124 research outputs found

    Modulation of speech-in-noise comprehension through transcranial current stimulation with the phase-shifted speech envelope

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/Neural activity tracks the envelope of a speech signal at latencies from 50 ms to 300 ms. Modulating this neural tracking through transcranial alternating current stimulation influences speech comprehension. Two important variables that can affect this modulation are the latency and the phase of the stimulation with respect to the sound. While previous studies have found an influence of both variables on speech comprehension, the interaction between both has not yet been measured. We presented 17 subjects with speech in noise coupled with simultaneous transcranial alternating current stimulation. The currents were based on the envelope of the target speech but shifted by different phases, as well as by two temporal delays of 100 ms and 250 ms. We also employed various control stimulations, and assessed the signal-to-noise ratio at which the subject understood half of the speech. We found that, at both latencies, speech comprehension is modulated by the phase of the current stimulation. However, the form of the modulation differed between the two latencies. Phase and latency of neurostimulation have accordingly distinct influences on speech comprehension. The different effects at the latencies of 100 ms and 250 ms hint at distinct neural processes for speech processing.Peer reviewe

    Industrial Waste

    Get PDF
    This book is intended to fulfil the need for state-of-the-art development on the industrial wastes from different types of industries. Most of the chapters are based upon the ongoing research, how the different types of wastes are most efficiently treated and minimized, technologies of wastes control and abatement, and how they are released to the environment and their associated impact. A few chapters provide updated review summarizing the status and prospects of industrial waste problems from different perspectives. The book is comprehensive and not limited to a partial discussion of industrial waste, so the readers are acquainted with the latest information and development in the area, where different aspects are considered. The user can find both introductory material and more specific material based on interests and problems. For additional questions or comments, the users are encouraged to contact the authors

    About the Transition to Turbulence Through Chaotic Distortion of Vortex Shedding

    Get PDF
    The results of direct numerical integration of the Navier-Stokes equations are evaluated against experimental data for the problem of flow around a hard sphere at rest. The evaluation is performed for both the sequence of vortex shedding regimes, replacing stable modes after the loss of stability, and the regime of turbulence replacing vortex shedding modes as Reynolds number Re increases. The evaluation demonstrates the unsuitability of classic hydrodynamics equations to interpret the phenomenon of vortex shedding. Moreover, the attainment of critical value of Re is accompanied by loss of the direction of instability development. Wrong direction of instability development results in the attainment of multiperiodic, that is, essentially chaotic, solution. Insurmountable discrepancies between calculation results and experimental data show that the chaotic deterministic solution to the Navier-Stokes equation is not suitable for interpretation of turbulence. An analogy is revealed between the sequence of modes observed in flow around a sphere as Re increases and sequence of modes in shear layer behind a cylinder with paraboloidal nose recorded while moving downstream along the contour of streamlined body. The conclusions are as follows. The turbulence of shear flow is regular unstable vortex shedding regime distorted by chaotic fluctuations. Solutions to the classic hydrodynamics equations are incapable of interpreting both regular and chaotic turbulence component. Multimoment hydrodynamics seeks for decision of these problems along the way toward an increase in the number of principle hydrodynamic values

    Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets

    Get PDF
    T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. © 2009 Kim, Maly

    Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators

    Full text link
    Spatially confined rigid membranes reorganize their morphology in response to the imposed constraints. A crumpled elastic sheet presents a complex pattern of random folds focusing the deformation energy while compressing a membrane resting on a soft foundation creates a regular pattern of sinusoidal wrinkles with a broad distribution of energy. Here, we study the energy distribution for highly confined membranes and show the emergence of a new morphological instability triggered by a period-doubling bifurcation. A periodic self-organized focalization of the deformation energy is observed provided an up-down symmetry breaking, induced by the intrinsic nonlinearity of the elasticity equations, occurs. The physical model, exhibiting an analogy with parametric resonance in nonlinear oscillator, is a new theoretical toolkit to understand the morphology of various confined systems, such as coated materials or living tissues, e.g., wrinkled skin, internal structure of lungs, internal elastica of an artery, brain convolutions or formation of fingerprints. Moreover, it opens the way to new kind of microfabrication design of multiperiodic or chaotic (aperiodic) surface topography via self-organization.Comment: Submitted for publicatio

    Optomechanical manipulation with hyperbolic metasurfaces

    Full text link
    Auxiliary nanostructures introduce additional flexibility into optomechanical manipulation schemes. Metamaterials and metasurfaces capable to control electromagnetic interactions at the near-field regions are especially beneficial for achieving improved spatial localization of particles, reducing laser powers required for trapping, and for tailoring directivity of optical forces. Here, optical forces acting on small particles situated next to anisotropic substrates, are investigated. A special class of hyperbolic metasurfaces is considered in details and is shown to be beneficial for achieving strong optical pulling forces in a broad spectral range. Spectral decomposition of the Green functions enables identifying contributions of different interaction channels and underlines the importance of the hyperbolic dispersion regime, which plays the key role in optomechanical interactions. Homogenised model of the hyperbolic metasurface is compared to its metal-dielectric multilayer realizations and is shown to predict the optomechanical behaviour under certain conditions related to composition of the top layer of the structure and its periodicity. Optomechanical metasurfaces open a venue for future fundamental investigations and a range of practical applications, where accurate control over mechanical motion of small objects is required

    Light absorption enhancement and electronic properties of thin-film solar cells

    Get PDF
    In this work we developed several strategies to enhance solar cells which lead to stronger sunlight absorption with less active material and thereby also reducing costs. This is accomplished through utilizing nanoscale architectures, which geometry can be tailored to modify the flow of light for optimal absorption. Since sunlight comprises of photons with a broad range of wavelength (colors), ensuring a complete absorption requires sophistications in the nanostructure design due to its wavelength dependent interaction with light. To address this challenge we utilized combinations of different periodic nanostructures with one another and also with disordered rough light diffusers. Aside from our absorption enhancement work, we also investigated light emission enhancement utilizing periodically placed metal nanoantennas. We demonstrate how hybrid plasmonic-photonic modes that arise in such system can be used to control and enhance emission over an extended spatial region. This is relevant in solar cell enhancement schemes which convert the unused portion of sunlight into the color range suitable for optimal usage. Having investigated various light management schemes to enhance solar cells, we proceeded to examine the limiting factors which hinder efficient electrical current extraction from polycrystalline silicon thin film solar cells of a few micrometers thick. We identified the conditions in which this more economical material gives the desired solar cell performance
    • …
    corecore