30 research outputs found

    Multiple kernel learning with random effects for predicting longitudinal outcomes and data integration

    Get PDF
    Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data

    Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease

    Get PDF
    Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Recently, rather than predicting categorical variables as in classification, several pattern regression methods have also been used to estimate continuous clinical variables from brain images. However, most existing regression methods focus on estimating multiple clinical variables separately and thus cannot utilize the intrinsic useful correlation information among different clinical variables. On the other hand, in those regression methods, only a single modality of data (usually only the structural MRI) is often used, without considering the complementary information that can be provided by different modalities. In this paper, we propose a general methodology, namely Multi-Modal Multi-Task (M3T) learning, to jointly predict multiple variables from multi-modal data. Here, the variables include not only the clinical variables used for regression but also the categorical variable used for classification, with different tasks corresponding to prediction of different variables. Specifically, our method contains two key components, i.e., (1) a multi-task feature selection which selects the common subset of relevant features for multiple variables from each modality, and (2) a multi-modal support vector machine which fuses the above-selected features from all modalities to predict multiple (regression and classification) variables. To validate our method, we perform two sets of experiments on ADNI baseline MRI, FDG-PET, and cerebrospinal fluid (CSF) data from 45 AD patients, 91 MCI patients, and 50 healthy controls (HC). In the first set of experiments, we estimate two clinical variables such as Mini Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale - Cognitive Subscale (ADAS-Cog), as well as one categorical variable (with value of ‘AD’, ‘MCI’ or ‘HC’), from the baseline MRI, FDG-PET, and CSF data. In the second set of experiments, we predict the 2-year changes of MMSE and ADAS-Cog scores and also the conversion of MCI to AD from the baseline MRI, FDG-PET, and CSF data. The results on both sets of experiments demonstrate that our proposed M3T learning scheme can achieve better performance on both regression and classification tasks than the conventional learning methods

    Multi-Modal Magnetic Resonance Imaging Predicts Regional Amyloid Burden in the Brain

    Get PDF
    Alzheimer’s disease (AD) is the most common cause of dementia and identifying early markers of this disease is important for prevention and treatment strategies. Amyloid- β (Aβ) protein deposition is one of the earliest detectable pathological changes in AD. But in-vivo detection of Aβ using positron emission tomography (PET) is hampered by high cost and limited geographical accessibility. These factors can become limiting when PET is used to screen large numbers of subjects into prevention trials when only a minority are expected to be amyloid-positive. Structural MRI is advantageous; as it is non-invasive, relatively inexpensive and more accessible. Thus it could be widely used in large studies, even when frequent or repetitive imaging is necessary. We used a machine learning, pattern recognition, approach using intensity-based features from individual and combination of MR modalities (T1 weighted, T2 weighted, T2 fluid attenuated inversion recovery [FLAIR], susceptibility weighted imaging) to predict voxel-level amyloid in the brain. The MR- Aβ relation was learned within each subject and generalized across subjects using subject–specific features (demographic, clinical, and summary MR features). When compared to other modalities, combination of T1-weighted, T2-weighted FLAIR, and SWI performed best in predicting the amyloid status as positive or negative. A combination of T2-weighted and SWI imaging performed the best in predicting change in amyloid over two timepoints. Overall, our results show feasibility of amyloid prediction by MRI and its potential use as an amyloid-screening tool

    Development of Anatomical and Functional Magnetic Resonance Imaging Measures of Alzheimer Disease

    Get PDF
    Alzheimer disease is considered to be a progressive neurodegenerative condition, clinically characterized by cognitive dysfunction and memory impairments. Incorporating imaging biomarkers in the early diagnosis and monitoring of disease progression is increasingly important in the evaluation of novel treatments. The purpose of the work in this thesis was to develop and evaluate novel structural and functional biomarkers of disease to improve Alzheimer disease diagnosis and treatment monitoring. Our overarching hypothesis is that magnetic resonance imaging methods that sensitively measure brain structure and functional impairment have the potential to identify people with Alzheimer’s disease prior to the onset of cognitive decline. Since the hippocampus is considered to be one of the first brain structures affected by Alzheimer disease, in our first study a reliable and fully automated approach was developed to quantify medial temporal lobe atrophy using magnetic resonance imaging. This measurement of medial temporal lobe atrophy showed differences (pnovel biomarker of brain activity was developed based on a first-order textural feature of the resting state functional magnetic resonance imagining signal. The mean brain activity metric was shown to be significantly lower (pp18F labeled fluorodeoxyglucose positron emission tomography. In the final study, we examine whether combined measures of gait and cognition could predict medial temporal lobe atrophy over 18 months in a small cohort of people (N=22) with mild cognitive impairment. The results showed that measures of gait impairment can help to predict medial temporal lobe atrophy in people with mild cognitive impairment. The work in this thesis contributes to the growing evidence the specific magnetic resonance imaging measures of brain structure and function can be used to identify and monitor the progression of Alzheimer’s disease. Continued refinement of these methods, and larger longitudinal studies will be needed to establish whether the specific metrics of brain dysfunction developed in this thesis can be of clinical benefit and aid in drug development

    Machine Learning Methods for Structural Brain MRIs: Applications for Alzheimer’s Disease and Autism Spectrum Disorder

    Get PDF
    This thesis deals with the development of novel machine learning applications to automatically detect brain disorders based on magnetic resonance imaging (MRI) data, with a particular focus on Alzheimer’s disease and the autism spectrum disorder. Machine learning approaches are used extensively in neuroimaging studies of brain disorders to investigate abnormalities in various brain regions. However, there are many technical challenges in the analysis of neuroimaging data, for example, high dimensionality, the limited amount of data, and high variance in that data due to many confounding factors. These limitations make the development of appropriate computational approaches more challenging. To deal with these existing challenges, we target multiple machine learning approaches, including supervised and semi-supervised learning, domain adaptation, and dimensionality reduction methods.In the current study, we aim to construct effective biomarkers with sufficient sensitivity and specificity that can help physicians better understand the diseases and make improved diagnoses or treatment choices. The main contributions are 1) development of a novel biomarker for predicting Alzheimer’s disease in mild cognitive impairment patients by integrating structural MRI data and neuropsychological test results and 2) the development of a new computational approach for predicting disease severity in autistic patients in agglomerative data by automatically combining structural information obtained from different brain regions.In addition, we investigate various data-driven feature selection and classification methods for whole brain, voxel-based classification analysis of structural MRI and the use of semi-supervised learning approaches to predict Alzheimer’s disease. We also analyze the relationship between disease-related structural changes and cognitive states of patients with Alzheimer’s disease.The positive results of this effort provide insights into how to construct better biomarkers based on multisource data analysis of patient and healthy cohorts that may enable early diagnosis of brain disorders, detection of brain abnormalities and understanding effective processing in patient and healthy groups. Further, the methodologies and basic principles presented in this thesis are not only suited to the studied cases, but also are applicable to other similar problems
    corecore