5 research outputs found

    Information and Communication Technologies for Integrated Operations of Ships

    Get PDF
    Over the past three decades, information and communication technologies have filled our daily life with great comfort and convenience. As the technology keeps evolving, user expectations for more challenging cases that can benefit from advanced information and communication technologies are increasing, e.g., the scenario of Integrated Operations (IO) for ships in the maritime domain. However, to realize integrated operations for ships is a complex task that involves addressing problems such as interoperability among heterogeneous operation applications and connectivity within harsh maritime communication environments. The common approach was to tackle these challenges separately by service integration and communication integration, respectively: each utilizes optimized and independent implementations. Separate solutions work fine within their own contexts, whereas conflicts and inconsistencies can be identified by integrating them together for specific maritime scenarios. Therefore, connection between separate solutions needs to be studied. In this dissertation, we first take a look at complex systems to obtain useful methodologies applied to integrated operations for ships. Then we study IO of ships from different perspectives and divide the complex task into sub-tasks. We explore separate approaches to these sub-tasks, examine the connection in between, resolve inconsistencies if there are any, and continue the exploration process till a compatible and integrated solution can be accomplished. In general, this journey represents our argument for an integration-oriented complex system development approach. In concrete, it shows the way on how to achieve IO of ships by both providing connectivity in harsh communication environments and allowing interoperability among heterogeneous operation applications, and most importantly by ensuring the synergy in between. This synergy also gives hints on the evolution towards a next generation network architecture for the future Internet

    Fairness-Oriented and QoS-Aware Radio Resource Management in OFDMA Packet Radio Networks: Practical Algorithms and System Performance

    Get PDF
    During the last two decades, wireless technologies have demonstrated their importance in people’s personal communications but also as one of the fundamental drivers of economic growth, first in the form of cellular networks (2G, 3G and beyond) and more recently in terms of wireless computer networks (e.g. Wi-Fi,) and wireless Internet connectivity. Currently, the development of new packet radio systems is evolving, most notably in terms of 3GPP Long Term Evolution (LTE) and LTE-Advanced, in order to utilize the available radio spectrum as efficiently as possible. Therefore, advanced radio resource management (RRM) techniques have an important role in current and emerging future mobile networks. In all wireless systems, the data throughput and the average data delay performance, especially in case of best effort services, are greatly degraded when the traffic-load in the system is high. This is because the radio resources (time, frequency and space) are shared by multiple users. Another big problem is that the transmission performance can vary heavily between different users, since the channel state greatly depends on the communication environment and changes therein. To solve these challenges, new major technology innovations are needed. This thesis considers new practical fairness-oriented and quality-of-service (QoS) -aware RRM algorithms in OFDMA-based packet radio networks. Moreover, using UTRAN LTE radio network as application example, we focus on analyzing and enhancing the system-level performance by utilizing state-of-the-art waveform and radio link developments combined with advanced radio resource management methods. The presented solutions as part of RRM framework consist of efficient packet scheduling, link adaptation, power control, admission control and retransmission mechanisms. More specifically, several novel packet scheduling algorithms are proposed and analyzed to address these challenges. This dissertation deals specifically with the problems of QoS provisioning and fair radio resource distribution among users with limited channel feedback, admission and power control in best effort and video streaming type traffic scenarios, and the resulting system-level performance. The work and developments are practically-oriented taking aspects like finite channel state information (CSI), reporting delays and retransmissions into account. Consequently, the multi-user diversity gain with opportunistic frequency domain packet scheduling (FDPS) is further explored in spatial domain by taking the multiantenna techniques and spatial division multiplexing functionalities into account. Validation and analysis of the proposed solutions is performed through extensive system level simulations modeling the behavior and operation of a complete multiuser cell in the overall network. Based on the obtained performance results, it is confirmed that greatly improved fairness can be fairly easily built in to the scheduling algorithm and other RRM mechanisms without considerably degrading e.g. the average cell throughput. Moreover, effective QoS-provisioning framework in video streaming type traffic scenarios demonstrate the effectiveness of the presented solutions as increased system capacity measured in terms of the number of users or parallel streaming services supported simultaneously by the network

    DIGITAL CO-CREATION Digitalization within Service Design : Transformation from analog thinking towards digital doing

    Get PDF
    The German automotive industry has accelerated its digital transformation as OEMs (Original Equipment Manufacturers) moving from car manufacturers towards becoming mobility providers, striving for new mobility solutions like offering Mobility as a Service (MaaS), Electric Vehicles (EVs) and Self-Driving-System (SDS). OEMs focus on expanding their core product-driven businesses to access service-orientated business models, the transformation from ownership towards shared mobility. Considering internal and external factors, this requires a new set of expertise, capabilities and an underlying approach to fulfill the demands in the complexity of human-centered development and front- and backstage alignment within the organization. At the same time, Service Design as a practice has risen in attraction by industry, being recognized and increasingly requested for its integration in the functions and divisions of the organization. The scale of Service Design in influence and impact has reached professional practice, making its way from a trendy buzzword to professional practice of turning complex problems collaboratively into tangible solutions. It is seen as a powerful opportunity for combining Business, Human-Centered Design and Engineering. Service Design establishes new ways of exploring business opportunities towards agile problem-solving but focuses on the ‘doing’ side towards further implementation. The contribution of this industrial-based doctoral thesis shall define how Service Design can be deployed and implemented in the field of organizational transformation and mobility development in the era of digital transformation (Digitalization). This research approach seeks to acquire new knowledge on how the Service Design practice can be applied and executed to be perceived as a practical approach to improve the enterprise’s processes and operating procedures and also provide a strategy to grow Service Design within the organization. This research has followed developing a pilot in a lean start-up approach of build, measure, learn with various business units and brands within the Volkswagen Group, this also implies that this research case study consisted of analyzing the Volkswagen Group needs for Service Design. The ‘10X-Service Design Lab’ (10X-SDL) has been designed as the framework of a combination of modular lab space, facilitation enhanced process, methodological driven tool box, operational model in alignment with a digital workflow and workspace striving for accelerated decision making. It is based on the hypothesis that the proposed framework enhances Service Design practice and, at the same time, it increases its attractiveness for business purposes. The 10X-SDL is designed to accelerate project development in a human-centered and holistic way by an open workspace platform lead by facilitators on which project developers, participants, and stakeholders can digitally co-create products, services, systems, and strategies. This research has been conducted as a case study within the Volkswagen Group from 2015 to 2019 in cooperation with the main partners of Service Innovation Corner (SINCO) of the University of Lapland and visual collaboration software company DEON

    Distributed Real-time Systems - Deterministic Protocols for Wireless Networks and Model-Driven Development with SDL

    Get PDF
    In a networked system, the communication system is indispensable but often the weakest link w.r.t. performance and reliability. This, particularly, holds for wireless communication systems, where the error- and interference-prone medium and the character of network topologies implicate special challenges. However, there are many scenarios of wireless networks, in which a certain quality-of-service has to be provided despite these conditions. In this regard, distributed real-time systems, whose realization by wireless multi-hop networks becomes increasingly popular, are a particular challenge. For such systems, it is of crucial importance that communication protocols are deterministic and come with the required amount of efficiency and predictability, while additionally considering scarce hardware resources that are a major limiting factor of wireless sensor nodes. This, in turn, does not only place demands on the behavior of a protocol but also on its implementation, which has to comply with timing and resource constraints. The first part of this thesis presents a deterministic protocol for wireless multi-hop networks with time-critical behavior. The protocol is referred to as Arbitrating and Cooperative Transfer Protocol (ACTP), and is an instance of a binary countdown protocol. It enables the reliable transfer of bit sequences of adjustable length and deterministically resolves contest among nodes based on a flexible priority assignment, with constant delays, and within configurable arbitration radii. The protocol's key requirement is the collision-resistant encoding of bits, which is achieved by the incorporation of black bursts. Besides revisiting black bursts and proposing measures to optimize their detection, robustness, and implementation on wireless sensor nodes, the first part of this thesis presents the mode of operation and time behavior of ACTP. In addition, possible applications of ACTP are illustrated, presenting solutions to well-known problems of distributed systems like leader election and data dissemination. Furthermore, results of experimental evaluations with customary wireless transceivers are outlined to provide evidence of the protocol's implementability and benefits. In the second part of this thesis, the focus is shifted from concrete deterministic protocols to their model-driven development with the Specification and Description Language (SDL). Though SDL is well-established in the domain of telecommunication and distributed systems, the predictability of its implementations is often insufficient as previous projects have shown. To increase this predictability and to improve SDL's applicability to time-critical systems, real-time tasks, an approved concept in the design of real-time systems, are transferred to SDL and extended to cover node-spanning system tasks. In this regard, a priority-based execution and suspension model is introduced in SDL, which enables task-specific priority assignments in the SDL specification that are orthogonal to the static structure of SDL systems and control transition execution orders on design as well as on implementation level. Both the formal incorporation of real-time tasks into SDL and their implementation in a novel scheduling strategy are discussed in this context. By means of evaluations on wireless sensor nodes, evidence is provided that these extensions reduce worst-case execution times substantially, and improve the predictability of SDL implementations and the language's applicability to real-time systems
    corecore