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Alzheimer’s disease (AD) is the most common cause of dementia and identifying early 

markers of this disease is important for prevention and treatment strategies. Amyloid- 𝛽𝛽 (𝐴𝐴𝛽𝛽) 

protein deposition is one of the earliest detectable pathological changes in AD. But in-vivo 

detection of 𝐴𝐴𝛽𝛽 using positron emission tomography (PET) is hampered by high cost and limited 

geographical accessibility.  These factors can become limiting when PET is used to screen large 

numbers of subjects into prevention trials when only a minority are expected to be amyloid-

positive. Structural MRI is advantageous; as it is non-invasive, relatively inexpensive and more 

accessible. Thus it could be widely used in large studies, even when frequent or repetitive 

imaging is necessary. We used a machine learning, pattern recognition, approach using intensity-

based features from individual and combination of MR modalities (T1 weighted, T2 weighted, 

T2 fluid attenuated inversion recovery [FLAIR], susceptibility weighted imaging) to predict 

voxel-level amyloid in the brain. The MR- 𝐴𝐴𝛽𝛽 relation was learned within each subject and 

generalized across subjects using subject–specific features (demographic, clinical, and summary 

MR features). When compared to other modalities, combination of T1-weighted, T2-weighted 

FLAIR, and SWI performed best in predicting the amyloid status as positive or negative. A 

combination of T2-weighted and SWI imaging performed the best in predicting change in 

amyloid over two timepoints. Overall, our results show feasibility of amyloid prediction by MRI 

and its potential use as an amyloid-screening tool for tracking AD. In addition to the amyloid 

prediction using multimodal MRI, we also present another study for co-registration of 
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pathologies observed in-vivo with postmortem tissue. The in-vivo pathological changes can be 

validated using ground truth to understand the underlying lesions. We also present a automated 

registration approach to co-register in-vivo MRI and post-mortem tissue photographs. The novel 

approach is that we use an intermediate post-mortem MRI as an intermediate guide to register 

them.  
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1.0 INTRODUCTION 

1.1 ALZHEIMER’S DISEASE 

Alzheimer's disease (AD) is neurodegenerative disorder affecting more than 5 million 

people in the world and is the sixth leading cause of death (Alzheimer's, 2016).  AD is the most 

common form of dementia affecting ages 65 years and older, characterized by memory loss, 

reduced cognitive and behavioral ability which affects the person’s ability to perform everyday 

activities. It is a slow progressing disease and worsens with age (Alzheimer's, 2016). 

Figure 1 Hypothetical model for biomarkers of Alzheimer's disease 

 (Jack et al., 2010), figure adapted from (Sperling et al., 2011) 
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Early detection of Alzheimer’s is important in developing effective prevention and 

treatment strategies. In the preclinical stage there are no cognitive or memory loss but as the 

disease progresses it leads to severe cognitive dysfunction. This is due to neuronal loss and 

damage to synapses. There are several hypotheses as to how the disease progresses. The most 

widely used model described by Jack et al (Jack et al., 2010) (shown in figure. 1) proposes that 

amyloid-𝛽𝛽 (Aβ) is the earliest detectable pathological change in Alzheimer’s disease. Although 

the disease has no cure, novel prevention and treatment strategies are being developed and tested 

to delay the progression from Aβ accumulation to AD.  

1.2 BIOMARKER’S OF ALZHEIMER’S DISEASE 

Biomarkers are objective indications of medical signs measured in the body that help to predict 

the incidence of a disease. In AD, cerebrospinal fluid and neuroimaging biomarkers help in 

characterizing AD. The changes in these biomarkers however do not happen at the same time. 

The commonly studied biomarkers include amyloid-𝛽𝛽 42 (𝐴𝐴𝛽𝛽42) peptides and tau protein in 

CSF (Tapiola et al., 2009), and PET imaging markers amyloid-𝛽𝛽 plaques (example: Florbetapir 

(Carpenter, Pontecorvo, Hefti, & Skovronsky, 2009; Okamura & Yanai, 2010), Pittsburgh 

compound –B) (Klunk et al., 2004) (Klunk, 2011) and neurofibrillary tangles (NFT) (example: 

AV-1451)(Mishra et al., 2017). The biomarkers are believed to change in a specific pattern and 

these changes occur before clinical symptoms set in. The changes occur at three different stages, 

initial preclinical stage, mild cognitive impairment and finally diagnosis of severe Alzheimer’s. 

Preclinical Alzheimer’s occurs several years before clinical decline where gradual 
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pathophysiological changes begin to occur without any clinical symptoms of illness. Mild 

cognitive impairment is a syndrome defined as cognitive decline greater than expected due to 

normal aging. MCI patients are at a high risk of dementia with an annual conversion rate of 3–

10% (Bruscoli & Lovestone, 2004; Farias, Mungas, Reed, Harvey, & DeCarli, 2009). The final 

stage, when all the biomarkers reach a ceiling, is associated with severe dementia.  

The biomarker model in figure 1 shows the pattern of common biomarkers of AD where 

they follow a sigmoid shape. Amyloid-𝛽𝛽 protein accumulation in the brain is the earliest 

pathological change occurring in the brain before the clinical symptoms. The other biomarkers 

begin to occur with a lag from the onset of Aβ. The lag is dependent on the patient but in general 

the clinical symptoms may develop years or decades after the onset of Aβ. Amyloid biomarkers 

include reduction in CSF 𝐴𝐴𝛽𝛽42 and increased tracer retention in the brain when imaged in vivo 

using positron emission tomography(Klunk, 2011). Synaptic dysfunction is the second most 

noticeable biomarker change after amyloid. Synaptic activity can be detected using 2-[(18) F] 

fluoro-2-Deoxy-D-glucose-positron emission tomography (FDG-PET) as brain glucose 

metabolism is determined by synaptic activity. Functional magnetic resonance imaging (fMRI) is 

another functional neuroimaging technique which is sensitive to changes in synaptic function 

(Brickman, Small, & Fleisher, 2009). Synapses are the fundamental information processing 

units, comprises of a pre-and post-synaptic regions. It is believed that Aβ affects the synaptic 

transmission and plasticity. Structural MRI is thought to become abnormal subsequent to the 

synaptic changes.  The structural MRI changes include gray matter atrophy (often measured as 

cortical thinning). Each of the biomarkers exhibits different rates of change and occurs over a 

span of several years. These imaging biomarkers provide information about the various stages of 

the disease.  
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1.2.1  Amyloid −𝜷𝜷 protein plaques 

AD is characterized by abnormal amyloid protein deposition in the brain. Amyloid-𝛽𝛽 is a smaller 

portion of amyloid precursor protein (APP). It is believed that abnormal processing or ineffective 

clearance leads to the accumulation of amyloid plaques in the brain. Beta-amyloid slowly starts 

to accumulate in the brain and is considered a neuropathological hallmark of AD. When they 

start to accumulate in the brain they form clusters called oligomers, which further forms chain-

like structure called fibrils(Irvine, El-Agnaf, Shankar, & Walsh, 2008). The fibrillar structure 

form beta-sheets clumps together with other substances to form beta amyloid plaques. These 

plaques were initially discovered in autopsy of brain (Maurer, Volk, & Gerbaldo, 1997) but after 

the invention of amyloid imaging compounds amyloid can be visualized in vivo using PET 

(Sojkova & Resnick, 2011). The final stage is plaques, which contain clumps of beta-sheets and 

other substances. Cerebral beta-amyloid levels are in a dynamic equilibrium; levels of amyloid 

represent a balance between biosynthesis of APP and its degradation and clearance (Tapiola et 

al., 2009). In AD the amyloid depositions in the brain increases.  The conventional view is that 

the soluble Aβ disrupts synaptic transmission and the plaques contribute to local inflammation 

and neurodegeneration (Mucke & Selkoe, 2012).  These pathways disrupt the communication 

between neurons and ultimately activate immune cells. It is critical to study the role of Aβ in 

progression of AD and detecting increased amyloid deposition is crucial in preventing the 

disease(O'Brien & Wong, 2011). 

1.2.2  Tau protein neurofibrillar tangles 

Tau is the microtubule-associated protein (Chapman et al.) of a neuron (Dehmelt & Halpain, 

2005). Tau protein plays a critical role in neurodegenerative disorders, especially AD(Iqbal, Liu, 

Gong, & Grundke-Iqbal, 2010). Along with Aβ plaques, abnormal tau protein is also present at 
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the synapses. In AD, tau protein is abnormally hyperphosphorylated and aggregated into bundles 

of filaments, which is seen as neurofibrillary tangles. Tau protein starts to accumulate in the 

neurons slowly disrupting the neuronal activity and release into extracellular spaces, which 

appear in CSF. Total tau (t-tau) and phospho-tau (p-tau) levels increase in CSF much before the 

clinical symptoms occur. Presence of increased levels of tau protein pathological changes is 

associated with neuronal injury (Gendron & Petrucelli, 2009). FDG-PET is used to measure 

brain metabolism, which, although including many neural and glial functions, largely indicates 

synaptic activity. Decreased FDG-PET uptake is an indicator of impaired synaptic function. 

1.2.3  Structural changes in Alzheimer’s disease 

Structural changes are observed as cerebral atrophy, which is caused by neuronal cell death and 

loss of synapses and neurons(Gorelick et al., 2011; Hilbert et al., 2015; K. A. Johnson, Fox, 

Sperling, & Klunk, 2012; Meier et al., 2012). Volumetric measurements from MRI show 

significant decrease in brain atrophy (figure 2) and based on disease severity show severe 

cognitive decline. Studies have found significant decreases in the grey matter in medial temporal 

lobe, precuneus, tempo-parietal cortex, insular and cingulate cortex, and caudate nucleus 

(Frisoni, Fox, Jack, Scheltens, & Thompson, 2010; Frisoni et al., 2002; Guo et al., 2014). Both 

whole brain atrophy and hippocampal atrophy (Henneman et al., 2009) distinguish patients with 

AD from controls and correlate with cognitive decline (Nelson et al., 2012).  
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Figure 2 Brain changes in severe Alzheimer's disease compared to healthy brain 

adopted from nia.nih.org 

1.3 CHALLENGES IN EARLY DETECTION OF AD  

Early detection of biomarkers changes in the preclinical stage of the disease is essential 

for developing preventive therapies for Alzheimer's disease (AD). PET imaging of amyloid and 

metabolism have proven to be a promising tool in the early diagnosis of AD. PET imaging 

biomarkers appear during the preclinical stages of AD and can predict decline years before the 

onset of symptoms (Cohen & Klunk, 2014; Jack et al., 2012; Marcus, Mena, & Subramaniam, 

2014; Sperling et al., 2011). In vivo brain amyloid imaging using PET demonstrates accurate 

detection of amyloid deposition in the brain, which helps to identify AD with higher accuracy. 

Screening for amyloid is needed to improve the early detection of AD. But the radioactive 

exposure restricts the frequency of use of the imaging technique and is also very expensive.  One 

possible alternative is structural MRI, which is advantageous, as it does not expose patients to 

radiation and is relatively inexpensive. Structural MRI can characterize brain changes that 
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related to AD but the MR signal can also carry information about amyloid. Due to this, it could 

be used in studies where frequent or repetitive imaging is necessary. With increased 

accumulation of amyloid plaque in the brain, the structural brain integrity is slowly affected 

throughout the pre-clinical AD period and thus may predict amyloid burden in the brain. 

Volumetric changes show significant changes towards the late stages of the disease but voxel 

level information can capture some information that may predict amyloid. Animal studies have 

shown that MR signal can carry information about amyloid (figure 3).  This involves scanning 

the animal inside the scanner for long duration and dissecting them immediately after scanning. 

This study is not feasible in humans but it validates that MR signal can carry some information 

about amyloid. Although currently structural MRI cannot visualize amyloid in-vivo in humans 

combining the multiple MR modalities may help predict amyloid. Machine learning techniques 

can capture the subtle patterns in the MR modalities that may be helpful in amyloid prediction.  

                               

Figure 3 Amyloid deposition detected using MRI in mouse model  

The red box shows amyloid plaques common between MRI, amyloid staining and iron staining (adapted from 

(Chamberlain et al., 2009) 
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1.3.1  Specific Aims  

The aim of this study is to use a pattern recognition baxsed approach to predict amyloid 

using multimodal magnetic resonance imaging (MRI). In addition to amyloid, in AD, there is 

an occurrence of brain atrophy (tissue loss) and loss of structural integrity in both white and gray 

matter, which can be, detected using MRI. Studies have shown that hippocampal atrophy, 

regional specific cortical thinning, vascular and microstructural changes in gray matter volume 

are associated with progression of AD.  Different MR imaging sequences and contrasts exist, 

including magnetization prepared rapid gradient echo (MP-RAGE), a high resolution T1-

weighted imaging; T2-weighted fluid attenuated inversion recovery (FLAIR), which enhances 

white matter lesions and suppresses signal from CSF; Susceptibility weighted imaging (Moller et 

al.) which highlights tissue magnetic susceptibility differences; and diffusion tensor imaging 

(DTI), which measures directional diffusion of water molecules. Each of these 

contrasts/sequences characterizes different aspects of brain structural integrity. Characterizing 

the structural imaging relation to amyloid deposition could increase the accessibility of amyloid 

imaging. These MR modalities can be used individually or combined with other modalities to 

estimate regional amyloid burden. To achieve this, we propose the following aims: 

Aim 1: Explore the relationship between Aβ deposition and multimodal MRI within 

subject 

Hypothesis 1.1: We hypothesize that regional amyloid burden will be associated with 

regional multi-modal MR features. 

Approach 1.1: Features defining the multimodal MR structural changes like intensity 

gradient filters, Gabor filters, and local binary patters will be extracted from each modality. 
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Lasso regression will be used to predict voxel-level amyloid burden using the aligned voxels 

from multimodal MR and filtered images.  

Hypothesis 1.2: Within an individual, progression of Aβ deposition will be associated 

with changes in multi-modal MR markers. 

Approach 1.2: Imaging data across time-points, and the learned MR-Aβ relation from 

baseline cross-sectional data will be extended to the longitudinal time points to predict and 

measure the progression of amyloid burden for each subject. 

 

Aim 2: Extrapolate the within subject MR- Aβ relationship to predict amyloid 

burden across subjects. 

Hypothesis 2.1: MR- Aβ relationship across subjects can be optimized using subject 

specific information. 

Approach 2.1: The MR- Aβ relationship (learned lasso parameters) is estimated using 

subject demographics and summary MR features (gender, race, age, weight, hippocampal 

volume, gray matter index etc.) from which the voxel and regional amyloid burden can be 

obtained. 

Hypothesis 2.2: MR estimated amyloid burden is a better predictor of amyloid status 

(overall positive or negative) than using cognitive or MR global variables  

Approach 2.2: Subject demographic and global MR summary features are used along 

with machine learning models to predict amyloid status. The predictions are compared to the 

performance of the classifier based on local MR estimated amyloid burden from approach 2.1.  

In MR research it is rare to find post-mortem ground truth to validate the pathological 

changes that we observe in-vivo MRI and PET imaging. It is however feasible to perform these 
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correspondences between in-vivo and post-mortem tissue in the elderly subject population. The 

subjects are recruited late life and are scanned in-vivo. At post-mortem, their tissue is scanned 

using MRI and photographs of tissue slices are taken. We developed an automated non-linear 

registration method to co-register the in-vivo MRI and post-mortem tissue photographs.   

1.3.2  Clinical Impact  

1.3.2.1 Study 1: Amyloid Prediction  

If successfully developed, the amyloid prediction algorithm will use only multimodal 

MRI and subject-level information to predict voxel level distribution of amyloid. The amyloid 

voxel level distribution during the preclinical stage can help screen the risk patients and also plan 

treatment strategies. It can serve as an alternative tool for screening patients that are showing 

increasing amyloid burden. Identifying the risk patients can then be further monitored using 

PET. This will reduce the exposure to radiation by injecting a radio-active tracer into the body.  

1.3.2.2 Study 2: Co-registration of in-vivo MRI and post-mortem tissue photographs 

The method involves using a whole hemisphere post-mortem MRI that can guide the 

registration process. Due to tissue deformation after death having an additional whole 

hemisphere MRI can act as an intermediate step in the co-registration process. Although there is 

gap between acquisition of in-vivo and post-mortem imaging this method has immense potential 

to reduce significant time for manual registration and can aid in the histology analysis. The 

information that can be gained from understanding the underlying pathology is very useful to 

understand the disease as well.  
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1.4 THESIS ORGANIZATION AND CONTRIBUTIONS 

1.4.1  Thesis Organization 

Thesis chapters are organized as follows 

Chapter 2 overview of amyloid biomarker and the importance of in-vivo detection techniques, 

PET physics, PET scanner and amyloid imaging 

Chapter 3 provides an overview of structural brain changes in AD, detection using MRI. It deals 

with MR physics, structural MR contrasts and image preprocessing. 

 Chapter 4 provides an introduction to pattern recognition techniques in neuroimaging 

specifically AD and amyloid positivity detection. It also gives a brief overview of the methods 

used in this work 

Chapter 5 addresses the use of multimodal MRI and pattern recognition/ machine learning 

techniques for detecting voxel-level amyloid in the brain 

Chapter 6 addresses non-linear registration method for co-registration of in-vivo MRI Post-

mortem photographs 

Chapter 7 provides an overall conclusion and possible future work  

1.4.2  Thesis contribution 

Our contributions include 

1. Analysis to prove that the multimodal MRI can predict amyloid imaging voxel-level  

2. Amyloid change detection within subject (using longitudinal data) 

3. Amyloid prediction and status classification across subjects (using cross-sectional data) 
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4. A co-registration method to aid in the co-registration of in-vivo MRI and post-mortem 

photographs for correspondence studies. 
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2.0 AMYLOID: NEUROPATHOLOGICAL BIOMAKER  

Amyloid plaques are a key neuropathological criterion for diagnosis of Alzheimer’s 

dementia(Serrano-Pozo, Frosch, Masliah, & Hyman, 2011). It helps distinguish from other 

dementia types like frontal-temporal dementia, Lewy body dementia(Karantzoulis & Galvin, 

2011). The diagnosis of Alzheimer’s disease was mainly based on the clinical manifestation of 

symptoms and detection of amyloid plaques was needed at autopsy for definite diagnosis. After 

the development of amyloid binding compounds, the in-vivo detection became feasible using 

positron emission tomography. The in-vivo detection of amyloid can help in developing medical 

intervention for clearing amyloid. Amyloid clearance therapies have raised new avenues for 

improving cognitive function and potentially reversing the underlying disease. Immunotherapy 

includes intravenous immunoglobulins (IVIG) containing Aβ antibodies(Kile & Olichney, 

2007),(Loeffler, 2013; Relkin, 2014) and specifically developed monoclonal antibodies for 

Aβ(Panza et al., 2011; van Dyck, 2018). In this work amyloid imaging is obtained from positron 

emission tomography and these images are used as ground truth for the prediction analysis 

discussed in the chapters to follow. This chapter gives a brief overview of postmortem detection 

of amyloid, introduction to PET physics, process of PET image production and its utility in 

amyloid imaging. The focus of PET and its utility in neuroimaging is broad but for this work we 

will be focusing only on in-vivo amyloid imaging.  
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2.1 AMYLOID DEPOSITION IN ALZHEIMER’S DISEASE 

2.1.1  Histological detection of brain protein deposition  

Pathological changes like amyloid plaque deposition, associated with AD are confirmed 

using post-mortem studies (figure 4). The post-mortem studies are also helpful in understanding 

the involvement of amyloid deposition in cognitive impairment (Nelson et al., 2012; Nelson, 

Braak, & Markesbery, 2009). The neuropathological abnormalities of Alzheimer’s disease can 

also be seen in brains of cognitively normal aging individuals. Studying the correlations between 

the extent and distribution of such changes in brain specimens in aged individuals who had intact 

cognitive performance have started gaining attention (Ikonomovic et al., 2008; Seo et al., 2017). 

The in-vivo accumulation of amyloid in the brain also needs to be confirmed using post-mortem 

studies(Perl, 2010). In order to correspond anatomical locations of the in-vitro tissue changes 

with in-vivo imaging, it is important to register them together. Registration of in-vivo MR 

imaging with tissue photographs has its own limitations. Since tissue deformation happens at 

post-mortem the registration process is more difficult to match MR in-vivo images with the post-

mortem tissue photographs. To aid in the registration process ex-vivo MR imaging before 

histology can be used as an intermediate for better registration of ex-vivo photographs to the in-

vivo MR imaging (described in chapter 4). 
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Figure 4 Amyloid plaques (black arrow) histology (figure adapted from (Perl, 2010)) 

2.1.2  Amyloid imaging using Positron emission tomography  

PET allows the visualization of radioactivity distribution within a subject using the 

emitted radiation by linking the interior distribution with an exterior (and measurable) radiation 

pattern. When a biological target is tagged with a radioactive atom (called a tracer) then the 

biological process or condition can be visualized. 

2.1.2.1 Tracers in PET 

The tracer is a radioactive pharmaceutical, which is a positron emitting nuclide. The 

tracer molecule consists of positron emitting isotope that is bound to an organic ligand (targeting 

agent). In PET imaging, a small amount of tracer is injected into the patient, intravenously. The 

tracer is chosen based on the target region measured. The tracer binds to the subject target tissue 

and the radioactivity in the target region is measured and quantified. Essentially any biologic 

process, for which a suitable probe can be isolated/synthesized and labeled with a positron-

emitting isotope, can be quantified using PET. There are many positron-emitting radioactive 

isotopes used in PET (e.g., 11C, 13N, 15O, 18F). For example, the commonly used PET radiotracer 

is fluorodeoxyglucose (FDG) is comprised of 18F isotope that is bound to 2-deoxy-2-glucose 

which is a glucose analog molecule. Chemically FDG is involved in cellular metabolic activity. 
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In neuroimaging, FDG-PET is used to measure cerebral metabolic rates of glucose (CMRglc), 

which is an indirect measure of neuronal activity in AD(Mosconi et al., 2010).  

For imaging amyloid a 11C labeled ([N-methyl-11C] 2-(4’-methylaminophenyl)-6-

hydroxybenzothiazole also known as Pittsburgh compound – B (PiB); (Mathis et al., 2003)) was 

developed that binds to amyloid. But the half-life of PiB is 20 minutes. In contrast to PiB, 18F 

labeled compound Fluorbetapir (C20H25FN2O3  also known as Amyvid) have half life of 110 

minutes and bind to amyloid plaques(Klunk, 2011; Klunk et al., 2004).  

  

2.1.2.2 Method of PET image acquisition 

PET Physics 

PET physics involves the interaction of subatomic particles positron and electron. An 

electron is negatively charged subatomic particle. While a positron particle has the same mass as 

an electron but is positively charged. When the electron and positron interact, they produce other 

particles and this process is termed as annihilation. Here an electron and a positron annihilate to 

produce two photons, each having an energy of 511 keV, that are emitted at 180° apart in the 

center-of-mass system. The energy of the photons is sufficient that a substantial fraction can 

escape from the head and can be detected. This allows for in-vivo scanning biological processes 

and tissues in neuroimaging.  

The line that passes through the subject connecting the relevant detectors of these two 

photons is called the line-of-response. Knowledge of integrals of radioactivity concentration 

along a sufficient number of LORs allows reconstruction of the image of radioactivity 

concentration.  The overview of the method of PET image acquisition is shown in figure 5. 
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Figure 5 Schematic of PET Scanner 

 

PET Scanner 

PET scanner provides the capability to acquire the required image data. The annihilation 

process ends up with 2 back-to-back 511 keV photons, which provides the required LOR 

integrals to recreate the image. The detectors are placed in a circular manner around the subject 

PET scanner contains detectors optimized for detecting 511 keV photons. The coincidence 

photons count rates are measured (which are proportional to the required activity concentration 

integrals) along the various LORs.  

The PET scanner contains detectors optimized for detecting 511 keV photons. The PET 

scanner used to obtain the amyloid imaging in this study is a PET system ECAT EXACT HR +, 

manufactured by Siemens/CTI (Knoxville, TN) (Brix et al., 1997). The scanner has a patient port 

of 56.2 cm consists of four rings of bismuth germinate (BGO) crystal blocks with an inner 

diameter of 82.7 cm(Brix et al., 1997). Each of the 72 blocks per ring is cut into an 8 X 8 array of 
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detector elements with dimensions of 4.39 mm X 4.05 mm X 30 mm (axial X transaxial X depth) 

separated by small slits of 0.46 mm(Brix et al., 1997). The whole system thus consists of 32 

detector rings with 576 distinct crystal elements per ring, allowing it to image 63 trans axial 

slices simultaneously(Brix et al., 1997). The maximum field of view (FOV) is 15.5 cm in the 

axial direction. (Brix et al., 1997) 

           

Figure 6 An open PET scanner showing the detector housing and electronics (Photo Courtesy: UPMC PET 

Center, C. Laymon) 

 

These detectors are arranged in a cylindrical manner (shown in figure 6) and allow for the 

detection of both emitted photons in coincidence in separate detectors opposite to each other. 

The distribution of radioactivity is measured by the counting of all the annihilation count rates 

that are detected along the various LORs.  This produces sufficient information for image 

reconstruction. The gamma rays interact with the detectors to produce scintillation light. 

Scintillation light is detected by photomultiplier tubes (PMTs) and once struck the respective 

crystal is identified by the light distribution within the PMTs. by using coincidence detection of 
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annihilation events within a short time window of 12ns for the HR+ (Saaidi, Toufique, 

Merouani, Elbouhali, & El Moursli, 2016) .  

 

Coincidences of photons 

When both photons are from an annihilation event without any scattering prior to 

detection it is termed as a true coincidence. In scattered coincidence, at least one of the 

photons undergoes a Compton scattering event prior to detection. The resulting coincidence 

event will be assigned to the wrong LOR. Random coincidences occur when two photons are 

detected within the coincidence time window but are from different annihilation event. When 

multiple coincidences occur more than two photons are detected in different detectors within the 

coincidence time window. In multiple coincidences, it is not possible to determine the LOR of 

the event hence such events have to be ignored. PET data is processed using back projection and 

iterative reconstruction algorithms to form an image. Typically, in a clinical setting a 

combination of PET/CT scanner is used which helps in automatic correlation of the functional 

image (PET) with the anatomy (Meier et al.). The setup includes PET and CT scanner 

components as separate units within a single gantry and the scans are acquired sequentially. Note 

that PET scans are generally of much longer duration than CT scans.  
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Image reconstruction 

After the detection of incidence of the two photons by opposite detectors the coincidence 

event is assigned to line of response joining the two detectors. With complete set of LORs lines 

in all directions intersect every point in the tissue in the patient’s body. From the line integrals of 

radioactivity concentration the map of quantity for entire region being image can be 

reconstructed. The PET image reconstruction is formulated as a linear inverse problem. There 

were several reconstruction algorithms used in PET. Filtered back projection is an analytical 

reconstruction method which is fast and direct but cannot model the physical effects of PET 

scanners or variability in the photon detection(Tong, Alessio, & Kinahan, 2010). Iterative 

reconstruction algorithms like maximum likelihood estimate and ordered subsets method 

estimation-maximization (OSEM) can model the statistical noise of the PET scanner and produce 

more accurate image reconstruction results(Tong et al., 2010). Nowadays, OSEM are the most 

commonly used methods and some modern scanners (GE and Philips) the FBP reconstruction 

technique is not available. The PET images used in this study for amyloid imaging are quantified 

using standardized uptake value ratio (SUVR).  

Standard uptake value (SUV) is a relative measure of the tracer uptake and is given by 

the expression (Kinahan & Fletcher, 2010) 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑟𝑟

(𝑎𝑎′/𝑤𝑤)
 

 

where r is the radioactivity activity concentration [kBq/ml] measured by the PET scanner within 

a region of interest, a′ is the decay-corrected amount of injected radiolabeled tracer [kBq], and w 

is the weight of the patient [g]. 
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 Decay correction is needed to account for radioactive decay at a particular time. It 

mainly involves calculating weighting factors that transform the measured activity values for 

every time frame to values that would be measured if the activity had remained constant in 

time(Dawood, Jiang, & Schäfers, 2012). Here r and a’ have to be decay-corrected to the same 

time. Standard uptake value ratio (SUVR) for PiB imaging is calculated as ratio of SUV of 

cortical tissue to the SUV of reference region (cerebellum).  The reference region is chosen such 

that it has very low specific binding.  For amyloid imaging we use the cerebellum because it is 

known to not accumulate amyloid (to a good approximation).  The PiB uptake that we see in the 

cerebellum gray matter is believed to be nonspecific binding (i.e. to things other than amyloid) 

and also has similar tracer kinetics to the region of interest.  

2.2 IMAGING WITH PITTSBURGH COMPOUND-B  

The tracer (PiB) is intravenously injected to the patient. After 25 minutes the patient is placed in 

the scanner. The image acquired in the first few minutes is neglected as noise. Then the images 

are acquired continuous over time until about 70 minutes. The final amyloid image is averaged 

from 50-70 minutes, which is registered with the MR image for anatomical correspondence. The 

regions of interest are drawn using the registered MRI for the subject and these regions of 

interest are used to quantify the amyloid burden. The ROI sampling is performed using 

ROITOOL for the regions shown in figure 7 (Interactive Data Language, Boulder,CO program, 

ROITOOL) 
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Pattern of PiB retention is different in AD patients compared to cognitively 

normal(Cohen & Klunk, 2014) (figure 8). PiB retention in AD patients was more prominent in 

cortical areas than in white matter. PiB images from CN subjects showed little or no PiB 

retention in cortical areas. PiB retention is more specific to gray matter and its accumulation is 

prominent in specific regions in AD patients than CN subjects. PiB retention was broadly 

observed in frontal cortex, precuneus/posterior cingulate, temporal, and parietal cortices(Cohen 

& Klunk, 2014). The occipital cortex and lateral temporal cortex were also significantly affected 

with a relative sparing of the mesial temporal areas(Cohen & Klunk, 2014).  

          

Figure 7 Regions of interest for amyloid imging (PiB) 

 

The region of prominent distribution is found to be consistent with histopathological 

studies of Aβ plaques in the AD brain (Cohen & Klunk, 2014). With the use of PET (PiB), 

amyloid PET tracers may be useful in the early detection of AD when clinical symptoms are not 

fully expressed (Cohen & Klunk, 2014). Amyloid imaging is essential in the diagnosis of AD. A 
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demented patient without amyloid plaques cannot have AD-dementia by definition. Amyloid-

PET is thus helpful to distinguish AD from non-amyloid dementias, such as FTD (Cohen & 

Klunk, 2014).  

 

 
          

Figure 8 Distribution of brain amyloid deposition visualized using PiB (adapted from (Aizenstein et al., 2008)  

2.2.1  Limitations of PET  

PET procedures are expensive, time consuming (for PiB acquisition time is 50-70 

minutes after injection of tracer). The technique is invasive and PET tracer due to their ionizing 

radiations pose issues with regard to production and distribution. The PET tracers have short 

half-life and they must be administered to patients within minutes or hours of being produced. 

Although the molecular/functional information from PET has helped in understanding several 

physiological dysfunctions or conditions, the resolution of PET imaging may not be as high as 

with other imaging techniques, such as MRI. Individuals are at risk due to exposure to ionizing 
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radiations. Structural MRI on the other hand has no harmful radiations and provide different 

contrast or modalities that may predict amyloid. It is used to quantify changes that are related to 

AD. The next chapter we discuss structural neuroimaging using MRI and MRI preprocessing 

methods that will be used in this thesis work.   
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3.0 STRUCTURAL NEUROIMAGING: MAGNETIC RESONANCE IMAGING 

MRI is a commonly used non-invasive imaging technique, which provides detailed 

visualization of anatomical structure. They are not associated with any harmful or ionizing 

radiation and can be frequently utilized to study the structure and function of the human brain 

with low risk. The technique uses sophisticated technology to generate signal from the tissue 

based on magnetic properties of protons in the body and different modalities that can be 

generated for visualizing structure based on different magnetic properties of tissue. In 

neuroimaging structural MRI has been used for detection and diagnosis of neurological diseases 

(Frisoni et al., 2010; Wattjes, 2011).    

3.1 NUCLEAR MAGNETIC RESONANCE 

MRI utilizes free protons in the body which have a characteristic spin called precession. 

The precessing protons in the absence of a strong magnetic field are randomly aligned and net 

magnetic moment cancels out. A strong magnetic field forces protons in the body to align in the 

direction of the field creating a net magnetic moment.  

When a radiofrequency pulse is given the aligned protons that are in a low-energy state 

are then energized into a high-energy state. The amount of rotation of the net magnetization 

when the RF pulse is applied is called flip angle (FA).  The protons spin out of equilibrium, and 

when the RF pulse is turned off, the protons realign with the magnetic field. There are two types 

of relaxation: T1 or spin-lattice relaxation, and T2 or spin-spin relaxation. T1 (spin-lattice) 
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relaxation is the recovery of the net magnetization in the direction of the net magnetic field. T2 (spin-

spin) relaxation is due to the de-phasing of the protons as they precess out of phase. Different tissues 

have differences in the T1 and T2 relaxation time, which can be utilized to produce the contrast 

between different tissue types. In addition to the two relaxation times there is additional 

exponential decay that occurs soon after the excitation pulse is stopped. This is called T2* 

relaxation or T2* decay which is due to non-uniformity in the magnetic field or magnetic 

susceptibility differences between tissues.  

The protons realign with the magnetic field through relaxation process by releasing 

energy. This relaxation is the basis of the MR signal as an RF receiver coil measures the released 

RF energy. The repetition time (TR) is the time duration between the applications of one 

excitation pulse to the next. The frequency information of the signal from each location being 

imaged is converted to corresponding gray level intensities using Fourier transform. RF pulse 

generates sinusoidal signal decay called free induction decay to reach equilibrium. Two 

successive RF pulses produce a spin echo (SE), and the time between the middle of the first RF 

pulse and the peak of SE is called echo time (TE).  

3.2 MR SCANNER COMPONENTS 

3.2.1  Magnet 

The superconducting magnets are the most important part of the scanner. The field 

strength is measured in tesla units, and typical clinical MR scanners for scanning humans range 

from 0.5 to 3T and for research studies from 1.5T to 7T.   
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3.2.2  Gradient coils 

There are three gradient coils located in the MR scanner. Each of these produces three 

main magnetic fields in three directions (Gx, Gy, Gz), which can be operated to scan different 

parts of the body.  

In the absence of imaging gradient all protons in an imaging plane resonate at near 

identical frequencies. If an excitation pulse is transmitted into a tissue during the application of 

magnetic field the tissue that resonates at a particular frequency corresponding to a particular 

position along the axis of imaging gradient is excited. After application of imaging gradient 

along one axis of the image plane the variation in resonant frequency occurs. The variation in 

frequency due to application of the gradient localizes the MR signals in one dimension within 

selected section. The process of encoding the spatial location of protons based on their positions 

relative to the gradient applied during this measurement is referred to as frequency encoding, and 

the gradient itself is referred to as the frequency encoding gradient (Gf). The selective excitation 

to choose an image section and frequency encoding gradients are used for spatial localization 

using frequency differences along axis of the magnetic field. The other in-plane axis of the image 

is localized by a different technique called the phase-encoding gradient.   

Phase encoding involves mapping the location of the sources of MR signals based on 

their phase. The phase-encoding gradient (Gp) is produced by applying a magnetic field pulse 

perpendicular to the axes of section-selection and frequency encoding. The gradient pulse causes 

resonant frequencies that vary momentarily on the axis. After the phase encoding gradient has 

been removed the signal received shows phase differences. The phase-encoding gradient needs 

to be applied at different strengths to localize different MR signals. Strong phase-encoding 

gradients are useful for finer resolution but produce lower amplitudes than weak phase-encoding 
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gradients. The number of phase-encoding gradient strengths is proportional to the number of 

locations mapped along the phase-encoding axis.    

3.2.3  Radiofrequency coil 

A radio frequency coil is used to transmit and receive RF pulse.  The RF transmitter 

generates the RF energy, which is applied to the coils and then transmitted to the patient’s body. 

After transmission of RF pulses the tissue will respond by returning an RF signal. These signals 

are picked up by the receiver coils and converted into digital form and transferred to the 

computer where they are temporarily stored. 

 

3.2.4  Shielding Coil 

Shielding coil is used to restrain the region of strong magnetic field surrounding the 

magnet.  There are two types of shielding: passive and active shielding. For passive shielding, 

iron beams or steel plates that have high permeability are incorporated into the walls, ceiling, 

and/or floor of the magnet room Active shielding is done by using secondary counteracting coils 

outside of the primary coils.  

3.2.5  Computer System 

The computer system performs several operations including acquisition control, image 

reconstruction, image storage and retrieval, and viewing control. The first step is acquisition of 

the RF signals from the patient’s body. The process of image acquisition consists of repeated 

cycles of RF pulse that are transmitted and signals received. Images are acquired as K-space, 
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which is frequency and phase representation of the image from which Fourier transform is 

applied. Reconstructed images are stored in the computer for additional processing and viewing.  

 

3.3 MRI SEQUENCES 

Different types of MRI provide varied image contrasts and highlight specific 

characteristics of the brain. The most common sequences are T1-weighted and T2-weighted 

imaging. MR imaging sequences include magnetization prepared rapid gradient echo (MP-

RAGE) (Mugler and Brookeman, 1990), a high resolution T1-weighted imaging; T2-weighted 

fluid attenuated inversion recovery (FLAIR), which enhances white matter lesions (Yoshita et 

al., 2006) and suppresses signal from CSF; proton density (PD), which measures the density of 

protons in brain tissue; susceptibility weighted imaging (Breteler et al.), which highlights tissues 

magnetic susceptibility differences; and diffusion tensor imaging (DTI), which measures 

directional diffusion of water molecules. In this work, we focus on T1-weighted imaging 

(3.3.2.1), T2-weighted imaging (3.3.2.2), T2-weighted (FLAIR) imaging (3.3.2.3) and 

Susceptibility Weighted imaging (3.3.2.4) (figure. 9).   

 

3.3.1  Pulse sequences 

By varying TR, TE and FA image contrasts (T1, T2 and T2*) can be altered on gradient 

echo and spin echo images. The simple spin echo (SE) sequence consists of 90° RF pulse, 180° 

pulse and an echo, while fast spin echo sequence consists of multiple 180° pulses and echoes 

following each 90° pulse. The gradient echo (GRE) sequence is produced by applying a single 
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RF pulse in conjunction with gradient reversal. GREs are used with short TR, TE and low FA.  A 

fast 3D gradient echo pulse sequence designed for rapid acquisition with T1-weighted 

dominance is a magnetization prepared rapid gradient echo (MPRAGE) sequence.  Susceptibility 

weighted imaging also uses GRE sequences. An inversion recovery (IR) sequence is a 

conventional spin echo sequence, which is preceded by a 180° inverting pulse. The time between 

180° inverting pulse and 90° pulse is called inversion time (TI). The acquisition of T2-weighted 

imaging used in this work uses a spin echo sequence. A fluid attenuation inversion recovery 

(FLAIR) is a special inversion recovery sequence, which nulls the signal from cerebrospinal 

fluid from the resulting images with contrast similar to T2-weighted images.  

3.3.2  MR Modalities  

3.3.2.1 T1-weighted imaging 

 

T1-weighted images are produced using short TE and TR times and T1 properties of 

tissue. The images have great contrast between gray and white matter. These images are typically 

used to segment the gray matter, white matter, and cerebrospinal fluid (CSF) and also quantify 

volumetric of cortical and subcortical regions in the brain (Chandra, Dervenoulas, Politis, & 

Alzheimer's Disease Neuroimaging, 2018) (Bozzali, Serra, & Cercignani, 2016). The difference 

in T1 relaxation between tissues produces different tissue contrasts. In the brain, CSF has longer 

T1 relaxation times, followed by gray matter, which has a medium T1 relaxation time. White 

matter, which is the most fibrous part of the brain, has short T1 relaxation time. Short T1 

relaxation times correspond to higher intensity in MR image and long T1 relaxation times appear 

darker. CSF appears dark on T1-weighted images; gray matter intermediate intensity and white 
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matter has higher intensity values compared to CSF and gray matter. The T1-weighted imaging 

sequence uses short TR hence there is only short period of time for T1-relaxation, otherwise the 

protons will reach full-relaxation. T1-weighted imaging is most commonly used for 

characterizing structural changes, quantifying volumetric changes in the brain related to disease 

conditions like in AD.  

3.3.2.2 T2-weighted imaging 

T2-weighted images have long TR and TE and the contrast is opposite to that of T1-

weighted imaging. Short T1-relaxation times have brighter intensity. CSF has longest T2-

relaxation time, gray matter medium T2-relaxation time and shortest being that of white matter. 

The corresponding intensities on the MR image CSF hyperintensities and white matter 

hypointensities, with gray matter showing intermediate intensities. T2-weighted imaging can be 

used to visualize fluid in the brain.  

3.3.2.3 T2-weighted fluid attenuated inversion recovery (FLAIR) 

 

Attenuation of high signal intensity from CSF could help in the visualization of certain 

tissue abnormalities. Longer T2-relaxation times have brighter intensity. In FLAIR images the 

brain tissue appear similar to T2 weighted images with grey matter brighter than white matter but 

CSF is dark instead of bright. T2-weighted FLAIR imaging improves the visualization of age-

related tissue lesions, specifically white matter hyperintensities (WMH) (Hajnal et al, 1992). 

WMH appear white (hyperintense) and can be used to segment these lesions more accurately 

(see section 3.5). This can be used to measure global WMH burden. 

 



  32 

3.3.2.4 Susceptibility weighted imaging 

 

SWI is a 3D high-spatial resolution, which are generated from GRE pulse sequences. 

Susceptibility-weighted imaging (Breteler et al.) uses tissue magnetic susceptibility differences 

to generate a unique contrast. Different tissue magnetic properties, like paramagnetic, 

diamagnetic, and ferromagnetic properties interact with the magnetic field distorting it and thus 

altering the phase of local tissue, which results in loss of signal. SWI helps to visualize and 

potentially quantify iron in the brain having ferromagnetic properties. Specifically SWI have 

been useful in studying micro-bleeds in aging brain (Haacke, Mittal, Wu, Neelavalli, & Cheng, 

2009). SWI differs from conventional T2* weighted GRE sequences which are also used to 

detect the blood vessels. Flow compensation in all three directions is used to reduce artifacts due 

to blood flow. The magnitude and phase information are reconstructed separately and later 

combined for diagnostic purposes. The raw phase image undergoes further processing when 

compared to magnitude information. The raw phase information contains low frequency noise 

due to generalized field inhomogeneities and distortions due to air and bone tissue. Hence these 

phase images are first filtered using high pass filter and then combined with the magnitude image 

to produce SW images.  
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Figure 9 MR image showing a single axial section for T1-weighted, T2-weighted, T2-weighted (CSF 

suppressed) and Susceptibility weighted imaging 

3.4 PRE-PROCESSING NEUROIMAGING DATA 

There are several key pre-processing methods that are essential for processing neuroimaging 

data. Image registration is the process of aligning two images together, image normalization 

involves non-linear registration to a standard template, and image segmentation classifies voxels 

into regions of interest.  
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3.4.1  Image Registration 

Registration is a process to obtain a transformation between two images in order to align 

them spatially. Image registration can be achieved using several different ways. There are four 

different types of geometric transformation: translation, rotation, scaling and shear that are 

performed obtain the registration two images. Translation involves movements along the 

coordinate space. Rotation is movement at an angle to the coordinate space. Scaling is 

deformation caused by enlarging or shrinking the image, which can be uniform or non-uniform 

along the coordinate axis. Shear is change in volume by deformation along parallel axes. 

Typically transformation models are a combination of these four geometric transformations. The 

two types of linear registration methods are intensity-based and feature-based registration 

methods. 

3.4.1.1 Intensity-based registration 

Intensity-based image registration uses a fixed image (reference image) and moving 

image (source image) where the moving image is transformed to align with the fixed image. The 

method optimizes the alignment between the two images by minimization (example, sum of 

squared differences (Myronenko & Song, 2010)) or maximization of cost function (example, 

normalized correlation (Jeongtae Kim & Fessler, 2004), normalized mutual information  (Pluim, 

Maintz, & Viergever, 2003)) using image intensities. In this study we need to register different types 

of images (like registration between PET and MRI) and in such cases the maximization of 

normalized mutual information is a preferred metric.  
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Mutual information measures the amount of shared-information between the two images that 

reduces the uncertainty in them. Consider two images M and N where n, m are the voxel 

intensities;𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑚𝑚𝑚𝑚𝑚𝑚. When registered together the joint probability distribution p{𝑚𝑚,𝑛𝑛}, tells 

how frequently intensity value pairs occur together from which joint entropy can be calculated,   

𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐻𝐻(𝑀𝑀,𝑁𝑁) =  −∑ ∑ 𝑝𝑝{𝑚𝑚,𝑛𝑛}log (𝑝𝑝{𝑚𝑚,𝑛𝑛})𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛   

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐻𝐻(𝑀𝑀) =  −∑ 𝑝𝑝{𝑚𝑚}𝑚𝑚𝑚𝑚𝑚𝑚 log 𝑝𝑝{𝑚𝑚} ,  𝐻𝐻(𝑁𝑁) =  −∑ 𝑝𝑝{𝑛𝑛}𝑛𝑛𝜖𝜖𝜖𝜖 log 𝑝𝑝{𝑛𝑛}  

Mutual information can be obtained as difference between joint entropy and sum of the 

marginal entropy of two images (M, N) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝐼𝐼(𝑀𝑀;𝑁𝑁) =  𝐻𝐻(𝑀𝑀) + 𝐻𝐻(𝑁𝑁) − 𝐻𝐻(𝑀𝑀,𝑁𝑁) 

Normalized mutual information   𝑌𝑌(𝑀𝑀;𝑁𝑁) = 𝐻𝐻(𝑀𝑀)+𝐻𝐻(𝑁𝑁)
𝐻𝐻(𝑀𝑀,𝑁𝑁)

 

 

There are two types of transformation models: rigid transformation and non-rigid 

transformation. Rigid transformation allows changes in rotation and translation only and preserves 

shape and size of the image.  

Three dimensional rigid body transformation matrix is defined as: 

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �

𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
1
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𝑟𝑟𝑥𝑥𝑥𝑥 𝑟𝑟𝑥𝑥𝑥𝑥 𝑟𝑟𝑥𝑥𝑥𝑥 𝑡𝑡𝑟𝑟𝑥𝑥
𝑟𝑟𝑦𝑦𝑦𝑦 𝑟𝑟𝑦𝑦𝑦𝑦 𝑟𝑟𝑦𝑦𝑦𝑦 𝑡𝑡𝑟𝑟𝑦𝑦
𝑟𝑟𝑧𝑧𝑧𝑧 𝑟𝑟𝑧𝑧𝑧𝑧 𝑟𝑟𝑧𝑧𝑧𝑧 𝑡𝑡𝑟𝑟𝑧𝑧
 0     0   0   1 ⎦

⎥
⎥
⎤

. �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1
� 

where 𝑟𝑟∗∗   are rotation terms  and 𝑡𝑡𝑟𝑟𝑥𝑥 , 𝑡𝑡𝑟𝑟𝑦𝑦, 𝑡𝑡𝑟𝑟𝑧𝑧 are translation terms  

 



  36 

Non-rigid or affine transformation matrix uses rotation, translation, scaling and 

additionally shear with three parameters for each direction in a 3D image (12 parameter affine 

transformation).  

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �

𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
1

� = 𝑇𝑇𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒.𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �

𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑡𝑡𝑡𝑡𝑥𝑥
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 𝑡𝑡𝑟𝑟𝑦𝑦
𝑎𝑎31
0

𝑎𝑎32
0

𝑎𝑎33 𝑡𝑡𝑟𝑟𝑧𝑧
0 1

� . �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1
�  

where 𝑎𝑎11 …𝑎𝑎33 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

3.4.1.2 Feature-based registration 

Feature based methods use boundary regions, edges, contours, and/or useful landmarks 

which can be manually (control points) or automatically (example scale invariant features) 

generated. Landmark-based or control point registration (W.-H. Wang & Chen, 1997) establishes 

a correspondence between images using distinct matching points between the two images. These 

pairs of corresponding points (control points or landmarks) are chosen manually or using 

automated methods. From these points the transformation matrix is calculated.  The control point 

registration performed in this work for co-registration of in-vivo MRI to post-mortem 

photographs involves use of piecewise linear mapping functions for image registration method 

(Goshtasby, 1986). Using the corresponding control points in two images a linear mapping or 

transform is obtained. The piece-wise linear mapping first divides the images into triangular 

regions by triangulating the control points (Goshtasby, 1986). Then a linear mapping function is 

obtained by registering each pair of corresponding triangular regions in the images (Goshtasby, 

1986). The overall mapping function is then obtained by piecing together the linear mapping 

functions (Goshtasby, 1986). 
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3.4.2  Image Segmentation and normalization  

Image segmentation involves segregating group of voxels into regions or segments. There 

are several automated techniques for image segmentation like thresholding method (Mardia & 

Hainsworth, 1988), region-based segmentation (Adams & Bischof, 1994), watershed-based 

segmentation (Shafarenko, Petrou, & Kittler, 1997), graph-cut segmentation (Felzenszwalb & 

Huttenlocher, 2004). Image spatial normalization is used to align images to a standard template 

so that they can use for comparison across data. For example, in neuroimaging spatial 

normalization is used for comparison of volumes across subjects.  In this work we performed 

segmentation using SPM12 software, which uses a unified segmentation and normalization 

method (John Ashburner & Friston, 2005).   

3.4.2.1 Unified segmentation and normalization  

Tissue segmentation can be done two approaches. The first one involves tissue 

classification approach where the voxels are assigned to a tissue class (WM, GM, or CSF) by 

characterizing the distribution of each tissue class. Tissue classification in SPM requires images 

to be registered with tissue probability maps. These maps represent prior probability of different 

tissue classes and Bayes rule can be used for classification into probability maps. The voxel 

based morphometry (VBM) (John Ashburner) in SPM requires images to be spatially 

normalized, segmented into tissue classes before performing statistical tests on grey matter. This 

procedure is circular because the registration requires tissue classification and tissue 

classification needs initial registration step to template. The unified segmentation and 

normalization aims to combine these two approaches into a single framework. This includes 
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optimizing for parameters that account for intensity non-uniformity. Estimating these model 

parameters (maximum posteriori estimate) involves alternating between classification, bias 

correction, and registration steps combined within same generative model instead of serial 

application of each of these steps.  

The tissue distribution can be modeled by objective function mixture of Gaussians. The 

standard technique using in Bishop 1995, for tissue classification uses fitting a mixture of 

Gaussians to the tissue distributions. The mixture of Gaussian is modeled using parameters mean 

(𝜇𝜇𝑘𝑘), variance (𝜎𝜎𝑘𝑘2), and mixing proportion of gaussians (𝛾𝛾𝑘𝑘). Tissue priors are used to assist in 

classification, which is estimated by registering a large number of subjects together, assigning 

voxels to different tissue types and averaging tissue classes over subjects. These tissue 

probability maps act as priors of any given voxel into each of the tissue categories (GM, WM or 

CSF). The number of Gaussians used to represent the distribution for each tissue class can be 

more than one since the voxel might fall in between intensity of different tissue types. The tissue 

probability maps are deformed as linear combination of about thousand cosine transform bases 

functions. The mixture parameters(𝜇𝜇𝑘𝑘,𝜎𝜎𝑘𝑘2, 𝛾𝛾𝑘𝑘) are updated using expectation-maximization 

approach while keeping bias (𝛽𝛽) and deformation fixed (𝛼𝛼). The bias is estimated by keeping 

the mixture parameters and deformation constant using Levenberg-Marquadt (LM) optimization 

scheme. Similarly, the deformation of tissue probability maps is re-estimated keeping bias and 

mixture of parameters constant. The optimization of terms for re-estimating the deformation of 

tissue probability maps involves use of the same LM scheme.  
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3.4.2.2 WMH Segmentation  

White matter segmentation includes a fuzzy seed based segmentation (M. Wu et al., 

2006) that identifies hyper intensities in the FLAIR that corresponds to the white matter lesions 

(Debette & Markus, 2010(Gorelick, 2011 #1813). The major steps of the method include image 

preprocessing, WMH segmentation and WMH localization. Image pre-processing includes 

removal of skull from T1-weighted and T2-weighted FLAIR images. For WMH segmentation, 

the WMH seeds are identified based on the intensity histogram of the FLAIR image. The 

threshold is selected from the histogram which corresponds to value that is mean + 3 ×standard 

deviation. The voxels above the threshold are used as seeds in the fuzzy connected algorithm to 

segment surrounding WMH voxels. The segmentation method is an iterative algorithm, which 

clusters voxels based on their adjacency and affinity to the seeds. After each iteration, the seeds 

are updated until the number of seeds becomes zero. The WMH burden is quantified by voxel 

counts or volume and used as a neuroimaging biomarker.  The fully automated WMH 

segmentation system was implemented in C++ and ITK.  

Although currently structural MRI cannot help visualize amyloid deposition in the human 

brain. The subtle changes or patterns in the different contrasts or modalities can be detected by 

the machine learning algorithm to predict amyloid. The next chapter deals with use of  machine 

learning and pattern recognition in neuroimaging.  
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4.0 PATTERN RECOGNITION IN NEUROIMAGING 

4.1 INTRODUCTION 

Pattern recognition is process of automated recognition and detection of patterns and 

regularities present in the data.  Pattern recognition algorithms are also sometimes referred to as 

machine learning algorithms because the function of the algorithm is to learn a pattern (Bishop, 

2006). Mostly the terms pattern recognition and machine learning are inter-related. The pattern 

recognition techniques have shown promise for biomarker detection from neuroimaging data 

(Kambeitz et al., 2015). Pattern recognition/machine learning analysis has been successful in 

identifying MR imaging biomarkers for schizophrenia(Kambeitz et al., 2015), 

depression(Kambeitz et al., 2017), multiple sclerosis(Weygandt et al., 2011), dementia(Fan, 

Resnick, Wu, & Davatzikos, 2008). In these techniques, the data is first transformed into a form 

that is usable, termed as features, for machine learning algorithms. The algorithm will learn to 

recognize patterns in the features.  For instance, in the amyloid prediction problem, the algorithm 

will learn the regional amyloid intensity associated with a pattern of MRI features. With 

advancements in medical image analysis valuable features can be extracted from neuroimaging 

data. PR and ML methods when applied to neuroimaging data learn the underlying patterns and 

can applied for prediction of future data. Specifically, in AD determination and amyloid 

detection machine learning methods have been extensively used which will be discussed in the 

following sections.  



  41 

4.2 LEARNING THE ML ALGORITHM  

The algorithms learn during a training phase, and the performance is evaluated during a 

test phase. Learning can be classified as supervised(Kotsiantis, Zaharakis, & Pintelas, 2007), 

unsupervised(Kotsiantis et al., 2007), semi-supervised(Chapelle, Scholkopf, & Zien, 2009) and 

reinforcement learning(Sutton & Barto, 1998).  

4.2.1  Supervised learning 

When the machine-learning algorithm learns from labeled (desired outcome variable) 

train data, in order to predict the correct response when posed with new examples comes. Each 

instance of data used for training consists of input-output pair. The learning mechanism is 

analogous to human learning with examples under the supervision of a teacher.  Using each 

example, the student generates rules, which can be applied on future data for specific application 

being trained for. Some examples of supervised learning include, support vector 

machines(Scholkopf & Smola, 2001), neural networks(Hush & Horne, 1993), k-Nearest 

neighbor(Mucherino, Papajorgji, & Pardalos, 2009), decision trees (described in section 5.3.1.1.) 

(J. Ross Quinlan, 1986). 

4.2.2  Unsupervised learning 

In contrast to supervised learning, unsupervised learning algorithm learns from examples 

without any associated labels. The algorithm determines the patterns in the data and learns from 

the examples by representing them as new series of variables. They are helpful in understanding 

the data and can provide additional information related to the application. It resembles the way 

human brain finds association and connection objects or events by observing the degree of 
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similarity between objects. The search engines online or online shopping websites use 

recommendations settings using unsupervised learning on possible items similar to the ones 

previously bought. Some example of unsupervised learning k-means (Alsabti, Ranka, & Singh, 

1997), expectation-maximization algorithm (Moon, 1996; Nolen-Hoeksema, Morrow, & 

Fredrickson), and self-organizing map (Kohonen, 1990). 

4.2.3  Reinforcement learning 

In reinforcement learning the algorithm makes decisions and gets negative or positive 

feedback as error for each decision. It is also called reward based learning each wrong decision is 

penalized heavily while right decision is rewarded. The real world scenarios where robots learn 

to adapt functionality are an example of reinforcement learning. 

4.2.4  Semi-supervised learning 

Semi-supervised learning is a special form of learning. Classifiers typically need labeled 

data to train. But it is difficult to label instances, which require manual effort, and is time 

consuming especially when dealing with large amount of data. Unlabeled data on the other hand 

is easy to obtain. When training labels are present only for part of the data but absent for the rest, 

a combined supervised and unsupervised learning is employed called semi-supervised learning. 

Some examples include transductive support vector machines (J. Wang, Shen, & Pan, 2007) and 

graph-based methods (Chapelle et al., 2009). 



 43 

4.3 TYPES OF ML ALGORITHMS 

Machine learning applications can be categorized on the basis of the outcome as follows 

4.3.1  Classification 

The data is categorized into two or more classes it is termed as classification. Mostly 

classification problem uses supervised learning. There are several algorithms, which are used for 

classification problems in neuroimaging. In this work we use decision trees, which is described, 

in the section below. 

4.3.1.1 Decision trees 

Decision Trees (DTs) are learning is most widely used methods since they are very 

practical and simple (Mitchell, 1997). It is used for approximating discrete valued functions that 

is robust to noisy data and learning certain decision rules(Mitchell, 1997). The learned function 

is represented by the tree-like structure(Mitchell, 1997). Learned trees are set of if/then rules to 

improve the human readability. Each node in the tree specified a test of some feature of an 

instance/data. Each branch that descends from the node corresponds to one of the possible value 

of the feature. Classification of data is done by starting at the root node (beginning of the tree), 

testing the condition at the node and moving to the branch that satisfies the condition. This 

process is repeated for the next node of the subtree until it reaches the leaf node containing the 

categories (Mitchell, 1997). After the tree is built to its maximum length, a process called 

pruning is performed to reduce the tree to generalize the data. 
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Decision tree learning algorithms 

The basic algorithm follows a top-down approach greedy search through the space of 

possible decision trees. There algorithms used in training a decision tree  are discussed below: 

Iterative Dichotomiser 3 (ID3) algorithm (J. Ross Quinlan, 1986) is most commonly used 

decision tree algorithm, which uses the information gain criteria. The tree is created through 

greedy manner where the feature that provides the largest information gain for the categories is 

chosen at each node.   

C4.5 is an improvement from ID3 (J Ross Quinlan, 1996) algorithm, which can handle 

continuous and discrete features. In order to handle continuous features the algorithm creates a 

threshold and then creates a binary tree based on greater or less than threshold. This way the 

continuous features are discretized. The accuracy of each rule is used to order in which they are 

applied. Pruning is performed using the accuracy improves without a rule. 

C5.0 is an updated version to C4.5 algorithm that improves on the speed and memory 

usage. C5.0 is more efficient in its memory usage and results in smaller and more accurate 

decision trees when compared to C4.5.  

Classification and Regression trees (or CART) as the name suggests can produce either 

classification or regression trees depending on the outcome variable as discrete or continuous. It 

creates binary trees based on the information gain criterion. 
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Advantages of Decision tress 

• The tree can be visualized and can be easily interpreted compared to other black box

algorithms like neural networks.

• It replicates simple approach in which humans make decisions with the help of set of

simple rules.

• It can be used for both regression and classification since it can handle categorical and

numerical data.

• It can used for multiple output categories

• It does not involve an optimization of parameters

Drawbacks of decision trees 

• Decision trees although simple can over-fit and might not generalize data well. But this

problem can be overcome by pruning, setting certain parameters like minimal samples

required at a node or the maximum depth of the tree.

• It has the problem of not attaining the global optimal decision tree due to the underlying

greedy algorithm.

• With unbalanced data in each class, the decision trees can create biased trees
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Decision tree mathematical formulation is given below (Pedregosa et al., 2011) 

Given the training data 𝑥𝑥𝑖𝑖𝜖𝜖𝑅𝑅𝑛𝑛, 𝑖𝑖 = 1,2, … .𝑁𝑁 and a label vector 𝑦𝑦𝑦𝑦𝑅𝑅𝑙𝑙  

Decision tree iteratively partitions the feature space such that data with same class are 

grouped together 

At node 𝑚𝑚 the data 𝑋𝑋 is split 𝜃𝜃 using feature 𝑓𝑓 and threshold 𝑡𝑡𝑚𝑚, partition the data as 

𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 or 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡subsets of data 

𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃) = (𝑥𝑥,𝑦𝑦)|𝑥𝑥𝑗𝑗 ≤ 𝑡𝑡𝑚𝑚 

𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝜃𝜃) = 𝑋𝑋\𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛 𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 

The impurity at each node is calculated using 𝐻𝐻( ), 

𝐻𝐻 �𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃)� − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛;  𝐻𝐻�𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝜃𝜃)� − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  

𝐺𝐺(𝑋𝑋,𝜃𝜃) =
𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁𝑚𝑚

𝐻𝐻 �𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃)� +
𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑁𝑁𝑚𝑚

 𝐻𝐻(𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝜃𝜃)) 

The parameters that minimizes the impurity 𝐺𝐺(𝑋𝑋,𝜃𝜃) are selected for the split at each node 
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Consider K classes, the proportion of classes observed at node m is given by, 

𝑝𝑝𝑚𝑚𝑚𝑚 =
1
𝑁𝑁𝑚𝑚

� 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑘𝑘)
𝑥𝑥𝑖𝑖𝜖𝜖𝑅𝑅𝑚𝑚

 

The  measure of impurity (Gini index) is given by, 

 �𝑝𝑝𝑚𝑚𝑚𝑚(1 − 𝑝𝑝𝑚𝑚𝑚𝑚)
𝑘𝑘

 

And Entropy =  −∑ 𝑝𝑝𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑚𝑚𝑚𝑚)𝑘𝑘  

And, 

Misclassification  =  1 − max (𝑝𝑝𝑚𝑚𝑚𝑚) 

4.3.2  Regression 

Regression outcome involves predicting a continuous outcome measure and also use 

supervised learning. Simple regression uses one input or independent variable 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2. .𝑁𝑁 to 

predict outcome 𝑌𝑌𝑖𝑖. 

𝑌𝑌𝑖𝑖 = (𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖) + 𝜀𝜀𝑖𝑖 

where 𝛽𝛽0,𝛽𝛽1   𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟; 𝜀𝜀𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
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Multiple regression is an extension of simple regression with more than one independent 

variable. 

𝑌𝑌𝑖𝑖 = �𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1+𝛽𝛽2𝑥𝑥𝑖𝑖2 … … +𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖� + 𝜀𝜀𝑖𝑖 

Partial least square (PLS) regression is a type of multiple regression and is a method for 

modeling multivariate measurements by means of latent variables. In general PLS creates 

orthogonal score vectors (latent variables) by maximizing covariance between the different sets 

if variables. Based on the response (outcome) variables there are two variants PLS1 (one 

response variable) and PLS2 (more than two response variables). The main advantage of this 

method is that it finds a parsimonious model even when the predictors are highly collinear or 

linearly dependent. There are two main algorithm approaches for PLS; non-linear iterative partial 

least squares (NIPALS) algorithm and another alternative algorithm called SIMPLS for 

calculating partial least squared regression. 

In this work we use SIMPLS algorithm implemented in MATLAB for multivariate 

analysis and will be discussed in the following section (De Jong, 1993). 

4.3.2.1 Partial least squares regression – SIMPLS algorithm 

 The main objective is to find a predictive linear model 𝑌𝑌 � = 𝑋𝑋𝑋𝑋 (De Jong, 1993). In 

order to stabilize the estimated parameters orthogonal factors are obtained for X as 𝑡𝑡𝑎𝑎 = 𝑋𝑋0𝑟𝑟𝑎𝑎to 

maximize their covariance with corresponding factors of Y, 𝑢𝑢𝑎𝑎 = 𝑌𝑌0𝑞𝑞𝑎𝑎(a = 1,2,…..A). The first 

pair of singular vectors obtained using singular value decomposition (SVD) of 𝑆𝑆0 and 𝑃𝑃𝑎𝑎−1 were 

computed to obtain the solution for 𝑟𝑟𝑎𝑎 and 𝑞𝑞𝑎𝑎 (De Jong, 1993). 
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There are few constraints for the solutions (De Jong, 1993). 

1) The weights 𝑟𝑟𝑎𝑎 and 𝑞𝑞𝑎𝑎 to maximize the covariance of scores 𝑡𝑡𝑎𝑎 and 𝑢𝑢𝑎𝑎

𝑢𝑢′𝑎𝑎𝑡𝑡𝑎𝑎 = 𝑞𝑞′𝑎𝑎(𝑌𝑌0′𝑋𝑋0)𝑟𝑟𝑎𝑎 

2) Normalization of weights, 𝑟𝑟𝑎𝑎: 𝑟𝑟′𝑎𝑎𝑟𝑟𝑎𝑎 = 1 and 𝑞𝑞𝑎𝑎: 𝑞𝑞′𝑎𝑎𝑞𝑞𝑎𝑎 = 1

3) Orthogonality of 𝑡𝑡′𝑏𝑏𝑡𝑡𝑎𝑎 = 0 for a>b

Basic concept of SIMPLS algorithm is explained using the pseudo code below described 

as mentioned in (De Jong, 1993) 

Compute cross-product 𝑆𝑆 = 𝑋𝑋′0𝑌𝑌0 

For a = 1,2,….A 

a=1: compute single value decomposition (SVD) of S 

a>1: compute SVD of  𝑆𝑆 − 𝑃𝑃(𝑃𝑃′𝑃𝑃)−1𝑃𝑃′𝑆𝑆

The weights r are obtained from the first left singular vector 

The scores 𝑡𝑡 = 𝑋𝑋0𝑟𝑟 and loadings 𝑝𝑝 = 𝑋𝑋′0𝑡𝑡
𝑡𝑡′𝑡𝑡

 𝑎𝑎𝑎𝑎𝑎𝑎 computed and the r,t, and p are stored into 

R, T,P respectively 

END 

Compute regression coefficients 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑇𝑇−𝑌𝑌0 
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4.4 FEATURE SELECTION 

The numbers of features are often large and it is important to identify the ones that 

contribute substantially to the prediction of the class labels. Feature selection aids the algorithm 

to use only informative features, is an important but not an essential step (Chu et al., 

2012, Cuingnet et al., 2011). Feature selection can be performed using prior knowledge or 

automated methods. Some of the methods are described below:  

4.4.1  Feature ranking 

The feature ranking method uses statistical measures like Euclidean distance or chi-

squared to see how the feature is difference between the group and which has the largest distance 

between two groups.   

4.4.2  Forward Selection 

Forward selection is an iterative method, which starts with one feature and keeps adding 

the feature which best, improves our model until additional of a variable that does not improve 

the model. 

4.4.3  Recursive or exhaustive feature elimination 

It is a greedy method, which uses every feature or subset of features in the model and 

obtains the best performing feature subset. It is iterative and repeatedly creates models to exhaust 

every feature or combination of features. 

https://www.sciencedirect.com/science/article/pii/S0149763415002018#bib0100
https://www.sciencedirect.com/science/article/pii/S0149763415002018#bib0100
https://www.sciencedirect.com/science/article/pii/S0149763415002018#bib0125
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4.4.4  Backward elimination 

Backward elimination is opposite to forward selection model starts with all features and 

removes one feature after another until the performance of the algorithm drops.  

4.4.5  Embedded Methods 

Embedded feature selection method can be implemented using machine-learning 

algorithms that have their own in-built feature selection. Regularization algorithms perform 

embedded feature selection.  

4.4.5.1 Regularization 

Regularization is a way to avoid overfitting by penalizing high-valued regression 

coefficients. In reduces parameters to obtain a simplified model, which will likely perform better 

at predictions. The model with the lowest mean squared error score is usually the best choice for 

prediction. Regularization is necessary because least squares regression methods can be unstable 

due to multicollinearity in the model.  

Regularization works by biasing model parameters by particular values closer to zero. 

The bias is achieved by adding a tuning parameter to encourage those values: 

L1 regularization 

L1 regularization adds an L1 penalty equal to the absolute value of the magnitude of 

coefficients. In other words, it limits the size of the coefficients (𝛽𝛽) . L1 can yield sparse models 

(i.e. models with few coefficients) where some coefficients can become zero. 

https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/regression-analysis/#overfitting
https://www.statisticshowto.datasciencecentral.com/least-squares-regression-line/
https://www.statisticshowto.datasciencecentral.com/multicollinearity/
https://www.statisticshowto.datasciencecentral.com/what-is-bias/
https://www.statisticshowto.datasciencecentral.com/integer/#abs
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Least Absolute Shrinkage and Selection Operator (LASSO) regression uses L1 penalty to 

generate parsimonious models (i.e. models with fewer parameters) especially good with data 

with multicollinearity. The regression performs both variable selection and regularization 

simultaneously using an additional penalty term which affects they value of coefficients of 

regression. The goal of the minimization algorithm  

min
𝛽𝛽0,𝛽𝛽

(
1

2𝑣𝑣
� (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽)2

𝑣𝑣

𝑖𝑖=1
+ 𝜆𝜆� �𝛽𝛽𝑗𝑗�)

𝑝𝑝

𝑗𝑗=1
 

The tuning parameter λ, controls the amount of shrinkage of coefficient terms. As the 

regularization parameter increase then bias increases and as it decreases then variance increases. 

When λ = 0, no coefficients are eliminated and the estimated model is equal linear regression. As 

λ increases, more coefficients are set to zero and eliminated.  

 

L2 regularization  

L2 regularization adds an additional L2 penalty, which is the square of the magnitude of 

coefficients. Here none of the coefficients are eliminated and all are shrunk by the same factor 

and hence will not yield sparse models. Ridge regression and SVMs use L2 regularization for 

obtaining optimized model.  Elastic nets combine L1 & L2 methods. 

4.5 BIAS-VARIANCE TRADE-OFF 

Bias are assumptions made by a model to make the target function easier to learn. 

Algorithms which have a high bias have more assumptions on the target function and are fast to 

learn but less generalizable. Low bias has lower assumptions on the target function. For complex 

problems when these assumptions are not met they are less suitable. Machine learning algorithms 
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that have low bias are decision trees, k-Nearest Neighbors and SVM. While linear 

Regression, linear discriminant analysis and logistic regression are examples of high bias 

algorithms. Variance is the estimate the target function will change if different training data was 

used. The target function is estimated from the training data by a machine-learning algorithm, so 

we should expect the algorithm to have some variance. Machine learning algorithms that have a 

high variance are strongly influenced by the specifics of the training data. The parameter 

optimization of machine learning algorithms is often trying to balance between bias and 

variance. The trade-off between bias and variance is very important to create an optimized and 

generalized algorithm. 

4.6 MACHINE LEARNING IN AD 

Machine learning techniques provide tools to analyze neuroimaging data for inherent 

patterns in the data for classifying disease categories. Machine learning and pattern recognition 

techniques have been actively utilized to understand AD (Davatzikos et al. 2010; Davatzikos et 

al. 2008; Fan et al. 2008a; Vemuri et al. 2009). In particular classifiers have been used to 

discriminate AD patients from healthy control (F. Liu, Zhou, Shen, & Yin, 2014)and also 

conversion from MCI to AD (Richard, Schmand, Eikelenboom, Van Gool, & Alzheimer's 

Disease Neuroimaging, 2013). Structural MRI, positron emission tomography, cerebrospinal 

fluid biomarkers or a combination of multiple modalities have been used to extract features for 

classification.  Machine learning and multivariate data analysis methods are helpful tools for 

analyzing multiple variables simultaneously. The combination of MRI, FDG-PET, CSF 

biomarkers (Walhovd et al., 2010), neuropsychological status exam scores (Walhovd et al., 
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2010), and APOE genotype data (Walhovd et al., 2010) voxel-based morphometry (Hirata et al., 

2005) have used too. There were wide variety of classifiers that were used for classification of 

AD or amyloid status. A linear support vector machine (SVM) classifier (Magnin et al., 2009), 

multiple-kernel (SVM) for multimodal data fusion (F. Liu et al., 2014), genetic algorithm (GA) 

(Beheshti, Demirel, Matsuda, & Alzheimer's Disease Neuroimaging, 2017), deep learning 

algorithms (Islam & Zhang, 2017; Spasov, Passamonti, Duggento, Lio, & Toschi, 2018), 

artificial neural networks, k-nearest neighbor and linear discriminant analysis. Regression 

methods have been used to for continuous monitoring of AD progression using clinical scores 

and imaging data.  MRI (T1 and T2-weighted ratio)(Yasuno et al., 2017), PET (PiB) images 

have been classified using textural features amyloid, sparse k–means (Cohen et al., 2013) has 

generally been used to dichotomize PiB retention into presence/absence of amyloid (PiB+ and 

PiB-) (Cohen et al., 2013). 

Textural features were applied to PET images for classification of AD (Garali, Adel, 

Bourennane, & Guedj, 2018) and also amyloid status (Cattell et al., 2016).  The unique element 

of the AD prediction project in the current thesis is our focus on voxel-wise prediction of 

amyloid from MRI.  These other studies have focused primarily on prediction of clinical status 

(i.e., AD or MCI).  The focus on regional prediction of amyloid is important, as this may help 

identify pre-clinical AD 

. 
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5.0 USE OF MULTIMODAL MAGNETIC RESONANCE IMAGING AND PATTERN 

RECOGNITION TECHNIQUE FOR AMYLOID PREDICTION 

5.1 INTRODUCTION 

Alzheimer’s disease (AD) is a neurodegenerative disease about 5.7 million people in the 

US and has been identified as the most common cause of dementia in people 60 years and older 

(Alzheimer's, 2016). The disease is believed to begin with pathological changes like 

accumulation of amyloid protein; followed by tau protein tangles, hypometabolism, 

inflammation and brain atrophy several years before the cognitive and clinical symptoms set in 

(Jack et al., 2010; Sperling et al., 2011).  As one of the earliest detectable pathological changes in 

AD,  amyloid deposition is a primary target for prevention and treatment strategies(Weninger et 

al., 2016).  In-vivo measurement of Aβ plaques is performed using positron emission 

tomography (PET)(Villemagne, 2016). There is increased evidence that PET based biomarkers 

(Aβ and hypo-metabolism), appear during the preclinical stages of AD (Cohen & Klunk, 2014; 

Jack et al., 2012; Marcus et al., 2014; Sperling et al., 2011) and can predict decline years before 

the onset of symptoms (Cohen & Klunk, 2014). In-vivo Aβ imaging is essential in definitive 

diagnosis of AD and important to improve early detection of AD (Adlard et al., 2014). However 

limited access and high cost restrict the use of amyloid PET scans.  

Structural MRI is advantageous, as it is widely accessible and is relatively inexpensive. If 

MRI predictors of amyloid deposition could be defined, MRI could be used as a screening tool in 

large prevention studies and where frequent or repetitive amyloid imaging is necessary. It could 

be used to monitor progress in amyloid deposition and evaluate treatments. Greater levels of 

amyloid plaque in the brain are associated with worsened structural brain integrity. Aβ 
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deposition is associated with cortical thinning in parietal, posterior cingulate and precuneus 

regions (Becker, 2011) (Dore, 2013) and hippocampus (Dore, 2013) more specifically entorhinal 

cortex (Doherty, 2015). With progressing accumulation of Aβ, the structural integrity of the 

brain is affected.   

Regional changes in brain structure quantified using changes in MR intensities can help 

predict regional amyloid deposition. The subtle changes in the local pattern of image intensity 

(textures) across voxels can be detected using image texture analysis (Maani, Yang, & Kalra, 

2015). MRI texture analysis studies have shown promise in characterizing brain tumors 

(Zacharaki et al., 2009) (Bahadure, Ray, & Thethi, 2017), multiple sclerosis (Abbasian Ardakani, 

Gharbali, Saniei, Mosarrezaii, & Nazarbaghi, 2015) (Harrison et al., 2010) and epileptic seizure 

prediction (Suoranta et al., 2013) (de Oliveira, Betting, Mory, Cendes, & Castellano, 2013). 

Textural features were applied to PET images for classification of AD (Garali et al., 2018) and 

also amyloid status (Cattell et al., 2016). Quantitatively these textures in images can be captured 

using various spatial or frequency-based filters. There are multiple MR modalities that highlight 

different tissue properties in the brain.  High-resolution T1-weighted images have shown great 

tissue contrasts from which summary measures like volume and thickness measurements and 

texture-based measures are obtained. T2-weighted imaging can help detect fluid accumulation in 

the brain (Vemuri et al., 2017). T2-weighted FLAIR helps visualize white matter lesions 

(WMLs) as hyperintensities (Moller et al.). These white matter hyperintensities (WMHs) are 

highly correlated with AD (Brickman, Muraskin, & Zimmerman, 2009; Kandel et al., 2016) and 

Aβ deposition (Noh et al., 2014; Park et al., 2014). The tissue magnetic susceptibility differences 

highlighted using susceptibility weight imaging (Moller et al.) helps visualize microbleeds. 

Clinically SWI has been used for visualizing vasculature in the brain which show T2* 
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differences in blood and surrounding tissues ((Di Ieva et al., 2015) (Hsu et al., 2017),(S. Liu et 

al., 2017),(Halefoglu & Yousem, 2018)). These microbleeds are also associated with AD 

(Sepehry, Lang, Hsiung, & Rauscher, 2016) and amyloid (Graff-Radford et al., 2018). By using 

voxel-level tissue textural differences from individual or a combination of MR modalities we 

could potentially estimate voxel-level amyloid burden.  

In this study, we use intensity-based voxel-level imaging features extracted from both 

individual and a combination of modalities to predict voxel-level amyloid. We use regression 

models to perform amyloid status prediction across subjects (least absolute shrinkage and 

selection operator (LASSO) and partial least squares (PLS)) and amyloid change prediction 

within subjects (LASSO). Imaging data from fourteen subjects are used in the within subject 

prediction and thirty-five different subjects are used for the prediction across subjects. The 

machine learning algorithm takes advantage of the voxel-wise data.  Thus, the effective sample 

size for machine learning is > 10,000 examples.  The MRI based approach proposed here offers 

promise for characterizing voxel-level amyloid burden on cross-sectional data and also 

potentially tracking amyloid burden longitudinally. 

5.2 METHODS 

5.2.1  Parent Study and Participants 

This study was part of an ongoing longitudinal study (Amyloid Pathology and Cognition 

in Normal Elderly, RF1 AG025516) at the University of Pittsburgh.  This longitudinal study 

started in 2007 and used a 1.5T scanner at study onset. In 2011 the MR scanning for this study 

switched to a Siemens 3T TRIO MR scanner. For the current study we selected all subjects who 
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underwent at least one scan on the 3T TRIO scanner between 2011 and 2017).  If they had more 

than one session on the 3T scanner then we chose the 1st scan that had all MR sequences (T1-

weighted, T2-weighted, SWI, T2 FLAIR).  Subjects (for amyloid change prediction, N=14 with 

two time-points; for amyloid status prediction across subjects, N=35) were scanned using both 

MRI and PET on separate visits. All subjects signed written informed consent approved by the 

University of Pittsburgh institutional review board.  

5.2.2  MRI Acquisition 

All MRI scanning was conducted using a 3T Siemens Trio (Munich, Germany) located at 

the MR Research Center at the University of Pittsburgh with a 12-channel head coil. An axial, 

whole brain (3D) MPRAGE was collected with echo time (TE)=2.98ms, repetition time 

(TR)=2300ms, flip angle (FA)=9, inversion time (Alzheimer's)=900ms, field of view 

(FOV)=256x240, 1.2x1x1 mm, and 160 slices. An axial, whole brain (2D) T2-weighted image 

was collected with TE=101ms, TR=5300ms, FA=150, TI=2500ms, FOV=256x256, 1x1x3 mm 

resolution, and 48 slices. An axial, whole brain (2D) FLAIR was collected with TE=90ms, 

TR=9160ms, FA=150, TI=2500ms, FOV=256x212, 1x1x3 mm resolution, and 48 slices. An 

axial, whole brain (2D) SWI was collected with TE=20ms, TR=28ms, FA=15, TI=300ms, 

FOV=230x179, 0.53x0.53x1.5 mm resolution, and 96 slices.  

5.2.3  PET scanning: Pittsburgh Compound-B (PiB) 

[11C] PiB was produced as previously described (Price 2005). PET imaging was 

conducted using a Siemens/CTI ECAT HR + (3D mode, 15.2 cm field-of-view, 63 planes, 

reconstructed image resolution ~ 6 mm FWHM). The participant's head was immobilized to 
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minimize head motion. PiB was injected intravenously (12–15 mCi, over 20 s, specific activity ~ 

1–2 Ci/μmol) and PET scanning was performed at least 50-70 min post injection.  

5.2.4  MRI Preprocessing 

All data were preprocessed using statistical parametric mapping software (SPM12). All 

structural scans (T1-weighted, T2-weighted, FLAIR SWI) were linearly registered (normalized 

mutual information similarity metric and 4th degree B-spline interpolation) to the MPRAGE. 

These images were then segmented (using the multi-spectral segmentation that utilizes each 

channel to improve segmentation) into gray matter (GM), white matter (WM), cerebrospinal 

fluid (CSF), skull, soft-tissue, and air (outputs a probability map for each class). The GM, WM, 

and CSF were threshold at a probability of 0.1, and added to create an initial intracranial volume 

mask, which was then refined using an image filling algorithm as well as an image-closing (disk 

structuring element of 1 voxel) algorithm in MATLAB. The MPRAGE was then linearly 

registered (normalized mutual information similarity metric with 4th degree B-spline 

interpolation) to the PET image and that transformation was applied to all other structural scans 

as well as the GM, WM, and CSF segmentations.   

5.2.5  PET Processing 

PET data was corrected for photon attenuation, scatter, and radioactive decay. The final 

reconstructed PET image resolution was ~6 mm (transverse and axial) based on in-house point 

source measurements. If subject motion is present then the data is also corrected for inter-frame 

motion by applying a more extensive registration procedure prior to the PET to MR alignment. 

The structural MR was re-oriented along the anterior-posterior commissure and coregistering 

with summed PET images (40-70min or 50-70min) using automated image registration (Nelson 
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et al.; Woods, Mazziotta, & Cherry, 1993).  After co-registration, ROIs defined on MR images 

and transferred to PET data. The ROI sampling is performed using ROITOOL (Interactive Data 

Language, Boulder,CO). Regional concentrations are transformed into units of standardize 

uptake values (SUV) using the injected dose and subject’s mass. The SUV ratio (SUVR) is then 

calculated by dividing by the SUV of cerebellum.  

Structural 3D MPRAGE MR series were used to define a hand-drawn set of regions as 

previously defined, which include frontal cortex (FRC; ventral and dorsal), anterior cingulate 

gyrus (ACG: subgenual and pregenual), anteroventral striatum (AVS), precuneus/posterior 

cingulate cortex (PRC; ventral, middle and dorsal thirds), parietal cortex (Miller et al.), lateral 

temporal cortex (LTC), and cerebellum (Bozzali et al.) (Cohen et al., 2009). A global PiB 

retention index reflecting cerebral amyloid is computed from a weighted average of the SUVR 

values from the six most relevant VOIs (ACG, FRC, LTC, PAR, PRC, and AVS). The subjects 

were classified as amyloid positive or negative using a threshold (1.51) that was determined 

using a sparse k-means cluster analysis (Cohen et al., 2013).  

5.3 ALGORITHM OVERVIEW 

Our overall approach is designed to take advantage of the high dimensionality of the within-

subject imaging data to predict the MR-amyloid relationship. The MR-amyloid relationship 

developed within subject is used for prediction on longitudinal change in amyloid. We then 

generalize the MR-amyloid relationship across subjects, using the subject-level features, to 

dichotomize amyloid status (overview described in figure. 10).  
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Figure 10 Overview of amyloid prediction 
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5.3.1  Determining voxel –level association between MR and Aβ 

5.3.1.1 Feature Extraction  

Features were obtained from MR modalities (i.e., T1, T2, T2 FLAIR and SWI). The 

specific imaging features used are intensity, 3D gradient, Gabor filter, local binary pattern 

(intensity-based neighborhood encoding method with detailed description in supplement). 

Texture can be described as fine or coarse, regular or irregular, and homogeneous or 

heterogeneous which can be captured using features like Gabor filters, local binary pattern, and 

3D gradients. Gabor filters help characterizing homogeneity of texture in the spatial frequency 

domain. Local binary patterns are a unique way of encoding neighborhood intensity information. 

3D gradients highlight regions with rapid change in intensities across voxels. MR signal 

intensities and Gabor filtered images were obtained from all modalities. 3D gradient features and 

local binary patterns (LBP) and are usually summarized as histograms. For highlighting voxel-

level changes, these features will be most useful in T1-weighted imaging due to its high-

resolution with clear contrast in intensities between gray matter and white matter. Hence the 

voxel-level LBP and 3D gradients are obtained only from T1-weighted imaging. Feature images 

were then registered to PET (PiB). A combined gray matter and white matter mask (GM+WM) 

was applied to each of these filtered images for obtaining the feature matrix (𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣;  𝐹𝐹 −

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝐹𝐹 = 17 (𝑇𝑇1), 13(𝑇𝑇2,𝑇𝑇2 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑆𝑆𝑆𝑆𝑆𝑆), 𝑣𝑣 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣). The distributions of 

the features were skewed hence a  log10 transform was performed. 
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Voxel-level features 

The voxel-level features  (figure 11) obtained from the MR images highlight 

distinguishable characteristics like intensity variations and changes. Features were extracted at 

the native resolution of each modality. Hence in addition to intensities and applying Gabor 

filters, local binary patterns and 3D gradients were obtained from T1-weighted imaging due to 

their high-resolution.  

Figure 11 Voxel-level feature extraction for T1-weighted imaging: intensities, 3D gradient magnitude and 

directions, LBP map and Gabor filters. 



 64 

Gabor filters 

Gabor filters are linear frequency based filters, which highlight frequency contents in 

specific directions. Features constructed from responses of Gabor filters, Gabor features, have 

been successful in many computer vision and image processing applications face recognition, 

fingerprint matching. Gabor filter is the implementation of the Gabor transforms which is a short 

term Fourier transformation with Gaussian window for analysis in the spatial domain.  

For obtaining the gabor residuals 𝑢𝑢(𝑥𝑥,𝑦𝑦), convolution of an image 𝐼𝐼(𝑥𝑥,𝑦𝑦) is done with 

2D Gabor function  𝑔𝑔(𝑥𝑥,𝑦𝑦) as represented by 

Equation 1 Gabor residual u(Alzheimer's, 2016)   

Where 𝑥𝑥,𝑦𝑦 are set of image points and 𝛼𝛼,𝛽𝛽 are the integrals 

Where 𝑔𝑔(𝑥𝑥,𝑦𝑦) is the Gabor function and is  given by 

Equation 2 Gabor function g(x,y) 

𝑔𝑔(𝑥𝑥,𝑦𝑦) = exp�
−𝑥𝑥′2 + 𝛾𝛾2𝑦𝑦′2

2𝜎𝜎2
� cos(2𝜋𝜋

𝑥𝑥′

𝜆𝜆
+ 𝜑𝜑)

where 𝑥𝑥′ = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝑦𝑦′ = −𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

They are defined using different parameters (sizes 4 and orientation [45, 90, 180, 270 

degrees]) each of these highlighting the change in intensities at different orientations. 
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 3D Image Gradient: Gradient filter applies the 3D Sobel spatial filter that highlights the 

edges, which are sudden changes in intensity. Sobel filter is a spatial high pass filter that allows 

visualizing rapid changes in intensities. Sobel filter is convolved with the image to obtain the 

gradients (Gx Gy and Gz) in x-direction, y-direction and z-direction respectively.   

𝐺𝐺𝐺𝐺 =  �
−1 0 1
−2 0 2
−1 0 1

� , 𝐺𝐺𝐺𝐺 =  �
−1 −2 −1
0 0 0
1 2 1

� , 𝐺𝐺𝐺𝐺 =  �
−1 0 1
−2 0 2
−1 0 1

� 

From these gradient vectors the gradient magnitude and angles (azimuthal and elevation) 

are computed. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  �𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2 + 𝐺𝐺𝑧𝑧2  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑎𝑎  =  tan−1 �𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥
� ∗ (180

𝜋𝜋
) 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  tan−1 � 𝐺𝐺𝑦𝑦
ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝐺𝐺𝑥𝑥,𝐺𝐺𝑦𝑦)

� ∗ (180
𝜋𝜋

)  

Gradient elevation contains angles in degrees within the range [-90 90] measured 

between the radial line and the x-y plane while gradient azimuthal contains angles in degrees 

within the range [-180 180] measured between positive x-axis and the projection of the point on 

the x-y plane. 
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Local Binary Patterns: The local binary pattern is a texture-based feature which looks at 

its neighbors. Neighbors that are greater than the voxel value are coded as one and zero 

otherwise, and a binary value is generated (by going clockwise) – which is then converted to a 

decimal. Local binary patterns have been previously used for identifying these patterns in MRI 

(Maani, Kalra, & Yang, 2014; Oppedal, Eftestol, Engan, Beyer, & Aarsland, 2015).  Figure 12. 

shows a 3x3 neighborhood, all values above 4 are considered 1, and rest are labeled 0. This 

generates a binary pattern clockwise as 11110000. The center value is then replaced with the 

decimal equivalent of the binary number. Based on the neighboring binary information spot, line 

edges/corners can be detected. The LBPs  are individually obtained for each axial slice and then 

slices are combined to form the 3D feature image.  

Figure 12 Local binary patterns 
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LASSO Model 

LASSO is a regularized regression that penalizes the number of non-zero parameter 

estimates and allows for selection of features that are most predictive of the outcome. Features 

were extracted from voxels within combined gray matter (GM) and white matter (WM) mask 

(for training LASSO) and 6 volumes of interest (for prediction). For training, voxels from 

GM+WM mask (~20,000 for each subject) was used to allow space for greater variance in MR 

features and amyloid to improve the learning of the voxel-level MR-amyloid relationship. The 

prediction was performed on voxels within 6 VOIs. General equation for LASSO regression has 

a least square minimization term and penalization term for features that are most predictive, 

where 𝜆𝜆 is a regularization parameter, 𝑣𝑣 is the total number of voxels, 𝛽𝛽0,𝛽𝛽 intercept and slopes.  

min
𝛽𝛽0,𝛽𝛽

(
1

2𝑣𝑣
� (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽)2

𝑣𝑣

𝑖𝑖=1
+ 𝜆𝜆� �𝛽𝛽𝑗𝑗�)

𝑝𝑝

𝑗𝑗=1

The MR imaging feature matrix, 𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣 (where F are imaging features obtained from MR, 

v are voxels), is used to predict the amyloid (PiB SUVR), 𝑦𝑦𝑣𝑣𝑣𝑣1.  The regularization parameter 𝜆𝜆 

was estimated via cross-validation using 5% of the voxels. The cross validation was performed 

by dividing the voxels into k sets and each time one set of voxels are used as test and rest of the 

voxels are used for training. All the voxels within each subject were then used to predict the 

LASSO parameters 𝛽𝛽0,𝛽𝛽1, …𝛽𝛽𝐹𝐹. These LASSO model parameters can be applied to MR imaging 

of the same subject at a future time point for predicting amyloid change (2.6.1.1). The LASSO 

models can be generalized across subjects for predicting amyloid status (2.6.1.2).  
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2.6.1.1. Amyloid change prediction within subject 

Subjects (N=13) with two time-points were randomized into 50 subsets showing equal 

decrease and increase in amyloid across the two time-points. All these subjects did not show 

clinically decreasing amyloid (N=4, show decrease in amyloid due to noise). However, for the 

purpose of validation we interchanged the chronologically occurring image data. For example if 

a subject shows increasing amyloid deposition (SUVR) from (timepoint 1 to timepoint 2) we 

interchanged to obtain a decreasing amyloid (timepoint 2 to timepoint 1). This was to show that 

at any time if we had the MR-PET data for a subject we can predict its later or previous amyloid 

to obtain its change. For each subject, LASSO parameters (𝛽𝛽0,𝛽𝛽1, …𝛽𝛽𝐹𝐹) were obtained from MR 

features and amyloid data from time-point 1 and applied on MR imaging features on time-point 2 

to predict amyloid. Predicted voxel-level amyloid deposition can be obtained as a weighted sum 

of the MR imaging features. 

 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  =  β0 + X1β1 + X2β2 + ⋯+ Xfβ𝑓𝑓,  

The change in mean SUVR (time-point 1 – time-point 2) was calculated for original and 

predicted amyloid image at the time point. The change in amyloid (mean SUVR) was labeled as 

a positive (decrease) or negative (increase) change. Each subset was evaluated using F-score and 

area under the curve (AUC). F-score was defined using Precision (positive prediction rate) 𝑃𝑃 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 and Recall (specificity) 𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

, 𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2𝑃𝑃𝑃𝑃
(𝑃𝑃+𝑅𝑅)

.   
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2.6.1.2.  Amyloid status prediction across subjects 

Subject-level features of the training data include demographics (age, weight, sex, race), 

white matter hyper intensities (WMH), hippocampal volume, normalized gray matter and white 

matter.  

Subject-level features 

 Participant demographics: Demographic information included features such as age, sex, 

race, education, weight, and height (Tang et al., 2015) 

White Matter Hyperintensities (WMH): White matter segmentation includes a fuzzy seed 

based segmentation(M. Wu et al., 2006) that identifies hyper intensities in the FLAIR that 

corresponds to the white matter lesions (Debette & Markus, 2010(Gorelick, 2011 #1813)). These 

are often seen in healthy older adults, and are more extensive in individuals with dementia. The 

automated WMH segmentation method is an iterative algorithm that involves an automated 

selection of “seeds” of possible WMH lesions and fuzzy connectedness, which clusters voxels 

based on their adjacency and affinity, to segment WMH lesions around the seeds. Tahe fully 

automated WMH segmentation system was implemented in C++ and ITK. The total WMH 

volume divided by intracranial volume (ICV) was calculated as a marker of WMH burden. 

Hippocampal Volume: Volume of the hippocampus is obtained using Automated 

Labelling Pathway algorithm. ALP produces voxel counts for a large number of anatomically 

defined brain regions, including all the Brodmann areas and subcortical structures, which have 

been hand-drawn on the atlas brain from the Montreal Neurological Institute (MNI).  
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Normalized gray matter and white matter: Gray matter and white matter probabilities 

were obtained using SPM12 (as described in 2.3. MRI preprocessing) and a binary image is 

obtained by using threshold of 0.6. Gray matter and white matter voxel counts were normalized 

by ICV. 

Partial least squares (PLS) regression (described in chapter 5) was used to learn the 

relationship between subject-level features and LASSO parameters. Since there are a greater 

number of amyloid negative participants, we followed the cross-validation scheme established in 

previous literature (Mathotaarachchi et al., 2017) for rebalancing the data set. We split the data 

into subsets with equal representation of positives and negatives and for each subset all PiB+ (9) 

subjects were combined with random combinations of PiB- (9) subjects.  

5.3.1.2 Stratified LOOCV for amyloid prediction across subjects 

The subject-level analysis involves a nested leave-one-out-cross validation (LOOCV) 

with stratified rule for maintain balanced PiB+ and PiB- subjects. Each subset consists of 18 

subjects (9 PiB- and 9 PiB+). There are two LOOCV loops, outer LOOCV, for amyloid status 

prediction and inner LOOCV for obtaining the threshold used for prediction. The outer LOOCV 

17 subjects are used for training and 1 subject is left out. From 17 subjects, once again LOOCV 

is performed for predicting a threshold using linear regression. In the inner LOOCV, 16 subjects 

are used for training the PLS model and 1 subject is left out. Using subject features of left out 

test data and trained PLS model LASSO parameters are predicted. Predicted LASSO parameters 

are fit on the voxel level features from the test subject to obtain voxel-level amyloid prediction. 

This is repeated for all 17 subjects as test data and regression model is fit between mean original 

and predicted amyloid. Linear regression model acts as mapping from the original amyloid data 
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to the predicted data, by means of which the threshold is obtained. The voxel-level amyloid is 

predicted on the outer test data from PLS model (obtained on all  17 subjects) and the respective 

subject-level and voxel-level features. 

The amyloid voxel-prediction through the subject-level learning method described above 

is shown in figure 13. (Note: The original amyloid PET (PiB) images are also normalized from 0 

to 1 for representation) 

5.3.1.3 Amyloid prediction using only subject-level features 

Decision trees were used to see if the subject demographics, summary MR features alone 

and combined performed better than the voxel-level learning amyloid prediction.  For this again 

a LOOCV scheme was used to obtain the evaluation metrics. 
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Figure 13 Subject-level analysis with nested LOOCV 
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5.4 RESULTS 

5.4.1  Amyloid change prediction  

The features from multimodal magnetic resonance imaging were able to predict regional 

amyloid. The original and the predicted change in amyloid images show similarities in regional 

distribution. T2-weighted imaging with SWI performed best for change in amyloid deposition 

[Average over 20 subsets: F-score (Mean (SD)): 79.67 (6.95), Accuracy (Mean (SD)): 78.57 

(6.35); AUC 0.79 (0.06); Spearman correlation coefficient (Mean (SD)): 0.56 (0.06)] (Table 1.). 

Qualitatively normalized predicted amyloid images were comparable to the original amyloid 

image and could aid in visualization of brain regional amyloid distribution (figure 14).  
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Figure 14 Mean global original and predicted change in amyloid deposition. 

 Colors represent the ground truth: original positive change (blue) original negative change  

 

5.4.1.1 Evaluation of amyloid change prediction within subject for varying subsets  

Subsets were created for N=20 (Table. 1), 50 (Table. 2), 100 (Table. 3), for evaluating the 

within subject model. The results were consistent across the subsets further confirming that the 

same combination of modalities (SWI, T2) has produced the best prediction 
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Table 1 Prediction performance of amyloid change prediction within subject using individual and 

combination of modalities (N=20) 

Table 2  Prediction performance of amyloid change prediction within subject using individual and 

combination of modalities (N=50) 



  76 

Table 3 Prediction performance of amyloid change prediction within subject using individual and 

combination of modalities (N=100) 

 

 

 

 

5.4.1.2 Comparison of performance of unstandardized voxel-level features  

Feature standardization makes the mean as 0 and standard deviation as 1 for each feature. 

The performance is poor overall modalities when the features are standardized. This could 

possibly be because the feature normalization or standardization could possibly restrict the 

outcome measure to a specific range of values. Table. 4 show the performance of amyloid 

change prediction within subject  
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Table 4 Prediction performance of amyloid change prediction within subject (with standardization of feature 

vectors) (N=20) 

5.4.2  Amyloid status prediction 

Image texture features from T1-weighted image modality alone performed the best 

[Average over 20 subsets: F-score (Mean (SD)): 68.2515 (7.5785), Accuracy (Mean (SD)): 

66.3889 (8.156), AUC 0.6639 (0.0816); Spearman correlation coefficient (Mean (SD)): 0.4062 

(0.1304)] when compared to the other modalities in the prediction of amyloid status. Figure 15 

shows the mean original and the predicted amyloid for one subset (18 subjects) where each 

subject shown is a left out test data. Figure 16 shows the predicted amyloid change for one 

subject (voxels within ROIs) where each subject shown is a left out test data. The threshold is 

predicted for each left-out subject using the nested LOOCV, for figure representation the mean 

predicted threshold is used (0.64). 
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Figure 15 Mean global amyloid (within 6 ROIs) 

Deposition in original and predicted, original threshold (1.51) and predicted threshold (0.64) for 

classification. Colors represent the ground truth: original PiB- (blue) original PiB+ 
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Figure 16 Amyloid prediction voxel-level for PiB + and PiB- 

For subjects using T1-weighted, T2-FLAIR and SWI modality combination 
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5.4.2.1 Evaluation of amyloid status prediction across subject for varying subsets  

Subsets were created for N=20 (Table. 6), 50 (Table. 7), 100 (Table. 8), for evaluating the 

within subject model. The results show that the combination of modalities of T1, T2-FLAIR, and 

SWI has produced the best prediction for amyloid status prediction. 

 

Table 5 Prediction performance of amyloid status prediction across subjects (N=20) 
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Table 6 Prediction performance of amyloid status prediction across subjects (N=50) 

Table 7 Prediction performance of amyloid status prediction across subjects (N=100) 
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5.4.2.2 Feature ranking of textural features 

The voxel level features are unstandardized hence the model comparison is performed 

using feature ranking through forward selection. It can be seen in Table. 7, that T1-weighted 

textural features alone shows high performance but with the help of additional SWI and T2-

weighted FLAIR the correlation is also higher between the original and prediction mean amyloid 

deposition.  

Table 8 Ranking of features T1, T2-weighted FLAIR, SWI modalities for amyloid status prediction 
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5.4.2.3 Comparison of performance of standardized and unstandardized feature vectors 

 

Table 9 Prediction performance of amyloid status prediction across subjects (with standardization of voxel-

level features) (subsets N = 20) 

 

5.4.3  Amyloid prediction using subject-level features 

The F-scores were less than the predicted amyloid from our method [F-score (Mean 

(SD)) (20 subsets): demographics only = 0.55(0.16), MR only = 0.57(0.16), Demographics and 

MR = 0.54(0.18)].  The other machine learning classifiers (SVM and Logistic regression) using 

demographics and MR as features were not effective, perhaps because there was insufficient data 

for learning.  
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5.5 DISCUSSION 

The different MR imaging modalities carry complementary information about regional 

structural integrity. Several imaging features, from each of these modalities, were combined in a 

two-level approach (voxel-level and subject-level) to estimate amyloid status across subjects and 

estimate within-subject change in amyloid. Results of our analyses demonstrate that estimation 

of amyloid deposition could be successfully achieved using individual or a combination of MR 

modalities. In our approach subject-level learning involved generalizing the LASSO parameters 

across subjects, hence inter-subject registration using template normalization – which can 

introduce variability – was not required. The approach predicts voxel-level amyloid, which can 

aid in both qualitative and quantitative analysis of regional amyloid burden.  

The combination of T2-weighted imaging and SWI had the highest prediction for 

amyloid change. SWI is a T2*-based contrast that exploits inherent magnetic inhomogeneity 

from magnetic susceptibility differences between tissues. T2 and T2* based contrast might 

capture the tissue changes (Haacke et al., 2009), including loss of integrity or iron deposition in 

neuritic plaques (Chamberlain et al., 2009; Meadowcroft, Connor, Smith, & Yang, 2009). Brain 

magnetic susceptibility studies involving quantitative susceptibility mapping have shown deep 

grey matter susceptibility differences in multiple sclerosis (Al-Radaideh et al., 2013, 

{Langkammer, 2013 #10), (Rudko, Solovey, Gati, Kremenchutzky, & Menon, 2014), and 

changes were also observed longitudinally over two years (Hagemeier et al., 2018). These 

studies further support that tissues changes cause susceptibility differences and could potentially 

influence longitudinal association of MR intensity changes with amyloid. 

For across subject amyloid status prediction, the combination of T1-weighted, T2-

weighted modality and SWI modality was most predictive. This could be because the summary 
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subject-features were most correlated with these modalities. The subject-level MR features like 

WMH and hippocampal volume are obtained from T1-weighted and T2-weighted FLAIR. 

Combining T2-weighted and SWI modalities with T1-weighted modality, the rank-correlation 

between the original and predicted mean amyloid deposition increased. The voxel-wise PiB 

prediction using both MR and summary subject-level features was significantly higher than using 

only summary subject-level measures. This suggests there is information in MR signal at the 

voxel-level that is associated with amyloid accumulation, which drives the prediction of amyloid. 

Our key contribution in this work is to test whether there is a voxel-level association 

between MRI and amyloid and show how this can be leveraged for amyloid prediction. Previous 

studies have explored the use of machine learning for cerebral amyloid prediction.  Catell et al. 

(2016) used 3D gradient changes in amyloid imaging to classify amyloid status, their approach 

improving the detection of amyloid status from the PET images. A limited number of prior 

studies have used MR imaging to predict amyloid positivity. Ten et al. (2018) used a 

combination of features as predictors for amyloid status prediction (Ten Kate et al., 2018). They 

used subject demographics, cognitive variables, regional estimates of volume and cortical 

thickness from MRI, and APOE ε4 information along with machine learning classifier called 

support vector machine (SVM) with nested 10-fold cross-validation to identify the best 

discriminating features between amyloid positive and amyloid negative groups. In our study 

however, we did not use any cognitive measures since we are focused on preclinical phase 

biomarkers and all the subjects are cognitively normal. To our knowledge, this is the first study 

that explores the use of MR imaging voxel-level features to predict amyloid imaging voxel-wise 

in additional to binary output (amyloid positive or amyloid negative) for cognitively normal 

subjects.  
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The current results are on a relatively small sample size.  Nevertheless, are significant 

with appropriate cross-validation, thus the results suggest the voxel-level MR features can 

predict regional amyloid.  We suspect with more modalities, more features, including asymmetry 

filters, and a larger set of images the learning would be much better. Deep learning approaches, 

such as convolution neural networks on large data sets are a promising future direction. This 

result demonstrates how voxel-level imaging data can be leveraged for prediction across 

individuals, and across time.  
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6.0 A NON-LINEAR REGISTRATION METHOD FOR CO-REGISTRATION OF 

WHITE MATTER LESIONS DEFINED USING IN-VIVO WHOLE-BRAIN MRI 

WITH POST-MORTEM BRAIN MRI AND POST-MORTEM PHOTOGRAPHS  

White matter hyperintensities (WMH) are commonly found on brain magnetic resonance 

imaging (MRI) in older subjects and in patients with stroke and dementia. In older adults, the 

hyperintense signal is often found in the cerebral white matter on T2-weighted MRI. These white 

matter lesions (WMLs) are found to be clinically associated with cognitive, mood, and functional 

disturbances. Moreover, these lesions are believed to have heterogenous etiology, including 

neurodegenerative, inflammatory and ischemic components. The alignment from in-vivo to post-

mortem MRIs is essential for improved understanding of the histopathology of WMLs detectable 

by MRI in-vivo. However, it is a difficult challenge to align post-mortem tissue to the 

corresponding anatomical location detected ante-mortem due to tissue deformation at post-

mortem. In the current study, we address this challenge by developing a non-linear alignment 

method using post-mortem brain MRI as an intermediate to register in-vivo MRI to 

histopathology.  

6.1 INTRODUCTION 

White matter lesions are considered a normal part of the aging brain but their prevalence 

also has clinical significance in patients with Alzheimer’s (Gordon et al., 2015; Kandel et al., 

2016; Scheltens et al., 1992) or vascular dementia (Breteler et al., 1994; Gootjes et al., 2004; 

Smith et al., 2016), multiple sclerosis (Hosseini et al., 2018), and stroke (Baik et al., 2017; Wen 
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& Sachdev, 2004). These lesions can be visualized as hyperintensities in white matter using T2-

weighted fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging sequence. 

WMH are associated with either being from an ischemic or demyelination origin. Classifying 

and understanding the lesion etiology is important for appropriate disease treatment (Leite, 

Rittner, Appenzeller, Ruocco, & Lotufo, 2015 Ruocco, & Lotufo, 2015). Pathological analysis 

reveals information about the lesions and, by correlating with in-vivo imaging. We can also 

further understand any imaging-detectable pathology by pathological analysis. 

WMHs on MRIs have the potential to aid the neuropathological post mortem assessment 

of vascular disease in white matter. Post-mortem MR imaging is advantageous since there are no 

motion or physiological artifacts and there is less time constraint in the MR sequences, being 

possible to acquire images at higher resolutions when compared to in-vivo regular acquisitions. 

The correlation of changes observed in-vivo with post-mortem tissue can help to understand the 

lesion etiology (Leite et al., 2015). Previous studies that reported correlations of WMH between 

in-vivo and post-mortem histology analysis, relied on manual registration and correlation of 

post-mortem tissue sections using MRI and after histology analysis (Blezer, Bauer, Brok, 

Nicolay, & t Hart, 2007 Nicolay, & t Hart, 2007; Fernando et al., 2004; Fisher et al., 2007; 

Manners et al., 2009; Schmierer et al., 2003; Zhang et al., 2013).  Registration of in-vivo MRI 

with post-mortem imaging is difficult due to limitations in sampling, fixation, and the significant 

deformations undergone by the brain tissue during dissection. The use of automated registration 

has been performed for comparison of in vivo and post-mortem total brain volumetric 

measurements for rat models (Oguz et al., 2013). There is limited research focused on co-

registration of human white matter lesions seen on in-vivo MRI with the corresponding 
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postmortem MRI and digital photographs of the tissue slab (Black, Gao, & Bilbao, 2009 2009; 

Hornberger et al., 2012).  

Post-mortem MRI has been used as an intermediate step for guiding pathological 

examination (Absinta et al., 2014). In this study we propose a novel method using intermediate 

ex-vivo brain MRI for accurate registration of in-vivo MRI and photographs of postmortem 

tissue slabs before histological analysis. The ex-vivo MRI accounts for the time lapse since the 

in-vivo MRI and contains the same structural distortions as the postmortem tissue slab, while 

being presented in the same MR space as the in-vivo MRI. We aim to produce an automated 

registration process that will improve the alignment between pre- and post-mortem imaging and 

aid in structural-pathological correlation.   

6.2 METHODS 

6.2.1   Study and Participants  

This study was part of an ongoing longitudinal study (P01 AG025204 and R01 

MH111265) at the University of Pittsburgh. Brains from participants in this study who received 

an in vivo MRI and provided consent for brain autopsy were used for postmortem MRI (N=4). 

The left hemisphere was fixed in 4% paraformaldehyde for three weeks prior to scanning while 

the right-hemisphere was micro dissected and frozen at -80 degrees Celsius. Age at the in-vivo 

scan was 70 (20.9) years (Mean (SD)) and age at death was 75(18) years (Mean (SD)). The time 

between in vivo MRI and death varied 55.62 (40.22) months (Mean (SD)).  Gender 

representation among the participants was equal (male (50%) and female (50%)). 
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6.2.2  Image Acquisition 

Participants were imaged in-vivo using 3T MR scanner (Siemens MAGNETOM TRIO, 

Germany). An axial, whole brain (3D) MPRAGE was collected with echo time (TE)=2.98ms, 

repetition time (TR)=2300ms, flip angle (FA)=9, inversion time (TI) = 900ms, field of view 

(FOV)=256x240, 1.2x1.0x1.0 mm3, and 160 slices. An axial, whole brain (2D) FLAIR was 

collected with TE=90ms, TR=9160ms, FA=150, TI=2500ms, FOV=256x212, 1x1x3 mm3 

resolution, and 48 slices. Post-mortem left hemisphere was scanned using the 7T human MRI 

scanner (Siemens MAGNETOM, Germany) and a 16-channel transmit radiofrequency coil based 

on the Tic-Tac-Toe design (Junghwan Kim et al., 2016; Junghwan Kim et al., 2017; 

Krishnamurthy et al., 2019; Santini, Kim, et al., 2018; Santini, Zhao, et al., 2018) with a 32-

channel receive radiofrequency coil. The MPRAGE sequence was acquired with the following 

parameters: TI = 900ms, TR = 4500 ms, TE = 3.65 ms, and 256 slices. Slice thickness = 

0.35mm, flip angle = 8 degrees, voxel size = 0.3x0.3x0.3 mm3. The post-mortem brain fixed in 

4% paraformaldehyde (PFA) was vacuum-sealed inside a plastic bag containing 4% PFA for 

scanning.  

6.2.3  Image Pre-processing 

Image pre-processing steps includes segmentation of voxels into tissue probability maps 

(gray matter, white matter, cerebrospinal fluid), obtaining deformation fields for normalization to 

Montreal Neurological Institute (MNI) template space, WMHs segmentation and removal of 

plastic bag from the post-mortem MRI.  
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6.2.3.1 In-vivo MRI segmentation and skull-stripping 

The T1-weighted images were segmented into gray matter (GM), white matter (WM), 

cerebrospinal fluid (CSF), skull, soft-tissue, and air (outputs a probability map for each class) 

using SPM12 (Friston et al., 1994). The GM, WM, and CSF were threshold at a probability of 

0.1, and added to create an initial intracranial volume mask, which was then refined using an 

image filling algorithm as well as an image-closing (disk structuring element of 1 voxel) 

algorithm in MATLAB (Thompson & Shure, 1995)(Soille, 2013). This ICV mask was applied to 

the in-vivo T1-weighted imaging for obtaining a skull-stripped image. SPM12 segmentation also 

provides the forward and inverse deformation fields into the standard brain space derived by the 

MNI template space (Friston et al., 1994). 

6.2.3.2 In-vivo white-matter hyperintensity segmentation  

We used the method described in (Minjie Wu et al., 2006) for the WMHs segmentation 

using T2-weighted FLAIR. The segmentation method includes a fuzzy seed based segmentation 

that identifies hyperintensities in the T2-weighted FLAIR image that corresponds to WMLs 

(Debette & Markus, 2010; Gorelick et al., 2011). This is an automated segmentation method, 

which is an iterative algorithm that involves an automated selection of “seeds” of possible WMH 

lesions and identifies the fuzzy connectedness, which clusters voxels based on their adjacency 

and affinity, to segment WMH lesions around the seeds. The fully automated WMH 

segmentation system was implemented in C++ and ITK (Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012; H. J. Johnson, McCormick, & Ibanez, 2015; Yushkevich et al., 2006).  
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6.2.3.3 Post-mortem MR pre-processing  

Using FSL BET (Jenkinson et al., 2012), a command designed for brain extraction, the 

post-mortem MRI signal was stripped from the plastic bag. The left-hemisphere post-mortem 

MRI was mirrored to create a whole brain MRI in order for applying SPM12 segmentation and 

normalization methods since it uses a whole brain template. The whole-brain MRI was 

segmented into GM, WM, and CSF, to obtain the forward and inverse deformation fields into the 

MNI template space. 

6.2.4  Image Registration  

6.2.4.1 Overview of registration process  

Image co-registration of the in-vivo MRI and the post-mortem digital photographs used a 

combination of linear and nonlinear registration methods (Figure 17 shows the steps in detail). 

The steps involve alignment of post-mortem MRI (left hemisphere) to in-vivo MRI (left 

hemisphere) (steps 1-2), mirroring the left hemisphere to create a whole brain (step 3), 

normalization in-vivo and post-mortem MRI to MNI template (step 4), co-registration of in-vivo 

and post-mortem MRI (steps 5-6). The steps 4-6 are repeated for in-vivo T2-weighted FLAIR, 

along with the corresponding WMHs segmentation image (step 7). The post-mortem MRI axial 

slice is registered in a semi-automated approach using landmark based or control-point 

registration (steps 8-9). 
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6.2.4.2 Registration of In-vivo to Post-mortem MRI 

A nonlinear registration method using SPM12 was used to register the T1-weighted in-

vivo MR image to the T1-weighted post-mortem MR image, as it is more successful than linear 

registration methods in aligning structures that are significantly deformed. Normalization warps 

images to fit a standard template to co-register images that are fundamentally different in shape. 

The non-linear deformation was obtained from unified segmentation and normalization described 

in 3.4.2.1 (J. Ashburner & Friston, 1999).  

The in-vivo and post-mortem MR images were normalized to the MNI space, a template 

created by nonlinear registration of 152 T1- weighted images, using their respective forward 

deformation fields. The post-mortem inverse deformation field was then applied to the 

normalized in-vivo and post-mortem image to co-register them. The deformation fields were 

applied using a resolution of 0.5x0.5x0.5 mm3 and the bounding boxes were adjusted for better 

overlap. To achieve accurate registration, an additional normalization method was repeated or an 

additional linear co-registration step was included. The additional registration step used a rigid- 

body model based off the work by Collignon et al (Collignon et al., 1995). Similarly, in-vivo T2-

weighted FLAIR and WMH segmentation obtained from T2-weighted FLAIR were co-registered 

to the post-mortem MR image. 

6.2.4.3 Registration of Post-mortem MRI to Post-mortem Digital Photographs  

Color digital photographs of post-mortem brain sections were resized and converted to 

gray-scale. They were matched manually to the axial section of co-registered left-hemisphere 

post-mortem MRI. The digital photograph and the corresponding MRI slice were registered 

using control point registration in MATLAB by selecting corresponding landmarks (vertices of 

the ventricles and significant ridges on the perimeter) on the moving image (the digital 
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photograph) and the fixed image (the MRI axial slice). The corresponding landmarks were used 

to generate the transform between the moving and the fixed image and were applied on all the 

axial slices from registered post-mortem MRI (T1-weighted) and in-vivo MRI (T1-weighted, T2-

weighted FLAIR, WMHs segmentations). The final WMHs segmentation from in-vivo MR 

overlaid on the post-mortem photograph can be used for histological analysis.  
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Figure 17 Schematic of registration  method 
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6.3 RESULTS 

Each of the post-mortem MRIs differed in ventricle size, atrophy, and degree of 

deformation during scanning. Figures 18-21 show left hemisphere co-registered images in the 

following order; in-vivo T1-weighted MRI (A), in-vivo T2- weighted FLAIR image (B), post-

mortem T1-weighted MRI (C), in-vivo T1-weighted MRI overlaid onto post-mortem T1-

weighted MRI (D), T2-FLAIR overlaid onto T1-weighted post-mortem MRI (E), and WMHs 

segmentations overlaid onto T1-weighted post-mortem MRI (F), onto T2-weighted in-vivo MRI 

(G), and onto post-mortem digital photograph (H). The described method yielded best 

registration for subject 1 (figure 18) and subject 3 (figure 20). Portions of post-mortem gray 

matter in the MR image were stripped during the process of removing the plastic bag (figure 

18C). Although we adjusted the bounding box there were portions that were cut during the 

registration process. For subject 2 (figure 19), the co-registration improved after an additional 

step of normalization and control point registration to align the gyrus folds. The WMHs observed 

in T2-weighted FLAIR on the left hemisphere were very limited for subject 3. Subject 4 (figure 

21) however did not have a perfect alignment with the WMH since the ventricles did not overlap

perfectly. 
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Figure 18 Coregistered images for Subject 1  

Left hemisphere of  A. T1-weighted in-vivo MRI  B.  T2-weighted (FLAIR) in-vivo MRI  C. T1-weighted 

post-mortem MRI  D. In-vivo MRI overlaid onto post-mortem MRI  E. FLAIR image overlaid onto post-

mortem MRI  F. WMHs Segmentations  overlaid on T1-weighted post-mortem MRI  G. Segmented WMHs  

overlaid on T2-weighted in-vivo 

Figure 19 Coregistered images for Subject 2 

 Left hemisphere of  A. T1-weighted in-vivo MRI  B.  T2-weighted (FLAIR) in-vivo MRI  C. T1-weighted 

post-mortem MRI  D. In-vivo MRI overlaid onto post-mortem MRI  E. FLAIR image overlaid onto post-

mortem MRI  F. WMHs Segmentations  overlaid on T1-weighted post-mortem MRI  G. Segmented WMHs  

overlaid on T2-weighted in-vivo 
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Figure 20 Coregistered images for Subject 3 

Left hemisphere of  A. T1-weighted in-vivo MRI  B.  T2-weighted (FLAIR) in-vivo MRI  C. T1-weighted 

post-mortem MRI  D. In-vivo MRI overlaid onto post-mortem MRI  E. FLAIR image overlaid onto post-

mortem MRI  F. WMHs Segmentations  overlaid on T1-weighted post-mortem MRI  G. Segmented WMHs  

overlaid on T2-weighted in-vivo 

Figure 21 Coregistered images for Subject 4 

 Left hemisphere of  A. T1-weighted in-vivo MRI  B.  T2-weighted (FLAIR) in-vivo MRI  C. T1-weighted 

post-mortem MRI  D. In-vivo MRI overlaid onto post-mortem MRI  E. FLAIR image overlaid onto post-

mortem MRI  F. WMHs Segmentations  overlaid on T1-weighted post-mortem MRI  G. Segmented WMHs 

overlaid on T2-weighted in-vivo 
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6.4 DISCUSSIONS 

A nonlinear registration method was developed in order to align pathology detected with 

an in-vivo MRI with the corresponding postmortem tissue slab by using an ex-vivo MRI as an 

intermediate. This method allows correlation of in-vivo changes with precise areas of the 

postmortem tissue slab, which provides guidance for postmortem histological evaluation of the 

in vivo changes. Our method utilizes an ex-vivo MRI as an intermediate step to guide the 

localization of in-vivo white matter lesions on the postmortem tissue slab. The ability to place 

the WMH segmentations from the in-vivo FLAIR image directly on the ex-vivo MRI and then 

the digital photograph of the hemisphere, allows individual lesions to be identified and studied. 

 Few studies have co-registered in vivo human brain MRI to histology using whole 

hemispheres, with most focusing on specific regions of the brain. Goubran et al. (2015) reported 

registering an ex-vivo scan of the anterior portion of the temporal lobe to in-vivo MRI scans 

using an automated initialization as well as a landmark- based rigid registration, followed by a 

deformable landmark registration. Their work is limited in region and by the fragmented tissue 

resulting from the temporal lobectomy (Goubran et al., 2015). There have been few publications 

describing algorithms for aligning in-vivo to ex-vivo brain MRIs that would address WMH 

localization for our post-mortem tissue processing protocol. Kim et al. registered postmortem 

human brain histology images to an in vivo MRI reference volume using non-linear polynomial 

transformations (T.-S. Kim, Singh, Sungkarat, Zarow, & Chui, 2000). A polynomial model 

allows for the compensation of global distortions between the pre- and post-mortem images but 

does not take local deformations into account. Our method combines a 3D- to- 3D registration 

between the in-vivo and ex-vivo MRIs with a 2D- to- 2D registration between the ex-vivo 
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photograph and a manually selected matching MRI slice, creating a successful alignment of 

WMHs across all modalities to serve as a guide to histology. However, for subjects when the 

ventricle shrinkage occurred the alignment near the ventricles between the in-vivo and 

postmortem tissue was not perfect (figures 11 and 13). We had to perform additional steps of 

control-point registration to correct but it was still not perfectly aligned to each other. 

The present study had limitations preventing the development of a completely automated 

registration method. The postmortem brain undergoes natural tissue deformation upon brain 

removal and fixation. These external factors caused difficulty for registration of the postmortem 

tissue slab with the anatomical structures seen in-vivo. Since the tissue deformation of each 

subject was different, we needed to take a partially custom approach to each subject by adding 

some additional steps for better alignment between the in vivo MRI and digital photograph of the 

postmortem slab. There was variability in the placement of post-mortem MRI in the MR scanner, 

across subjects. Sometimes it was hard to distinguish between the coronal, sagittal and transverse 

planes. This variability had to be accounted for, by additional pre-processing steps that were 

different for each subject. This limitation may be resolved by 3D printing a skull model that can 

help fixate the brain similar to how in-vivo brain, making it more consistent across each subject. 

The plastic bag was a hindrance in the registration, as it created inhomogeneities in the overall 

intensities across the image and cut brain when removed. Neuropathology studies of post-

mortem brains can provide information on the etiology and pathogenesis of the WM lesions and 

help to understand the image visualized on in-vivo MRI. Structural changes in WM integrity are 

regularly observed through MRI and can reveal the dynamic nature of WMHs as well as their 

interactions with other pathological features and contribution to overall brain damage. 

Combining the information obtained by MRI with the information from the post-mortem 
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pathology studies will not only assist in the understanding of the underlying mechanisms seen on 

the MRI, but also help improve the imaging-to-autopsy validation studies of PET radioligands 

and lead to more accurate diagnosis and development of better treatment plans.  

Postmortem neuropathological studies can provide information on the etiology and 

pathophysiology of the white matter lesions and can help to understand abnormalities visualized 

on in-vivo MRI. Structural changes in white matter integrity are regularly observed with MRI 

and can reveal the dynamic nature of WMH as well as their interactions with other pathological 

features and contributions to overall brain damage. Combining the information obtained by MRI 

with the information from the postmortem pathological studies will not only assist in the 

understanding of the underlying abnormalities seen on the MRI, but could also help develop a 

deeper understanding of the etiology of these abnormalities.  This understanding could ultimately 

lead to improvements in therapy aimed at preventing or treating these abnormalities.  
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7.0 CONCLUSIONS AND FUTURE WORK 

7.1 SUMMARY CONCLUSIONS 

This thesis represents novel contribution on the use of MRI for co-registration of whole 

brain MRI with the photographs through means of post-mortem whole hemisphere as an 

intermediate guide to registration.  The other study on amyloid prediction is our major 

contribution and forms the basis for specific aims in this dissertation work. It also represents first 

work on prediction of voxel-level amyloid deposition in the brain using MRI and machine 

learning, which takes on a novel two level-approach on voxel-level and subject-level. Although 

the techniques used as established and widely used machine-learning techniques the combination 

and method employed is novel in the prediction of voxel-level amyloid. We have addressed the 

specific aims as follows.  

In Aim 1, within subject analysis has been utilized for amyloid change prediction. MR 

signal from T2-weighted and susceptibility weighted imaging modalities have been shown to 

preform the best. It aids in the fact that these are useful for longitudinal studies and can be very 

useful in longitudinal monitoring of amyloid and utility as a possible screening tool. When there 

is more MRI data time points for an individual their corresponding PET (PiB) image can be 

predicted. Identifying these imaging biomarkers is helpful in studies especially longitudinal 

monitoring of patients and can pave way for better diagnostic tools.  
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In Aim 2, generalization helps in amyloid voxel-level prediction and also status 

classification. The use of T1-weighted, T2-weighted FLAIR and susceptibility weighted imaging 

can increase the prediction and also the correlation with the original PiB. This is indicative of the 

combination of features can aid in the prediction ad also provides an insight into how each of the 

modality combinations are associated with amyloid in the brain. 

7.2 FUTURE WORK 

In the first study the protocol design of photographs and post-mortem imaging of 

hemisphere. The MRI was not designed for Post-mortem brain characteristics of no skull. The 

photographs have to be taken at the same camera configuration. The hemisphere using 3D model 

of skull or fixation for the brain tissue will help to maintain a fixed position of the brain for 

consistent on the orientation. Using agarose gel instead of plastic bag will help in the issue with 

interference in the technique due to the presence of the plastic bag.  

The present work confirms the MR signal is related to amyloid deposition and is useful in 

the prediction of amyloid. Future work in the prediction of voxel-level amyloid will involve a 

larger cohort or combination of cohort. Deep learning methods have shown promise in 

identifying features that are similar to textural features used. Deep learning also is more efficient 

with larger data. Convolution neural network is a type of neural network that uses several layers 

convolution filters. The outcome of each layer of convolution filter can help in identifying the 

landmarks and features that might help in better prediction of amyloid. It can be used for both 

feature extraction tool and for prediction. Also recurrent neural networks can make use of 

longitudinal data for prediction.  
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