult, and the sparseness of class as-
signments means that relevant documents
may be missed in the search due to miss-
ing class assignments.

Parts of this chapter were previously published in:

• Daniel Eisinger, Thomas Wächter, Markus Bundschus, Ulrich Wieneke, Michael
Schroeder. Analysis of MeSH and IPC as a Prerequisite for Guided Patent Search.
Bio-Ontologies 2012. http://bio-ontologies.knowledgeblog.org/346

• Daniel Eisinger, George Tsatsaronis, Markus Bundschus, Ulrich Wieneke, Michael
Schroeder. Automated Patent Categorization and Guided Patent Search using IPC
as Inspired by MeSH and PubMed. Journal of Biomedical Semantics 2013, 4:S1.
http://www.jbiomedsem.com/content/4/S1/S3
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Our analysis of MeSH and IPC can be divided into three parts: The first two parts concern

the respective hierarchies and terms of the systems themselves, while the third part examines their

usage for document classification. We analyzed the latter by collecting classification information

from all patent applications to the EPO between 1982 and 2005 (over one million) as well as the

annotations to all PubMed documents published by early 2011 (over 20 million). Our analysis

has the goal of assisting patent search; we are therefore less interested in the reasons for any

discrepancies than in their implications for search. Table 5 summarizes some core results of our

analysis, and the following sections give more detailed reports.

Property MeSH IPC

number of hierarchy entries 54095 69487
number of unique entries 26581 69487
number of main trees 16 8
number of hierarchy levels 13 14

average string length main labels/class definitions 18 50
string length longest main label/class definition 104 596
string length shortest main label/class definition 2 3
average number of synonyms 8 0
occurrence of class labels in text frequent very rare

average number of annotations per document 9 2
number of unique annotations 25646 56599
proportion of documents with multiple annotations 86% 53%
proportion of documents with related annotations 81% 46%
(i.e., same hierarchy tree)

Table 5: Comparative analysis MeSH vs. IPC. The hierarchical structures are similar, but MeSH
terms are shorter and more likely to occur in text. The number of MeSH annotations per document
far surpasses the number of classes per patent.

3.1 Hierarchies

As noted in Sections 2.4.1 and 2.5.1 and shown in Table 5, the number of unique MeSH entries is

considerably smaller than the number for IPC; it’s less than half of the IPC’s number of entries.

However, the hierarchy tree of MeSH allows for the same heading to appear more than once, and

therefore the tree contains 54095 entries in total (slightly above 3
4 of the IPC number). Since

this analysis is concerned with the hierarchical relation between entries, we decided to use the

“tree view” of MeSH. In MeSH terminology, this corresponds to using the unique tree numbers of
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the separate entries instead of the MeSH IDs that are identical for different tree positions of the

same heading. This distinction between the number of hierarchy entries and unique entries already

illustrates the main difference between the hierarchies: While each IPC class can only be directly

subordinate to exactly one other entry, MeSH allows its entries to have more than one parent. In

one instance, this has arguably caused an inconsistency in MeSH: In tree branch F (“Psychiatry and

Psychology”), the heading “Ethics” (MeSH-ID D004989) is subordinate to “Morals” (D009014);

however, in branch K (“Humanities”), their roles are reversed. This apparent contradiction may

be caused by the ambiguous definition for “Ethics” that MeSH uses, since it describes both “The

philosophy or code pertaining to what is ideal in human character and conduct” and “the field of

study dealing with the principles of morality”. “Morals” on the other hand is more clearly defined

as “Standards of conduct that distinguish right from wrong”.

In addition to allowing multiple parent nodes, MeSH has a second distinctive feature separat-

ing it from the IPC: Not all hierarchy entries can be mapped to MeSH IDs and vice versa. More

precisely, there are MeSH headings with IDs that aren’t a part of the hierarchy as well as hierar-

chy entries that do not have a corresponding MeSH ID. According to the MeSH Browser15, the

headings “male” (MeSH-ID D008297) and “female” (D005260) - not to be confused with headings

“men” (D008571) and “women” (D014930) - are meant as tags for male or female organs, diseases,

processes, etc. They have MeSH IDs, but no tree numbers - in other words, they do not have any

parent or child nodes. On the other hand, the most general entries in the hierarchy, the “roots” of

the different trees in MeSH, do not have MeSH IDs and can therefore not be found in the MeSH

Browser. They are however listed as tree tops in the MeSH tree structure navigation and were

therefore included in the analysis. In this regard, the IPC hierarchy is simpler than MeSH, since

each IPC entry has exactly one fixed position inside the hierarchy.

Contrary to these conceptual differences, the structural comparison of the hierarchies did not

reveal any significant differences. As Table 5 shows, their sizes are in the same range (about 70,000

IPC classes and 54,000 entries in the MeSH tree) and they have almost the same depth (14 levels

for IPC, 13 for MeSH). Figure 8 shows that the distributions of nodes over different levels of both

hierarchies are also similar, with the larger IPC having a higher concentration of nodes in levels

4 to 7 of the hierarchy and MeSH having a slightly more even distribution of nodes among the

different hierarchy levels.

15http://www.nlm.nih.gov/mesh/2012/mesh browser/MBrowser.html
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Figure 8: IPC vs. MeSH - Terms/classes per hierarchy level. Both hierarchies expand in similar
ways.

Closely related to the findings depicted in Figure 8, Figure 9 shows the average number of child

nodes per hierarchy level and illustrates some slight differences in the node distributions: While

IPC and MeSH grow mostly in parallel after the fourth hierarchy level, there are large differences

in the first four levels. The IPC expands especially fast from the first and third hierarchy levels

where the average IPC class has 16.1 and 11.5 child nodes respectively while the growth of MeSH

is more modest with 6.5 and 4.2 child nodes per heading. In the second hierarchy level however,

the expansion of MeSH with 14.6 children on average is much more significant than that of the IPC

with just 5.0. By level 4, the growth of both hierarchies has slowed down considerably, but IPC is

again growing significantly faster than MeSH. On the other hand, it can also be seen from Figures

8 and 9 that both IPC and MeSH expand between levels 1 and 5 and start contracting after that.

As mentioned before, the hierarchical structures are remarkably similar overall apart from these

minor differences. The next section investigates the terms of both systems.

3.2 Terms

Unlike the very similar structures, the comparison of the terms shows some major differences. The

first difference between MeSH and IPC is their emphasis on terms/concepts versus identifiers: While
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Figure 9: IPC vs. MeSH - Nodes and children per hierarchy level. The expansion of both systems
differs considerably in the first three levels.

each heading has its own MeSH ID, the emphasis is clearly on the term itself - as is evidenced by the

commonly used phrase “MeSH terms”. The IPC on the other hand is first and foremost a collection

of alphanumeric codes which are signifying their place in the hierarchy instead of their semantic

meaning. Unlike MeSH terms, these codes do not give an uninformed user any useful information

about the patents that should be assigned to this class. This information is instead contained in

additional class definitions that are more akin to MeSH’s scope notes. The class definitions are

therefore necessary to understand what kind of invention is assigned a specific code. As an example,

looking up the MeSH headings for a document about insects on PubMed will lead the user to the

term “Insects”, not its identifier “D007313”. However, a patent about an immunoassay is assigned

to class “G01N 33/53” (or one of its subclasses), and the definition of this class has to be checked

separately if the user does not know it.

The examples of codes and corresponding definitions in Section 2.4.1 show an additional differ-

ence: While each MeSH entry constitutes a self-contained phrase (often containing their hierarchical

predecessor in part or even in whole), IPC definitions below the subclass level can often only be
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understood by considering their hierarchical ancestors. For example, a typical branch of the MeSH

tree contains the descending entry sequence “Neoplasms” - “Neoplasms by site” - “Breast Neo-

plasms” - “Breast Neoplasms, Male”; in the IPC however, dependent sequences like “Wet end of

machines for making continuous webs of paper” - “Wire-cloths” - “Seams thereof” - “sewn” are

much more common.

The described differences in the style of formulating class definitions might lead to the assump-

tion that MeSH definitions will on average be longer than IPC definitions; after all, a MeSH heading

must stand on its own while IPC class definitions may depend on their ancestor nodes. As Table 5

shows however, the opposite is true: the average length of an IPC definition exceeds 50 characters,

while the average MeSH heading contains less than 18 characters. As an example, the longest MeSH

term is “3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-

, Methyl ester”, while the longest definition of an IPC class is shown in Figure 10. This example

shows that IPC definitions can include figures (of chemical structures usually) to clarify the content

of their classes; MeSH terms however are text-only. As an aside, the shortest IPC definition (“Tin”

as a subclass of a class about biocides containing metal atoms) is also longer than the shortest MeSH

term (“Id”, i.e., “The part of the personality structure which harbors the unconscious instinctive

desires and strivings of the individual”).

Figure 10: Longest IPC class definition (for class A01N 49/00)

In addition to being longer and less self-contained than MeSH terms, most of the IPC definitions

are also considerably more abstract and complicated. Unlike MeSH, the IPC also does not include

any synonyms for the class definitions. All of these differences contribute to a very low probability

of occurrence of class labels in text, while MeSH terms occur much more frequently. Shah et al.
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report for a small corpus of 104 Nature Genetics articles that of the terms that were attached to

the documents by the indexers at the National Library of Medicine (NLM), 72% were found in the

article on average [96]. However, this result is based solely on single-word MeSH terms and might

therefore be considered overly optimistic. Schuemie et al. on the other hand search a larger corpus

for all assigned MeSH terms and report finding 62% on average after including children of the

headings [97]. In order to quantify how rarely IPC codes occur in text, we searched the complete

texts of all 14, 600 documents from our test corpus C73 (for a definition see Section 4.3) for their

class definitions. Less than 2% of the documents contained their respective definition, and most

of these hits were for class names that weren’t informative on their own (e.g., class C07K 14/47,

“from mammals”).

As a consequence, IPC classes cannot be assigned to patents by simply extracting them from

text. This is one of the main reasons for the much more extensive use of automated (pre-)annotation

of PubMed documents compared to patents. One possible approach to solving this problem is

the assignment of classes using machine learning methods, i.e., training a classifier on existing

classification data to predict assignments for new data. We will investigate this possibility in

Chapter 4.

3.3 Usage for document classification

IPC and MeSH are both used as classification/annotation systems for documents: all EPO patent

applications are assigned at least one IPC code, and all PubMed articles from participating journals

are annotated with appropriate MeSH terms. In order to analyze the assignment of hierarchy entries

to documents, we collected classification information from the two corpora we introduced at the

beginning of this chapter. These corpora contain about 1.06 million EPO patent applications

and over 20 million PubMed documents in total. Figure 11 shows that there are large differences

between the numbers of MeSH annotations per document and the numbers of IPC annotations per

patent.

For the EPO patents, 45.8% were assigned only one class, 31.3% were assigned two, 13.4%

were assigned three and 5.1% were assigned four. This means that more than 95% of the patents

had four class assignments or less, leading to an average of just below two classes per patent. The

situation is much different for the PubMed documents. The proportion of documents with one

annotation is 4.3%, and 3.5%, 3.4% and 4.3% respectively for two, three and four annotations.
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Figure 11: Percentage of documents with number of annotations. The average number of MeSH
annotations per PubMed document is much higher than the number of IPC classes per patent.

Adding up these percentages reveals that less than 16% of the PubMed documents have four

annotations or less, which is a huge difference compared to the 95% we reported for the patents.

While the set of patents with one assigned class was the largest by far, the PubMed documents

are much more evenly spread. The largest set is the one with nine annotations in this case with

7.6%, but the sets with seven, eight and ten annotations have very similar sizes with 7.2%, 7.5%

and 7.4% respectively. Averaging over the whole corpus then results in less than two assigned IPC

classes for the patents in our corpus, while PubMed documents have almost nine MeSH terms (cf.

also Table 5).

The following tables show one example respectively for the set of annotations to a patent and

a PubMed document. The annotations presented in Table 6 are from the document with PubMed

identifier 14771478 and the title “Little known tropical diseases”, and Table 7 shows the IPC classes

assigned to EPO patent 1481970, “Novel Herbicides”. Since IPC class codes do not directly explain

the meaning of the class, Table 7 also gives abbreviated definitions of the superordinate classes.

Both documents represent the highest number of annotations that were assigned to any document

in the respective corpus.
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Abdomen Acne Vulgaris Acrodermatitis Actinomycosis
Alcaligenes faecalis Alopecia Amebiasis Anal Canal

Ants Appendicitis Areca Arthritis
Aspergillosis Axilla Blastomycosis Bronchi

Buttocks Candidiasis Colitis Colon, Sigmoid
Cough Cryptococcosis Culicidae Cysticercosis

Darier Disease Deficiency Diseases Dermatitis Dermatitis, Seborrheic
Diarrhea Dysentery, Bacillary Ear Edema
Emetine Erythema Extremities Eyelids

Face Fever Fibroma Furunculosis
Gingiva Hair Halitosis Hand

Hookworm Infections Insects Intertrigo Intestines
Keloid Keratosis Keratosis, Seborrheic Lactose

Leg Lichens Lip Lipodystrophy
Lipoma Liver Malaria Microsporum

Mite Infestations Mycetoma Mycoses Myiasis
Nails Nose Oculomotor Muscles Palatine Tonsil

Pemphigus Phlebitis Phlebotomus Fever Pigmentation
Pityriasis Pruritus Pyoderma Salmonella Infections

Scalp Skin Skin Diseases Spermatic Cord
Spirochaetales Infections Splenomegaly Starvation Stomatitis

Sweat Sweat Glands Syphilis Tattooing
Tinea Toes Tongue Toxoplasmosis

Tropical Medicine Ulcer Ultraviolet Rays Umbilicus
Urethra Urine Vagina Vibration
Wind Wounds and Injuries Xanthium

Table 6: MeSH term annotations for PubMed document 14771478, “Little known tropical diseases”.

A comparison of the sets of annotation terms shown in Tables 6 and 7 shows that the PubMed

annotations for the example document are extremely diverse, with covered MeSH trees including

“Anatomy” (e.g., “Hand”), “Diseases” (e.g., “Malaria”), “Organisms” (e.g., “Ants”), “Phenomena

and Processes” (“Wind”) and others. On the other hand, the patent’s IPC classes shown in

Table 7 cover only two IPC sections (Section A, “Human necessities”, and Section C, “Chemistry;

metallurgy”). Even among these sections, they are limited to only three subclasses in total, namely

A01N , C07C and C07D - as mentioned above, the table also contains abbreviated definitions of

these subclasses to show the close relations between these assignments compared to the situation

for the PubMed document.

These observations led us to investigate the diversity of the different assignments to a single

document. This property does not have a straightforward measure, but the distances between
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A01N 35/06 A01N 43/16 A01N 43/18
Biocides; pest repellants

A01N 43/40 A01N 43/42 A01N 43/72

C07C 49/747 C07C 49/753 C07C 69/708 Ketones/esters of carboxylic acids

C07D 207/38 C07D 209/96 C07D 211/86

Heterocyclic compounds

C07D 231/32 C07D 231/34 C07D 231/36
C07D 237/04 C07D 265/02 C07D 279/06
C07D 303/32 C07D 307/60 C07D 307/94
C07D 309/32 C07D 309/38 C07D 311/96
C07D 333/32 C07D 333/50 C07D 335/02
C07D 403/12 C07D 409/12 C07D 413/12
C07D 417/12

Table 7: IPC classes assigned to EPO patent 1481970, “Novel Herbicides”.

simultaneous annotations in the respective hierarchies can give an indication of the differences be-

tween both corpora. We used all documents (PubMed and patents) with more than one annotation

to calculate maximum and minimum distances for each annotation set.

More formally: Given a hierarchy H (in our case either MeSH or IPC) and two entries a and

b of the hierarchy, we define the distance between a and b as the length of the shortest path

between them in H. For a subset A of H consisting of all annotations to a single document, we

then define the maximum (minimum) annotation distance as the maximum (minimum) over the

pairwise distances of elements of A. Since both MeSH and IPC are organized as forests (i.e., unions

of trees) instead of singular trees, we inserted one artificial root node into each hierarchy in order

to represent them as trees.

Figure 12 shows one example each for a PubMed document and a patent. Among other terms,

the PubMed document is annotated with “Cyanides” from the “Chemicals and Drugs” tree as well

as with “Risk Factors” from the “Health Care” tree. These terms show multiple aspects of the

document, and their distance in MeSH is 14. On the other hand, the most distant IPC classes

assigned to the patent have the definitions “Chemical Analysis” and “[Immunoassay] using isolate

of tissue [...]”. These classes are directly related, and the shortest path connecting them in the IPC

hierarchy has length 3. This means that the annotations to this patent only cover one aspect or

at best a very narrow range of aspects. Additionally, some of the assignments may be considered

redundant since they are direct ancestors of another assigned class and therefore implicitly covered.

As these examples show, the distance between terms hints at whether they belong to the same

main tree of the hierarchy; this is an important property of the annotation terms that we will
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Figure 12: Annotation sets for example documents (left: PubMed, right: patent). The MeSH terms
for the PubMed document are very diverse and cover multiple aspects, while the IPC classes are
closely related.

examine in more detail below. However, the distance gives more information than that since it also

allows us to estimate the diversity of annotations from the same tree. Figures 13 and 14 show the

minimum and maximum differences for PubMed as well as our patent corpus.

Figure 13: Minimum hierarchical distances of multiple annotations assigned to the same document.
PubMed documents have more very closely related annotations than patents.

As Figure 13 shows, many PubMed documents are annotated with very similar MeSH headings,

in many cases (around 41.4%) even pairing a term with its direct parent (i.e., annotations have
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distance 1). Arguably, this means that there is more redundancy contained in the MeSH anno-

tations, since the parent term is implicitly assigned together with the child term. This situation

is less common in our patent corpus (only 10.7%), although there are also many patents that are

annotated with closely related classes. A more detailed analysis of this property as well as some

other relationships between annotations follows in Figure 15.

The analysis of maximum distances (Figure 14) has the opposite result: While the maximum

distances for patents do not differ too much from the minimum distances, the maximum distances

for PubMed documents are much larger. The higher number of PubMed annotations is certain to

play an important role in these differences. However, the extent of the differences between both

corpora is surprisingly large. This result indicates that PubMed annotations cover a considerably

broader spectrum of aspects than the assigned patent classes. This means that in addition to having

a fairly small number of class assignments per patent, these assignments are also much more closely

related than the PubMed/MeSH ones.

Figure 14: Maximum hierarchical distances of multiple annotations assigned to the same document.
The maximum distance is considerably larger for PubMed documents than for patents, as is the
difference between maximum and minimum distances.

In addition to the path lengths between annotations, we examined the relations between an-

notations more directly by checking how often terms were co-assigned with closely related terms.

We again used the annotation sets of all documents with multiple annotations, and tested them
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for the inclusion of at least one pair of nodes that belong to the same hierarchical tree or share

an ancestor/descendant, parent/child or sibling relationship. (Documents with parent/child anno-

tations are of course a subset of those with ancestor/descendant annotations.) Figure 15 shows

the percentage of documents (among those with multiple annotations) that were assigned pairs

of annotations that share any of these relationships. For both PubMed and the patent corpus, a

high percentage of the documents with multiple assignments contains pairs of annotations from the

same hierarchy tree. While this is not a problem for PubMed due to the high overall number of

annotations, the much lower number for patents may be a cause for concern: Including patents with

just one annotation, over 83% of all patents are classified into only one of the eight main sections of

IPC. Since the main trees correspond to extremely general domains such as “Human necessities”,

we believe that some aspects of many patents are not covered by the currently assigned classes.

Figure 15: Hierarchical relationships of terms assigned to the same document. PubMed docu-
ments have considerably more closely related annotations, but the percentage of documents with
annotations from the same main tree is almost equal for patents.

On the other hand, the proportion of documents with directly related annotations (par-

ents/ancestors or siblings) is much lower in the patent corpus than in PubMed. It makes sense

that direct ancestors usually aren’t assigned to the same document since the general annotations

are already implicitly contained in the more specific ones. If the search engine in use features the
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possibility to automatically expand general queries by including all subordinate terms of query

terms, it is not necessary to include any annotation except the most specific one in order to avoid

redundant annotations. More formally: Let A be the set of terms that was assigned to a specific

document, and let B be a set of terms that corresponds to the nodes in a descending path in the

hierarchy, i.e., a path in which the distance between the root of the tree and the current node

grows from node to node. If A represents a subset of B, A can be reduced to its most specific

element, i.e., {a∗ ∈ A|dist(root, a∗) ≥ dist(root, a)∀a ∈ A}. Provided that the search engine uses

the query expansion strategy described above, this does not cause any loss in recall: If a document

was found by searching the original set of annotations (i.e., A), that means that the search query

contains at least one of the terms in A. Let a′ be that term. The definition of a∗ implies that

dist(root, a∗) ≥ dist(root, a′). Since A ⊆ B, a∗ is a direct descendant of a′, and therefore the search

engine will also retrieve the document in question if all other annotations are removed.

However, unlike the missing parent/child and ancestor/descendant pairs among the patent an-

notations, the low number of IPC sibling annotations (both in absolute numbers and in comparison

to MeSH) may point to a potential problem: If there are more relevant sibling classes than there

are actual class assignments for many patents, the search for exact class codes will have missing

results. The same problem applies if the low number of sibling assignments is due to them being

replaced by their common parent. It is therefore advisable for a patent search engine to allow for

easy addition of relevant sibling classes.

3.4 Problems for IPC-based search

It could be argued that some of the described discrepancies are likely caused by differences in clas-

sification guidelines between patent offices and PubMed and may therefore be intended. However,

that does not change the fact that both IPC and MeSH are used to improve search results on

document corpora, and we believe that the use of IPC for that purpose comes with two serious

disadvantages:

• Complexity of the classification system:

The complexity of the IPC terms causes significant problems for non-professional patent

searchers. It is very difficult to find the complete set of IPC classes that are relevant for

the search task at hand, and it is even more difficult to combine them in a way that max-
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imizes recall while still limiting the corresponding drop in precision to a manageable level.

It is therefore not surprising that classification-based patent search is mostly performed by

experienced professionals.

On the other hand, while the exclusive use of keywords for searching patent databases is

more intuitive for less experienced users, it often leads to bad results due to the complicated

language used in patents.

• Sparse class assignments:

The low number of class assignments indicates that relevant aspects of many patents are not

covered by the existing class assignments, and the problem is made worse by the relatively

close relation of many co-assigned classes. Since the classification information is often used to

filter the patent search results, the recall of these patent searches may be lower than expected.

Given these disadvantages, patent search engines should offer additional functionality for helping

the user find the required results. Since the class definitions are needed to understand the meaning

of the class codes, the system must include easy access to them. Additionally, since many definitions

depend on their ancestor classes, the engine should give the user an easy overview over the relevant

parts of the hierarchy. Unfortunately, many popular existing engines such as Espacenet16, Google

Patents17 and FreePatentsOnline18 do not display this basic information on the same page as the

patent. In addition to that, patent search engines generally don’t include any functionality to

alert the user to additional relevant search terms and classes, and in many cases don’t even offer

auto-completion suggestions to the user when they start typing their query.

In this chapter, we analyzed the IPC hierarchy and compared it to MeSH, the prime example

for a large-scale annotation system that is used to improve document search. While the hierarchies

were discovered to be fairly similar, there were some differences in the terms. One of the main

differences we found in the way that documents are annotated concerns the number of annotations

per document: While PubMed documents were assigned almost nine MeSH terms on average,

16http://worldwide.espacenet.com/
17http://www.google.com/?tbm=pts
18http://www.freepatentsonline.com/
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patents had less than two classes. Since this sparseness of class assignments may lead to low recall

in patent searches, we will investigate a method to automatically assign additional classes in the

following chapter.
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4 Assigning additional classes to patents

Summary

In an effort to combat the problem of
low class assignment numbers for patents,
we investigate a method to automatically
assign additional classes. Existing ap-
proaches for this task were with one excep-
tion not intended for or evaluated on the
whole classification hierarchy. The single
existing approach for this task has only
been used on a smaller scale and is be-
lieved to be too computationally expen-
sive for large corpora. Our work therefore
represents the first time that patent cat-
egorization has been evaluated on a large
corpus for all hierarchy levels.
Our method is based on training a series
of Maximum Entropy-classifiers (one for
each class) on existing class assignments
and applying them to each document that
is supposed to get additional class assign-
ments. It has been used successfully for
assigning MeSH terms to PubMed docu-
ments.

We first evaluate our method’s ability to
recreate existing class assignments. With
precision and recall values close to 90%,
the performance of individual classifiers
is satisfactory, making our approach fea-
sible for the task of finding additional
documents for specific classes. However,
since we intend to use a large number of
classifiers on each document, these val-
ues still lead to large numbers of incorrect
assignments. We propose the combina-
tion of our categorization results with key-
word search as well as the use of class co-
occurrence information for filtering search
results to overcome this problem.
Our evaluation of the classifier features
with the highest and lowest weights (i.e.,
the words that are most important for the
classifier suggestion) shows that the cho-
sen positive features are useful for making
classification decisions while the negative
features may be too unspecific.

Parts of this chapter were previously published in:

• Daniel Eisinger, Thomas Wächter, Markus Bundschus, Ulrich Wieneke, Michael
Schroeder. Analysis of MeSH and IPC as a Prerequisite for Guided Patent Search.
Bio-Ontologies 2012. http://bio-ontologies.knowledgeblog.org/346

• Daniel Eisinger, George Tsatsaronis, Markus Bundschus, Ulrich Wieneke, Michael
Schroeder. Automated Patent Categorization and Guided Patent Search using IPC
as Inspired by MeSH and PubMed. Journal of Biomedical Semantics 2013, 4:S1.
http://www.jbiomedsem.com/content/4/S1/S3
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In Chapter 3, we analyzed the IPC classes assigned to our corpus of EPO patents. We showed

that the average number of class assignments is very low compared to PubMed, and that many

of the existing assignments are closely related in addition to that. We hypothesized that the low

number of class assignments combined with the close relations between annotations results in recall

problems for patent search, especially since classification-based search is the most important way

to make up for the problems of keyword search on patents (cf. Sections 2.3 and 2.4). The most

straightforward way of dealing with this problem would be the assignment of additional classes,

but due to the high number of patents as well as the high complexity of the classification system,

this can only be done automatically. Depending on the accuracy of the automatic assignment of

relevant classes, the method can be useful for two related but different ways of dealing with the

low number of assigned patent classes:

1. Given a class, find documents for this class.

If the user knows that a particular class is highly relevant for their search, the automatic class

assignments can be used to discover additional patents that should have been assigned to the

class. The recall of the search can therefore be improved considerably.

2. Given a document, find classes for this document.

If the user has already collected a small set of relevant documents, the automatically assigned

classes for these documents can help them find the classes that are related to these documents,

even if there is no classification data available or if there are missing assignments. These

additional classes again enable them to refine their initial search query.

We will give an overview of previous approaches to the problem of automated patent class assign-

ment in the following section before detailing the method we used and discussing our results in the

rest of this chapter.

4.1 Previous approaches

As we described in Section 2.6.1, there have been multiple published approaches for the assignment

of IPC codes to patents. These approaches are usually restricted to higher levels of the hierarchy

such as the class or subclass level [63,65] or the main group level [63,64]. The WIPO has also made

a patent categorization tool available, offering users the possibility to have documents categorized
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to any of these levels19. To our knowledge, there is only one prior effort to classify patents down to

the lowest level of the IPC [66]. This approach by Chen and Chang is based on a three-stage method

for categorization that was designed to find the most fitting subgroups by reducing the complexity

of this task stepwise: First, the best 11 subclasses are identified using a pre-learned Support Vector

Machine (SVM). This step is intended to reduce the complexity drastically by excluding large

parts of the hierarchy without strongly impacting the accuracy. In the second phase, a new SVM

is learned from the documents below the subclasses chosen in the first phase. This new classifier is

then used to predict the 37 most appropriate subgroups for the document that is supposed to be

categorized. (The best values for the different parameters of the method were chosen empirically.)

The chosen subgroups are then further subdivided in the third phase using the K-means clustering

algorithm, and the final decision for one subgroup is made using the K-Nearest Neighbor algorithm

on the document and the subgroup clusters. As a result of this rather complicated process, 36%

of patent documents were categorized into their original subgroup. This is compared to 20% for

the same method without the last stage, and 30% for the HITEC algorithm that also takes the

hierarchy into account and had previously only been used on the main group level [64].

While all previous approaches were solely focused on automatically recreating the existing

assignments, it is our goal to find additional relevant classes that the patent was not originally

assigned to. We therefore believe that the method proposed by Chen and Chang is not ideal for

our purpose, since it already removes large parts of the hierarchy in the first step. While this

may make sense for retrieving the one main class that was previously assigned to the patent, it is

too restricting for our goal of finding new relevant but potentially very different classes that were

not previously assigned. Additionally, the need to train large numbers of new SVM classifiers in

the second phase and to apply a clustering algorithm as well as another round of classification in

the third phase, makes the method unsuitable for our intended application on a large corpus of

documents.

We therefore based our system on the approach that has been used successfully for the auto-

mated assignment of MeSH terms to PubMed documents by Tsatsaronis et al. [44]. The Maximum

Entropy approach is used to train one binary classifier for each MeSH term based on four feature

types:

19https://www3.wipo.int/ipccat/
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• lexical tokens from the document title

• lexical tokens from the abstract

• the name of the journal the document was published in

• the year of publication.

After the classifiers have been trained, each learned model is applied to all documents that are

supposed to be categorized. For each classifier that puts the document into the positive category

with high confidence, the corresponding MeSH term is added to the document’s annotations. After

all classifiers have been applied to all documents, a set of MeSH term annotations is retrieved for

each document. Tsatsaronis et al. evaluate the method on a MeSH subset consisting of four of the

16 main trees and report very good results with an F1-measure of 92.4%. The results are compared

to the Naive Bayes method as well as the use of Decision Trees, both of which turn out to be clearly

worse. We introduce the method in more detail in the following section.

4.2 Maximum Entropy

The Maximum Entropy approach estimates a probability distribution from existing data, based on

the assumption that the distribution should be “as uniform as possible” if no external knowledge

is available. This principle also gave the approach its name: Entropy measures the uncertainty of

the outcome of a random variable, and its value is maximized if the random variable is uniformly

distributed. Intuitively, this can be seen through the example of a coin toss: Its uncertainty is largest

for a fair coin, since the probability of guessing the outcome of the next toss correctly is always

50%. However, if the coin is known to have a higher probability to show heads, the probability

of guessing the next toss correctly (by always guessing heads) increases. Maximum Entropy has

been used for various tasks in Natural Language Processing (e.g., language modeling [98] and

part-of-speech tagging [99]) since the mid-nineties and was first proposed for text classification in

1999 by Nigam et al. [100]. It is closely related to the class of Expectation-Maximization (EM)

algorithms that was named and formally introduced in 1977 by Dempster et al. [101] after the

approach had already been used earlier for special cases (e.g., [102, 103]). The EM algorithm is

introduced as “a general approach to iterative computation of maximum-likelihood estimates when

the observations can be viewed as incomplete data”, and its name stems from the division of each
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iteration into an expectation step and a maximization step that are mutually influencing each other.

In the expectation step, the expected value of the likelihood function is calculated using the current

parameter value estimations, and in the maximization step, these parameter values are updated in

order to maximize the likelihood function from the first step.

For the purpose of text classification, the existing data is represented by documents that have

been labeled with certain categories (the training set), and the probability distribution that is

estimated by the approach is used to assign classes to new documents (the test set). In order to

do that, features are extracted from the training set. A feature is a measurable property of the

documents, e.g., the number of occurrences of a certain word in the text or the year in which the

document was published. For estimating the probability distribution, each feature fi is assigned

a parameter λi with initial value 0. Based on the relationship between feature values and class

assignments in the training documents, these parameters are then updated iteratively until they

converge. The result is a probability distribution based on the chosen features weighted by the

corresponding parameters. Classes can then be assigned to a new document according to the

classification scores that are calculated by combining the document’s feature values with these

parameters.

While Tsatsaronis et al. reported performance improvements from the use of different feature

types, two of the feature types that were used for the PubMed documents are more problematic in

the patent world: There is no directly equivalent entity to the journal of publication in the patent

domain, and the year of publication can be ambiguous due to the existence of priority patents and

different versions of the same patent. Consequently, we decided to restrict ourselves to the feature

type that we consider most reliable for our patent corpora, the lexical features.

MaxEnt can be used for binary classification (i.e., one of two classes is assigned) as well as

multi-class classification (one of multiple classes). Since our goal is multi-label classification (i.e.,

the relevant subset of all classes should be assigned), we trained one binary classifier for each class

and applied all classifiers to each document.

4.3 Training corpora

In order to evaluate the results of our categorization efforts, we constructed training corpora from

the EPO dataset that was also the basis of our previous analysis. We used three parameters to

choose the sets of classes and documents that we based these corpora on:
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• number of patents

Since the Maximum Entropy method improves with a growing number of training documents

[44], it is reasonable to restrict the categorization task to classes that were used to annotate

some minimum number of patents. We therefore excluded classes that were assigned to fewer

patents.

• text length

While the EPO dataset contains the bibliographic data to all European patents, it doesn’t al-

ways include the complete texts. Since the classifiers rely on the text, we only used documents

that surpassed a certain minimum text length.

• only primary classification/also secondary classification

Of the classes assigned to a patent, one is always emphasized as the primary one; i.e., the one

that is supposed to correspond to the central aspect of the patent. When choosing training

documents for a class, it might therefore be advisable to concentrate on patents with the

primary classification.

We constructed one corpus with strict requirements (only widely used classes, long patents and

primary classification) and another with more relaxed requirements (also less widely used classes,

shorter patents and secondary classification). The details are presented in Section 6.2. As a result

of applying these requirements to our set of patents, the first corpus contains 73 classes while the

second one is much larger with 1205 classes. In order to enhance readability, we will refer to the

first corpus as C73 and the second one as C1205 for the remaining parts of this thesis. This size

difference in connection with the expected higher quality of the documents due to the constraints

we mentioned above should lead to better categorization results for C73 than for C1205.

4.4 Evaluation

With our initial evaluation, we tested our method’s ability to retrieve the classes that were actually

assigned to the patents. Therefore, all of these classes were considered correct while everything

else was considered wrong. While this approach can not evaluate our method’s suitability for our

objective of assigning new classes, it is nevertheless valuable for determining the quality of the

classifiers by comparing their results with the categorization decisions made by the experts at the

patent offices. Table 8 shows the macro-average scores (precision, recall and F1-measure) of all
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classifiers using 10-fold cross-validation for the confidence threshold 0.5; the use of other values is

investigated below.

Corpus Precision Recall F1-measure

C73 0.88 0.90 0.89

C1205 0.88 0.84 0.86

Table 8: Evaluation results for confidence threshold 0.5. The precision values are identical for both
corpora, but recall is considerably higher for the smaller corpus.

As Table 8 shows, the results are for the most part encouraging, with most values approaching

0.9. The recall value is 6% higher for the smaller corpus. Applying t-test to the recall values from

the common classes of both corpora (i.e., the 73 classes from C73) confirmed that this difference is

statistically significant with very high confidence (α < 0.001). However, despite the size differences

between both corpora, the precision values are equal. This may suggest that the C73 results

are about as good as can be expected from the use of the Maximum-Entropy method on patent

texts. These F1 values are still reasonably close to those reported by Tsatsaronis et al. for MeSH,

especially considering the known problems caused by the complex patent text (cf. Section 2.3) as

well as the fact that we restricted ourselves to using lexical features only. However, there are clear

differences in precision and recall: In our case, both values are almost even, with recall even having

a higher value than precision in C73. In contrast to that, Tsatsaronis et al. report a drastically

higher value for precision compared to recall (> 99% compared to < 87%). As we will discuss in

more detail below, this difference causes problems for our goal of assigning additional classes to

patents.

The quality of the trained classifiers can also intuitively be judged by looking at the features

that make the largest difference in categorizing documents. Table 9 shows the five most influential

positive features from binary Maximum-Entropy classifiers for a subset of IPC classes with biomed-

ical significance, i.e., the features that were assigned the highest positive values by the Maximum

Entropy method. The occurrence of these words in a document that is supposed to be classified

increases the likelihood of positive classification; in other words, the document is more likely to

be assigned the category represented by the classifier. Almost all features listed in the table ap-

pear to be well-suited to making this distinction, since they are representative of their respective

class. Although some of the class definitions are closely related (i.e., “Chemical analysis of bio-

logical materials” and “Chemical analysis involving proteins”), there is very little overlap in the
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IPC code Class definition Feature 1 Feature 2 Feature 3 Feature 4 Feature 5
(abbrev.)

A61B 5/00 Measurement for light sensor blood patient tissue
diag. purposes

A61B 17/00 Surgical tissue suture end surgical closure
instruments

A61B 17/70 Spinal rod bone portion member screw
positioners

A61F 13/15 Absorbent pads absorbent material napkin web diaper

A61M 25/00 Catheter catheter distal end tube lumen

B01L 3/00 Laboratory sample fluid channel chamber surface
glassware

G01N 33/50 Chemical analysis sample test cell specimen light
of biol. materials

G01N 33/543 Immunoassay binding analyte sample surface antibody

G01N 33/68 Chemical analysis protein peptide antibody detection disease
involving proteins

Table 9: Most influential positive classifier features. Features were extracted from binary Maximum-
Entropy classifiers trained on IPC classes with biomedical significance, leaving out stop words and
words with three or less characters. The occurrence of positive feature words makes a document
more likely to be assigned to the class. The positive features for the classifiers in the list are useful
for identifying patents that belong to the class.

most influential features. For the two related classes about “chemical analysis” from the example

(i.e., G01N 33/50 and G01N 33/68), the five top features are completely disjunct. The same is

true for class A61B 17/00 about surgical instruments and its descendant A61B 17/70 about spinal

positioners.

The situation is different for the most influential negative features for the same IPC classes

shown in Table 10. The features are for the most part not specific enough to separate the class from

other, even distantly related classes; most of them seem to be suited only for excluding documents

from very distant classes. Additionally, some features are repeated in completely unrelated classes

(i.e., “cell”, “signal” and “antibody”). From our previous examples, classes A61B 17/70 about

spinal positioners and G01N 33/50 about chemical analysis of biological materials are not closely

related, but the negative feature sets for both classes contain the words “ink” and “signal”. These

differences are consequences of our choice to randomly select documents from other classes for

the set of negative examples. This appears to have caused an overly strong random influence on

the features selected by the classifier based on which documents were chosen for the negative
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sample. While this method was positively evaluated by Tsatsaronis et al. [44] for assigning MeSH

annotations, there may be more promising methods for selecting the negative sample. In Section

5.1, we evaluate in a different context what influence the choice of a background corpus has on the

quality of terms extracted from patent documents.

IPC code class definition Feature 1 Feature 2 Feature 3 Feature 4 Feature 5
(abbrev.)

A61B 5/00 Measurement for cell recording antibody network sequence
diag. purposes

A61B 17/00 Surgical absorbent connector electrode unit shell
instruments

A61B 17/70 Spinal acid cell ink network signal
positioners

A61F 13/15 Absorbent pads tag radio insulin nucleic air

A61M 25/00 Catheter acid control ink information signal

B01L 3/00 Laboratory user terminal ink value protein
glassware

G01N 33/50 Chemical analysis plug DNA ink signal sequence
of biol. materials

G01N 33/543 Immunoassay cell collagen channel section particle

G01N 33/68 Chemical analysis antibody Elafin data system mobile
involving proteins

Table 10: Most influential negative classifier features. The occurrence of negative feature words
makes a document less likely to be assigned to the class. The negative features for the listed
classifiers are useful for excluding documents from very distant classes, but too unspecific for
distinguishing between closely related classes.

While precision and recall values around 0.9 are generally acceptable when a single classifier

is used, these values are problematic in our situation - especially when applied to the corpus with

many classes. As we mentioned at the start of this chapter, it is important to distinguish between

two different learning tasks: First, the retrieval of additional documents for a given relevant class.

For the purpose of this task, our results are very promising with precision, recall and F1-measure

close to 0.9. We can therefore retrieve additional documents with high confidence. The second

task, finding additional classes for a given document, is more problematic however. Since we apply

all classification models to all documents, most documents are assigned more than one hundred

classes in the case of C1205. While this may appear to contradict our claim of the good performance

of the individual classifiers, it does not: Even if every classifier makes the right decision in nine
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out of ten cases, applying more than 1000 such classifiers will still lead to many wrong decisions.

This means that although the performance of the individual classifiers is satisfactory, we have to

take additional steps in order to make its use for our intended application feasible. In order to

reduce the number of class suggestions, we tried various higher values for the confidence threshold.

In the PubMed/MeSH experiments detailed in [44], the highest F1-measure was reached for the

confidence threshold 0.6. Unfortunately, our patent classifiers react less positively to raising the

threshold, as can be seen in Figure 16: While raising the value from 0.5 to 0.6 clearly has a positive

effect on precision, the corresponding drop in recall is much more severe and leads to a significantly

lower F1-measure. Raising the value further only has negligible effects on the classification quality,

leading to very slight precision increases and recall decreases.

Figure 16: Classification results for corpus C73 depending on the confidence threshold. The F1

measure is highest for the value 0.5 due to a rapidly decreasing recall. Increasing the threshold
further after the value 0.6 only leads to small changes.

Due to the high number of patent classes, our method’s precision would have to be very close

to 1 in order to make it feasible for the task of assigning additional classes to all documents.

Unfortunately, since raising the confidence threshold only leads to moderate increases in precision,

we cannot reach a value high enough for practical application of the method by itself. Still, since

most queries also include a keyword component, it is possible to use the described approach to

62



improve recall for such combined searches.

Despite that, we also tried to filter the assignments of our approach in order to make it useful by

itself: As before, we applied every classifier to every model. However, instead of setting a confidence

threshold for the classification score, we decided in advance how many classes were supposed to

be assigned to each document. After calculating all classification scores, we only retained the pre-

determined number of highest-ranking classes. Figure 17 shows the recall of the method depending

on the number of assigned classes, both for the exact class (i.e., the subgroup) and the more general

main group. We calculated the main group recall by considering all subgroups below the closest

main group as correct; in terms of our example from Section 2.4.1, for a patent from class A61K

38/17, also classes such as A61K 38/00 and A61K 38/16 are accepted.

Figure 17: Recall for corpus C1205 depending on the number of assigned classes. The value grows
rapidly until around ten classes, then continues growing at a slower pace.

We chose to have the method assign ten classes in order to strike a balance between recall

and precision. A small-scale manual evaluation of the results revealed that this method is able to

recreate some assignments and to add relevant classes that were not assigned. As an example, patent

EP1286824 about an “apparatus for clamping and releasing contact lens molds” was correctly

assigned to class B29D 11/00 about the production of optical elements, and it was also assigned to
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the relevant class G02C 7/02 about lens systems - this class was not among the original assignments.

However, even among the ten assigned classes for each patent, there were usually at least five

completely irrelevant ones. The example patent about contact lens production was also assigned

to class A61K 31/485 which is about “medicinal preparations involving morphinan derivatives” as

well as class B29D 30/06 which is about “pneumatic tyres or parts thereof”. These results make

the practical application of the method without any other filters doubtful. They are however not

unexpected considering the slow precision growth that we pointed out in Figure 16: Our method

effectively increases the confidence threshold further, reaching different values for each classifier.

But since precision remains almost constant (albeit at a high level), this is still not enough to

remove all irrelevant assignments.

However, we have identified another possibility to filter out incorrect class assignments. As we

will explain in more detail in Section 5.5, we performed an analysis on pairs of classes that were

frequently assigned to the same patent document. This data can also be used for this task, since it

is likely that classes that were never assigned to the same document do not cover similar subjects.

Consequently, we implemented a filter that accepts additional class assignments only if there is an

existing patent that was assigned a similar combination of classes. The filter has multiple possible

settings, from very restrictive (only allow classes that have previously co-occurred directly) too

much less so (allow pairs of classes if their respective ancestors of a certain hierarchy level have

been co-assigned). An initial test had the result we were hoping for: For the example patent

about contact lens production from the previous paragraph, our approach was able to filter out

the incorrectly assigned classes about morphine and pneumatic tyres, since they had never been

assigned to the same patent as class B29D 11/00 that had been assigned by the patent office. On

the other hand, the newly assigned relevant class about lens systems had previously co-occurred

with class B29D 11/00 and was therefore not filtered out.

In order to give a more general evaluation of the classifier features, we compared the feature sets

of frequently co-occurring classes in contrast to randomly chosen classes. If a pair of patent classes

is frequently assigned to the same patent document, it is reasonable to assume that these classes

share a certain connection. Consequently, the corresponding classifiers should share at least some

of their most important features. We chose the 100 most frequently co-occurring pairs of classes as

well as 100 additional random classes. We then calculated the number of common features between

different classes among the 100 top features for each classifier. Figure 18 shows these numbers for
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the co-occurring pairs compared to the average for all 100 random classes. For all co-occurring

class pairs, the overlap is considerably higher than for the randomly chosen classes. On average,

the co-occurring classes have 35 common features, while the random classes only have nine. These

results show that there is a clear connection between the co-occurrence of classes and the feature

overlap of the corresponding classifiers. We therefore conclude that the features chosen by the

classifiers are useful representations of the class patents’ content.

Figure 18: Classifier feature overlap among the Top 100 features for frequently co-occurring and
random classes. The overlap is generally much higher for co-occurring classes, showing the signifi-
cance of co-occurrence information.

This chapter examined the first part of our approach to address the problem of low class

assignment numbers that we identified in Chapter 3, the automated assignment of additional classes.

In the following chapter, we will investigate the second part, the expansion of the search query with

additional relevant keywords and IPC classes.
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5 Guided patent search

Summary

The second part of our approach to ad-
dress the problem of low numbers of
patent class assignments and simplify
patent search combines multiple systems
intended to guide the user towards quickly
and easily formulating patent queries that
are as complete as possible. An initial user
query is used to determine additional rel-
evant query components.
Additional class codes are suggested based
on their co-occurrence with already en-
tered classes, and we propose possibilities
for retrieving additional keywords from
different sources such as class definitions
and external resources.
Most importantly, additional keywords
are extracted from existing patents follow-
ing the lessons learned from an in-depth
evaluation of extraction methods. This
evaluation was performed manually by
four information professionals and showed
that the wf-idf and LLR measures out-
perform the frequently used tf-idf mea-
sure by a wide margin, and that closely
related patents should be chosen for the
background corpus. The discovered terms
and classes are recommended to the user
so they can decide which of the proposals
should be included in the final query.

As a proof of concept, we developed the
patent retrieval prototype GoPatents that
incorporates our proposals. Its implemen-
tation is based on the semantic search en-
gine GoPubMed. Our system contains
the documents from our EPO corpus and
is mainly intended for searching patents
with biomedical relevance.
The user has continuous access to an
overview of the IPC hierarchy complete
with definition trees, and they can directly
see how result documents are distributed
over the IPC hierarchy. This information
also enables the user to filter or expand
search results with additional classes. All
resulting patent documents are also anno-
tated with relevant terms from MeSH as
well as the Gene Ontology and a protein
database, making faceted browsing based
on completely different aspects of the doc-
uments possible.
Result statistics are calculated automati-
cally, giving the user an overview of the
main classes, terms and applicants of the
result patents as well as the temporal
trend of the relevant patents. This gives
the user a better intuition for whether
their query is retrieving the intended doc-
uments.

Parts of this chapter were previously published in:

• Daniel Eisinger, Thomas Wächter, Markus Bundschus, Ulrich Wieneke, Michael
Schroeder. Analysis of MeSH and IPC as a Prerequisite for Guided Patent Search.
Bio-Ontologies 2012. http://bio-ontologies.knowledgeblog.org/346

• Daniel Eisinger, George Tsatsaronis, Markus Bundschus, Ulrich Wieneke, Michael
Schroeder. Automated Patent Categorization and Guided Patent Search using IPC
as Inspired by MeSH and PubMed. Journal of Biomedical Semantics 2013, 4:S1.
http://www.jbiomedsem.com/content/4/S1/S3
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An additional possibility for tackling the problem of low class assignment numbers is the ex-

pansion of user queries to make up for the “missing” assignments. Since professional patent search

queries are a combination of keywords and class codes in most cases, we investigate ways to expand

both of these components in the following sections.

5.1 Extracting keywords from class patents

If a user query contains a class code, it can be assumed that the user is confident of the relevance of

that class. If the system is able to identify and suggest keywords that are characteristic for this class,

this enables the user to further refine their search. In order to find these relevant keywords, NLP

techniques can be used to extract keywords from the patent texts that belong to the query classes.

Since significant numbers of documents are available for most patent classes, this approach is able to

deliver large numbers of keyword suggestions. In a way, extracting relevant words from class patents

is what we already did for our categorization efforts: Each classifier gives weight parameters to the

words contained in patent documents, with high values corresponding to words that are typical for

the class. Table 9 in Section 4.4 shows the word features with the highest values for a selection

of IPC classes with biomedical relevance, demonstrating that this approach is able to discover

useful search terms. However, as Table 10 in the same section shows, the most important negative

classifier features are not particularly suitable for distinguishing between closely related classes.

We believe that this is due to our choice of negative example documents, i.e., a set of randomly

chosen documents from all classes. While Tsatsaronis et al. reported good results for the same

choice of negative examples for PubMed documents, we decided to investigate the influence that

the choice of background corpus has on the quality of the terms that are extracted automatically

from documents using statistical methods. Additionally, we investigated which ranking method for

the extracted terms works best for patent documents. In order to judge the quality of the resulting

term lists, we relied on the manual evaluation performed by four domain experts from the Scientific

& Business Information Services department of Roche Diagnostics Penzberg.

Our categorization method is based purely on the individual words of the patent text. However,

the extraction of multi-word terms from the patent text can result in even more valuable suggestions

for query expansion. In order to reach that goal, we started with some preliminary term extraction

experiments for individual documents that we describe in Section 5.1.1. Based on these results, we

then expanded our approach to complete patent classes and performed a more in-depth evaluation
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including expert feedback (Section 5.1.2).

5.1.1 Preliminary experiments

As a preliminary step, we carried out a basic investigation into whether statistical term extraction

systems are able to retrieve terms with high relevance from patents. We used the web version20

of the term extraction system that is also included in DOG4DAG [104]. It uses a variant of the

well-known tf-idf measure to extract terms that are over-represented in a document compared to

a pre-processed background corpus. The tf-idf method is based on counting the occurrences of

each term in the given document as well as in the corpus documents and assigning two values to

each term. The first value is called term frequency (tf ) and corresponds to the number of times

the given term occurs in the given document, usually normalized to account for different document

lengths. The second value is called inverse document frequency (idf ) and is calculated by dividing

the total number of documents in the corpus by the number of documents containing the given

term. The tf-idf -measure for a term is then calculated by multiplying its term frequency with

the logarithm of its inverse document frequency. That way, a term’s measure (and therefore its

perceived importance for the given document) is high when it occurs often in the given document

while rarely (or never) occurring in the corpus documents. Terms can then be ranked according

to their tf-idf measure, with high-ranking terms assumed to be important for the document, while

terms with lower ranks are considered to be less relevant.

The quality of this ranking depends to some degree on the corpus that was used for calculating

the document frequencies. Ideally, its documents should meet two requirements: First, it is impor-

tant that they cover a spectrum of topics that is not overly narrow, and that they aren’t focused

on exactly the same domain as the document the terms are supposed to be extracted from. If they

are, it is likely that the document’s important terms are also contained in many corpus documents

and will therefore have a low idf value, leading to a low tf-idf rank. However, so far it was not clear

how distant the relationship between the corpus and the document should be; we will investigate

that question in Section 5.1.2. Second, they should have a similar type of text as the document

itself. Otherwise, there is a risk that high-ranking terms are specific to the language of that type of

text and not the domain the text is about. For example, if a patent document’s terms are ranked

by comparing them to a corpus of purely scientific texts, typical terms like “inventor”, “invention”,

20previously available at http://projects.biotec.tu-dresden.de/IdavollPlatform/; no longer functional
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“claim”, “description” and “embodiment” are likely to get very high ranks since they don’t occur

in most scientific texts. However, that doesn’t make these terms relevant for the domain the patent

belongs to - they’re just a part of the typical language that is shared by almost all patents.

5.1.1.1 Validity of term extraction from patents

For our initial test, we compiled a small test collection of nine patents concerning different aspects

of pipettes. We manually searched these patents for relevant terms and compared our results with

the terms that were retrieved by the DOG4DAG Term Generation Platform [104]. The patent

texts were tokenized and POS-tagged by the platform, sentences were identified and noun phrases

following the pattern [adj|verb]∗ [fill]{2}[noun]+ were extracted as term candidates. The tag “fill”

in the noun phrase pattern represents unspecific words that are often part of noun phrases, e.g.,

“of”, “the”, “for”,... DOG4DAG then ranks these term candidates using an approximation of the

tf-idf measure, with the set of all PubMed abstracts used as a background corpus. The domain

covered by PubMed abstracts should be large enough to meet the first requirement for the corpus

mentioned above, but the same can’t be said about the second requirement: Since PubMed doesn’t

include any patents, it had to be expected that patent-specific terms would be ranked highly due to

the large text differences between patents and scientific publications (cf. Section 2.3). We therefore

took the occurrence of patent terminology into account during our evaluation of the quality of the

extracted terms. For that purpose, we devised a five-point scoring scheme:

• Score 0: term has no relation to the domain and doesn’t include patent terminology; e.g.,

terms like “end”, “one”, “user”, “then”,...

• Score 1: term includes patent terminology and has either no relation to the domain or is

an extension of a domain term that has also been found, e.g., patent terms like “invention”,

“claim”, “embodiment”, unusual adverbs like “therethrough”, “therewith”, “therefrom” or

extended terms like “pipette as claimed in claim”, “said pipette tip”, “aforementioned piston

ring”,...

• Score 2: term is either part of a domain term or includes one, e.g., “glass” instead of

“glass pipette”, “tip” instead of “pipette tip”, “vacuum” instead of “vacuum source/vacuum

pump/vacuum regulator”,...
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• Score 3: domain term that has also been found by the manual search, e.g., “pipette tip”,

“shucking device”, “vacuum pump”,...

• Score 4: domain term that has been overlooked during manual search.

The results of our initial experiment were largely positive. Figure 19 shows the distribution

of scores over the top 500 terms retrieved by the system (the maximum number of results) for

one example patent from our test collection. Many of the “useful” terms (i.e., terms with scores

between 2 and 4) are ranked highly, while terms without domain relevance (score 0) are usually

pushed to lower ranks. It is therefore possible to retrieve a significant portion of the relevant terms

with decent precision, although due to the appearance of additional useful terms on lower ranks,

the recall may not be as high as would be desirable. On the other hand, if high precision is not

essential, most relevant terms are among the retrieved terms. In the evaluated patents, about 73%

of the manually extracted terms were found by the term generation system, and for an additional

13%, at least a part of the term was. Only 14% of terms were missed completely, in most cases

because they were phrased in a complicated way that did not fit the pattern the system was looking

for.

Figure 19: Distribution of term scores over the top 500 terms extracted using the DOG4DAG
term generation platform. The concentration of “useful” terms (scores between 2 and 4) is highest
among the top-ranked terms, but there is still a number of additional good terms on lower ranks.
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5.1.1.2 Influence of the background corpus

While the high concentrations of relevant terms (scores 2 to 4) on high ranks and irrelevant terms

(score 0) on low ranks as shown in Figure 19 is a positive result, the picture is less clear for terms

with score 1. The fact that these terms are distributed widely means that the method is not

effective for filtering out terms with patent terminology. As we explained previously, this result

was not unexpected due to the choice of PubMed abstracts as a background corpus. Since most

of the patent-specific terms occur rarely or never in these abstracts, they get a high idf value and

therefore a rank that is higher than it should be. This problem can be solved by using different

documents for calculating the idf value, documents that also contains these patent terms. A

preliminary test of this possibility on the nouns of the pipette patents showed promising results.

Table 11 shows the ten highest-ranking nouns of the example patent. When using all PubMed

abstracts as a corpus (left column of Table 11), patent-specific nouns such as “FIG” (frequently

used in patents for referencing a figure), “embodiment” and “invention” are among the top ten.

However, when the patent corpus is used instead, all these nouns lose their high ranks and are

replaced by more relevant ones (e.g., “fluid” and “adherence”).

Term rank
Background corpus

PubMed EPO patents

1 pipette pipette
2 member tip
3 tip member
4 FIG body
5 portion passage
6 body air
7 air fluid
8 passage adherence
9 embodiment cords
10 invention portion

Table 11: Comparison of highest-ranking nouns extracted from a patent when using either PubMed
abstracts or patent texts as a background corpus. The use of patents leads to lower ranks for nouns
that are connected to the patent domain, but not to the specific patent.

An alternative way of avoiding high-ranked terms with typical patent language but no domain

relevance would be the creation of a stop word list that removes these terms completely. While

this approach would also successfully remove the patent terms shown in Table 11, it may also have

negative consequences for other terms that contain patent terminology but are still relevant for the
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patent class. We therefore believe that using patent documents for the background corpus is the

preferable approach for removing patent-specific vocabulary.

5.1.2 Term extraction evaluation

While our initial term extraction experiments (cf. Section 5.1.1) were restricted to extracting terms

from individual patents, our goal of proposing query terms for specific patent classes makes term

extraction from a complete document corpus (i.e., the patents of the respective class) necessary.

Since our initial experiments resulted in promising terms and showed improved performance from

using a patent corpus for the background statistics, we decided to also investigate further which

patents should be included in the background corpus. We experimented with background corpora

that were either closely or distantly related to the class that we extracted the terms from, as well

as a general corpus with no direct relation. Apart from that, we also wanted to find out whether

different statistical methods would be able to improve upon the performance of tf-idf.

5.1.2.1 Evaluated statistical term extraction measures

Apart from tf-idf, we used the previously published measures wf-idf and Log-Likelihood Ratio (LLR)

for the term extraction, and we introduced two new variants of tf-idf and wf-idf.

Since tf-idf tends to over-represent the term frequency to the detriment of the document fre-

quency [105,106], we also used the variant that is introduced with the name wf-idf by Manning et

al. [107]. The measure wf-idf is almost identical to tf-idf as defined in Section 5.1.1, but it applies

a logarithm to the tf value before multiplying it with the logarithmized idf value. This is intended

to reduce the boost that terms get from appearing very frequently, which makes sense in the patent

domain where some terms are repeated very often. Exact definitions of all measures are given in

Section 6.3.2.

Both tf-idf and wf-idf combine all documents from the domain corpus (i.e., the patent doc-

uments from the respective patent class) into one very large document that is used to calculate

the term frequencies. We are also introducing new variations of both measures that we named

majority-tf-idf and majority-wf-idf because they are based on taking the term rankings from dif-

ferent individual documents and combining them into a “majority vote”. More precisely, terms

are extracted and ranked for each document individually according to the respective measure. For

each of the documents, terms on high ranks are awarded fixed point scores that are then added
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up to retrieve a combined term ranking for the whole corpus. These measures are intended to give

higher ranks to very specific terms that are extremely important for a small number of documents

while rarely occurring in the others.

We also used an existing measure that preserves the corpus structure instead of relying on the

simplification of treating the domain corpus like one big document, the LLR measure. It uses only

the document frequencies from both corpora and doesn’t take term frequency into account at all.

LLR was proposed by Ted Dunning mainly for measuring the collocation strength of bigrams [108] -

in other words, the Log-Likelihood Ratio was used as a measure of “unithood” (i.e., the collocation

strength of terms) rather than “termhood” (i.e., the degree to which the term is representative for

the domain). It was however also previously applied to measuring termhood [109,110]. When used

for this purpose, LLR represents a statistical test of whether a term is more or less likely to appear

in the domain corpus compared to the background corpus. Only terms more likely to appear in the

domain corpus were included in the resulting term lists. For more details on all term extraction

measures as well as additional parameters of our term extraction and ranking algorithms we refer

again to Section 6.3.2.

5.1.2.2 Evaluation method

There are two main options for evaluating the quality of extracted terms:

1. Comparison with gold standard

If a complete vocabulary of relevant domain terms is available, retrieved terms can be matched

against this vocabulary in order to judge their relevance.

2. Expert evaluation

Domain experts can manually go through the retrieved terms and judge their relevance based

on their knowledge.

Both methods have advantages and disadvantages. In the first case, large-scale experiments can

be carried out with relatively little effort since the evaluation can be automated for the most part.

However, this is only possible if a complete gold standard for the respective domain is available,

which is usually not the case for individual IPC classes. The second option on the other hand relies

on the availability of experts for the respective domain - a prerequisite that is often even harder

to meet, especially for specialized domains. Since every domain expert has a very specific point of
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view on what is and isn’t relevant for their domain, it is important that there is more than one

expert. Even if a team of domain experts agrees to judge the retrieved terms, they usually do

not have the time to go through thousands of terms, which means that the evaluation scheme as

well as the terms that are to be evaluated have to be chosen carefully in order to minimize the

required time investment while at the same maximizing the value of the evaluation. However, if

these prerequisites can be met, the resulting evaluation has the potential to be more nuanced and

informative than purely automatic procedures. In our case, four information professionals from

the Scientific & Business Information Services department of Roche Diagnostics Penzberg agreed

to judge the rankings resulting from the investigated combinations of parameters. We devised a

simple rating scheme with scores between 0 and 2, with the following intended meanings:

• Score 2: This is a relevant term for the patent class.

• Score 1: This term is somewhat relevant, but not essential for the class; or:

This string is not a relevant term by itself, but it is part of a relevant term, or it contains

one.

• Score 0: Either this string cannot be considered a term, or it is a term without domain

relevance.

Table 12 shows some examples for extracted terms and the scores that were assigned by the

four experts. The example terms were extracted from patents of IPC class G01N 33/66 about the

chemical analysis of biological material involving blood sugar. The detailed definition of the class

is presented in Table 13 in Section 5.1.2.3. The evaluation procedure as well as the criteria we used

for comparing the results are described in Section 6.3.4.

The examples in Table 12 show that while there were some unanimous decisions, the experts

had some differences of opinion for most terms. In many cases, this meant that neighboring scores

were assigned to a term (i.e., scores 2 and 1 or 1 and 0), but there were even cases where one expert

judged a term to be very relevant and another one considered it to be completely irrelevant. Some

of these divisive terms are included in Table 12, e.g., “sialic acid”, “lectin” and “hemoglobin”.

Surprisingly, this was true for almost ten percent of all terms that were evaluated by the experts.

This shows that even among domain experts, the perceived quality of a term depends strongly on

the perspective of the user, again indicating the high complexity of the problem.
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Term Score 1 Score 2 Score 3 Score 4 Avg. score

glucose concentration 2 2 2 2 2.0
glucose measurement 2 2 2 2 2.0
glucose dehydrogenase 2 2 2 2 2.0
glucose monitor 2 2 2 2 2.0
blood sugar level 2 2 2 2 2.0
fructose 2 2 2 2 2.0
diabetes 2 2 2 2 2.0
insulin 2 2 2 2 2.0
carbohydrate 2 1 2 2 1.75
saccharide 2 1 2 2 1.75
oligosaccharide 2 1 2 2 1.75
polysaccharide 2 1 2 2 1.75
galactose 2 1 2 2 1.75
sugar chain 2 1 2 2 1.75
glucose meter 2 1 2 2 1.75
test strip 2 2 1 2 1.75
glycosylation endproducts 1 2 1 2 1.5
carbohydrate electrophoresis 1 2 1 2 1.5
glycolysis 1 2 1 2 1.5
reagent test pad 2 1 2 1 1.5
sialic acid 2 1 2 0 1.25
lectin 2 1 2 0 1.25
inositol content 1 1 1 2 1.25
biological fluid 1 1 1 2 1.25
blood sample 1 1 1 1 1.0
boronic acid 2 0 1 1 1.0
capillary channel 1 1 1 1 1.0
hemoglobin 1 1 2 0 1.0
abundance ratio 1 0 2 0 0.75
tetrazolium 1 0 1 1 0.75
fluid sample 1 0 1 1 0.75
mediator 1 0 1 0 0.5
interstitial fluid 1 0 1 0 0.5
hematocrit 1 0 1 0 0.5
albumin 1 0 0 0 0.25
protein 1 0 0 0 0.25
device 0 0 0 1 0.25
present invention 0 0 0 0 0.0
time 0 0 0 0 0.0
substance 0 0 0 0 0.0

Table 12: Examples for extracted terms, evaluation scores that were manually assigned by four
experts, and resulting score averages. For most terms, the experts’ opinions were divided.
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5.1.2.3 Corpora

Each of the measures that we used (cf. Section 5.1.2.1) compares the term statistics in the domain

corpus with those in a separate background corpus. Since it was one of our objectives to examine

the influence of the background corpus on the quality of the ranking, we used three different

background corpora with a varying degree of relatedness to the domain for each of the measures.

All corpora consisted solely of patent texts and were carefully assembled with the help of an

information professional based on IPC main groups and subgroups. We only considered patents

with a publication date between 1990 and 2010 for all corpora, and we chose a subset of about

100.000 patents for each of the background corpora. While this number is relatively small for a

background corpus, we believe that it represents a good balance between accuracy and running

time of the extraction algorithms due to the considerable length of most patents. In order to avoid

including potentially high numbers of very similar documents, we only included the most recent

patent from each INPADOC patent family.

For the domain corpus of our evaluation, we chose an IPC class that all our experts were

familiar with, subgroup G01N 33/66 about the chemical analysis of biological materials involving

blood sugars. The exact definition tree of class G01N 33/66 is shown in Table 13.

Class code Definition

G Physics
G01 Measuring; Testing

G01N Investigating or analysing materials by determining their
chemical or physical properties

G01N 33/00 Investigating or analysing materials by specific methods not
covered by groups G01N 1/00-G01N 31/00

G01N 33/48 Biological material, e.g. blood, urine
G01N 33/50 Chemical analysis of biological material, e.g. blood, urine;

Testing involving biospecific ligand binding methods; Im-
munological testing

G01N 33/66 involving blood sugars, e.g. galactose

Table 13: IPC definition tree for class G01N 33/66.

For the background corpus most closely related to the domain, we collected patents from the

diagnostics domain, but excluded patents belonging to G01N 33/66. The second corpus consisted

of patents from the pharmacological domain which is still related to the class, but much less closely

than the first background corpus. We again excluded patents also belonging to G01N 33/66 or to
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the classes that formed the first background corpus. For the most general corpus we didn’t restrict

ourselves to any IPC groups and simply included patents from all fields except those covered by

the other corpora. A graphical representation of the relationships between our individual patent

corpora in the form of a Venn diagram is shown in Figure 20.

Figure 20: Relation between different background corpora. The diagnostics corpus contains the
term extraction class, the pharma corpus is more distantly related to it, and the general corpus
covers all classes.

5.1.2.4 Results

In order to judge the quality of the resulting term lists based on the scores given by our experts, we

measured the average evaluation scores of the terms, and we calculated the “discounted cumulative

gain” (DCG) of the different rankings. Section 6.3.4 explains in more detail how we calculated

these measures.

Figure 21 shows the average expert scores for the top n terms (n ≤ 50) for the separate ranking

measures. According to the scoring system we detailed in Section 5.1.2.2, the best possible score

average is 2 (i.e., all experts agree that a term is relevant) and the worst possible score average is

0 (i.e., all experts agree that a term does not have any relevance). As the figure shows, the best

results are achieved using either wf-idf or LLR, followed by majority-tf-idf and majority-wf-idf.

The frequently used measure tf-idf clearly results in the worst-scoring ranking. Interestingly, while

this order of the individual ranking scores stays the same over most of the ranks, it appears that

78



Figure 21: Influence of different ranking measures on the average score of extracted terms. Measures
wf-idf and LLR perform best, followed by our proposed measures majority-tf-idf and majority-wf-
idf. The frequently used tf-idf measure results in the lowest scores.

both wf-idf and majority-wf-idf have some problems with assigning the very highest ranks: While

wf-idf becomes the ranking with the highest scores after a small number of ranks, it is considerably

behind most of the others at first. On the other hand, tf-idf starts out close to the top before

quickly becoming the worst measure by far. Similarly, majority-wf-idf starts out much worse than

majority-tf-idf, but catches up to it on the lower ranks.

The differences between the different measures become even clearer in Figure 22 where the DCG

values for all measures are compared. DCG is also based on the scores that were assigned by our

experts, but it incorporates real-valued weights that give the terms on high ranks a stronger influ-

ence on the final score. This leads to a slightly clearer distinction between the different measures,

although their order remains unchanged. In general, the results for the different ranking methods

were remarkably consistent over all evaluation measures we calculated: The frequently used tf-idf

measure was without exception the worst of the five measures that we investigated, and wf-idf as

well as LLR were consistently the best. The two new measures we proposed, majority-tf-idf and

majority-wf-idf, were unable to reach the scores that were achieved by wf-idf and LLR, but they
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Figure 22: Influence of different ranking measures on the DCG value of extracted terms. Similar
to Figure 21, measure wf-idf performs best, followed by LLR and our proposed measures majority-
tf-idf and majority-wf-idf. The DCG value is the lowest by far for tf-idf.

were also considerably better than tf-idf. However, unlike the original measures where tf-idf was

clearly worse than wf-idf, our measures reversed that situation to a certain degree. While the differ-

ences were much smaller, majority-tf-idf generally outperformed majority-wf-idf. This lends further

evidence to the observation that tf-idf does not work well for overly long texts such as our artificial

“domain document” that consists of multiple individual documents. Since the majority variants

of both measures rank the extracted terms for each document individually, this disadvantage does

not exist anymore, making majority-tf-idf the superior measure.

The second main aspect of our term extraction experiments was the evaluation of the influence

of the background corpus on the quality of the extracted terms. As we explained in Section 5.1.2.3,

we created three different corpora: One corpus that contains the class the terms were extracted

from (“diagnostics”), one that is relatively closely related to it (“pharma”) and one with no close

relation (“general patents”). Figure 23 shows the average term scores for the first 50 term ranks,

demonstrating that for our purpose of extracting relevant terms for a very specific domain, there is

a clear benefit from choosing a background corpus that is closely related to the domain. The scores
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Figure 23: Influence of different background corpora on the average scores of extracted terms. On
average, the extracted terms score highest with the closely related corpus (diagnostics) and lowest
with the most distant corpus (general patents).

are highest for the diagnostics background corpus, followed by the pharma corpus and the general

corpus with almost constant distances between the average scores. While the score differences

between the different corpora are not quite as large as for some of the different ranking measures

(cf. Figure 21), they still make it very clear that the background corpus should be taken into

consideration when terms need to be extracted from documents.

Figure 24 takes a closer look at the differences between the results for different background

corpora by comparing two measures for the precision of the term rankings. The upper three lines

correspond to a fairly loose evaluation of the ranking where terms with an average score above 1.0

are considered good while the three lower lines have the much stricter requirement of a perfect 2.0

score average (i.e., all experts have to agree that the term is valuable). As the figure shows, the

difference caused by the corpora is relatively small in the first case, but considerably larger in the

second. This means that the result improvement from using the closely related corpus is mainly

caused by a higher number of terms with very high relevance rather than a higher number of terms

with medium relevance.
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Figure 24: Influence of different background corpora on different precision values of extracted terms.
The score advantages of the closely related corpus (diagnostics) are mainly due to very high-scoring
terms (i.e., precision2).

5.1.3 Conclusion

In conclusion, our term extraction experiments showed that tf-idf in its original form is not a good

choice for the extraction of relevant terms from a domain corpus such as the documents assigned

to a certain patent class. However, switching to the similar wf-idf measure results in much better

term rankings, and the Log-Likelihood Ratio is almost as good. While our proposed measures were

unable to match these performances, their performance was still clearly ahead of tf-idf. Additionally,

the different ranking approach led to a lower overlap with the top terms from other rankings and

can therefore be considered a good complimentary approach for finding additional relevant terms.

Regarding the background corpus used for comparing the term statistics, our initial term ex-

traction experiments indicated that a patent corpus should be used when the terms are extracted

from patents. In our in-depth evaluation of different corpora, we were also able to demonstrate that

a corpus with a close relationship to the domain documents clearly results in better term rankings

than a more distantly related corpus or a mostly unrelated one. It is therefore advisable to choose

different background corpora according to the domain of the documents that are the target of the
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term extraction instead of using one fixed corpus for all term extraction tasks.

The quality improvement of retrieved terms that is achieved by implementing these proposals

can be quite dramatic. Table 14 shows two different term rankings that were retrieved from the

same set of documents, simply by changing the parameters of the extraction algorithm. Terms with

high average scores (≥ 1.5) were marked blue, while terms with low scores (≤ 0.5) were marked

red. This example again demonstrates that using the wf-idf measure and a specific background

corpus (Ranking 2) is clearly preferable to the tf-idf measure and a general background corpus

(Ranking 1). While these were the main results of our term extraction analysis, we also examined

minor additional parameters of the algorithm. We present the corresponding results and the exact

parameters used for the rankings in Table 14 in Section 6.3.4.

Rank
Ranking 1 Ranking 2

Term Score Term Score

1 glucose 2.0 glucose 2.0
2 sample 0.75 carbohydrate 1.75
3 blood 1.0 blood sugar 2.0
4 concentration 0.5 glucose concentration 2.0
5 method 0.5 sugar level 2.0
6 reagent 1.0 blood glucose 2.0
7 protein 0.25 saccharide 1.75
8 diabetes 2.0 sugar 2.0
9 patient 0.25 blood sugar level 2.0
10 invention 0.0 glucose meter 1.75
11 presence 0.25 glucose measurement 2.0
12 sensor 1.0 test strip 1.75
13 present invention 0.0 glucose monitor 2.0
14 amount 0.25 glucose dehydrogenase 2.0
15 enzyme 1.0 glucose level 2.0

Table 14: Highest-ranking extracted terms for two different sets of parameters with average assigned
evaluation scores. Plural terms that were also included in singular form were removed. The quality
of Ranking 2 is clearly far superior to Ranking 1 despite being retrieved from the same set of
documents.

5.2 Extracting keywords from class definitions

As Section 5.1 showed, extracting terms from class patents results in good keyword suggestions, but

the extraction process is relatively complicated, especially if different background corpora have to

be constructed to fit the respective patent class. A more straightforward way of turning class codes
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into keyword suggestions is by considering the corresponding IPC definitions. Keywords and terms

can again be extracted directly from the definition text by using established NLP techniques such

as part-of-speech tagging, grammatical parsing and noun-phrase chunking. This simple approach

can lead to high-quality term suggestions for refining an initial query. If the subordinate definitions

of the class code are taken into account, this can especially result in very useful filter terms for

the keyword search. For example, if a searcher enters the class code G01N 21/00 (“Investigating

or analyzing materials by the use of optical means, i.e. using infra-red, visible, or ultra-violet

light”), the system can extract closely related terms and phrases such as “cuvette”, “refractivity”,

“specular reflectivity” and many others from the subordinate definitions.

In addition to this direct approach, the morphosyntactic structure of some definitions can be

exploited to get additional related keywords that do not appear in the IPC definition hierarchy. For

definitions containing lists of related terms, we use the system described by Fabian et al. [111] to find

additional terms with the same relation and suggest the top-ranking ones to the user. This system

was originally intended to assist ontology engineers in improving and extending their ontologies,

and has therefore been integrated into the two most important ontology editors, OBO-Edit [112]

and Protégé21, as part of the ontology generation plug-in DOG4DAG [104]. It suggests additional

co-hyponyms to existing ontology entries, i.e., terms that share a sibling relationship with a set

of existing ontology terms that have a common parent. Its term suggestions are extracted from

web pages using the pages’ HTML structure and different textual patterns, making use of the

information contained in the ontology. However, while ontological information helps improve the

quality of the generated siblings, the system does not rely completely on the availability of an

ontology. Sibling terms can also be recovered just by entering a small number of seed terms. This

functionality can be used for any IPC definition that contains a list of sibling terms; in many cases,

such terms appear in the form of examples for the inventions covered by the class. As an example,

for the IPC definition “Orthopaedic devices [...] such as splints, casts or braces” (class A61F 5/01),

the system proposes the relevant sibling terms “slings”, “collars”, and “crutches”. For a baseline

Boolean keyword query simply connecting the terms with “OR”, the result set almost doubles in

size after the inclusion of the generated sibling terms. Our system detected 3053 IPC classes (≈ 4%)

that contain enumerations and can therefore in principle be used in this way for query expansion.

21http://protege.stanford.edu/
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5.3 Extracting keywords from external ontologies

Existing ontologies are another possible source for additional keywords. If an ontology term can

be matched to an IPC class definition, any additional information contained in the ontology about

the term (e.g., its synonyms) can be used to add suggestions for the user. As a proof of concept,

we again used the GoPubMed annotation pipeline [39] to map MeSH terms to an IPC subset with

biomedical relevance. For that purpose, we selected all subclasses of the IPC class “A61K” with the

definition “Preparation for medical, dental or toilet purposes” (981 subclasses). The annotation

results provided at least one MeSH term for 865 of these classes (88%), and three or more terms

for 466 classes (48%). Many IPC classes were matched with very relevant MeSH terms, e.g., class

A61K 48/00 (“medicinal preparations containing genetic material which is inserted into cells of

the living body to treat genetic diseases; gene therapy”) with MeSH terms including “Genes”,

“Cells” and “Gene Therapy”. On the other hand, there were also incorrect matches, often due to

shortened MeSH synonyms. For the example class, the MeSH term “Containment of Biohazards”

was considered a match because the word “containing” in the class definition was mapped to

“Containment” which MeSH lists as a synonym. Since our system proposes expansion terms to the

user instead of automatically adding them, this high level of coverage represents a valuable addition

despite the inclusion of some false positive annotations. Additionally, as we will demonstrate in

Section 5.6, mapping ontology terms to the patent texts that are available from a patent retrieval

system makes faceted browsing of patent search results possible.

The availability of a domain ontology also offers the possibility of enhanced sibling generation:

If an IPC definition contains a MeSH term as well as one of its child terms in the form of an

example, it is reasonable to assume that all other child terms are also relevant. Following this

intuition, IPC definitions of this form (e.g., “Sulfonylureas, e.g. glibenclamide, tolbutamide, chlor-

propamide”) lead to term suggestions with very high precision (for the example: “Carbutamide”,

“Acetohexamide”, etc.). Of the biomedical IPC subset, this was possible for 72 classes (7%).

5.4 Repurposing class-keyword mappings for class suggestion

In the previous sections, we have presented multiple ways of identifying additional terms and

keywords for a given classification query:

• by applying NLP methods to patents from the class for term extraction and using statistical
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measures for ranking them

• by reusing the features that were identified as most important by the respective classifier

• by extracting noun phrases from class definitions

• by retrieving additional terms such as synonyms from existing ontologies.

Each of these possibilities corresponds to a mapping between terms and patent classes and can

therefore also be used in the opposite direction, for proposing classification components to add to

keyword queries. If the user enters a keyword that has been mapped to an IPC class, this class

can be suggested to the user for expanding their query. Since the size of the classification system

prevents users from knowing all class definitions, this information has to be displayed with the

suggested class code. Consequently, even users unfamiliar with the IPC can profit from classification

information without investing too much effort into getting to know the classification system. This

is especially true for the biomedical domain, since the availability of detailed domain ontologies

leads to very precise class suggestions. The WIPO website used to offer similar functionality: The

system TACSY expected a small number of keywords as input and suggested related IPC classes

from different hierarchy levels. However, it was not made clear what the system’s class proposals

were based on and the service was stopped in November of 2012 without further explanation22.

5.5 Using class and term co-occurrences for query expansion proposals

Apart from mapping keywords to classes and vice versa as shown in the previous sections, it is also

possible to use the co-occurrence of either to retrieve more relevant components of the same type

for the query. For keywords, we have already presented various possible sources for co-occurrence

statistics: Common features of classifiers, terms extracted from the same class documents or from

closely related class definitions and especially ontology terms with a known relationship. For patent

classes, the existing patent data represents a more direct source. In order to find closely related

classes to suggest to the user, we analyzed the class co-assignments in our patent corpus. We

collected all pairs of classes that were assigned to the same patent and ranked them both on the

absolute number of co-assignments and the relative number in the form of their Jaccard-Index.

We hypothesize that pairs of classes with high ranks in either ranking are related closely enough

22http://www.wipo.int/tacsy
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that many searches for one of the classes will also have additional relevant results in the second

class. We therefore propose to suggest these frequently co-occurring classes to the user for query

expansion.

Figure 25: Example for semantically related IPC classes without any hierarchical relation, detected
using co-assignment information.

Many resulting class suggestions are from the same hierarchical tree but not directly related,

i.e., they cover patents with similar aspects to the ones searched for by the user. Additionally, the

rankings include pairs of classes from completely separate parts of the hierarchy that are also highly

related; in many cases, they represent different points of view. Figure 25 shows one example of

such a pair of classes, including their definition hierarchy. The left class is clearly more application-

oriented than the right one, since it deals with “medical preparations containing peptides” while

the right class concentrates on the peptides themselves. However, we argue that many searchers

interested in patents from one class will also find relevant patents in the other one. We used the

professional patent search tool Thomson Innovation23 to find out how recall is affected when only

one class is used for search. For these example classes, searching for only the first class leads to over

50% missed possible results, and searching only for the second still leads to 25% missed results.

The situation is similar for the pair of classes shown in Figure 26, also detected using co-assignment

information.

As these examples show, it is possible to find additional relevant classes to expand user queries

based on class co-occurrence. The relevance of this co-occurrence information was also confirmed

23http://info.thomsoninnovation.com/
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Figure 26: Second example for semantically related IPC classes without any hierarchical relation,
detected using co-assignment information.

by the larger overlaps in the top features of the corresponding classifiers compared to random class

pairs that we presented in Figure 18 in Section 4.4. In order to ensure the quality of our suggestions,

we based the co-assignment statistics solely on the existing EPO assignments.

5.6 Patent retrieval system prototype GoPatents

In order to give a demonstration of our proposals, we implemented a patent retrieval prototype in

cooperation with Jan Mönning. Since our implementation is based on the semantic search engine

GoPubMed, we decided to name our system GoPatents. As described in Section 2.5, GoPubMed

enables the user to filter the resulting PubMed abstracts using terms from MeSH, Gene Ontology

and a protein database. This functionality is brought over to GoPatents, with the added benefit

of also allowing the use of IPC classes for the same purpose. The user interface is divided into two

columns, a main window on the right and a side column on the left; an overview is given in Figure

28, showing the following main components of the system:

• The term hierarchies (left column, second from top)

GoPatents enables the user to refine their search using relevant concepts from different sources.

All patent documents have been automatically annotated with MeSH terms, GO concepts and

proteins from a protein database. Additionally, the assigned IPC classes have been extracted

from the XML patent files. The complete hierarchies of all these annotation systems are

shown continuously, with the numbers in square brackets as well as the gray bars next to the
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respective term indicating how many of the retrieved documents were annotated with it. The

arrows next to each term enable the user to expand lower levels of the hierarchies for more

precise information about the contents of the search results. Since the IPC class codes are

not informative for users without patent search experience, hovering the mouse over a code

opens a pop-up window with the complete definition hierarchy of the term. An example of

this functionality is shown in Figure 27.

Each concept from each of the included hierarchies can be used to refine the search in different

ways. Clicking on a term opens a small pop-up window that offers options to restrict the

search to documents containing the term or conversely, excluding all these documents from

the search. Both of these filtering options can be combined for multiple terms from different

hierarchies, thereby allowing the user to quickly compose a very focused query.

Figure 27: IPC class definition tree displayed by GoPatents patent retrieval system prototype.
Hovering the mouse over any IPC code opens a pop-up window with this information.

• The additional filtering options (left column, third to fifth from top)

Besides automatically annotated terms and IPC classes, GoPatents offers additional possibili-

ties for faceted browsing. Applicant information is extracted from the XML patent files along

with publication dates, and search queries can be refined further by applying this data from

the “who” and “when” components in the left column in the same way that we described

above.

• The search field for entering queries (main window, top)

Queries can consist of keywords, IPC classes, terms from the different included hierarchies as

well as the previously described additional filtering options.
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Figure 28: Overview of GoPatents patent retrieval system prototype. The query is entered in the
box on top, result documents are shown below, and the faceted browsing functionality is available
in the left column.

• The search results (main window, bottom)

Patents that fit the initial query as well as any additional requirements made by including

or excluding other facets are displayed in the main part of the window. This result overview

shows the patent titles along with a text snippet that is supposed to help the user judge

whether the patent is of interest to him. Clicking on a result opens the complete patent in a

separate browser tab.

• The search history/concept finder (left column, top)

Since it is very easy to modify queries considerably with few mouse clicks, it is useful to
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give the user access to their search history. If a query modification proves unsuccessful, this

enables them to go back to a previous result. The concept finder can be used to search the

hierarchies for relevant concepts that can be added to a query.

While all the described functionality is active and working in GoPatents, it is still a prototype

that is not yet fit for professional patent search. The system has not yet been optimized and is

therefore due to the size of the corpus not fast enough when the results for keyword queries are

retrieved. This can lead to very long delays (almost five minutes) after submitting an initial query

and limits the number of documents that are semantically analyzed. However, once the results

have been retrieved, adding and removing different facets works much faster. Additionally, our

proposed query expansion methods have yet to be fully integrated into the system. On the other

hand, result statistics are calculated automatically and can be accessed instantly by the user as

soon as the result set has been retrieved. As Figure 29 shows, these statistics cover multiple aspects

of the result set:

• The most frequently assigned terms from the different hierarchies (MeSH, GO and proteins)

are listed. This gives the user an intuitive overview of the main topics covered by the retrieved

patents, and is therefore a good indicator of whether the search retrieves the documents that

the user intended to find.

• The most frequent patent classes in the result set are collected, informing the user about the

parts of the IPC hierarchy that are most closely connected to their query. This may help the

user discover additional aspects of the search results, and therefore allow them to refine their

query by adding or excluding additional classes.

• The top publication years of the retrieved patents are listed in order to display the temporal

trend of patent publications relevant to the query.

• The applicants with the highest numbers of patents among the results are retrieved. This is

especially useful for professional patent searchers looking for the main competitors in a given

area.

In this chapter, we proposed various methods for retrieving additional keywords and patent

classes to expand and refine patent search. Additionally, we introduced the patent retrieval proto-

type GoPatents that incorporates some of our proposals. The following chapter will describe the
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Figure 29: Result statistics automatically generated by GoPatents prototype. The most frequently
assigned terms from the different hierarchies are listed, as are the best-represented IPC classes,
years and applicants.

methods we used in previous chapters (i.e., for the analysis of MeSH and IPC as well as the patent

categorization) as well as in this chapter (with additional minor results for the term extraction) in

more technical detail.
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6 Methods

This chapter describes the methods we used for our experiments in more detail. The first section

explains our analyses of MeSH and IPC, the second section concerns our experiments with patent

categorization, and the third section gives additional information about the term extraction from

patent documents.

6.1 Analysis of MeSH and IPC

Both analyses were carried out in two steps: We first retrieved and analyzed the terms and their

hierarchical relationships, and then the annotations to our document corpora.

6.1.1 MeSH

For our analysis of the MeSH hierarchy, we used the XML version of MeSH 2012 retrieved from the

MeSH homepage24. We extracted all MeSH terms with their MeSH IDs as well as the tree numbers

from the file. The tree numbers were then used for reconstructing the hierarchy. We implemented

graph-based methods for calculating different hierarchical properties such as the number of nodes

per hierarchy level. For the PubMed/MeSH annotation analysis, we used the complete Medline

dataset with MeSH annotations, downloaded from PubMed on September 22, 2011. After extract-

ing the necessary information about documents and annotations, we analyzed it using a custom

implementation, calculating different characteristics of the data such as the average number of

annotations per document.

6.1.2 IPC

We reconstructed the IPC hierarchy using HTML files available from the WIPO homepage25.

After manually entering the eight sections of the IPC with their definitions as top nodes of the

hierarchy, our implementation automatically extended the hierarchy step by step: Each section

file (e.g., “A.htm”) contained all main classes of the section, allowing us both to add them to our

representation of the hierarchy and to retrieve the corresponding HTML files. Then the subclasses

were extracted from the main class files (e.g., “A01.htm”), and the main groups and subgroups from

the subclass files (e.g., “A01B.htm”). Since the class codes do not correctly reflect the parent/child

24http://www.nlm.nih.gov/mesh/filelist.html
25http://www.wipo.int/ipc/itos4ipc/ITSupport and download area/20060101/subclass/advanced/en/

20060101 en al xml.zip
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relationship between entries at the subgroup level (cf. Section 2.4.1), we used the dot representation

in the files to ensure the accuracy of our representation of the hierarchy. Class definitions were

also extracted from the files in string form; images contained in a number of chemistry-related

class definitions as well as references to related classes were removed. The analysis of the hierarchy

was carried out using a slightly modified version of our MeSH implementation, leading to directly

comparable results.

For the patent annotation analysis, we used XML files published by the EPO via their

subscription-based “Product 14.12”26. We used the complete set of patent applications from the

years 1981 to 2005, and we extracted document numbers as well as all classification information

from the files. The reason for our exclusion of more recent patents was a change in EPO publication

policies and data formats. Since there have been multiple updates to the IPC that are not reflected

in the EPO’s files, we decided to use the 2006 version of IPC in order to minimize the number

of class assignments that could not be matched. The document numbers were used to make sure

that different versions of the same patent were not counted multiple times. For the classification

information, we extracted both primary and secondary classification codes and combined them

into one set of codes per patent. We again used a modification of the PubMed implementation to

perform our analyses of the data.

6.2 Automated patent categorization

As we described in Section 4.1, our approach to assigning additional classes to patents was based on

an approach by Tsatsaronis et al. for assigning MeSH terms to documents using Maximum Entropy

(MaxEnt) classification. For each MeSH term that was to be used for document annotation, a binary

MaxEnt model was learned from already annotated documents and applied to new ones [44]. We

applied the same principle to patent classification, learning IPC classifiers from existing patent

documents with classes manually assigned by professional patent examiners. We will now describe

the details of our implementation. Our corpus was again a subset of the EPO dataset we used for

the IPC analysis. For the classification, we used patents published after 2005 and before July 2012.

As we described in Section 4.3, we constructed two corpora by applying three different criteria:

the number of patents, the text length and the optional restriction to primary classification. We

included all classes that had the required number of patents fulfilling the text length requirement.

26http://www.epo.org/searching/subscription/raw/product-14-12.html
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In the first corpus, only patents that had the class as primary classification were counted. We then

collected the required number of patents for each class by randomly choosing from the complete

set. Table 15 shows the values we chose for the parameters as well as the number of classes that

fulfilled the requirements and the resulting number of patents per corpus.

training number of minimum restricted to number of total number
corpus patents/class text length primary classification classes of patents

C73 200 8000 characters yes 73 14600

C1205 100 2000 characters no 1205 120500

Table 15: Training corpora for patent categorization. C73 has more patents per class with longer
text and only primary classification.

We used the Java API of the open-source machine-learning toolkit Mallet (version 2.0.7) [113]

for our classification efforts. The pre-processing was done in two steps: For each of the patent

documents that were chosen from the EPO corpus for inclusion in C73 or C1205, we first created a

text file that contained all text fields from the corresponding XML file. We then created a feature

vector from each text file by using existing and custom implementations of Mallet’s Pipe interface

in sequence. The classifiers were trained by executing the train method from the Mallet class

MaxEntTrainer.

The training sets for each classifier were constructed as follows: For the positive set, all patents

that the corpus contained for the respective class were included. For the negative set, a few different

approaches were investigated by Tsatsaronis et al. [44]. Since the differences were very small, we

decided to use the most simple option: We randomly chose the same total number of patents as

in the positive set from the set of all other classes. In order to avoid the over-representation of

individual classes, we shuffled all these classes and randomly selected one document from each of

them in turn. Despite taking that step, the negative features seem to be overly concentrated on

separating very distant technological fields and less useful for detecting subtle differences between

classes (cf. Table 9). We plan to investigate different possibilities for constructing the negative set,

e.g., increasing the number of documents from fairly similar classes. However, while this may help

fine-tune the negative features, it is possible that the currently high quality of the positive features

will suffer.

We used 10-fold cross-validation and calculated the macro-average scores (cf. Table 8). Since

the cross-validation methods that are included in Mallet do not conserve the ratio of positive and
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negative training documents, we implemented a custom method for this task as well as for the

evaluation of the categorization results.

Since both our approach and our objective for patent categorization differ considerably from the

previous approaches we mentioned in Section 2.6.1, comparing the results directly is not possible:

Almost all existing approaches are restricted to higher levels of the hierarchy, and all of them are

used for assigning one single class instead of sets of classes.

6.3 Term extraction from patents

Automatic term extraction from any kind of document is usually performed in two steps: First,

term candidates are identified by applying certain natural language processing techniques to the

text. Second, statistical methods are used to rank the term candidates by how well they represent

the document; this step usually involves the comparison of term statistics with one or more existing

corpora. The following subsections describe in detail how both steps were performed during our

term extraction process.

6.3.1 Text processing

The patent texts from both the domain and the background corpora were pre-processed using the

LingPipe API [114]:

• Texts were split into sentences using the LingPipe MedlineSentenceModel which is designed

for scientific abstracts from the biomedical domain. While patent texts don’t fit that descrip-

tion exactly, the sentence splitter worked well enough for our purposes. The only correction

that proved necessary was the insertion of an artificial sentence boundary at the end of the

patent titles (in the form of a period symbol) to prevent the sentence splitter from disregarding

the final word of the title.

• Sentences were tokenized using LingPipe’s IndoEuropeanTokenizerFactory.

• The resulting tokens were assigned part-of-speech tags according to the LingPipe MedPost

HiddenMarkovModel [115]. As for the sentence splitter, this model was not originally intended

to be used for patent texts, but the quality of the tag assignment was for the most part

satisfactory.
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• Based on the assigned tags, noun phrase candidates were extracted from the patent texts. In

order to maximize precision, we restricted phrase extraction to the very reliable pattern adjec-

tive* noun+. MedPost uses separate tags for proper and plural nouns as well as comparative

and superlative adjectives (Smith et al. give a complete list of tags in [115]); our term extrac-

tion algorithm treated proper nouns like regular nouns, while plural nouns were only allowed

as the last word of a phrase candidate. Adjectives in comparative or superlative form were

treated like regular adjectives. Since MedPost tends to assign the “noun” tag to single letters,

single-word candidates containing less than three and multi-word candidates containing less

than five characters were discarded, as were candidates containing punctuation.

All extracted noun phrases were collected in an index containing the total number of occurrences

of the phrase in the corpus (term frequency) as well as the number of corpus documents containing

the term (document frequency). The following section describes how the different ranking methods

that we examined use this information to calculate the rankings.

6.3.2 Ranking methods

As we described in Section 5.1, we evaluated three of the most common statistical methods for

ranking automatically extracted terms as well as two new variants that we are proposing. Our

goal was to find the best method for ranking terms according to their “termhood”, i.e. the degree

to which “a linguistic unit is related to (or more straightforwardly, represents) domain-specific

concepts” [116]. Usually, the termhood is measured by comparing term frequencies in a domain

corpus to those in at least one more general background corpus.

The measure tf-idf is commonly used in information retrieval. Search results are intended to

be improved by giving high ranks to documents that don’t just contain the search terms, but

are best represented by them compared to the other documents in the available collection. In

order to determine the terms that represent a document, every term is assigned a weight that

is proportional to its number of occurrences in the document, and inversely proportional to the

number of background documents containing it. This simple idea forms the basis of a number of

slightly different definitions of tf-idf; we follow the definition given by Manning et al. [107].

The tf-idf weight is calculated by multiplying two scores, the term frequency (tf ) and the inverse

document frequency (idf ). The term frequency is defined simply as the number of occurrences of

a term in the document. It can be normalized to a value between 0 and 1 by dividing the number
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of occurrences by the total number of terms in the document. The document frequency is then

defined as the number of documents that contain the term, and the inverse document frequency of

the term t is given by

idft = log N
dft

,

where N represents the total number of documents.

The tf-idf weight of a term t in a document d is then defined as

tf -idft,d = tft,d × idft.

In order to avoid division by zero for terms that don’t occur in any corpus document, the document

frequency is often increased by one for all terms.

It is not our objective to extract terms that represent a single document; we want to find

terms that are representative of the whole domain. We therefore apply the tf-idf principle to our

situation by treating the domain corpus like one (very large) document and the background corpus

like the rest of the document collection. That means that in our case term frequency is calculated by

adding up term frequencies from all domain documents, and document frequency corresponds to the

number of background documents containing the term. For calculating the document frequencies,

we consider the “domain document” a part of the background corpus; otherwise, domain terms

that aren’t included in any background document would lead to division by zero during the idf

calculation.

Since tf-idf tends to over-represent tf to the detriment of idf (cf. [105, 106]), we also used the

variant that Manning et al. call wf-idf in the same way [107]. It is calculated by replacing tf with

wf =

{
1 + log tf tf > 0
0 otherwise

,

and then multiplying by idf as before.

We also propose a new way of using tf-idf for extracting terms from a corpus instead of a

single document, the measure we introduced in Section 5.1.2 under the name majority tf-idf. Our

system applies the tf-idf method as defined above to each domain document, while still using the

whole background corpus as a point of comparison. A pre-defined number of top-ranking terms in

each document are assigned a number of points depending on their rank. These points are added

up over all domain documents for all terms that have a high rank in any of them, resulting in
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a new term ranking that favors terms that are very important in a comparably small number of

documents over others that are somewhat important in many documents. Intuitively, this could be

expected to lead to a more specialized ranking. There are a lot of possible choices for the allocation

of points to top-ranking terms that may result in more or less specific terms. For our extraction

experiments, we decided to concentrate just on the most important terms for each document. We

therefore used the following simple point scheme: The first three terms in each ranking are assigned

3, 2 and 1 point(s) respectively. For majority wf-idf, we did the same calculation using wf-idf on

the individual documents.

The third existing measure we used was the Log-Likelihood Ratio (LLR) that also preserves the

corpus structure. As a consequence, LLR relies on the document frequencies in both corpora and

doesn’t take term frequency into account. It is the basis of a statistical test that is used to measure

how well experimental data fits different hypotheses about the model the data originated from.

Applied to our requirements, the document frequencies in the domain and background corpus of a

specific term are the data, and the hypotheses are the following:

• H0: Term t is not domain-specific; it is as likely to occur in the domain corpus as it is in the

background corpus.

• H1: Term t is domain-specific; it is more or less likely to occur in the domain corpus than in

the background corpus.

As defined by Dunning, the value of LLR is then the logarithmic ratio of the maximum value of the

likelihood function assuming H0 and the maximum value of the likelihood function assuming H1.

We are using a binomial model for calculating the likelihood function with parameters p1 and p2

that represent the probability of a term occurring in the domain corpus and the background corpus

respectively. If n1, n2 are the numbers of documents in the domain corpus and the background

corpus, and k1, k2 are the corresponding numbers of documents containing the term, the likelihood

function for a specific term can then be calculated as follows:

L(p1, p2) = p1
k1(1− p1)n1−k1

(
n1
k1

)
p2

k2(1− p2)n2−k2
(
n2
k2

)
This likelihood function is maximized for the values p1 = k1

n1
and p2 = k2

n2
. Note that H0

assumes that the term is as likely to occur in the domain corpus as it is in the background corpus,
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which means that the same value must be chosen for p1 and p2. The likelihood function is then

maximized for the value p1 = p2 = k1+k2
n1+n2

, and the ratio of both maxima is

λ =
( k1+k2
n1+n2

)
k1+k2

(1− k1+k2
n1+n2

)
n1+n2−k1−k2

( k1
n1

)
k1

(1− k1
n1

)
n1−k1

( k2
n2

)
k2

(1− k2
n2

)
n2−k2

The logarithm is used to simplify the calculation, and terms are then sorted by their resulting

LLR score to make the final ranking. However, hypothesis H1 poses a problem: Since it does not

distinguish between the corpora, terms that are more likely to occur in the domain corpus than

in the background corpus can get the same score as terms for which the opposite is true. We are

therefore following the solution that was proposed by Gelbukh et al. for this problem, by requiring

term candidates to fulfill an additional condition [110]. In our case, only terms that satisfy the

inequality
k1
n1

>
k2
n2

with ki and ni defined as above (k1 and n1 are the variables that belong to the domain corpus) are

included in the ranking; all others are simply discarded. This means that even though hypothesis

H1 only states that the probabilities differ between both corpora, the terms that make up the final

ranking are only the ones that are more common in the domain corpus.

We also considered using LLR for the “majority method” we defined above. But since this

measure uses document frequencies instead of term frequencies for the domain corpus, applying it

to just one document can not be expected to lead to good results - the document frequency would

simply have the value one for every term candidate in the document, making the least common

term that occurs in the document automatically its top term. Our expectations were confirmed by

the resulting term lists; since their rankings were quite obviously much worse than all other results,

we excluded them from the evaluation.

6.3.3 Additional parameters

As we described in detail in Sections 5.1.2.1, 5.1.2.3 and 6.3.2, we were mainly interested in exam-

ining the influence of different ranking measures and background corpora; we already discussed the

results for these aspects in Section 5.1.2.4. However, we also investigated additional minor param-

eters that influence the ranking quality of our algorithm. This section describes these parameters,

and Section 6.3.4 compares the results. We were planning to answer the following questions:
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• Which fields of the patent are most useful for phrase extraction?

• Should the statistics also be updated for substrings of candidate terms?

• Which cutoff value should be used for the document frequency of candidate terms?

As we described in Section 2.3, the writing styles and therefore the vocabularies of most patents

differ significantly between individual fields of the same patent. Consequently, it is not clear which

fields of the patent should be used for the extraction of additional search terms. On the one hand,

it seems likely that the relatively natural writing style of the abstract and description sections

would be more suitable for this task than the often deliberately obfuscating language of the claims

section. On the other hand, since the claims are legally the most important part of the patent,

they should also not be disregarded. We examined the use of each of these fields individually, and

we additionally tried using the patent titles or the complete patent text including all these fields

(i.e., title, abstract, description and claims).

The next aspect that we investigated concerns the substrings of candidate terms. The tag

pattern we used for the extraction leads to a high number of phrase candidates that contain other,

shorter candidates. There are two straightforward ways of dealing with these cases:

1. Extract the longest possible sequence of words as well as all subsequences that fit the pattern.

2. Extract only the longest possible word sequence and ignore all subsequences.

Choosing one of these approaches can have fairly substantial consequences on the collected phrase

statistics - and therefore on the resulting ranking. Very common and important domain phrases

may be ranked much higher by the first method than by the second one if they occur mostly as

substrings of more specific phrases. On the other hand, it can be argued that the second method

gives more weight to the complete phrases included in the domain texts and lessens the risk of

extracting overly general phrases.

The third additional parameter that we examined was the minimum document frequency a

term was required to have in the corpus in order to be included in the final ranking. Since our

ranking methods require a positive value for the document frequency, terms that occurred in the

domain corpus but never in the background corpus were not included in the final rankings. This

makes sense, because extremely rare terms often originate from typos. We evaluated three different
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values (2, 5 and 10) that the document frequency of a term was required to surpass for a term to

be included.

As we described in Section 6.3.1, we collected term frequencies and document frequencies for

all extracted noun phrases in an index in order to calculate the rankings. Both of these statistics

were collected for all individual combinations of the parameters we examined:

• background corpora: diagnostics, pharma, general patents

• patent fields: the complete patent texts as well as the individual fields title, abstract, descrip-

tion and claims

• candidate substrings: only count the longest candidate/also count its substrings

• minimum document frequency: values 2, 5 and 10.

This resulted in 78 different sets of tf and df statistics. (Since patent titles are usually fairly

short, we only used the value 2 for the minimum document frequency.) After applying each of

the five ranking methods - tf-idf, wf-idf, LLR, majority-tf-idf and majority-wf-idf - to each set of

statistics, we retrieved 294 different term rankings (78 each for the existing measures, 30 each for

our proposed measures that do not take the minimum document frequency into account). The

complete set of term rankings is illustrated in Figure 30, where each square represents five term

lists corresponding to the five ranking measures.

The colors in Figure 30 represent the different ranking measures we evaluated. Each square

stands for the three best average scores that were retrieved for the respective set of parameters,

with the top left triangle displaying the color of the best measure and the bottom right triangle

representing the second and third. As an example, the square on the top left represents the term

rankings that were retrieved from the patent titles with minimum document frequency 2, using

the diagnostics corpus for the background and including substrings of term candidates into the

statistics. For this choice of parameters, the best result was achieved from using the LLR measure,

followed by wf-idf and majority-wf-idf. The figure gives some insight into how the combination

of parameters affects the results. Interestingly, although the wf-idf measure was the best measure

overall (cf. Section 5.1.2.4), its advantage comes mainly from the more general background corpora;

it is in most cases surpassed by the LLR measure on the more specific diagnostics corpus. On the

other hand, LLR is surprisingly weak when combined with the general patent corpus. For most
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Figure 30: Overview of term extraction rankings. Each square corresponds to five different ranking
lists, with the top three represented by color (red=LLR, dark/light green=wf-idf/majority-wf-idf,
light blue = majority-tf-idf).

combinations of the three remaining parameters, it does not even manage to be among the best

three of our five measures. The opposite is true for our two newly proposed measures, majority-tf-idf

and majority-wf-idf. When the diagnostics corpus is used for the background, both measures are

topped by wf-idf and LLR in almost all cases. However, the measures (especially majority-wf-idf )

seem to be much better-suited for more general background corpora where they mostly outperform

LLR and are often even ahead of wf-idf, at least for the patent fields title, abstract and claims.
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One result that we already discussed in Section 5.1.2.4 is confirmed by the overview in Figure 30:

the very weak overall performance of the regular tf-idf measure. There is not a single combination

of parameters for which the tf-idf ranking even made it into the top three of the five measures.

An example for the term rankings resulting from different parameter combinations was given

in Table 14 in Section 5.1.2.4. Both of the rankings in the table were using the abstract field of the

patents, and the left ranking was retrieved using tf-idf with the general background corpus excluding

substrings of term candidates and using the value 2 for the minimum document frequency, while

the right term ranking resulted from using wf-idf with the diagnostics corpus including substrings

and using the value 5. The following section describes our evaluation of these term rankings.

6.3.4 Evaluation

As we mentioned in Section 5.1.2.2, it was important to minimize the time investment required

from the domain experts. We therefore restricted the evaluation to the top 50 terms of each list.

Since there was a lot of overlap in the different ranking lists, we combined all 294 lists into one,

thereby reducing the number of terms from almost 15000 partly identical terms on individual lists

to slightly less than 600 terms on one list. This meant that the evaluation was a manageable task

for the experts while still delivering meaningful information. In order to evaluate the individual

parameters of the ranking algorithm that we wanted to evaluate, we separated the complete set of

rankings into corresponding clusters and calculated the averages of the scores for the different ranks.

Additionally, we calculated the “discounted cumulative gain” (DCG) of the individual rankings.

DCG is frequently used in information retrieval to judge the quality of the ranked result sets of

search engines. It is based on relevance scores for the results that are weighted according to their

ranks. Formally, the DCG at rank r ∈ N is defined as follows:

DCGr = score1 +
∑r

i=2
scorei
log2(i)

,

where scorei is the average relevance score for the term at position i. Since our experts evaluated

the first 50 terms from each list, we can calculate the DCG up to position 50.

In Section 5.1.2.4, we presented the results of our evaluation for the different ranking methods

as well as the different background corpora. Figure 31 shows the same analysis for the different

text fields of the patents. It shows that despite the different writing styles and vocabularies used

in different parts of the patent, the term extraction still works best when the entire patent text
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Figure 31: DCG values of term rankings extracted from different patent fields according to expert
scores. The complete patent gives the best results, while the claims section leads to the worst term
ranking.

is used. The description section of the patent is a close second, which is not overly surprising

since it usually contains the largest part of the patent text. All other fields are doing considerably

worse, with the abstract retrieving better results than the titles and the claims being the least

useful source of terms. Since titles tend to be very short and often relatively vague, it has to be

considered a surprise that the results outperform the much longer claims, however narrowly. On

the other hand, this confirms our suspicion that the language of the claims section is not well suited

for the extraction of terms.

The evaluation of the different approaches to collecting the substring statistics also shows a

preference for one of the two approaches we examined. As the average scores presented in Figure

32 demonstrate, the inclusion of substrings of the extracted terms led to better results. This is

presumably due to important domain phrases being ranked up when their frequent appearances in

the patent texts as substrings of longer, more specific domain phrases are also taken into account

when the frequency statistics are generated.
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Figure 32: Average scores of term rankings using different methods for computing term statistics
according to expert scores. The average scores are considerably higher when all substrings of term
candidates also influence the frequency statistics than when they are discarded.

The last aspect of the algorithm on the other hand, the minimum required document frequency,

did not show a clear preference for any of the values we examined. The average scores of all resulting

term rankings were almost identical.

This chapter explained the technical details of our approaches to solving the different problems

we investigated. In the following concluding chapter, we summarize these problems as well as our

solutions.
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7 Conclusions

This chapter summarizes our findings from the comparative analysis of MeSH and IPC in Chapter 3

and our scientific contributions to patent categorization and guided patent search that we developed

in response to the problems that were revealed by our analysis.

7.1 Comparison of MeSH and IPC

The main goal of this work was finding ways to improve patent search for both unexperienced

patent searchers and professional users. The large hierarchical systems that are used for patent

classification have a lot of potential to be used for this task, since both groups of users can benefit:

users unfamiliar with the classification systems can improve their search with automatically sug-

gested classes relevant for their text query, and professional users can save a lot of time and effort

that they would otherwise invest into collecting all relevant classes. Motivated by the advanced

search functionality that is offered to PubMed users based on MeSH annotations, we conducted a

detailed comparative analysis of MeSH and the IPC, which is the most widely used patent classifi-

cation system internationally. Such an in-depth analysis has not been published previously, and it

resulted in some important information that should be considered for the development of patent re-

trieval systems incorporating classification-based search. Our comparison concerned three different

aspects of both systems:

1. the hierarchies:

The hierarchies of both systems are relatively similar. The size of the IPC hierarchy surpasses

that of MeSH, but they are in a similar range and the node distributions in both hierarchies

are also comparable.

2. the terms:

There are considerable differences with respect to the individual entries of both hierarchies.

While MeSH emphasizes natural language terms, the IPC uses alphanumeric codes that are

then explained by additional definitions. While MeSH terms are self-contained and often fairly

short, these definitions are often quite long and rely on each other. Since many definitions

are also fairly abstract and complicated, their literal occurrence in text is far less frequent

than it is for MeSH terms, making the automatic annotation of IPC classes to patents more

challenging.
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3. the annotation of documents:

Since the PubMed search improvements that this work was inspired by are made possible by

using the MeSH annotations that were assigned to PubMed documents, this was the most im-

portant aspect of our analysis. We found that the number of IPC classes assigned to patents

is considerably lower than the number of MeSH annotations to PubMed documents. Addi-

tionally, we showed that the IPC classes assigned to the same patent are often closely related,

in many cases only covering one of the eight very general main sections of the classification

system.

We concluded from these findings that patent search is severely limited. Unexperienced patent

users usually lack the necessary knowledge to find the relevant classes, and the high complexity of

the classification system forms a high barrier of entry. Additionally, as we explained in Sections 2.3

and 2.4, the exclusive use of keywords for search suffers from multiple problems: the language used

in patents is very complex, the writing style changes both between different patents and between

individual fields of the same patent, and standard vocabulary does not exist or is used inconsistently.

Professional patent searchers know about these problems and include classification information in

their search, but this approach also has some issues. The low average number of assigned IPC classes

and their frequent close relatedness led us to believe that the class assignments performed at the

patent office are not complete. This observation was also confirmed by multiple recent publications

by professional patent searchers (e.g., [23,26,35]). As a consequence, the classification-based result

filters that are often used in professional searches may be more restrictive than the users intend

them to be, which limits the recall of these searches.

7.2 Automated patent categorization

We approached the problems that we discovered during our analysis of MeSH and IPC from two

directions, the first one being the assignment of additional IPC classes to patents that already

have a set of annotations from the patent office. For this task, we followed an approach that was

used successfully by Tsatsaronis et al. for the assignment of MeSH terms to PubMed abstracts.

We trained a large set of binary Maximum-Entropy classifiers (one for each class) and used the

complete set of classifiers on each patent document in order to retrieve a set of classes that the

document belongs to. Our experiments represent the largest-scale categorization effort yet that

includes the lowest level of the IPC hierarchy.
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Our results were for the most part promising, with precision, recall and F1-measure values

between 0.84 and 0.90 for individual classifiers and different test corpora. These values enable us

to improve the recall for classification-based searches by including additional patents that were

automatically assigned the query class. Since almost all patent queries also include keyword com-

ponents, it is possible to limit the loss of precision that accompanies the gain in recall. We also

demonstrated that the classifiers are able to choose word features that are relevant for the respec-

tive class and have a higher overlap with related classes than with randomly chosen classes. On the

other hand, our precision values are not sufficient on their own for retrieving all relevant classes for

a particular patent, since our method leads to a high number of incorrect assignments in this case.

However, we proposed to solve this problem by using class co-occurrence data, and we showed that

this approach can filter out many of these incorrect assignments without removing the correct ones.

7.3 Guided patent search

Apart from adding additional classes to patents, we approached the problem of lacking class assign-

ments from a second direction: We investigated ways to expand the initial search query entered by

the user. Since professional patent queries are usually composed of classes and keywords, we devel-

oped approaches to expand both components. We presented ways to extract additional keywords

from three different sources: patent texts, IPC definitions and external knowledge sources.

In order to retrieve keywords and terms from class patents, we used existing term extraction

techniques and investigated their effectiveness on patent corpora. Initial tests confirmed that the

methods were applicable, although they also showed that there was still room for improvement, e.g.,

by using a patent corpus for the frequency comparison during the creation of the term statistics.

Consequently, we performed in-depth experiments into how the parameters of the algorithm should

be chosen to warrant the extraction of useful terms. The term lists that resulted from our large-

scale comparison of five different aspects of the algorithm were manually evaluated by four experts,

leading to results that clearly show strong advantages from choosing certain parameters correctly.

The two major insights we gained from these experiments concern the ranking measures and

the background corpora. While the tf-idf measure is commonly used for the task of extracting

relevant terms from text, our evaluation showed that its results are far from ideal. Both the closely

related wf-idf measure and the well-known LLR measure resulted in considerably better term lists,

and even two relatively simple new variants that we proposed clearly surpassed the tf-idf measure.
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In order to find out how the background corpus should be chosen, we examined three different ones

with varying degrees of relatedness to the source texts. The resulting term lists show a clear benefit

from having related documents in the background corpus, as the results were clearly best for the

most closely related corpus and worst for the most distant, general patent corpus. An interesting

minor result of our expert evaluation was the fact that the description section of patents is most

useful for extracting terms - only very narrowly surpassed by the complete patent - while the claims

section is least useful.

All connections that are discovered between terms and classes can be repurposed for class

suggestions as well, giving unexperienced users the option of simply entering relevant keywords and

directly having the system suggest related patent classes to them. Additionally, keywords and terms

that were found to be closely related through any of the above-mentioned sources can be suggested

when one of the terms is entered. In order to also find connections between related classes, we

retrieved class co-occurrence data from our patent corpus and showed that this information can

uncover valuable information about related classes.

Lastly, we introduced the patent retrieval prototype GoPatents that we developed in cooperation

with Jan Mönning to demonstrate some of our proposals. It is based on the semantic search engine

GoPubMed and enables users to search a large EPO patent corpus using faceted browsing with IPC

class codes as well as with terms from vocabularies such as MeSH and GeneOntology. While it has

not yet reached the point at which it can be used productively, it is already able to demonstrate

the benefits of incorporating classification information together with such term annotation systems

to allow a new form of patent search.
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