100 research outputs found

    Formation control of non-identical multi-agent systems

    Get PDF
    The problem considered in this work is formation control for non-identical linear multi-agent systems (MASs) under a time-varying communication network. The size of the formation is scalable via a scaling factor determined by a leader agent. Past works on scalable formation are limited to identical agents under a fixed communication network. In addition, the formation scaling variable is updated under a leader-follower network. Differently, this work considers a leaderless undirected network in addition to a leader-follower network to update the formation scaling variable. The control law to achieve scalable formation is based on the internal model principle and consensus algorithm. A biased reference output, updated in a distributed manner, is introduced such that each agent tracks a different reference output. Numerical examples show the effectiveness of the proposed method

    Mechanism design for distributed task and resource allocation among self-interested agents in virtual organizations

    Get PDF
    The aggregate power of all resources on the Internet is enormous. The Internet can be viewed as a massive virtual organization that holds tremendous amounts of information and resources with different ownerships. However, little is known about how to run this organization efficiently. This dissertation studies the problems of distributed task and resource allocation among self-interested agents in virtual organizations. The developed solutions are not allocation mechanisms that can be imposed by a centralized designer, but decentralized interaction mechanisms that provide incentives to self-interested agents to behave cooperatively. These mechanisms also take computational tractability into consideration due to the inherent complexity of distributed task and resource allocation problems. Targeted allocation mechanisms can achieve global task allocation efficiency in a virtual organization and establish stable resource-sharing communities based on agentsâÃÂàown decisions about whether or not to behave cooperatively. This high level goal requires solving the following problems: synthetic task allocation, decentralized coalition formation and automated multiparty negotiation. For synthetic task allocation, in which each task needs to be accomplished by a virtual team composed of self-interested agents from different real organizations, my approach is to formalize the synthetic task allocation problem as an algorithmic mechanism design optimization problem. I have developed two approximation mechanisms that I prove are incentive compatible for a synthetic task allocation problem. This dissertation also develops a decentralized coalition formation mechanism, which is based on explicit negotiation among self-interested agents. Each agent makes its own decisions about whether or not to join a candidate coalition. The resulting coalitions are stable in the core in terms of coalition rationality. I have applied this mechanism to form resource sharing coalitions in computational grids and buyer coalitions in electronic markets. The developed negotiation mechanism in the decentralized coalition formation mechanism realizes automated multilateral negotiation among self-interested agents who have symmetric authority (i.e., no mediator exists and agents are peers). In combination, the decentralized allocation mechanisms presented in this dissertation lay a foundation for realizing automated resource management in open and scalable virtual organizations

    Mechanism design for distributed task and resource allocation among self-interested agents in virtual organizations

    Get PDF
    The aggregate power of all resources on the Internet is enormous. The Internet can be viewed as a massive virtual organization that holds tremendous amounts of information and resources with different ownerships. However, little is known about how to run this organization efficiently. This dissertation studies the problems of distributed task and resource allocation among self-interested agents in virtual organizations. The developed solutions are not allocation mechanisms that can be imposed by a centralized designer, but decentralized interaction mechanisms that provide incentives to self-interested agents to behave cooperatively. These mechanisms also take computational tractability into consideration due to the inherent complexity of distributed task and resource allocation problems. Targeted allocation mechanisms can achieve global task allocation efficiency in a virtual organization and establish stable resource-sharing communities based on agentsâÃÂàown decisions about whether or not to behave cooperatively. This high level goal requires solving the following problems: synthetic task allocation, decentralized coalition formation and automated multiparty negotiation. For synthetic task allocation, in which each task needs to be accomplished by a virtual team composed of self-interested agents from different real organizations, my approach is to formalize the synthetic task allocation problem as an algorithmic mechanism design optimization problem. I have developed two approximation mechanisms that I prove are incentive compatible for a synthetic task allocation problem. This dissertation also develops a decentralized coalition formation mechanism, which is based on explicit negotiation among self-interested agents. Each agent makes its own decisions about whether or not to join a candidate coalition. The resulting coalitions are stable in the core in terms of coalition rationality. I have applied this mechanism to form resource sharing coalitions in computational grids and buyer coalitions in electronic markets. The developed negotiation mechanism in the decentralized coalition formation mechanism realizes automated multilateral negotiation among self-interested agents who have symmetric authority (i.e., no mediator exists and agents are peers). In combination, the decentralized allocation mechanisms presented in this dissertation lay a foundation for realizing automated resource management in open and scalable virtual organizations

    Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making

    Get PDF
    International audienceIn this article, we propose an agent-based model of opinion diffusion and voting where influence among individuals and deliberation in a group are mixed. The model is inspired from social modeling, as it describes an iterative process of collective decision-making that repeats a series of interindividual influences and collective deliberation steps, and studies the evolution of opinions and decisions in a group. It also aims at founding a comprehensive model to describe collective decision-making as a combination of two different paradigms: argumentation theory and ABM-influence models, which are not obvious to combine as a formal link between them is required. In our model, we find that deliberation, through the exchange of arguments, reduces the variance of opinions and the proportion of extremists in a population as long as not too much deliberation takes place in the decision processes. Additionally, if we define the correct collective decisions in the system in terms of the arguments that should be accepted, allowing for more deliberation favors convergence towards the correct decisions

    Systematic review on ai-blockchain based e-healthcare records management systems

    Get PDF
    Electronic health records (EHRs) are digitally saved health records that provide information about a person's health. EHRs are generally shared among healthcare stakeholders, and thus are susceptible to power failures, data misuse, a lack of privacy, security, and an audit trail, among other problems. Blockchain, on the other hand, is a groundbreaking technology that provides a distributed and decentralized environment in which nodes in a list of networks can connect to each other without the need for a central authority. It has the potential to overcome the limits of EHR management and create a more secure, decentralized, and safer environment for exchanging EHR data. Further, blockchain is a distributed ledger on which data can be stored and shared in a cryptographically secure, validated, and mutually agreed-upon manner across all mining nodes. The blockchain stores data with a high level of integrity and robustness, and it cannot be altered. When smart contracts are used to make decisions and conduct analytics with machine-learning algorithms, the results may be trusted and unquestioned. However, Blockchain is not always indestructible and suffers from scalability and complexity issues that might render it inefficient. Combining AI and blockchain technology can handled some of the drawbacks of these two technical ecosystems effectively. AI algorithms rely on data or information to learn, analyze, and reach conclusions. The performance of AI algorithms is enhanced through the data obtained from a data repository or a reliable, secure, trustworthy, and credible platform. Researchers have identified three categories of blockchain-based potential solutions for the management of electronic health records: conceptual, prototype, and implemented. The purpose of this research work is to conduct a Systematic Literature Review (SLR) to identify and assess research articles that were either conceptual or implemented to manage EHRs using blockchain technology. The study conducts a comprehensive evaluation of the literature on blockchain technology and enhanced health record management systems utilizing artificial intelligence technologies. The study examined 189 research papers collected from various publication categories. The in-depth analysis focuses on the privacy, security, accessibility, and scalability of publications. The SLR has illustrated that blockchain technology has the potential to deliver decentralization, security, and privacy that are frequently lacking in traditional EHRs. Additionally, the outcomes of the extensive analysis inform future researchers about the type of blockchain to use in their research. Additionally, methods used in healthcare are summarized per application area while their pros and cons are highlighted. Finally, the emphasized taxonomy combines blockchain and artificial intelligence, which enables us to analyze possible blockchain and artificial intelligence applications in health records management systems. The article ends with a discussion on open issues for research and future directions
    corecore