2,202 research outputs found

    Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks

    Full text link
    Mobile ad hoc networks (MANETs) offer an excellent scenario for deploying communication applications because of the connectivity and versatility of this kind of networks. In contrast, the topology is usually extremely dynamic causing high rate of packet loss, so that ensuring a specific Quality of Service (QoS) for real-time video services becomes a hard challenge. In this paper, we evaluate the effect of using Multiple Description Coding (MDC) and Forward Error Correction (FEC) techniques for improving video quality in a multimedia content distribution system. A hybrid architecture using fixed and wireless ad hoc networks is proposed, which enables the use of multipoint-to-point transmission. MDC and FEC mechanisms can be combined with multipath transmission to increase the network efficiency and recover lost packets, improving the overall Quality of Experience (QoE) of the receiver. Simulations have been analyzed paying attention to objective parameters (Peak Signal to Noise Ratio, Packet Delivery Ratio, Decodable Frame Rate and interruptions) and subjective parameters. Results show that MDC increases the probability of packet delivery and FEC is able to recover lost frames and reduce video interruptions in moderate mobility scenarios, resulting in the improvement of video quality and the final user experience.This work was supported by project MIQUEL (TEC2007- 68119-C02-01/TCM) of the Spanish Ministry of Education and Science. The authors would like to thank the Editor and the reviewers for helpful suggestions to improve the quality of this paper.Acelas Delgado, P.; Arce Vila, P.; Guerri Cebollada, JC.; Castellanos Hernández, WE. (2014). Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks. Multimedia Tools and Applications. 68(3):969-989. https://doi.org/10.1007/s11042-012-1111-3969989683Apostolopoulos JG, Wong T, Tan W, Wee SJ (2002) On multiple description streaming with content delivery networks. IEEE INFOCOMBoukerche A (2009) Algorithms and protocols for wireless and mobile ad hoc networks. John Wiley & Sons IncChow CO, Ishii H (2007) Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Comput Commun 30:1754–1764Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR), RFC 3626Corrie B et al (2003) Towards quality of experience in advanced collaborative environments. Third Annual Workshop on Advanced Collaborative EnvironmentsGabrielyan E, Hersch R (2006) Reliable multi-path routing schemes for real-time streaming. International Conference on Digital Telecommunications, pp 65–65Gandikota VR, Tamma BR, Murthy CSR (2008) Adaptive-FEC based packet loss resilience scheme for supporting voice communication over adhoc wireless networks. IEEE Trans Mobile Comput 7:1184–1199Gharavi H (2008) Multi-channel for multihop communication links. International Conference on Telecommunications, pp 1–6Grega M, Janowski L, Leszczuk M, Romaniak P, Papir Z (2008) Quality of experience evaluation for multimedia services. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne 4:142–153Hsieh MY, Huang YM, Chian TC (2007) Transmission of layered video streaming via multi-path on ad hoc networks. Multimed Tool Appl 34:155–177ITU—International Telecommunication Union (2007) Definition of quality of experience (QoE)”, Reference: TD 109rev2 (PLEN/12)ITU-R Recommendation BT.500-12 (2009) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union, GenevaITU-T Recommendation P.910 (2000) Subjective video quality assessment methods for multimedia applications. International Telecommunication Union, GenevaKao KL, Ke ChH, Shieh CH (2006) An advanced simulation tool-set for video transmission performance evaluation. IEEE Region 10 Conference, pp 1–40Ke CH et al (2006) A novel realistic simulation tool for video transmission over wireless network. Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trsutworthy ComputingKeisuke U, Cheeonn C, Hiroshi I (2008) A study on video performance of multipoint-to-point video streaming with multiple description coding over ad hoc networks. EEJ Trans Electron, Inf Syst 128:1431–1437Kilkki K (2008) Quality of experience in communications ecosystem. J Univers Comput Sci 14:615–624Li A (2007) RTP payload format for generic forward error correction. RFC 5109, Dec. 2007Li J, Blake C, Couto DD, Lee H, Morris R (2001) Capacity of ad hoc wireless networks. 7th Annual International Conference on Mobile Computing and Networking, pp 16–21Liao Y, Gibson JD (2011) Routing-aware multiple description video coding over mobile ad-hoc networks. IEEE Trans Multimed 13:132–142Lindeberg M, Kristiansen S, Plagemann T, Goebel V (2011) Challenges and techniques for video streaming over mobile ad hoc networks. Multimed Syst 17:51–82Mao S et al (2003) Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J Sel Area Comm 21:1721–1737Ni P (2009) Towards Optimal Quality of Experience Via Scalable Video Coding. Mälardalen University Press Licentiate Theses, SwedenPinson MH, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 50:312–322Rong B, Qian Y, Lu K, Hu RQ, Kadoch M (2010) Multipath routing over wireless mesh networks for multiple description video transmission. IEEE J Sel Area Comm 28:321–331Schierl T, Ganger K, Hellge C, Wiegand T, Stockhammer T (2006) SVC-based multisource streaming for robust video trans- mission in mobile ad hoc networks. IEEE Wireless Comm 13:96–103Schierl T, Stockhammer T, Wiegand T (2007) Mobile video transmission using scalable video coding. IEEE Trans Circ Syst Video Tech 17:1204–1217Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circ Syst Video Tech 17:1103–1120VQEG (2008) Video quality experts group. Available online: http://www.vqeg.orgWang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612Wei W, Zakhor A (2004) Robust multipath source routing protocol (RMPSR) for video communication over wireless ad hoc net- works. Proceedings of IEEE International Conference on Multimedia and Expo 2:1379–1382Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54:660–668Xunqi Y, Modestino JW, Bajic IV (2005) Performance analysis of the efficacy of packet-level FEC in improving video transport over networks. IEEE International Conference on Image Processing 2:177–180Zink M, Schmitt J, Steinmetz R (2005) Layer-encoded video in scalable adaptive streaming. IEEE Trans Multimed 7:75–8

    Multipath optimized link state routing for mobile ad hoc networks

    Get PDF
    International audienceMultipath routing protocols for Mobile Ad hoc NETwork (MANET) address the problem of scalability, security (confidentiality and integrity), lifetime of networks, instability of wireless transmissions, and their adaptation to applications. Our protocol, called MP-OLSR (MultiPath OLSR), is a multipath routing protocol based on OLSR. The Multipath Dijkstra Algorithm is proposed to obtain multiple paths. The algorithm gains great flexibility and extensibility by employing different link metrics and cost functions. In addition, route recovery and loop detection are implemented in MP-OLSR in order to improve quality of service regarding OLSR. The backward compatibility with OLSR based on IP source routing is also studied. Simulation based on Qualnet simulator is performed in different scenarios. A testbed is also set up to validate the protocol in real world. The results reveal that MP-OLSR is suitable for mobile, large and dense networks with large traffic, and could satisfy critical multimedia applications with high on time constraints

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks

    A topology-oblivious routing protocol for NDN-VANETs

    Full text link
    Vehicular Ad Hoc Networks (VANETs) are characterized by intermittent connectivity, which leads to failures of end-to-end paths between nodes. Named Data Networking (NDN) is a network paradigm that deals with such problems, since information is forwarded based on content and not on the location of the hosts. In this work, we propose an enhanced routing protocol of our previous topology-oblivious Multihop, Multipath, and Multichannel NDN for VANETs (MMM-VNDN) routing strategy that exploits several paths to achieve more efficient content retrieval. Our new enhanced protocol, i mproved MMM-VNDN (iMMM-VNDN), creates paths between a requester node and a provider by broadcasting Interest messages. When a provider responds with a Data message to a broadcast Interest message, we create unicast routes between nodes, by using the MAC address(es) as the distinct address(es) of each node. iMMM-VNDN extracts and thus creates routes based on the MAC addresses from the strategy layer of an NDN node. Simulation results show that our routing strategy performs better than other state of the art strategies in terms of Interest Satisfaction Rate, while keeping the latency and jitter of messages low

    Implementation of Multipath and Multiple Description Coding in OLSR

    Get PDF
    In this paper we discussed the application and the implementation of multipath routing and multiple description coding (MDC) extension of OLSR, called MP-OLSR. It is based on the link state algorithm and employs periodic exchange of messages to maintain topology information of the networks. In the mean time, it updates the routing table in an on-demand scheme and forwards the packets in multiple paths which have been determined at the source. If a link failure is detected, the algorithm recovers the route automatically. Concerning the instability of the wireless networks, the multiple description coding is used to improve reliability of the network transmission, and several methods are proposed to allocate the redundancy in different paths. The simulation in NS2 shows that the new protocol can effectively improve the performance of the networks. The implementation of MP-OLSR is also proposed in the end
    corecore