
MECHANISM DESIGN FOR DISTRIBUTED TASK AND RESOURCE

ALLOCATION AMONG SELF-INTERESTED AGENTS IN VIRTUAL

ORGANIZATIONS

A Dissertation

by

LINLI HE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2006

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/147127374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MECHANISM DESIGN FOR DISTRIBUTED TASK AND RESOURCE

ALLOCATION AMONG SELF-INTERESTED AGENTS IN VIRTUAL

ORGANIZATIONS

A Dissertation

by

LINLI HE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Thomas R. Ioerger
Committee Members, Riccardo Bettati
 Jianer Chen
 Goong Chen
Head of Department, Valerie E. Taylor

May 2006

Major Subject: Computer Science

 iii

ABSTRACT

Mechanism Design for Distributed Task and Resource Allocation Among Self-Interested

Agents in Virtual Organizations. (May 2006)

Linli He, M.S., Southwest Petroleum Institute

Chair of Advisory Committee: Dr. Thomas R. Ioerger

The aggregate power of all resources on the Internet is enormous. The Internet can

be viewed as a massive virtual organization that holds tremendous amounts of information

and resources with different ownerships. However, little is known about how to run this

organization efficiently.

This dissertation studies the problems of distributed task and resource allocation

among self-interested agents in virtual organizations. The developed solutions are not

allocation mechanisms that can be imposed by a centralized designer, but decentralized

interaction mechanisms that provide incentives to self-interested agents to behave

cooperatively. These mechanisms also take computational tractability into consideration

due to the inherent complexity of distributed task and resource allocation problems.

Targeted allocation mechanisms can achieve global task allocation efficiency in a

virtual organization and establish stable resource-sharing communities based on agents’

own decisions about whether or not to behave cooperatively. This high level goal requires

solving the following problems: synthetic task allocation, decentralized coalition formation

and automated multiparty negotiation.

 iv

For synthetic task allocation, in which each task needs to be accomplished by a

virtual team composed of self-interested agents from different real organizations, my

approach is to formalize the synthetic task allocation problem as an algorithmic mechanism

design optimization problem. I have developed two approximation mechanisms that I prove

are incentive compatible for a synthetic task allocation problem.

This dissertation also develops a decentralized coalition formation mechanism,

which is based on explicit negotiation among self-interested agents. Each agent makes its

own decisions about whether or not to join a candidate coalition. The resulting coalitions

are stable in the core in terms of coalition rationality. I have applied this mechanism to

form resource sharing coalitions in computational grids and buyer coalitions in electronic

markets.

The developed negotiation mechanism in the decentralized coalition formation

mechanism realizes automated multilateral negotiation among self-interested agents who

have symmetric authority (i.e., no mediator exists and agents are peers).

In combination, the decentralized allocation mechanisms presented in this

dissertation lay a foundation for realizing automated resource management in open and

scalable virtual organizations.

 v

ACKNOWLEDGMENTS

 I would like to thank my advisor Dr. Thomas Ioerger for directing my Ph.D. study at

Texas A&M University. It was impossible to complete this dissertation without his

inspiration, encouragement and support. His scientific approach toward research taught me

to be a serious scholar. I would like to express my gratitude to Dr. Thomas Ioerger and Dr.

Richard Volz for generously providing financial support for my study. Without that, a study

here would have been impossible. I would like to thank Dr. Janier Chen for being my

committee member. I also benefited a lot from many courses taught by him. It has always

been a privilege and joy to discuss with Dr. Chen about different algorithms used in my

study. Dr. Riccardo Bettati and Dr. Goong Chen are also appreciated for being committee

members. They found time in their busy schedules to read this dissertation and provide

valuable suggestions and comments.

Appreciation is also extended to the staff in the Department of Computer Science.

They have provided all kinds of help during my study. I am also thankful to the friendship

developed with many of the faculty and staff members. Their support and encouragement

will always be in my heart.

Finally, I appreciate my parents and my husband for their constant and

unconditional love and support, without which, it would have taken me much longer or

even be impossible to pursue and finish this doctoral study.

 vi

TABLE OF CONTENTS

 Page

ABSTRACT..iii

ACKNOWLEDGMENTS..v

TABLE OF CONTENTS ..vi

LIST OF FIGURES...ix

LIST OF TABLES ..xi

CHAPTER

I INTRODUCTION AND MOTIVATION...1

Motivation ...1
Example Distributed Task and Resource Allocation Scenarios........................6
 Outsourcing/Virtual Teamwork ...6
 Resource Sharing in Computational Grids and Peer-to-Peer Systems.......10
 Combinatorial Trade in Electronic Markets...12
Distributed Methods for Task and Resource Allocation.................................13
 Incentive-Compatible Mechanisms for Synthetic Task Allocation............13
 Forming Resource Sharing Coalition through Multiparty Negotiation......14
Overview of Contributions..15

II RELATED WORK...16

Algorithmic Mechanism Design ...16
 Mechanism Design...17
 The Revelation Principle..18
 Vickrey-Groves-Clarke Mechanisms ...18
Coalition Formation ..19
Negotiation among Self-interested Agents..23
 The Art and Science of Negotiation ...24
 Rules of Encounter ...25
 Strategic Negotiation in Multiagent Systems...26
 Automated Negotiation ..27
 Other Work Related to Negotiation in Multiagent Systems.......................27
Distributed Task and Resource Allocation in Multiagent Systems.................28
 Contract Net and Levels of Commitment ..29
 Methods for Task Allocation via Agent Coalition Formation30
 Auction and Market Based Resource Allocation Mechanisms30

 vii

CHAPTER Page

III SYNTHETIC TASK ALLOCATION IN VIRTUAL ORGANIZATIONS32

Synthetic Task Allocation ...32
Synthetic Task Allocation for Self-interested Agents40
Extending Synthetic Task Allocation to an AMD Problem............................41
Incentive-Compatible Synthetic Task Allocation ...43
 MinTeamwork Mechanism ..44
 MinCompletion Mechanism...46
Summary ...49

IV DECENTRALIZED COALITION FORMATION THROUGH EXPLICIT

NEGOTIATION ...51

Formalizing Coalition Formation..52
Decentralized Coalition Formation through Explicit Negotiation (DCF-EN) 54
 Constructing Possible Coalition Space ..54
 Multiparty Negotiation Mechanism ...56
 Handling Deadlocks in the DCF-EN Mechanism60
 The DCF-EN Agent Structure and Algorithms of Message Handlers67
 Properties of the DCF-EN Mechanism ..71
Summary ...77

V FORMING RESOURCE SHARING COALITIONS THROUGH DCF-EN

MECHANISM ..78

Forming Resource Sharing Coalitions in Computational Grids......................78
 Economic Value of Computational Resource Usage79
 Eorming Resource Sharing Coalitions in Computational Grids85
Experiments...90
 Experimental Objective..90
 Experimental Settings ..92
 Experimental Results ...95
Summary ...103

VI COMBINING BUNDLE SEARCH WITH BUYER COALITION

FORMATION ...105

Traditional Centralized Approach...108
A Distributed Approach ..109
Bundle Search Problem...110

 viii

CHAPTER Page

Combining Bundle Search and Buyer Coalition Formation..........................115
Simulation Results ..115
Summary ...125

VII CONCLUSIONS AND FUTURE WORK ...126

Synthetic Task Allocation ...127
Decentralized Coalition Formation ...128
Automated Multiparty Negotiation ...129
Future Applications ...129
 Resource Management in Virtual Organizations130
 Task and Resource Allocation in Scalable Multiagent Systems130

REFERENCES...132

VITA ..142

 ix

LIST OF FIGURES

FIGURE Page

1.1 Synthetic Task Allocation .. 7

2.1 Activities in Centralized Coalition Formation ... 20

4.1 Constructing Possible Coalition Spaces... 55

4.2 An Example of Communication Deadlock .. 60

4.3 Agent Structure in the DCF-EN Mechanism ... 67

4.4 Message Handler for CFAccept ... 68

4.5 Message Handler for CFPropose.. 68

4.6 Message Handler for CFReject .. 69

4.7 Message Handler for CFFailed... 69

4.8 Message Handler for CFConfirm... 69

4.9 Message Handler for CFNoNeed ... 70

4.10 Information Flows in Coalition Formation .. 70

4.11 Agent Algorithm in the Repeated DCF-EN Mechanism............................ 75

5.1 Equivalent Performance by Different Processors....................................... 80

5.2 Workload Distribution Function .. 86

5.3 Idle CPU Distribution Function ... 86

5.4 Agent Algorithm for Resource Sharing Coalition Formation 89

5.5 FULL Workload Distribution... 93

5.6 SPIKE Workload Distribution ... 93

5.7 TRIANGULAR Workload Distribution... 94

 x

FIGURE Page

5.8 T-Test for FULL Idle Resource Distribution ... 97

5.9 T-Test for SPIKE Idle Resource Distribution .. 98

5.10 T-Test for TRIANGULAR Idle Resource Distribution 98

5.11 Error Bar of VCL-a ... 100

5.12 Error Bar of ANM with Different cb and cd ... 100

5.13 Error Bar of NS with Different cb and cd.. 101

5.14 Error Bar of ANM with Different Workload Distributions 101

5.15 Error Bar of NS with Different Workload Distributions............................. 102

6.1 Discount Ratio Function .. 107

6.2 Maximal Gain Bundle Search Algorithm... 113

6.3 Buyer Agent Algorithm.. 114

6.4 Total Cost to All Buyers Using Different Purchasing

Strategies .. 117

6.5 Error Bar of the Average Cost to Each Buyer .. 117

6.6 T-Test for Comparing RetailMinPrice and LBOptimal 118

6.7 T-Test for Comparing OptimalBundleCF and LBOptimal 118

6.8 T-Test for Comparing MGBSBundleCF and LBOptimal 119

6.9 Total Cost to All Buyers Using Different Purchasing

Strategies .. 120

6.10 Average Cost to Each Buyer .. 120

6.11 Average Cost to Each Buyer Using Different Purchasing

Strategies .. 123

6.12 Average Number of Messages Received by Each Buyer 124

 xi

LIST OF TABLES

TABLE Page

4.1 Messages in the DCF-EN Mechanism ... 59

5.1 Values Collected from Experiments .. 95

5.2 Values Needed to be Computed ... 95

5.3 Experimental Results for Proportional Wait Time..................................... 96

5.4 Experimental Results for Constant Wait Time .. 96

5.5 Experimental Results with Different cb and cd... 99

6.1 Parameters Used for Simulation... 116

6.2 Total Cost to All Buyers... 122

6.3 Number of Experiments without Buyer Coalition Formed 124

 1

CHAPTER I

INTRODUCTION AND MOTIVATION

The main theme of this dissertation is to design decentralized mechanisms for

distributed task and resource allocation among self-interested agents who are trying to

maximize their own benefit without concern of the global good in a multiagent system. The

developed mechanisms are targeted to establish virtual organizations through interactions

among self-interested agents. Within such a virtual organization, self-interested agents must

have incentives to behave cooperatively if global efficiency of distributed task and resource

allocation is to be achieved without a centralized controller.

MOTIVATION

Distributed task and resource allocation have been fundamental research topics in

distributed computer science (Zweben and Fox 1994; Clearwater 1996; Kraus and Plotkin

2000). Multiple agents need to work together due to an inherent distribution of resources

such as knowledge, capability, information, and expertise among the agents. Agents are

often unable to accomplish their own tasks alone, or they might be able to accomplish tasks

better when working with others (Weiss 1999). Traditionally, the designers of distributed

task and resource allocation algorithms and protocols have made an implicit assumption

 that the participating agents will act as instructed – except, perhaps, for faulty or malicious

This dissertation follows the style of Applied Artificial Intelligence.

 2

ones (Nisan and Ronen 1999; Ronen 2000). The main concerns of designing distributed

allocation algorithms are algorithmic complexity and communication load (network

complexity).

This assumption can no longer be taken for granted with the emergence of the

Internet as the platform of computation. The aggregate power of all resources on the

Internet is huge. Ideally, this aggregate power would be optimally and dynamically

allocated online to appropriate users (Nisan and Ronen 1999; Ronen 2000). The resources

on the Internet have many new features that do not exist in traditional computational

platforms. Notably, the resources are heterogeneous with different ownerships, dynamic

availability, and geographical dispersion. Thus, the Internet has the characteristics of an

economy as well as those of a computational system (Feigenbaum et al. 2001; Feigenbaum

and Shenker 2002). The majority of the participating agents are neither obedient nor

adversarial, but rational or self-interested in the sense that each agent has its own goals and

preferences. The decision for a self-interested agent to be cooperative is based upon

whether the cooperation can bring greater benefit than working alone. They will not

necessarily follow prescribed algorithms but will respond to punishments and incentives.

Existing distributed task and resource allocation mechanisms typically have been

constructed from the top down (Rosenschein and Zlotkin, 1994), namely, by imposing

fixed allocation rules to handle all possible situations. This design philosophy does not

work well in a computational platform like the Internet because there does not exist an

omniscient designer who can develop a task and resource allocation mechanism that

satisfies the preferences of all self-interested resource users and suppliers and maximizes

the global efficiency. Instead, task and resource allocation mechanisms need to be

 3

established from the bottom up (Clearwater 1996, Tesfatsion 2002), meaning that every

participating agent makes individual decisions based on local knowledge and preferences

(most likely with incomplete information about other agents) without considering the

global efficiency. The global efficiency is generated from the bottom up through

interactions among self-interested agents. A decentralized mechanism for a distributed

allocation problem is indeed an interaction mechanism for self-interested agents who

normally have incomplete information about others (Rosenschein and Zlotkin 1994). The

objective of designing such an interaction mechanism is to establish a stable system where

resources are shared through interactions among self-interested agents. Computational grids

and Peer-to-Peer systems are typical examples of such a system.

Interactions among self-interested agents have been studied intensively in game

theory (Kahan and Rapoport 1984; Fudenberg and Tirole 1991; Osborne and Rubinstein

1994). The focus of game theory is to analyze whether a given solution is stable in terms of

the willingness of self-interested agents to behave cooperatively. Game theorists have

developed a number of solution concepts such as dominant strategy, core, bargain set,

Sharply value, Nash equilibrium, etc. to evaluate this stability. The preferred solution

concept is dominant strategy, which means that each agent can maximize its own utility no

matter what kind of strategies that other agents are using (Fudenberg and Tirole 1991;

Osborne and Rubinstein 1994).

Mechanism design is a sub-field of game theory that has focused on problems

where the goal is to satisfactorily aggregate privately known preferences of several agents

towards a “social choice” (Jackson 2001). In other words, it studies how “rules of a game”

constrains the public behavior of the participating agents by providing proper incentives or

 4

punishments. The desired mechanisms are incentive-compatible in the sense that the

designed mechanisms can provide incentives to self-interested agents to behave

cooperatively in a multiagent system.

However, game theory does not provide actual methodologies to design such a

mechanism. For a decade, distributed artificial intelligence has been studying how to

develop automated interaction mechanisms for self-interested agents in multi-agent systems

(Rosenschein and Zlotkin 1994; Sandholm 1996; Parkes 2000). Game theory plays an

irreplaceable role in providing a mathematic foundation to evaluate developed mechanisms.

Researchers soon recognized that game theory downplays the complexity aspect of these

mechanisms. Self-interested agents in game theory are assumed to be perfectly rational in

the sense that the computational cost of rational reasoning is not taken into account

(Fudenberg and Tirole 1991; Osborne and Rubinstein 1994). This assumption is invalid in

the real world. There are many optimization allocation problems that are computationally

intractable (Sandholm 1996). Yet, it has been proved that some approximation algorithms

might cause a mechanism to be no longer incentive-compatible (Parkes 2000). Therefore,

to solve distributed task and resource allocation problems among self-interested agents,

incentive compatibility and computational tractability need to be jointly addressed.

Researchers in distributed artificial intelligence have put a great deal of attention

into developing theoretic models that consider incentive compatibility and computational

tractability jointly. Established by Nisan and Ronen (1999), algorithmic mechanism design

(AMD) is a formal model of centralized computation that combines incentive compatibility

(the “mechanism design” part) with computational tractability (the “algorithmic” part).

Feigenbaum et al. (2001) extended this model to distributed algorithmic mechanism design

 5

(DAMD), in which the same goals of incentive compatibility and computational tractability

are considered. In addition, the agents, the relevant information, and the computational

model are all inherently distributed. Network complexity also needs to be taken into

consideration. Sandholm and Lesser (1995, 1997) developed a domain-independent model

for coalition formation in a situation where the rationality of self-interested agents is

bounded by computational complexity. These theoretic models bring game theory and

complexity theory together and provide tangible criteria for evaluating whether a

mechanism is both incentive-compatible and computationally tractable.

The focus of this dissertation is not to invent a new incentive-compatible and

computationally tractable theoretic model, but to use the existing models (Rosenschein and

Zlotkin 1994; Sandholm and Lesser 1997; Nisan and Ronen 1999; Papadimitriou 2001;

Azoulay-Schwartz and Kraus 2004; Porter 2004) to analyze the mechanisms that I develop

for solving distributed task and resource allocation problems that have a variety of

applications in virtual organizations, grid and peer-to-peer computing and electronic

commerce. This dissertation also focuses on designing decentralized mechanisms where a

system-wide solution for a distributed allocation problem consists of agreements made by

multiple participating agents. How to achieve those agreements in a distributed and

dynamic environment is one of the major focuses of this dissertation.

Negotiation is essential to achieving an agreement among self-interested agents

(Kraus 2001). Social scientists have studied negotiation from many different perspectives

(Raiffa 1982). Game theorists are interested in how self-interested agents divide the payoff

of cooperation through negotiation (Raiffa 1982; Fudenberg and Tirole 1991; Osborne and

Rubinstein 1994). Bargain theory (Harsanyi 1967, 1977) is a typical example. Researchers

 6

in distributed artificial intelligence have put a great deal of effort into implementing

automated negotiation among self-interested agents. Most previous studies focus on

bilateral negotiation between two agents (Rosenschein and Zlotkin 1994; Jennings et al

2001; Larson and Sandholm 2001). As for how to achieve an agreement among multiple

agents, little work has been done. In this dissertation, implementing automated multiparty

negotiation among self-interested autonomous agents is one of the most important methods

for solving distributed allocation problems.

EXAMPLE DISTRIBUTED TASK AND RESOURCE ALLOCATION SCENARIOS

To address the motivation of this research from a practical perspective, the

following section describes some example scenarios in real applications where the

distributed task and resource allocation mechanisms developed in this dissertation are

needed. The formal distributed allocation problems that this dissertation will address are

abstracted from these real applications.

Outsourcing/Virtual Teamwork

As information and communication technologies overcome the constraints of time

and distance, it becomes a necessary to create virtual organizations that consists of a

temporary network of independent companies linked by IT infrastructure to share skills,

costs, and access to one another's markets. One of the most important advantages of a

virtual organization is executing synthetic tasks by forming temporary teams composed of

 7

experts from different fields and independent organizations (which are most likely

geographically dispersed) through the Internet.

One typical example is to construct temporary offshore software development teams

to accomplish multiple projects (Hatch 2005). The problem is how to construct the most

efficient offshore teams from various outsourcing service vendors to finish these projects as

soon as possible. One of the major challenges of this problem is that the actual capabilities

of software engineers from different outsourcing service vendors are private information

that cannot be accessed directly from outside. The project manager has to construct virtual

software development teams and allocate tasks based on the reported capabilities.

Project

Manager

Group#1 Group#m

Projects

Group#j

… …

… …

Project#i

… …

a1i aji ami

FIGURE 1.1. Synthetic Task Allocation

 8

Obviously, each vendor is self-interested in the sense that its goal is to maximize its

own profit. Therefore, an incentive-compatible allocation mechanism is required to induce

outsourcing service vendors to be willing to report the true capability of their software

engineers.

Suppose there is a project manager who has a number of projects at hand, and each

project cannot be accomplished by only one of software engineers due to multiple skills

required (e.g., one project might need a GUI engineer and a database designer working

together). People with different expertise might belong to different groups that are self-

interested, and experts in one group might have different capabilities in terms of how

efficient they are. How does the project manager determine the true capabilities of all the

experts in different groups and compose a temporarily appropriate team for each project?

Intuitively, a senior software engineer might be slowed down because of working with a

junior graphic designer. Therefore, the problem becomes how does the project manager

build efficient teams for synthetic tasks without knowing the true capabilities of agents in

different groups so that he can accomplish all projects in the minimal amount of time?

Figure 1.1 illustrates the synthetic task allocation problem considered in this

dissertation. A set of projects needs to be done. Each of these projects requires cooperation

among agents from different groups with different expertise. Within each group, different

agents require different amounts of time to finish identical tasks. I use the capability model

in (He and Ioerger 2003) to represent the capability differentiation among agents in each

group. Without loss of generality, I assume that each project needs exactly one agent from

each group. I call these kinds of projects synthetic tasks. The project manager needs to

build a temporary team for each project. The amount of time required to finish a project

 9

depends on the capability of the most inefficient member of that team. The objective of the

project manager is to minimize the total amount of time required to accomplish all projects.

As shown in Figure 1.1, the number of possible teams that need to be considered is

n
m in the worst case, where m is the number of groups and n is the number of members in

each group. In fact, even if there is only one group and agents are cooperative, the task

allocation problem is NP-hard (Coffman et al. 1987). Complexity cannot be ignored in

solving this synthetic task allocation problem. Therefore, an efficient synthetic task

allocation mechanism is needed that is both incentive-compatible and computationally

tractable.

Indeed, the synthetic task allocation problem described above is essential to

conducting efficient task allocation in a virtual organization. The Internet is becoming a

large-scale virtual organization that holds a tremendous amount of information and

resources with different owners. Little is known about how to run this organization

efficiently. There does not exist a well-understood organizational structure that can model

this system. In this system, allocating tasks to appropriate computational resources is

analogous to allocating synthetic tasks to offshore teams. Computational tasks might need

different resources from different resource owners on the Internet. Also, computational

resources are most likely heterogeneous. Resources of the same type may have different

capabilities (e.g. CPUs with different speeds). Incentive-compatible allocation mechanisms

are required to induce resource owners to reveal the true capabilities of their computational

resources.

 10

Resource Sharing in Computational Grids and Peer-to-Peer Systems

Many scientific and commercial computational applications require increasingly

powerful computational resources to satisfy computational performance requirements.

Large amounts of computational resources connected via the Internet are idle most of the

time. Utilizing these idle resources that are owned by different organizations or individuals

and are geographically dispersed to satisfy intensive computational power requirements

from numerous scientific and commercial applications has become a major goal of

distributed computer science. The emergent areas of grid computing and peer-to-peer

computing are aimed at overcoming this challenge (Foster and Kesselman 1998; Buyya

2002; Buyya et al. 2002; Milojicic et al. 2002; Berman et al. 2003).

The recent developments in grid and peer-to-peer computing have positioned them

as promising next-generation computing platforms. They enable the creation of virtual

enterprises for sharing computational resources distributed across the world. Both of these

two research areas in distributed computing are aimed at addressing the problem of

organizing large-scale computational societies for resource sharing within virtual

communities where resources may not be controlled by any single organization.

The participating agents are inherently self-interested in computational grids and

peer-to-peer systems. Providing incentives for those self-interested agents to participate in a

computational grid or peer-to-peer system is a key to making these computational systems

feasible. A basic assumption is that agents in a computational grid or a computational peer-

to-peer system have peak workloads at different times so that they can utilize others’

resources at idle times. That necessitates distributed load balancing (Lan et al. 2002; Shan

 11

et al. 2003) among self-interested agents. Agents share their resources with their partners.

The question is how to establish such partnerships?

In current computational grids, community standards are represented via explicit

policies (Foster and Iamnitchi 2003; Foster et al. 2004). Resources owned by various

administrative organizations are shared under locally defined policies that specify what is

shared, who is allowed to share, and under what conditions. Normally, a small number of

sites are connected in collaborations engaged in complex scientific applications. As system

scale increases, grid developers are now facing problems relating to autonomic

configuration and management. How to automatically adjust system level policy to be

adaptive to system updates (both hardware and software) and user requirement changes

remains a major challenge in grid computing. As Foster and Iamnitchi (2003) pointed out:

“Over all, scalable autonomic management remains a goal, not an accomplishment, for

Grid computing.”

The explicit grid policy implemented in the existing computational grids can be

viewed as agreements achieved through negotiation among participating organizations.

This dissertation proposes a resource sharing mechanism that is based on a distributed

coalition formation mechanism through automated multiparty negotiation among self-

interested agents. This approach aims to establish resource management policies in

computational grids autonomously and dynamically through automated negotiations among

participating agents.

 12

Combinatorial Trade in Electronic Markets

In electronic markets, the distance between producers, wholesalers, distributors,

retailers, and consumers has practically disappeared (Ye and Tu 2003). There are many

more choices faced by all parties involved in electronic combinatorial trade than in a

traditional trade system. The relationship between suppliers and customers is under-going

revolutionary change.

Buyers vary a great deal in the quantity of goods they want to purchase, in customer

service requirements, in income, in time constraints and in many other dimensions.

Different purchasing goals can cause widely varying production and transaction costs.

Suppliers have their own “buyer selection” strategies to achieve better profitability. Quickly

differentiating the supplier’s marketing strategy based on the difference of purchasing goals

among various buyers plays a key role in improving the sellers’ competitive capabilities in

electronic markets (He and Ioerger 2004a, 2005a and 2005b).

In traditional markets, it is impractical for buyers to build such purchasing strategies

because of the expense of access to product information. However, in the age of electronic

commerce, buyers can access product information easily and inexpensively. Small buyers

with little or zero bargaining power in traditional markets now can build collaborative

purchasing strategies to minimize their cost in electronic markets. A well-known example

of building such a purchasing strategy for buyers is to form buyer coalitions (e.g., Buyer

Club) to enlarge the total quantity of goods purchased in each transaction (Lerman an

Shehory 2000; Yamamoto and Sycara 2001; Li and Sycara 2002). Buyers can obtain lower

prices without buying more than their real need. If the buyers are heterogeneous in the

 13

sense that they need to buy different goods in a combinatorial market, the mechanism is the

so-called combinatorial coalition formation.

Buyer coalition formation is a distributed combinatorial optimization problem,

which is a highly non-trivial problem that needs to be solved by considering incentive

compatibility and computational tractability jointly. In contrast to the previous work, this

dissertation focuses on solving this problem in a pure decentralized manner, which is more

realistic than solving the problem through a centralized mediator. I apply my distributed

coalition formation mechanism that is based on automated multiparty negotiation. This

approach allows agents to make their own decisions, and significantly reduces the

computational complexity by distributing the computational costs among all participating

agents.

DISTRIBUTED METHODS FOR TASK AND RESOURCE ALLOCATION

I have developed the following distributed methods for task allocation and resource

sharing in virtual organizations.

Incentive-Compatible Mechanisms for Synthetic Task Allocation

In this dissertation, designing incentive-compatible mechanisms for synthetic task

allocation (He and Ioerger 2005c) among self-interested agents is one of the major

contributions. I develop both incentive-compatible and computationally intractable

mechanisms for synthetic task allocation problems, in which each task needs to be

 14

accomplished by a virtual team composed of self-interested agents from different real

organizations. I formalize the synthetic task allocation problem as an algorithmic

mechanism design optimization problem. I have developed two incentive-compatible

mechanisms for the synthetic task allocation problem. It shows that designing both

incentive-compatible and computationally tractable mechanisms is feasible for synthetic

task allocation problems in virtual organizations.

Forming Resource Sharing Coalition through Multiparty Negotiation

Another major contribution of this dissertation is that I develop a decentralized

coalition formation mechanism, which is based on explicit negotiation among self-

interested agents (He and Ioerger 2004a, 2005a and 2005b). The developed coalition

formation mechanism achieves decentralization through explicit negotiation among self-

interested agents. Each agent makes its own decisions on whether or not to join a possible

coalition. The resulting coalitions are stable in the core in terms of coalition rationality.

Compared with the centralized approaches, this mechanism significantly reduces the

complexity of coalition formation processes. The communication load caused by

negotiation is very low due to a properly designed multiparty negotiation protocol.

The multiparty negotiation mechanism itself is unique because existing negotiation

mechanisms in distributed artificial intelligence are bilateral. The developed negotiation

mechanism extends the Monotonic Concession Protocol (Rosenschein and Zlotkin 1994)

for negotiation between two agents and realizes automated multilateral negotiation among

 15

self-interested agents who have symmetric authority (i.e., no mediator exists and agents are

peers) in a multiagent system.

I have applied this mechanism to form resource sharing coalitions in computational

grids and buyer coalitions in electronic markets. The simulation results show that the

coalition formation process is successful in the sense that automated multiparty negotiation

processes can lead agents to find appropriate coalitions and a coalition formation process

can end properly. The communication load is practical in the sense that the number of

messages received by each agent is much less than the worst case. For buyer coalition

formation, my distributed coalition formation mechanism can result in nearly optimal

results.

OVERVIEW OF CONTRIBUTIONS

This dissertation develops decentralized mechanisms for distributed task and

resource allocation among self-interested agents in virtual organizations. These

mechanisms are both incentive-compatible and computationally tractable. Based on these

mechanisms, stable virtual organizations (or communities) can be established through

interactions among self-interested agents without a centralized controller. These

mechanisms are also easy to implement, so that they can be built in autonomous agent

systems. This has the potential to dramatically change the current reality in which most

resource management policies in virtual organizations (e.g. computational grids) are

manually enforced.

 16

CHAPTER II

RELATED WORK

Many researchers in distributed artificial intelligence (Rosenschein and Zlotkin

1994; Sandholm 1996, 2003; Parkes 2000) have reviewed related game-theoretic aspects in

terms of incentive compatible issues in multiagent systems. This chapter mainly focuses on

the related work that has been done in distributed artificial intelligence because I am

interested in applying existing theoretic models to formalize distributed task and resource

allocation problems for self-interested agents. The goal of this dissertation is to design

mechanisms for distributed task and resource allocation among self-interested agents that

can result in stable resource-sharing communities. This chapter reviews existing theoretic

models that jointly address incentive compatibility and computational tractability and the

methodologies for distributed task and resource allocation problems in distributed artificial

intelligence.

ALGORITHMIC MECHANISM DESIGN

Established by Nisan and Ronen (1999), algorithmic mechanism design (AMD) is a

formal model that considers both incentive compatibility (the “mechanism design” part)

and computational tractability (the “algorithmic” part).

 17

Mechanism Design

A mechanism design problem has two components: the algorithmic output

specification and descriptions of what kind of benefits the participating agents can obtain.

These components are given as utility functions over the set of possible outputs.

Definition 2.1: Mechanism Design Problem

A mechanism design problem is given by an output specification and by a set of agents’

utilities. There is a collection of agents A = {a1, …, an}. Each agent ai has some private

information termed as its type ti ∈ Ti. The output specification maps to a type vector t = (t1,

…, tn). Each agent ai’s preferences are given by a real valued function: vi(o, ti) in terms of

some common currency. If the mechanism’s output is o and the mechanism hands this

agent pi units of this currency, then its utility will be ui = pi + vi(o, ti) (termed quasi-linear

utility). The agent aims to optimize this utility.

Definition 2.2: Mechanism Design Optimization Problem

This is a mechanism design problem where the output specification is given by a positive

real valued objective function g(o, t) and a set of feasible output F. The objective is to find

an output o ∈ F that optimizes g(o, t).

A mechanism solves a given problem by assuring that the required output occurs

even as agents choose their strategies so as to maximize their own utilities. The formal

definition of a mechanism is given as the following:

Definition 2.3: A Mechanism

There is a collection of agents A = {a1, …, an}. The mechanism defines a family of

strategies Si for each agent ai. The agent can choose any si ∈ Si. A mechanism m = (o, p) is

 18

composed of two elements: An output function o = o(s1 … sn) and an n-tuple of payments

p1(s1 … sn), …, pn(s1 … sn). A mechanism is poly-time computable if the output and

payment functions are computable in polynomial time.

The Revelation Principle

Definition 2.4: Dominant Strategy

A mechanism is an implementation of dominant strategies if for each agent ai and each type

ti there exists a strategy si ∈ Si, termed as dominant strategy, such that for all possible

strategies of the other agents a-i (i.e. {A/ ai}), si maximizes agent ai’s utility.

Definition 2.5: Truthful Implementation

A mechanism is truthful if for each agent ai and all its ti, Si = Ti, i.e., its dominant strategy is

to report its real type.

Definition 2.6: Strongly Truthful Implementation

A mechanism is a strongly truthful implementation if truth-telling is the only dominant

strategy for agents.

Vickrey-Groves-Clarke Mechanisms

The most positive result in mechanism design is the generalized Vickrey-Groves-

Clarke (VGC) mechanism (Vickery 1961; Clarke 1971; Groves 1973). The VGC

mechanism applies to mechanism design problems where the objective function is simply

the sum of all agents’ valuations.

 19

Definition 2.7: Utilitarian Functions

A maximization mechanism design problem is called utilitarian if its objective function

satisfies g(o, t) = ∑i vi(o, ti).

Definition 2.8: A VGC Mechanism

A direct revelation mechanism m = (o(t), p(t)) belongs to the VGC family if

• o(t) ∈ argmaxo∑ =

n

i ii tov
1

),(

•)()),(()(iiij jji thttovtp
−≠

+=∑ where pi(t) is the payment that agent ai obtains when

the type vector is t, ∑ ≠ij jj ttov)),((is the sum of values of all agents except agent ai

when the type vector is t, hi() is an arbitrary function of t-i and t-i = (t1, … ti-1, ti+1, …,

tn). A very important theorem of VGC mechanism has been proved by Groves (1973):

Theorem 2.1: A VGC mechanism is truthful.

Feigenbaum et al. (2001) extended this model to distributed algorithmic mechanism

design (DAMD), in which the same goals of incentive compatibility and computational

tractability are presented. In addition, the agents, the relevant information, and the

computational model are all inherently distributed. Network complexity also needs to be

considered. In Chapter III, I will study the synthetic task allocation problem by formalizing

this problem as the algorithmic mechanism design optimization problem.

COALITION FORMATION

Sandholm (1996) probably did the most complete survey of literature related to the

theory of coalition formation among self-interested agents in his dissertation. He points out

 20

that coalition formation includes three activities. The first is coalition structure generation,

that is, formation of coalitions by the agents such that agents within each coalition

coordinate their activities. Mathematically, it means partitioning a given set of agents into

disjoint coalitions.

The partition is called a coalition structure. Different subsets have different values

(e.g. due to cost savings, or synergies of capabilities), and the goal is to find a partition of

the agents that maximizes this value (summed over each group). The second is solving the

optimization problems within each coalition. In a task allocation problem, this decides how

to distribute tasks among the member agents of a coalition. The third activity involves

payoff division. It deals with how to divide the gain of a coalition to its member agents.

Agent1 Agent2 Agent3 Agent4 Agentn

…

Coalition Structure Generation

Coalition1 Coalition2 Coalition3

Solving the optimal problems within each coalition

Payoff Division
Payoff Division

FIGURE 2.1. Activities in Centralized Coalition Formation

 21

The stability of the coalition depends on whether each member agent agrees with the actual

payoff division. These activities interact with each other. Figure 2.1 illustrates these three

activities.

The first two activities described above are difficult in terms of their complexities.

Sandholm et al. (1999) has proved that the complexity of coalition structure generation is

O(nn). Normally, most allocation optimization problems are NP-hard problems (Sandholm

1996; Parkes 2000). Payoff division is also a hard problem in terms of its complexity. The

stability of a coalition depends on whether the payoff division is incentive-compatible in

the sense that each member agent will not obtain more benefit by leaving the coalition.

Therefore, coalition formation also needs to be addressed by jointly considering incentive

compatibility and computational tractability.

 Game theory provides many solution concepts for evaluating the stability of a

coalition (Fudenberg and Tirole 1991; Osborne and Rubinstein 1994) under the assumption

that agents involved in coalition formation have perfect rationality (i.e., algorithms can find

the optimal solution with zero computational cost), which is not realistic in the real world.

Sandholm and Lesser (1997) extended coalition formation in game theory to a normative

theory of coalitions in combinatorial domains based on a domain classification for bounded

rational agents.

Game theorists did not provide actual methods of forming coalitions in real

applications. Researchers in distributed artificial intelligence have put a great deal of effort

into developing feasible algorithms (Sandholm and Lesser 1997; Sen and Dutta 2000;

Caillou et al. 2002; Li and Sycara 2002) for all three activities of coalition formation

among self-interested agents. Most of these works take centralized approaches by

 22

formalizing coalition formation as a set of optimization problems. Generally, a group leader

is chosen for organizing the coalition formation process and is in charge of payoff division.

It is unclear how to select such an unselfish leader who is fair and acts in each member’s

and the group’s best interests. The computational intractability of the centralized

approaches also makes these algorithms only applicable for a small number of agents.

There are only a few works on coalition formation that adopt distributed

approaches. Shehory and Kraus (1995, 1998) developed distributed any-time algorithms of

forming coalitions for cooperative agents for task allocation problems. They proposed two

additional distributed algorithms for coalition formation among self-interested agents in

non-super-additive games (Shehory and Kraus 1999). A merging process of coalition

configurations from all agents is required. Voting is suggested to be one of the possible

decision-making methods. Lerman and Shehory (2000) developed a distributed buyer

coalition formation mechanism for a large-scaled electronic market, where a buyer coalition

may form when buyers encounter other buyers or existing coalitions randomly.

This dissertation proposes a distributed coalition formation mechanism that is based

on conducting explicit negotiation among self-interested agents. By “explicit”, I mean that

there are clear procedures for either accepting or rejecting a proposed coalition. An

automated multiparty negotiation protocol is developed for autonomous agents. This

distributed coalition formation mechanism allows self-interested agents to make their own

decision about whether or not to join a coalition. A coalition is formed if all members agree

to join this coalition. All agents are symmetric in terms of their equal roles in a coalition

formation process. There does not exist any group leader or matchmaker to mediate the

coalition formation process. Each agent only knows its own benefits of joining a coalition,

 23

which is private information that cannot be accessed by other agents directly. An agreement

about forming a coalition is achieved by negotiation among participating agents.

This decentralized approach to coalition formation is more realistic in practice than

previous approaches. Coalitions in the real world are generally formed through explicit

negotiation among multiple agents. Agents make their own decisions on whether or not to

join a coalition. Most likely, agents have no complete information about other agents'

preferences. My mechanism tries to capture these features in a coalition formation process

among human agents. Furthermore, by letting agents make their own decisions, my

mechanism removes two computationally intractable activities of coalition formation:

coalition structure generation and payoff division. The ultimate objective of this research is

to maximizing social welfare (optimal coalition structure) through providing appropriate

incentive to agents so that their decisions on joining a coalition will lead to an optimal

coalition structure under constraints that agents are self-interested and willing to maximize

their own utilities.

NEGOTIATION AMONG SELF-INTERESTED AGENTS

Negotiation has been studied in many different disciplines such as politics,

economics, business and public relations. Rosenschein and Zlotkin (1994) pointed out that

the world functions through interacting agents. Each person pursues his own goals through

encounters with other people or machines. The process of negotiation takes place in both

formal and informal contexts. It is part of our daily life.

 24

The importance of studying negotiation is straightforward for designing

decentralized mechanisms for distributed task and resource allocation problems

(Rosenschein and Zlotkin 1994; Sandholm 1996; Kraus 2001; Jennings et al 2001).

Negotiations are initialized when agents need to make agreements on how to allocate a

shared resource, how to do distributed load balancing, how to exchange resources etc. In

this dissertation, negotiation is used for coalition formation, namely, agents making

agreements about whether or not to form a coalition through multiparty negotiation.

 There are two main research issues on negotiation in multiagent systems. The first

is how to develop practical negotiation strategies (Kraus 2001), i.e., what kind of strategies

that agents should use to maximize their own good during a negotiation process. The

second is to develop protocols that allow automated negotiation agents (Jennings et al

2001) to negotiate with each other. Game theory tools (e.g., Nash equilibrium, dominant

strategy etc.) are used to evaluate negotiation strategies and protocols.

The Art and Science of Negotiation

Although I mainly focus on introducing the related work on negotiation in

multiagent systems, I do not want to ignore Raiffa’s book (1982) “The Art and Science of

Negotiation”, which is probably the most popular reference book for research work on

negotiation. "Art" means dealing with the human element. "Science" means those aspects

of the negotiation process that are capable of being analyzed in a fairly structured manner.

The book conveys an idea that the “zero-sum” way of thinking, according to which one side

must lose if the other wins, often makes both sides worse off than they would be when

 25

bargaining for joint mutual gains. Raiffa is mainly interested in determining which

outcomes to negotiation are optimal for both parties. Much of his analysis is based on the

premise that both parties will act in an ultimately rational manner and make decisions that

will be optimal. These analyses may not be practical in negotiation among human subjects

due to the assumption that the negotiation subjects are always rational (i.e., each subject

always tries to maximize its own utility). I believe it is the main reason why the researchers

in multiagent systems would like to borrow ideas from this book because autonomous

agents can be built to be rational. As with most work in game theory, this book does not

focus on developing actual negotiation strategies and protocols. It instead analyzes existing

cases.

Rules of Encounter

“Rules of Encounter: Designing Conventions for Automated Negotiation among

Computers” is a very well-known book about negotiation among autonomous agents

written by Rosenschein and Zlotkin (1994), who are pioneers of introducing game theory to

distributed artificial intelligence. The book presents the beginnings of the theory of

designing interaction protocols among computers with different designers and owners by

using game theory tools. It identifies three distinct domains (task oriented, state-oriented

and world oriented domain) where negotiation is applicable and addresses different

strategies for each domain.

There are two main points that the book tries to make about designing negotiation

strategies. The first is that by appropriately adjusting the rules of public behavior (rules of

 26

the game) by which agents must interact, the private strategies of each agent will be

influenced. This can ensure desirable global attributes for a distributed and heterogeneous

system. The second is that the participating agents must agree on the rules of the game.

This can result in stable interaction protocols. Game theory tools are mainly used to

evaluate these two criteria.

Throughout the book, only two-agent domains and encounters are analyzed. The

book presents a famous two-agent negotiation protocol, which is called “Monotonic

Concession Protocol” (MCP). In the MCP protocol, agents start by simultaneously

proposing one deal from the space of possible deals. An agreement is reached if one of the

agents matches what the other one asked for in terms of utility. My focus in this dissertation

is to let multiple self-interested agents achieve agreements through a multiparty negotiation

protocol, which extends the MCP protocol to multiple-agent domains.

Strategic Negotiation in Multiagent Systems

Kraus (2001) presented a strategic-negotiation model, which is based on

Rubinstein’s model of alternating offers where agents exchange offers until they reach an

agreement or until one of them opts out of the negotiation. The goal of developing this

model is to resolve conflicts among agents by reaching agreements through negotiation.

The applications of this model include the data allocation problem in information server,

common resource allocation problem, task delegation within a team, and the pollution

allocation problem. The objective of this strategic-negotiation model is to provide the

 27

agents with ways to reach mutually beneficial agreements without delay. In this model,

there are n agents who need to reach an agreement on a given issue.

This dissertation embeds negotiation into coalition formation. Agents might be

involved in multiple negotiation processes during a coalition formation process. An agent’s

decision on whether or not to accept an offer may not only depend on the decisions of other

members in a proposed coalition but also depend on the decisions of agents outside of the

proposed coalition.

Automated Negotiation

Jennings et al. (2001) proposed a generic framework for classifying and viewing

automated negotiations. This framework was then used to discuss and analyze the three

main approaches that have been adopted to automated negotiation: game theoretic, heuristic

and argumentation-based approaches. For each approach, a brief appraisal of its relative

merits and drawbacks is presented. They pointed out that much research still needs to be

performed in the area of automated negotiation. The aim of this work is not to develop

actual automated negotiation strategies or protocols for particular domains. It analyzes

existing automated negotiation implementation.

Other Work Related to Negotiation in Multiagent Systems

Negotiation has been studied in distributed artificial intelligence both in distributed

problem solving (DPS) where agents are cooperative and in Multiagent Systems (MAS)

 28

where agents are self-interested. Negotiation is used in DPS for solving conflicts,

distributed planning and distributed search (O’Hare and Jennings 1996). This dissertation

does not focus on cooperative agents.

Sycara (1987, 1990) developed a model of negotiation that combines case-based

reasoning and optimization of multi-attribute utilities. Zeng and Sycara (1998) embedded

learning into negotiation. Agents can learn from previous encounters about their opponents’

negotiation strategies so that they choose corresponding strategies to influence their

opponents or to obtain a better deal. Sierra et al. (1997) presented a model of negotiation

for autonomous agents, which is distilled from intuitions about good behavioral practice in

human negotiation. Sandholm and Lesser (2002) explored issues such as levels of

commitment that arise in automated contract among self-interested agents whose rationality

is bounded by computational complexity. I will discuss about their research more in the

related work about distributed task and resource allocation.

DISTRIBUTED TASK AND RESOURCE ALLOCATION IN MULTIAGENT

SYSTEMS

Distributed task and resource allocation is a central theme of distributed computer

science (Clearwater 1996). I do not address the allocation issues of distributed computer

systems when those systems have been centrally designed to pursue a single global goal

such as a distributed operating system. I am interested in cooperative task allocation and

resource sharing problems in systems that are established through interactions among

multiple self-interested agents that are developed by different designers and belong to

 29

different owners. This type of allocation problems has a variety of applications in grid and

peer-to-peer computing, electronic commerce and virtual organizations.

Contract Net and Levels of Commitment

The most influential distributed task allocation mechanism in distributed artificial

intelligence is the Contract Net protocol (Davis and Smith, 1983), which can be used for

both cooperative agents and self-interested agents. The basic idea is that a task manager

auctions a group of tasks, agents bid on these tasks based on their local marginal cost

calculations. The original Contract Net does not take computational tractability into

consideration, even though the marginal cost calculation for combinatorial problems are

most likely intractable. Sandholm and Lesser (2002) extended the Contract Net protocol to

allow it to work among self-interested computationally limited agents. Agents can

reallocate tasks to each other for dynamically constructed charges. As a result, a more

profitable global task allocation is reached than the initial one, while not executing a

centralized task allocation algorithm.

This dissertation studies the distributed synthetic task allocation problem. A

synthetic task must be accomplished by an agent team, which is composed of self-interested

agents from different organizations. The objective to minimize the completion time of a set

of synthetic tasks even though the true capabilities of agents are not known by the task

allocation mechanism.

 30

Methods for Task Allocation via Agent Coalition Formation

As mentioned before, Shahory and Kraus (1995, 1998) developed distributed any-

time algorithms for forming coalitions among cooperative agents for task allocation

problems. They considered situations where it is necessary to execute a task by a group of

agents because it is more efficient or a single agent is not able to perform the task. The

objective of this work is to improve the efficiency by allocating tasks to cooperative agent

coalitions, which are formed through distributed algorithms. There is not an explicit

negotiation protocol among agents. Each agent calculates the costs of coalitions it involves

by itself and joins the coalition with the lowest cost for a certain task. The procedure is

executed iteratively until there are no more tasks or no existing coalition is beneficial.

This dissertation addresses distributed task and resource allocation among self-

interested agents. By forming resource sharing coalitions, agents with both tasks and

resources can improve the efficiency of task execution (e.g. reduce task execution time)

without increasing the amount of resources owned by each agent individually. The

coalitions are formed through explicit negotiation among multiple agents.

Auction and Market Based Resource Allocation Mechanisms

Auctions and markets represent two ends of a spectrum of market formulations

(Wolski et al 2001, 2003). On the market end, an attempt is made to satisfy all bidders and

sellers at a given price. At the auction end, one bidder and seller is satisfied at a given price.

 31

Market based resource allocation mechanisms are decentralized and no direct

communication is needed. The balance between supply and demand decides the actual

resource allocation. When the supply and demand for a certain resource reaches

equilibrium, the price becomes stable. How long it will take to reach equilibrium is

normally unpredictable. Hence, price setting is a big obstacle for developing a market based

resource allocation mechanism (Wolski et al 2001, 2003).

An auction (Krishna 2002) is the simplest resource allocation mechanism for self-

interested agents in terms of its implementation. Auction-based distributed resource

allocation mechanisms have been successful in many real distributed allocation

applications. The most positive result about auction is that the second sealed price auction

belongs to VGC family and is a truthful implementation. Also, an auction has no problem

with price setting. The bad news about auctions is that deciding the winner of a

combinatory auction is a computationally intractable problem, but the distributed allocation

problems in this dissertation are all combinatory optimization problems.

These two types of allocation mechanisms are basically monetary approaches

(Buyya et al. 2002). When computational resource allocation among self-interested agents

is considered, agents do not explicitly buy others’ resources but use them when they are

idle. It is very hard for agents to decide whether they should buy the time slots of using a

resource or buy the resource itself.

This dissertation focuses on bartering approaches (He and Ioerger 2005b) for

developing computational resource allocation mechanisms. The idea is to let agents

exchange their idle time slots of their computational resources.

 32

CHAPTER III

SYNTHETIC TASK ALLOCATION IN VIRTUAL ORGANIZATIONS

In traditional computational organization models, the designers of task allocation

mechanisms generally make an implicit assumption that organizational agents will report

their true capabilities for achieving certain tasks. This assumption might not be true for

virtual organizations. Organizational agents with self-interests are typical in virtual

organizations. Incentive-compatible task allocation mechanisms must be designed for

synthetic task allocation in virtual organizations. In this chapter, I study a synthetic task

allocation problem by formalizing this problem as an algorithmic mechanism design

optimization problem (Nisan and Ronen 1999).

SYNTHETIC TASK ALLOCATION

Recalling the synthetic task allocation problem illustrated in Figure 1.1, a number of

tasks need to be done. Each of these tasks requires cooperation among different groups,

which belong to different organizations. Members in different groups have different

expertise. Within each group, all members have the same specialty, but they have different

capabilities in the sense that different members might require different amounts of time to

finish an identical task (or with a different quality, accuracy etc.). A member in a group is

referred as an agent. A task needs to be done by a team that is composed of agents from

different groups. It is assumed that there is no dependency among tasks and that tasks can

be executed in parallel.

 33

 It is assumed that each task needs exactly one agent from each group. These kinds

of projects are referred as synthetic tasks. The project manager needs to build a temporary

team for each task. The amount of time required to finish a task depends on the capabilities

of members in that team. The objective of the project manager is to minimize the total

amount of time required to accomplish all tasks. Definition 3.1 gives the formal definition

of synthetic tasks.

Definition 3.1: Synthetic Task

A task, t, is called a synthetic task if t requires a set of activities X = { x1, …, xm }. Each of

these activities needs to be performed by an agent with special skills. The synthetic task t,

needs to be executed by an agent team, T, composed of m agents. Each of these agents is

only able to perform one of the activities in X. Different agents in T differ in the activities

that they can perform.

A typical example of a synthetic task is a software development project that needs

to be accomplished by a software development team. For instance, to build such a

development team, a software project manager might need to have a software architect, a

database administrator, a networking administrator and a few software developers who are

good at different programming languages. These experts might actually belong to different

groups in an organization. How to allocate the project to the most efficient team to

accomplish the project is a big challenge.

Before formally defining the synthetic task allocation problem, I need to define how

efficient an individual agent is for executing a single activity (which needs to be done by

only one agent) and how efficient an agent team is for executing a synthetic task (which

needs to be done by a team of agents with different specialties). Here, I only consider the

 34

amount of time required to finish a task as the evaluation criterion1 for both individual and

team efficiency. Greater efficiency means less time required to finish a task.

The concept of individual efficiency is used to distinguish the different capabilities

of agents in one group. They have the same specialty, but they differ in their efficiencies in

the sense that they need different amounts of time to finish the same single activity.

Definition 3.2: Individual Efficiency

Individual efficiency is defined as a function fI(ai, x): I × Ω →
+

ℜ , where I is a set of

agents and Ω is a set of activities. For ∀ ai ∈I, it can accomplish an activity x ∈ Ω. The

value of fI(ai, x) is equal to the amount of time required by agent ai to finish a single activity

x. Given a set G = {a1, …, an} of n agents and a single activity x, an agent ai is individually

more efficient than aj if fI(ai, x) < fI(aj, x).

My goal is to design a reward mechanism that will get a distributed group of self-

interested agents to automatically solve the synthetic task allocation problem. Individual

efficiency has a strong effect on team efficiency. Besides individual efficiency, the amount

of time that the team needs to finish the task might be also affected by some other factors

such as how often these agents work together and how good these agents are at teamwork.

If only individual efficiency is known, it is still unclear how to evaluate how efficient an

agent team is. Therefore, I define the following concept of team efficiency to distinguish

the different capabilities of agent teams, which are composed of agents from different

1 To evaluate the efficiency of an individual agent or an agent team, the performance quality of accomplishing
a task can be another criterion, such as cost or accuracy. However, higher quality performance usually
requires more time. Here, assume the performance criteria for each task is the same. More efficient agents or
agent teams spend less time to achieve the quality requirement than less efficient agents or agent teams.

 35

groups. The composed teams differ in their efficiencies in the sense that they need different

amounts of time to finish a same synthetic task.

Definition 3.3: Team Efficiency

Team efficiency is defined as a function fT(Ti, y): V × Φ →
+

ℜ , where V is a set of agent

teams and Φ is a set of synthetic tasks. For ∀ Ti ∈V, Ti = (ai1, …, aim) is an agent team.

For ∀ y ∈ Φ, y requires a set of activities X = { x1, …, xm }. aij in Ti is able to perform

activity xj. The value of fT(Ti, y) is equal to the amount of time required by agent team, (ai1,

…, aim), to finish synthetic task y. Let G1, …, Gm denote m groups of agents and y ∈ Φ

denote a synthetic task. Agents in group Gj are able to perform activity xj. Synthetic task y

needs to be accomplished by a team composed of m agents. Agent team (ai1, …, aim) is

more efficient than agent team (aj1, …, ajm) if fT(Ti, y) < fT(Tj, y).

Now, how does individual efficiencies affect team efficiencies? Currently, I assume

that the efficiency of a team composed of more efficient agents is not worse than the

efficiency of a team composed of less efficient agents. This kind of teamwork is defined as

monotonic teamwork.

Definition 3.4: Monotonic Teamwork

Given a set G = {G1, …, Gm} of m groups of agents and a synthetic task, y, y needs to be

accomplished by a team composed of m agents and different agents in a team are from

different groups in G. For any two teams A1 and A2 that differ by only one agent, i.e., A1\

A2 = {aj1} and A2\ A1 = {aj2}, where aj1 and aj2 to the same group Gj (meaning that aj1 and

aj2 can do the same type of single task x), agent teamwork is monotonic teamwork iff fT(A1,

y) ≥ fT(A2, y) when fI(aj1, x) ≥ fI(aj2, x).

 36

In many real applications, the most inefficient team member may slow down the

efficiency of the whole team significantly. For example, if a software development team

has an inefficient network administrator, the efficiency of the network administrator might

determine the whole team efficiency. If the network administrator cannot recover the

computer network from some disaster events on time, the other team members may not be

able to do any of their jobs. Let’s consider another assumption: for the most efficient team,

if one agent is replaced by the second most efficient agent in the corresponding group, the

efficiency of the team is immediately decreased to the same level of the team in which

every member is the second most efficient team from each group. The same rule applies to

the transformation from the second most efficient team to the third one, and so on. This

type of teamwork is defined as strongly monotonic teamwork.

Definition 3.5: Strongly Monotonic Teamwork

Given a set G = {G1, …, Gm} of m groups of agents and a synthetic task, y, y needs to be

accomplished by a team composed of m agents and different agents in a team are from

different groups in G. Assume that each group has n agents and the agents in any group Gj

are ordered by efficiency for any given activity x: fI(aj1, x) ≤ fI(aj2, x) ≤ … ≤ fI(ajn, x). Let Ai

denote the agent team (a1i, …, ami) and Ak denote that agent team (a1k, …, amk). Let '

iA

denotes an agent team in which m-1 members are the same as Ai except for one member

from Ak and i < k. Agent teams are strongly monotonic teamwork iff fT(Ai, y) ≥ fT(Ak, y)

and fT('

iA , y) = fT(Ak, y) .

Based upon the concept of team efficiency, the synthetic task allocation problem is

defined as follows:

 37

Definition 3.6: Synthetic Task Allocation Problem

The synthetic task allocation problem is denoted by a tuple QSTA = <Φ, G , fT>, where Φ is

a set of synthetic task { t1, …, tk }; G is a set of agent groups {G1, …, Gm}; and fT is the

team efficiency function for tasks in Φ. Within a group Gj, there are n agents {aj1, …, ajn},

who have the same specialty but with different capabilities. Namely, they can accomplish

the same activity in different amounts of time. To accomplish a synthetic task ti, a team

composed of a1i, …, aji, …, ami is required. There is no pair in these m agents from the

same group in G. Assume that every synthetic task in Φ needs to be accomplished by a

team composed of m agents2 and each task is independent from other tasks in Φ. The

amount of time di required to finish task ti is a function of vector Ai = (a1i, …, aji, …, ami):

di = fT(Ai; ti). Furthermore, if an agent has been allocated to a team for a certain task, it

cannot start a new task before the whole task has been finished. The objective of this

problem (where agents are assumed to be implicitly cooperative, not self-interested, and all

individual capabilities are known) is to minimize the total amount of time for finishing all

tasks (makespan). The designed allocation algorithm for this problem can be represented as

follows:

• A feasible output of the allocation algorithm is a set of agent vectors A = {A1, .., Ak}

where synthetic task ti is assigned to Ai.

• Without loss of generality, assume that each group has the same size of n. Then, the

total number of possible teams is n
m, but there are only n teams that can exist in

parallel. Assume that the total number of tasks is much larger than the size of each

2 This assumption requires that all synthetic tasks in Φ are the same type of task in the sense that these tasks
need to be finished by an agent team composed of m different experts.

 38

group, i.e., k >> n3. Since there are only n teams that can exist in parallel, each agent in

a group Gj might be needed to participate in executing multiple tasks. Hence, from the

view of group Gj, an output of the allocation algorithm results a task partition Xj = (xj1,

…, xjn). Agent ajr will participant in tasks in xjr. Xj is the function of the allocation

output A: Xj = Xj(A). Agents of group xj can execute their tasks in parallel.

• The objective of the allocation algorithm is to minimize TE(A, Φ), which is the total

completion time of all synthetic tasks in Φ. The objective function can be as:

TE(A, Φ) =));((maxmax ∑ ∈ jrxl llTrj tAf

where j is the index of a group, r is the index of an agent in group Gj, and l is the index

of a task in a task subset, xjr, in which agent ajr participates.);(∑ ∈ jrxl llT tAf is the total

amount of time that agent ajr (who belongs to group Gj) has to spend on participating in

executing tasks in xjr. The amount of time that agent ajr needs is equal to the amount of

time that tasks in xjr need to be finished because agent ajr cannot start to participating in

another new task until its current task has been finished. From the view of group Gj, all

n agents in Gj execute task subsets in Xj in parallel. Since the task allocation process is

offline, there is no idle time for each agent between any two tasks in which it

participates4. Therefore, the maximum amount of time that an agent participates in the

3 This assumption makes the synthetic task allocation problem nontrivial. If k=1, the allocation problem is
trivial because the project manager only needs to allocate this task to the most efficient agent team.
4 Proof: Since no team member can quit from a task execution, after a task ends, all involved agents are free
for other tasks. The scheduling process is offline. The project manager can construct proper teams before the
scheduling. Since all tasks are the same type and independent, the project manager can build fixed n teams
that are the best combinations based on the reported types. Then, the project manager schedules all tasks to
proper teams. In other words, during the scheduling, the project manager does not reshuffle teams. As a result,
there is no idle time for each agent between any two tasks in which it participates.

 39

whole task execution process can be used to represent the minimum amount of time for

completing all tasks in Φ.

If agents in each group have the same capability, which is known by an allocation

algorithm in advance, the synthetic task allocation problem would be equivalent to the

Makespan problem (Coffman et al. 1987), which is how to minimize the completion time

of a set of single tasks by scheduling them to multiple processors with the same capacity.

The Makespan problem is a well-known NP-hard problem (Chen 2004).

Lemma 3.1: The synthetic task allocation is an NP-hard problem.

Proof: Even though the total number of possible teams is nm in the synthetic task allocation,

there are only n teams than can exist in parallel because any agent cannot join two teams at

the same time. Therefore, the synthetic task allocation problem can be simplified to be the

Makespan problem if the capabilities of all agents in each group are the same and known by

the allocation mechanism in advance. The mechanism only needs to allocate k tasks to n

teams with the same capability and tries to minimize the completion time of those k tasks.

The NP-hard Makespan problem (Garey and Johnson 1979) is polynomial reducible to the

synthetic task allocation problem. The Makespan problem is defined as follows (Chen

2004): given the set of tuples T = {c1, …, cn; m}, where ci is the processing time for the ith

job and m is the number of identical processors. Can {c1, …, cn} be partitioned into m

subsets, P1, …, Pm, such that the processing time of the largest subset can be minimized?

Given an instance T = {c1, …, cn; m} of the Makespan problem, an instance α = <

Φ, G , fT> for the synthetic task allocation problem can be constructed. There are n tasks in

Φ = {t1, …, tn } and only one group G of m agents (a1, …, am). Each task in Φ needs to be

executed by one agent in G. For task ti, the amount of time, ci, is calculated by function fT.

 40

Therefore, T is a yes-instance for the Makespan problem if and only if an optimal solution

to the instance α of the synthetic task allocation problem is minimizing the maximum

amount of time that an agent in G participates in executing tasks assigned to the agent. 

There exist efficient approximation algorithms for the Makespan problem that can

be extended to solve the synthetic task allocation problem. For example, Coffman et al.

(1987) developed a 2-approximation algorithm for the Makespan problem. I extend it to a

2-approximation algorithm for the synthetic task allocation problem if the teamwork among

different groups is strongly monotonic.

SYNTHETIC TASK ALLOCATION FOR SELF-INTERESTED AGENTS

If the project manager knows the capabilities of agents in each group in advance, he

can build a proper agent team for each task. The synthetic task allocation problem can be

solved as a Makespan problem (Chen 2004). We only need to consider the issue of

complexity (e.g., use an approximation algorithm for efficiency). However, in virtual

organizations, the project manager most likely does not know the true capability of agents

in each group in advance. Each agent group belongs to different real organizations. How to

give each group incentive to report the true capabilities of their agents also needs to be

considered.

Intuitively, if the project manager would pay each team in proportion to its

efficiency, each group might have incentive to send its most efficient agent to assigned

tasks. However, this policy gives each group incentive to lie about the efficiencies of its

agents because reporting higher efficiency than the real efficiency can bring better payment

 41

for each group. Therefore, the project manager needs to have a better payment policy to

induce each group to always tell the truth.

My approach is to extend the synthetic task allocation problem as an algorithm

mechanism design problem (AMD) (Nisan and Ronen 1999). The idea is to give each

group incentives to report the true capabilities of their agents by providing appropriate

payments.

EXTENDING SYNTHETIC TASK ALLOCATION TO AN AMD PROBLEM

Assume that all members in one group are cooperative in the sense that all members

want to maximize the benefit of the group. The self-interested entities in the synthetic task

allocation domain do not refer to group members but to groups. Each group is self-

interested in the sense that its goal is to maximize its own utility. For example, a law firm

that has lawyers to outsource and a CPA firm with accountants for hire. Typically, there is

no communication between groups. Each group does not know about other groups’

strategies and states. I also assume that the project manager does not know the true

capability of each agent in a group. He builds a team for each synthetic task by using

available agents as reported by agent groups. The only way that the project manger can

affect the truth-telling of each group is by giving an appropriate amount of payment to each

group. I extend synthetic task allocation to the following algorithmic mechanism design

optimization (AMDO) problem:

 42

Definition 3.7: Synthetic Task Allocation AMDO Problem

The synthetic task allocation AMDO problem is denoted by a tuple QSTA-AMDO = < Φ, G ,

fT(T), PMAX>, where Φ, G , fT(T) are the same as the synthetic task allocation problem

(Definition 3.5). PMAX is the total reward available that can be distributed among the groups

for tasks accomplished. The objective of this problem is to design a payment policy that

will cause each self-interested group to report the true capabilities of its agents (assuming

each group is rational). Then the project manager can use an algorithm for the synthetic

task allocation problem (definition 3.5) to minimize the total amount of time for finishing

all tasks in Φ (makespan).

The synthetic task allocation problem can be extended as the following algorithmic

mechanism design optimization problem:

• The objective of the synthetic task allocation algorithmic mechanism design

optimization problem is to search for an optimal payment policy π* in a payment policy

space such that each group has incentive to reveal the true capabilities of its agents. Let

π denote a payment policy that maps a feasible synthetic task allocation A to a set of

payment vectors, {p1, …, pm}. pj is the payment vector, (pj1, …, pjk), of group Gj for

tasks in Φ. pji is the payment that group Gj obtains by sending an agent to execute task

ti. In real applications, a payment function must satisfy that the sum of the payments of

all agents in a team for a certain synthetic task must be less than or equal to PMAX,

which is the maximum payment that a project manager can afford for all synthetic

tasks.

 43

• pji is the payment group Gj can obtain from sending agent aji to participate executing

task ti. pji can be defined as a function f(ti, aji, PMAX).

• The utility of group Gj is the sum of pay for all tasks its agents help accomplishing

uj(A) = ji

k

i
p∑ =1

The objective of group Gj is to maximize uj(A) (i.e. group Gj is assumed to be rational.)

Solving this problem requires building proper teams for all synthetic tasks and to

schedule tasks for those teams. There are totally nm possible teams. In the worst case, the

complexity could be O(nm). In order to give each group incentive to report the true

capabilities of their agents, I need to develop an algorithm for calculating payments for

possible teams for each task.

INCENTIVE-COMPATIBLE SYNTHETIC TASK ALLOCATION

In this section, I present my incentive-compatible mechanisms for the above

synthetic task allocation AMD problem. The incentive compatible mechanism is the one

that gives each group the proper amount of payment that can induce each group to report

the true capabilities of its agents so that the group can maximize its utility. Assume that

teamwork is monotonic teamwork (see Definition 3.4). This assumption results in the

following heuristic: picking the most efficient agent from every group and putting them in

one team will create the most efficient or the fastest team. If the efficiency of a team

depends on the most inefficient team member, then having the most efficient agents from

some groups cannot improve the efficiency of a team within which there are some

 44

inefficient agents from other groups. Based on this assumption, I propose the following

MinTeamwork Mechanism.

MinTeamwork Mechanism

Based upon this assumption, a simple approximation mechanism for the synthetic

task allocation problem can be developed similar to the MinWork mechanism that was

described by Nisan and Ronen (1999) for the single task scheduling problem. Since I am

dealing with synthetic tasks, I call it the MinTeamwork mechanism.

MinTeamwork Mechanism

• Allocation algorithm: Task ti is allocated to the most efficient team that can finish task

ti with minimum amount of time.

• Payment policy: By participating in executing task ti, group Gj can receive payment

Pji(A)));();((min *

iiTiiTAA tAftAfc
Ii

−=
∈ such that

*

ii AA ≠ ,

where);(min);(*

iiTAAiiT tAftAf
Ii ∈

= and AI is the set of all possible agent team for

task ti; c is the factor that maps time to payment unit of PMAX and

));();(min(*
* ∑∑ −

=

≠ i iiTiiTAAi

MAX

tAftAfm

P
c

ii

. In other words, for each task, the

payment is proportional to the value that is equal to the amount of time that the second

most efficient team requires to finish this task minus the optimal execution time of task

ti.

 45

The MinTeamwork mechanism lets each team member receive the same amount of

payment for executing a task because the corresponding synthetic task cannot be finished if

lacking any of the team members.

Theorem 3.1: The MinTeamwork mechanism is truthful for the synthetic task allocation

problem.

Proof: I can show that truth-telling is the only dominant strategy. Since the synthetic tasks

are assumed to be independent, I only need to show the case of one synthetic task, y (Varian

1995; Nisan and Ronen 1999). Consider the case where there are only two groups of

agents, G1 and G2. Let A denote the most efficient team and A’ denote the second most

efficient team for the given task y according to the reported capabilities of group G1 and G2.

For group G1, its utility is

);();'(yAfyAfU TTj −= ,

where);(yAfT refers to the amount of time that A needs to finish the given task and

);'(yAfT refers to the amount of time that A’ needs to finish task y. The problem is that G1

does not know G2‘s capabilities, so it cannot directly evaluate);'(yAfT or Uj. Hence it

must make a decision based on the possible values of);'(yAfT .

If);'();(yAfyAf TT < , group G1 wants to make the difference between);'(yAfT and

);(yAfT as large as possible. Making);(yAfT as small as possible is the best way to

maximize Uj. Therefore, the best strategy of group G1 is to tell its true type, which is its

most efficient agent for this task.

 46

If);'();(yAfyAf TT > , then group G1 wants to make the difference between

);'(yAfT and);(yAfT as small as possible. Making);(yAfT as small as possible is the

best way to maximize Uj. Again, the best strategy for group G1 is to tell its true type. 

Theorem 3.2: For the synthetic task allocation problem, MinTeamwork is an n-

approximation mechanism.

Proof: Let Aopt denote the optimal allocation. The following statements are true:

TE(A, Φ) ∑ =
≤

k

i iiT tAf
1

*);(

and TE(Aopt, Φ) ∑ =
≥

k

i iiT tAf
n 1

*);(
1

.

n is the total number of teams that can exist in parallel. In other words, all tasks are

executed sequentially by the most efficient team. Since there can be n teams existing in

parallel, in the worst case, these n teams have the same efficiency, the MinTeamwork

mechanism needs n times of the optimal amount of time to complete all tasks.

TE(A, Φ) ≤ n TE(Aopt, Φ)

Therefore, the MinTeamwork mecanism is an n-approximation. 

MinCompletion Mechanism

Since the MinTeamwork mechanism needs to pay the most efficient team with the

payment that is based on the performance of the second most efficient team and the

teamwork is assumed to be monotonic teamwork, then the complexity could be O(2m) in

the worst case. The reason is that all possible teams composed of team members who are

the first and second most efficient agents in each group should be considered.

 47

The MinTeamwork is not a poly-time computable mechanism because it needs to

find out the second most efficient team for each task in order to calculate the payment for

each task. Also, n-approximation is not a very good allocation algorithm. This mechanism

just allocates all tasks to the most efficient team that includes the most efficient agent from

each group. Other agents in each group are idle.

In many real applications, no group would be happy if only its most efficient agent

is working and others are idle. There is a more realistic payment function for group Gj in G

as follows:

Pj(A) =));((max' 1 ∑ ∈=
−

jrxl llT

n

r tAfc

Namely, group Gj in G values the execution of all tasks by the makespan as the shorter the

better. This means that all groups have the same objective as the project manager. If the

teamwork is strongly monotonic teamwork, there is another new mechanism for this special

case:

MinCompletion Mechanism

• Allocation algorithm: Task ti is allocated to the currently most efficient team that can

finish task ti with minimum completion time (completion time is equal to the duration

from the starting time of the first task to the finishing time of task ti).

• Payment policy: The payment of group Gj is equal to

Pj(A) =));((max' 1 ∑ ∈=
−

jrxl llT

n

r tAfc

Where ∑ ∈=
jrxl llT

n

r tAf);(max 1
 is the completion time of all tasks and c’ is the factor

that maps time to payment unit of PMAX and));((max
'

1∑ ∈=
−

=

jrxl llT

n

r

MAX

tAfm

P
c .

 48

When conditions satisfy strongly monotonic teamwork, the best way to construct

teams is to make agents the same level of individual efficiency as a team because mixing

agents with different levels of individual efficiency does not help improving the team

efficiency.

Theorem 3.3: MinCompletion mechanism is a truthful implementation.

Proof: If group Gj declares a more efficient agent than the real most efficient agent, it does

not help to decrease the completion time of a task, i.e., uj(A) will not increase. If group Gj

commits a less efficient agent than its real most efficient agent to a task, it will increase the

completion time of a task, i.e., uj(A) will be less than the one by telling truth. Therefore,

MinCompletion is truthful. 

Theorem 3.4: For the synthetic task allocation problem, MinCompletion is a 2-

approximation mechanism and poly-time computable.

Proof: Under the above assumption, the MinCompletion mechanism automatically

constructs n teams for k tasks in the following way: every member of the most efficient

team is the most efficient agent from each group; every member of the second most

efficient team is the second most efficient agent from each group and so on. The synthetic

task allocation is equivalent to a task scheduling problem in which k tasks are assigned to n

agents with different capacities. Let Aopt denote the optimal allocation. Let D1 denote the

time period within which all n team are executing tasks in parallel and D2 denote the time

period from the end of D1 to the completion of all tasks by the MinCompletion mechanism.

∑ ∈=
=

jrxl llT

n

r tAfD);(min 11

112);(max DtAfD
jrxl llT

n

r −= ∑ ∈=

 49

Therefore, TE(A, Φ) = D1 + D2

where TE(A, Φ) is the completion time for all tasks. Since all teams are executing tasks

during D1,

TE(Aopt, Φ) ≥ D1,

where TE(Aopt, Φ) is the optimal completion time of all tasks. During D2, there is at least

one team idle. Since the MinCompletion mechanism allocates each task to the team that

can finish the task within minimum completion time, in the worst situation, there is one big

task left after D1. This task should be allocated to the most efficient team. In this worst

case, the optimal completion time is longer than D2. Therefore,

TE(Aopt, Φ) ≥ D2 .

Then, 2TE(Aopt, Φ) ≥ TE(A, Φ). 

The running time of the allocation algorithm of the MinCompletion mechanism is O(nk),

where k is the total number of synthetic tasks and n is the total number of teams. For each

task, which team can finish the task within the minimum completion time needs to be

computed. The allocation algorithm allocates each task to the team that can finish it earliest

based on the reported types.

SUMMARY

In this chapter, I studied a synthetic task allocation problem by formalizing this

problem as the algorithmic mechanism design optimization problem (Nisan and Ronen

1999). Each synthetic task needs to be accomplished through the cooperation among agents

 50

who belong to different groups that are self-interested and have different specialties. If the

capabilities are known, this problem can be solved as a makespan problem. But with self-

interested agents, our goal is to design a payment mechanism that gives agents incentive to

tell the truth and form optimal teams automatically. The problem is extremely hard in the

sense that there are O(nm) possible teams (n is the size of a group, and m is the number of

groups.) and k>>n tasks needs to be executed. Indeed, even the individual task allocation

problem is NP-hard (Coffman et al. 1987). Therefore, the synthetic task allocation problem

needs to jointly address incentive compatibility and computational tractability.

For self-interested agents, I have developed two incentive-compatible mechanisms

for this problem. The MinTeamwork is an n-approximation mechanism and a strongly

truthful implementation for monotonic teamwork. By changing the valuation function and

having a more restrictive assumption, the MinCompletion mechanism is a truthful

implementation with 2-approximation for strongly monotonic teamwork. I have shown that

incentive-compatible mechanism design is applicable for synthetic task allocation problems

in virtual organizations.

 51

CHAPTER IV

DECENTRALIZED COALITION FORMATION THROUGH EXPLICIT

NEGOTIATION

Distributed task and resource allocation are intertwined problems. Resource users

need to allocate their tasks to the most efficient resources with the lowest cost. Resource

providers want to allocate their resources to the most profitable tasks. In many real

applications such as computational grids and peer-to-peer systems, the participating agents

are both resource users and providers. The basic idea behind these systems is that agents

have peak workloads at different times so that they can utilize the resources of others at idle

time. The task and resource allocation mechanisms can be used to build a virtual

community, in which participating agents (who might belong to different organizations) can

share their computational resources to satisfy their excess resource capacity demands

without purchasing more actual resources individually. In other words, distributed load-

balancing crosses the boundaries of ownership. The aim of this study is to develop a

decentralized approach to enable coalition formation among self-interested agents through

automated negotiation.

As Sandholm (1996) points out, coalition formation processes for self-interested

agents include three activities: coalition structure generation, solving the problem optimally

within each coalition and payoff division. The computational cost of this approach has been

proved extremely expensive. Sandholm et al. (1999) have proved that the complexity of

coalition structure generation is O(nn) in the worst case. The most important reason for the

computational complexity is that this approach uses centralized methods (e.g. via a group

 52

leader) to search for globally optimal solutions (Yamamoto and Sycara 2001; Li and Sycara

2002; Ye and Tu 2003). Also, the centralized decision-making approach is not applicable in

the real world where self-interested agents would like to make their own decisions. Ideally,

the globally optimal solutions should be achieved through the interaction among agents.

Toward this goal, I develop a distributed coalition formation mechanism called the

decentralized coalition formation through explicit negotiation (DCF-EN) mechanism, in

which self-interested agents reach agreements on whether or not to join a coalition through

explicit negotiation. The DCF-EN mechanism can dramatically reduce the complexity of

the coalition formation process by decentralizing two activities in centralized coalition

formation approaches: coalition structure generation and payoff division.

FORMALIZING COALITION FORMATION

Definition 4.1 (Coalition Formation Problem)

Let A= {a0, a1, …, an-1} be a set of agents in a multiagent system. Each agent is willing to

find partners in A to form a coalition so that it can obtain some benefit (e.g. saving cost)

that it cannot gain when it acts alone. If no such a coalition exists, agents will act alone.

Agents can communicate with each other symmetrically.

Definition of Terms

• Coalition: A coalition (CL) is a subset of the agent set A that is committed to

cooperating for a certain purpose (e.g. accomplishing a task).

 53

• Coalition Structure: A coalition structure (CS) is defined as a partition of the agent set,

(i.e., an exhaustive and disjoint set of coalitions, where each agent is in exactly 1

coalition.)

• Utility Function: The utility of an agent to join in a coalition is the benefit that the agent

can obtain from being a member of the coalition. It is defined as a function of the

corresponding coalition. Without loss of generality, assume that the value of a utility is

a real number. For example, for agent ai to be a member of a coalition CLj, its utility is

defined as: Ui(CLj): 2
A
 →ℜ . The goal of agent ai is to maximize its Ui. The utility of

joining a coalition is computed by each agent itself, and it is based on the agent’s

preferences and the domain features of the application.

• Payoff Function: The payoff that agent ai obtains by joining coalition CLj is defined as:

Pi(CLj) = Ui(CLj) - Ui({ai}). Let P(CL) denote a vector of payoffs of all agents in a

coalition CL. Let P(CS) denote a payoff configuration that is a vector of P(CL)s of all

coalitions in a coalition structure CS.

• Coalition Value: The coalition value of a coalition CL is defined as the sum of the

utilities that all members obtain through joining the coalition. It can be described with

the following equation:

)(CLUV
CLa xCL

x
∑ ∈

=

• Value of Coalition Structure: The value of a coalition structure CS is defined as the sum

of the values of all coalitions in the coalition structure. It can be described as the

following equation:

∑ ∈
=

CSCL CLCS
y y

VV

 54

The objective of the coalition formation problem is to find the partition that maximizes VCS

under the constraint that agents want to maximize their own utilities.

DECENTRALIZED COALITION FORMATION THROUGH EXPLICIT

NEGOTIATION (DCF-EN)

Given the above coalition formation problem, in this section, I present the DCF-EN

mechanism, which is a decentralized coalition formation mechanism based on multiparty

negotiation. There are two main stages in coalition formation. The first is that each agent

calculates the utilities of all possible coalitions that it could join. The second is that agents

negotiate to achieve agreements on joining coalitions. The first stage is relatively simple.

Each agent does exhaustive search for possible coalitions for itself. The second stage is

much more complex, in the sense that it requires a multiparty negotiation mechanism,

which involves negotiation strategies, negotiation protocol, and message handling methods.

Since my goal is to develop a decentralized coalition formation mechanism to be used by

autonomous agents, communication costs and conflicts need to be taken into consideration.

Constructing Possible Coalition Space

The first stage of coalition formation in the DCF-EN mechanism is constructing a

possible coalition space for each agent in the agent set A. Each agent computes the utilities

of all possible coalitions (subsets) in A that also include the agent itself. Then the agent

removes all possible coalitions for which the utilities are less than the utility obtained by

 55

the agent acting alone. It sorts other possible coalitions in a descending order and stores

these possible coalitions (PCF) as its potential coalition space. In the worst case, for each

agent, the complexity of computing its PCF is O(2n-2). Figure 4.1 illustrates this process.

The main purpose of this process is to search for possible coalition proposals for the

next negotiation stage. The sorting process is used to prioritize all the possible proposals.

The approach in this work is based on an assumption under which each agent is able to

compute the utility of joining a coalition according to its local knowledge. Although agents

do not necessarily know the preferences of others at this stage, it is reasonable to have some

expectation. In the real world, any agent who wants to join a proper coalition will have a

prior expectation before it enters negotiations. This expectation could be calculated

according to prior knowledge or the belief of others’ preferences in a given domain. The

utility of joining in a possible coalition for an agent represents the expected benefit that this

a1

FIGURE 4.1. Constructing Possible Coalition Spaces

a2 a3

U11({ a1, a2 })
U12({ a1, a3 })
U13({ a1, a2 , a3 })
U14({ a1 })

PCF1 PCF2 PCF3

U21({ a2, a1 })
U22({ a2, a3 })
U23({ a2, a1 , a3 })
U24({ a2 })

U31({ a3, a1 })
U32({ a3, a2 })
U33({ a3, a1 , a2 })
U34({ a3 })

Descending
Order

 56

agent would obtain from joining in this coalition. I will give examples on how to compute

the utility of various coalitions in real applications.

Multiparty Negotiation Mechanism

The purpose of developing a multiparty negotiation mechanism in this work is to

facilitate coalition formation among self-interested agents. Therefore, it is not a single

bargaining process within one agent group, but multiple bargaining processes within

multiple agent groups. Assume that all agents have symmetric negotiation abilities in the

sense that each agent can independently propose a possible coalition and no agent can force

others to accept a proposal. The communication channels are also assumed to be

symmetric. There are three main details that need to be defined in such a negotiation

mechanism (Rosenschein and Zlotkin 1994): the space of possible deals, the negotiation

strategy, and the negotiation process.

The Space of Possible Deals

In the DCF-EN mechanism, the space of possible deals for each agent is its PCF. In

the worst case, the size is 2
n-1-1. For an entire coalition formation process, the space of

possible deals is the union of all agents’ PCFs. In the worst case, the size is n2
n-1 for each

agent. The reason why the DCF-EN mechanism is still exponential is that the number of

possible coalitions is exponential in the number of agents n. Agents have to calculate their

own utilities of joining a possible coalition. As Shehory and Kraus (1998) pointed out that

the complexity can be reduced to polynomial time by restricting the maximum number of

agents to participating coalition formation to a constant number, since large groups are

 57

unreasonable (e.g. inefficient) in many domains (e.g. buyer coalition formation). If the

number of agents is restricted to a small constant k, the total number of negotiation deals is

2
k-1. In this situation, the DCF-EN mechanism runs in polynomial time, given k as a

constant.

Negotiation Strategy

Negotiation strategy defines how an agent decides which deals to choose. The goal

of DCF-EN mechanism is to form coalitions among n self-interested agents. The

negotiation strategy of each agent should help it join a coalition so that its utility can be

maximized. There are two types of negotiation strategies involved in a coalition formation

process. The first is a bargaining strategy for members in a possible coalition. The second is

a coalition strategy for finding the best coalition among all possible coalitions. These two

types of strategies interweave with each other.

For each possible coalition, all members need to agree on whether or not to join it.

When an agent proposes a possible coalition to all other members, bargaining can be used

to determine payoff division. To evaluate all feasible coalitions and to decide which one is

the best, each agent needs to compare the bargaining results of all possible coalitions and

find the one that maximizes its utility.

Since I assume each agent knows the utility that it will obtain by joining a coalition,

in the current DCF-EN mechanism, the bargaining strategy is that if every member agrees

on the proposal, the deal is closed; otherwise the agents move on to other possible

proposals. Because each agent has prioritized its possible coalitions, the DCF-EN

mechanism lets each agent do greedy searching, namely, always proposing the possible

coalition with maximal utility first. This way, each agent can end its negotiation procedure

 58

whenever it has decided to join a coalition without going through the remaining possible

coalitions. As a summary, I list the negotiation strategies for an agent in DCF-EN

mechanism as follows:

• For each proposed coalition, agents can accept it if it is the best current possible

coalition, put it into a waiting list if it is better than staying alone or reject it if it is

worse than staying alone.

• Agents greedily accept the best coalition they can get. If there are multiple choices, they

will join a coalition with the smallest size because forming smaller size of coalitions

through negotiation will result in lower communication cost.

• Each agent might have multiple negotiation processes going on simultaneously, but all

of the involved coalitions should result in the same utility for the agent at that time.

• Each agent terminates a negotiation process when the coalition proposal is formed

(accepted) or failed (refused).

Negotiation Process

A negotiation process defines how negotiation among coalition members is

conducted. To do so, the following questions need to be answered: What kind of

information needs to be exchanged among agents? Where does the information flow go

during a negotiation process? Because agents communicate with each other in a

decentralized manner, how could they avoid communication conflicts during negotiation?

Since multiple negotiation processes might execute in parallel during coalition formation,

how do they affect each other?

In the DCF-EN mechanism, agents negotiate with each other by sending messages.

Three types of messages are needed: offering a proposal, accepting/rejecting a proposal

 59

offered by others and closing a deal. Table 4.1 lists all messages exchanged in the DCF-EN

mechanism. Negotiation processes for an agent require processing negotiation messages

from other agents and updating its PCF based on negotiation results in previous negotiation

processes. A message handling method is called “message handler”. Any negotiation

decision is made based on the negotiation strategy of buyers. Therefore, the message

handlers implement the negotiation strategies of agents.

Message Type Message Purpose

CFPropose Proposing a possible coalition to a corresponding member

CFAccept Accepting a received proposal

CFReject Rejecting a proposal for a possible coalition

CFFailed Informing an agent who has sent CFAccept that the corresponding
proposal has been withdrawn

CFConfirm Informing an agent who has sent CFAccept that all members have
accepted the corresponding proposal

CFNoNeed Informing an agent who proposes a new coalition that the decision
on joining a coalition at this round has been made

The message handlers also embed the negotiation protocol in the DCF-EN

mechanism. The negotiation protocol is presented as follows:

• An agent proposes a coalition by sending the proposal to all other members.

• When an agent receives a proposal, it will send back its decision on whether or not to

accept it. If it has found a coalition, it will send back its status.

• After every member agrees to a proposal, the agent who proposed it will send

confirmation to every member. If the proposal is rejected, the agent who proposed it

will send failure message to the members who have accepted.

TABLE 4.1. Messages in the DCF-EN Mechanism

 60

• At any given time, each agent can only accept to join in one coalition.

• Each agent can propose multiple best current coalitions simultaneously. However, all

these coalitions that have been sent out in parallel should result in the same utility.

• Each agent terminates a negotiation process on a coalition proposal 1) if the coalition is

accepted by all members, 2) if the proposal is rejected by anyone of the members, and

3) if the expected ending time of the corresponding coalition proposal has been

approached. I will address the reason why this is one of reason to terminate a

negotiation process in the next section.

Handling Deadlocks in the DCF-EN Mechanism

There exist multiple decentralized negotiation processes simultaneously because

every agent can send out its proposals. Hence the last item of this protocol is designed to

avoid conflicts and to end negotiations properly. One potential problem is deadlock (Figure

FIGURE 4.2. An Example of Communication Deadlock

a1

a2

a3

CFPropose

{a1, a2}

CFPropose

{a2, a3}

CFPropose

{a3, a1}

 61

4.2). A deadlock occurs when an agent proposes to another agent who is waiting for a

response from a third agent. Figure 4.2 illustrates a simple example. Agent a1 sends a

current best proposal to agent a2; agent a2 sends a proposal to agent a3 and agent a3 sends a

proposal to agent a1. Each agent is waiting for feedback. A circle is formed and a deadlock

happens.

Indeed, the reason why deadlocks exist is that agents’ individual preferences

conflict with each other. If deadlocks do not happen during coalition formation, the DCF-

EN mechanism is able to find a coalition structure in which each agent can maximize its

utility. As a result, the value of the coalition structure is also the maximum. In other words,

a coalition structure does not exist when a deadlock happens. Resolving a deadlock is

equivalent to letting each agent know the current proposal in which it is interested might

not exist. In this case, the agent would move to the next possible coalition proposal.

Handling these types of deadlocks includes two steps: detecting the deadlock and breaking

the deadlock.

There exist many excellent deadlock detecting algorithms in both distributed

operating systems (Silberschatz et al. 2002) and database concurrency control mechanisms

(Bernstein et al. 1987). Typical examples are time-out, token-passing and dependent graph.

Any of them can be extended to detect deadlocks in coalition formation.

However, breaking deadlocks in coalition formation is different from breaking

deadlocks caused by multiple processes competing for a common resource in distributed

operating systems or breaking deadlocks caused by writing to the same variable in a

distributed database. In these two situations, breaking a deadlock means the common

resource or the variable will eventually be assigned to one process. Breaking a deadlock in

 62

coalition formation means that this coalition structure does not exist. None of the agents

can be guaranteed to keep its current proposal because in order to break a deadlock, some

agents need to move to other choices. There are more than two agents in coalition

formation. The next possible proposal might not involve the same agents as the current

proposal at all. Therefore, in order to break a deadlock, deciding whether to remain

committed to the current proposal or to move to the next possible proposal is the key

decision that each agent needs to make. In the following two subsections, I will address

what kinds of strategies that the DCF-EN mechanism uses to detect and break deadlocks in

detail.

Detecting Deadlocks

I have considered three approaches to detect deadlocks: time-out, token passing and

dependent graph. Each has positive and negative consequences for detecting deadlocks in

coalition formation. Time-out is the simplest method by which each agent detects a

deadlock if the amount of time it waits for feedback on a proposal exceeds a reasonable

amount of time. There are several benefits to the time-out approach (Bernstein et al. 1987).

It is a pure distributed approach in the sense that each agent does not need extra

information to make a decision. It does not require that any other agents reveal their private

information, and it does not introduce any extra communication load. The down side of the

time-out approach is that each agent needs to wait a certain amount of time that is long

enough to detect the situation.

Token passing approach (Holliday and El Abbadi, 2005) is also a distributed

method by which each agent sends out a token with its proposed possible coalition. The

agents that are involved in the coalition will propagate the token by attaching the token to

 63

the proposals that they send out. If the original agent who starts the token receives the token

later, it will detect that there is a deadlock. The benefit of this approach is that even though

agents have to wait for a while to detect the deadlock, it is not necessary for each agent to

wait the same amount of time every time. The down side of this approach is that agents

need to reveal their private information about who wants to be their partners to their desired

partners, and it will cause extra communication load. The number of tokens passed to

agents is equal to the number of messages for proposing all possible coalitions.

Dependent graph (Bernstein et al. 1987) is a centralized approach by which there

exists a centralized deadlock detector who knows the proposals that are sent out by all

agents. Based on the global information, this centralized detector can detect deadlocks by

constructing a dependent graph and analyzing the dependencies between different

proposals. In order to let the detector obtain information about all proposals sent out, I

assume that each agent sends a proposal copy to this centralized detector whenever they

send out a coalition proposal. The benefit of this approach is that agents do not have to wait

for a long time to detect whether they are in a deadlock. The obvious down side of this

approach is that self-interested agents have to reveal their private information to the third

party and trust the detector absolutely. Centralized construction of the dependent graph and

detecting deadlocks are not trivial tasks but NP-hard problems (Bernstein et al. 1987).

Furthermore, this approach also causes extra communication load. The number of messages

sent to the centralized detector is equal to the number of proposals sent out. After the

detector detects deadlocks, it will inform every agent who is involved in the deadlock.

Functionally, all three of these approaches are able to detect deadlocks. However,

token-passing and dependent graph approaches require that agents reveal their private

 64

information and incur extra communication load. Since agents are self-interested in

coalition formation, in the current DCF-EN mechanism, we use the time out strategy for

detecting deadlocks. Furthermore, another reason to choose the time out strategy is that

each agent needs to decide whether to move to other possible coalition proposals with less

utility or wait for a while to see if the current proposal can be achieved because others

might move to new proposals first after a deadlock has been detected. Therefore, agents

still need to decide how long they would like to wait before they move to other possible

coalition proposals. I will describe this in detail in the next section.

Breaking Deadlocks

During coalition formation, for each agent, breaking a deadlock is equivalent to

deciding whether to shift to another possible coalition proposal with less utility or to wait a

while to see if the current proposal can still be made because other agents shift to other

coalition proposals. If an agent decides to move to the next possible coalition proposal

with less utility, it risks that it might lose the opportunity to achieve the current proposal

with better utility if other agents move to their next proposals first. On the other hand, if the

agent decides to stick with its current proposal, it risks that the current proposal might

never be achieved. As a result, it also loses the opportunity to join a coalition with a better

utility because other agents might form coalitions that do not include the agent at all.

Hence, estimating how long an agent needs to wait to make a proper decision about

whether to give up this proposal or not is a critical issue for breaking a deadlock. Agents

need to consider the risks they will take to make a proper decision.

In the DCF-EN mechanism, an agent calculates how long it should wait to move to

the next possible coalition proposal by the following equation:

 65

sc

nc

sb

cb

bd
UU

UU

UU

UU
ccd

−

−

−

−
−+=)1(

where d refers to the amount of time that an agent should wait to move to the next possible

coalition proposal, cd refers to the amount of time that an agent needs to wait to detect a

deadlock, cb refers to the maximal amount of time that an agent is willing to wait for

joining a coalition (except the amount of time it needs to detect deadlocks), Ub refers to the

utility that the agent can obtain if it joins the best possible coalition in its possible proposal

list, Uc refers the utility that the agent can obtain if the current coalition is formed, Un refers

to the utility that the agent can obtain if the next possible coalition is formed and Us refers

to the utility that the agent can obtain if it does not join any coalition.

Sandholm and Lesser (1995) extended the Contract Net Protocol to be used among

bounded rational self-interested agents in a production scheduling domain. In this work, the

authors pointed out that a more advanced agent should use a risk taking strategy to decide

whether to accept the current offer now or wait longer to see if there are better offers later.

Agents need to take the risk of missing opportunities due to others making related contracts

first. In the DCF-EN mechanism, the current proposal is always better than future

proposals. Agents need to decide whether or not to wait longer because if other agents give

up earlier, the current proposal might not be made. The basic idea behind the above waiting

time equation is that the amount of time that an agent should wait is proportional to the

difference between Uc and Un (utility of the best and the next best proposal). The larger the

difference, the longer an agent would like to wait. In other words, if Uc is much larger than

Un, an agent would be willing to take the risk of waiting longer. If there is no big difference

between Uc and Un, the agent should move to the next possible coalition proposal in order

 66

to avoid missing the opportunity to achieve it.
sc

nc

UU

UU

−

−
 is a risk-taking factor. The bigger

this factor is, the more risk of waiting longer that an agent is willing to take. The reason

why I adopt this strategy is that agents do not know other agents' possible coalition

proposal spaces and they have to make decisions according their local information. If the

difference between Uc and Un is significant, an agent would be willing to take more risk of

losing the opportunity to achieve Un because it is possible that it could achieve Uc if it waits

long enough so that the involved agents make the agreement.

Another important issue about this equation is how to determine cd (the amount of

time for deadlock detection) and cb (the difference between the total amount of time that

each agent is willing to wait in order to find a coalition to join and cd). In the DCF-EN

mechanism, setting cd is tricky but manageable (Bernstein et al. 1987). If it is too short, an

achievable transaction will be aborted. If it is too long, the deadlock will not be detected

until the timeout period has elapsed. The timeout period is therefore a parameter that needs

to be tuned. It should be long enough so that most deadlocks are detected, but short enough

that deadlocks are noticed without waiting too long. The cd should be longer than the

maximal amount of time by which an agreement can be made without deadlocks

happening. This maximal amount of time should be equal to or longer than the

multiplication of 2k (k is the total number of agents and it is restricted as a small constant

number) and the amount of time of making an agreement without waiting for any other

proposals. In the DCF-EN mechanism, each agent itself decides cd. Each agent can set cd

based on its own preference (e.g. a deadline). In different domains, agents may have

different preferences.

 67

The DCF-EN Agent Structure and Algorithms of Message Handlers

In my negotiation protocol in the DCF-EN mechanism, all possible coalitions

construct the space of possible deals (SPCF) for an agent. An SPCF includes three sets of

possible coalitions for each agent: the proposals an agent has sent out (SCF); the proposals

it has received (RCF); and all other possible proposals (PCF) that are not in SCF and RCF.

The relationship among the above coalition sets is given by the following two equations:

Other Agents

Agent ai

SPCF for Agent ai

Message

Handlers

Agent ax

Agent ay

• • •

Update

Query

Results

FIGURE 4.3. Agent Structure in the DCF-EN Mechanism

PCFi

SCFi

RCFi

CFPropose

CFAccept

CFReject

CFConfirm

CFFailed

CFNoNeed

Coalition

Formation

Candidates

Update

Query

Results

 68

• SPCF = SCF ∪ RCF ∪ PCF;

• SCF ∩ RCF ∩ PCF = ∅.

FIGURE 4.4. Message Handler for CFAccept

If CFSearch is not done
Then
 If All other members in the CF have accepted And not send out any CFAccept
 Then Send CFConfirm to all other agents in the CF;
 Send CFNoNeed to all agents who are not members in the CF;
 If The size of SCF > 1
 Then Send CFFailed to all members of the other CFs in SCF
Else Send CFNoNeed to the message sender

FIGURE 4.5. Message Handler for CFPropose

If CFSearch is not done
Then
 If the proposed CF not in RCF, SCF and PCF
 Then If the CF is optimal
 Then Send CFAccept
 Assert the CF to RCF.
 If the CF in SCF
 Then If has not sent CFAccept
 Then Send CFAccept
 If the CF in PCF
 Then Remove it from PCF;
 Assert it to RCF;
 If the CF is optimal
 Then Send CFAccept

Else Send CFNoNeed to the sender

 69

Figure 4.3 shows the agent structure in the DCF-EN mechanism. The pseudo code of all the

message handlers is presented from Figure 4.4 to Figure 4.9

The diagram in Figure 4.10 illustrates what kind of information needs to be

exchanged and where a message should go during negotiation. Suppose that the best

possible coalition for agents a1, a2, a3 and a4 are (a1, a2), (a1, a1), (a3, a2, a4) and (a4, a2, a3)

respectively. Agent a1 and a3 send CFProposes to agent a2 and a4 first. After agent a2

FIGURE 4.6. Message Handler for CFReject

If CFSearch is not done
Then Accept new available CF again;
 Send CFFailed to other members in the CF;
 If No more new Candidates

 Then Remove the CF from SCF

FIGURE 4.7. Message Handler for CFFailed

If CFSearch is not done
Then

 If Has accepted the CF
 Then Accept new available CF again;
 If No more new candidates
 Then Remove the CF from RCF

FIGURE 4.8. Message Handler for CFConfirm

Clean all CFs in SPCF;
End the current CF search process.

Send CFNoNeed to any new message sender.

 70

receives the CFPropose(a1, a2) from agent a1, it accepts that proposal and sends CFReject

to agent a3 because agent a3 has sent CFPropose(a3, a2, a4).

After agent a3 accepts CFReject, it sends CFFailed to agent a4 because agent a4 sent

CFAccept before. Agent a1 sends CFConfirm to agent a2 to confirm their coalition. Then

FIGURE 4.9. Message Handler for CFNoNeed

If CFSearch is not done
Then
 For the agent who send the message
 Remove CFs in PCF, which include the agent;
 If Has accepted a CF in RCF, which include the agent
 Then Accept new available CF again
 Remove CF in RCF, which include the agent;
 Send CFPropFailed to all members in CFs in SCF, which include the agent;
 Remove CF in SCF, which include the agent.

a1 a4

a2 a3

CFConfirm

CFUnAccept

CFPropose

{a1, a2}

CFPropose

{ a3, a2, a4 }

CFPropose

{ a3, a2, a4 }

CFAccept

CFAccept

CFFailed

1

1

1 2
2

3

4

5

FIGURE 4.10. Information Flows in Coalition Formation

 71

agent a1 and agent a2 end their coalition formation process. Agent a3 and a4 may continue

their processes if they can find other partners to form coalitions such that they can obtain

better utilities than they act alone. The numbers in the circles represent the order of the

messages being sent out.

Properties of the DCF-EN Mechanism

Compared with the traditional centralized coalition formation approach (Sandholm

1996, Yamamoto and Sycara 2001; Li and Sycara 2002; Ye and Tu 2003), the DCF-EN

mechanism has the following advantages:

Complexity analyses

• Coalition structure generation is not necessary any more. The DCF-EN mechanism

significantly reduces the complexity of coalition formation. In the worst case, the total

number of negotiation deals is 2
n-1 for each agent. The number of agents can be

restricted to a small constant k (Shehory and Kraus 1998) so that the total number of

negotiation deals is 2k-1. In this situation, the DCF-EN mechanism runs in polynomial

time, given k as a constant.

• Since the DCF-EN mechanism relies on communication among agents, the

communication complexity needs to be examined. Practically, the communication costs

are not expensive because there are at most three types of messages between two agents

for each negotiation process: CFPropose, CFAccept/CFReject, CFConfirm/CFFailed. In

the worst case, the total number of messages for negotiation in coalition formation is

3n•2n. Again, if the number of agents is restricted to a small number k, the total number

 72

of messages is reasonable. In practice, since agents would select the smallest size of

coalition to join if multiple coalitions result in the same utility, the communication load

can be further reduced.

• In traditional centralized approach for coalition formation, payoff division is another

big challenge in terms of not only stability of formed coalitions but also computational

complexity (Sandholm 1996). Since each agent makes its own decision on whether or

not to join a coalition, payoff division is excluded through explicit negotiation

processes in the DCF-EN mechanism.

Stability

The DCF-EN mechanism is a core-stable mechanism in terms of coalition

rationality. The formal proof is given in the following text.

The classical core is the strongest of the solution concepts in coalition formation

(Sandholm 1999). The core of a game is a set of payoff configurations P(CS), where each

P(CL) is a vector of the payoff of a coalition CL in a coalition structure, CS, to the agents,

and no subgroup is motivated to depart from the CS. The purpose of this concept is to

maximize the value of coalition structure, VCS (group rationality) and to motivate agents to

stay with the coalition structure that maximizes the social welfare (individual rationality).

Furthermore, every subgroup of agents in a coalition is better off staying within this

coalition than forming a coalition of their own (coalition rationality).

The core concept is so strong that the core of a coalition game can be empty in

many cases. Here, I relax the classical core concept to emphasize only the coalition

rationality. After a coalition is formed, no subgroup of the coalition is willing to form its

 73

own coalition. I define a coalition as stable in the core in terms of coalition rationality as

the following:

Definition 4.2: Core-Stable in Terms of Coalition Rationality

A coalition CL is stable in the core in terms of coalition rationality iff for CLC ⊂∀ and

Cai ∈∀ ,)()(CLPCP ii ≤ is always true.

Claim 4.1: The coalitions formed through the DCF-EN mechanism are stable in the core in

terms of coalition rationality.

Proof: Each agent always tries to join the best coalitions that it can find by using the DCF-

EN mechanism. The best coalition for an agent is the one that maximizes its own utility.

Before an agent starts any coalition formation process, it will calculate the utilities of all

possible coalitions to which it could belong. Then it sorts all these coalitions in descending

order based on the corresponding utilities. The agent greedily proposes or accepts the best

possible coalition that has not been rejected currently. Any coalition that has been accepted

by all of its members must be the best coalition for all members that they can find. For each

agent, if there are multiple coalitions with same utilities, it chooses the one with smallest

size. Therefore, the value of the best coalition that an agent could join cannot be worse than

the values of the coalitions composed of any subset of members in this best coalition. 

Lower Bound

Another important attribute of the DCF-EN mechanism is how good it is in terms of

the value of resulting coalition structure.

If the optimal coalition structure is either all agents staying alone or all agents

staying in the same coalition (grand coalition), the DCF-EN mechanism can find the

 74

optimal solution after one proposal has been finished being negotiated. If during an entire

coalition formation, a deadlock has not occurred, the resulting coalition structure of the

DCF-EN mechanism is also an optimal solution.

Definition 4.3: Singleton Coalition Structure

The coalition structure is called a singleton coalition structure if it only includes agent

subsets with a size of one.

For other cases, the DCF-EN mechanism can guarantee a lower bound because an

agent will not join any coalition that results in a utility for the agent less than the utility that

the agent can obtain by staying alone. Therefore, the lower bound of the value of resulting

coalition structure by the DCF-EN mechanism is equal to the value of the singleton

coalition structure. Is there a better lower bound that the DCF-EN mechanism can provide?

Since the utility that each agent can obtain by joining a coalition is arbitrary, there is no

better lower bound that the current DCF-EN mechanism can provide. However, given

randomly generated utilities for each agent, the results of my experiments will show that

the DCF-EN mechanism can always result in a non-trivial coalition structure, which is

better than a coalition structure in which every agent stays alone. Thus, I believe that the

DCF-EN mechanism can provide a better lower bound if it allows agents to adjust their

strategies when they recognize that they will end up staying alone.

In order to guarantee that the resulting coalition structure is better than the singleton

coalition structure, I extend the current DCF-EN mechanism to a repeated DCF-EN

mechanism, which is called the RDCF-EN mechanism. The basic idea is to allow the

original DCF-EN mechanism run multiple times. The first time, each agent runs the full

original DCF-EN mechanism completely. If it ends up a coalition structure in which every

 75

agent stays alone, all agents start the second run in which only coalitions of size two are

considered. Starting from this turn, agents are no longer greedy. Each agent will accept the

first coalition that results in better utility than the one it gets by staying alone. If some

coalitions of size two are formed, the involved agents will stop their coalition formation

procedure. All agents that cannot find a coalition to join at this turn will start the next turn,

in which only possible coalitions with size three will be considered. Again, the agents who

have found a coalition to join stop their coalition formation procedure and the agents who

still stay alone will keep searching, and so on. The coalition formation ends when all

agents find a coalition to join or the nth
 run has been finished.

FIGURE 4.11. Agent algorithm in the Repeated DCF-EN Mechanism

Calculate PCF
If the singleton coalition structure is not optimal
Then
 Start the DCF-EN negotiation procedure
 If the resulted coalition structure is not a singleton coalition structure

 Then
 Counter = 2
 While (Counter<=n)
 Build a PCF with possible coalitions of size Counter
 Start the DCF-EN negotiation procedure on new PCF
 If there is a coalition which can be formed
 Then

 Join the coalition
 Break
 Else
 Counter++
Else
 End coalition formation

 76

Figure 4.11 depicts the formal description of the RDCF-EN mechanism. The

RDCF-EN mechanism can provide a better lower bound by which the resulting coalition

structure is always better than the one in which all agents stay alone, if such coalition

structures exist.

Claim 4.2: If the singleton coalition structure is not the optimal solution of coalition

formation, the RDCF-EN mechanism can always find a coalition structure that is better

than singleton coalition structure in the sense that the value of the resulting coalition

structure is larger than the value of the singleton coalition structure.

Proof: If the singleton coalition structure is the optimal solution of coalition formation, the

RDCF-EN mechanism can find it right after it finishes calculating the possible coalition

proposals because there do not exist any possible coalition proposals for every agent. The

best coalition for each agent is to stay alone.

If the singleton coalition structure is not the optimal solution of coalition formation, there

must exist some coalitions that result in better utilities for some agents. The size of those

coalitions should be larger than one. If during the first turn, the DCF-EN mechanism could

not find any of such coalitions, from the second turn, agents will accept any coalition that

results in better utility. Since the RDCF-EN mechanism eventually enumerates all sizes of

possible coalitions, it will form at least one coalition that results in better utilities for

involved agents than they stays alone. Therefore, the value of the resulting coalition

structure is always better than the singleton coalition structure. 

Besides providing better lower bound than the DCF-EN mechanism, the RDCF-EN

mechanism does not increase the computational complexity significantly. In the worst case,

 77

each agent only has 2·2k-1 negotiation deals to be processed. Also, in the worst case, the

total number of messages for negotiation in coalition formation is 2·3k·2k-1.

SUMMARY

In this chapter, I presented a coalition formation mechanism (DCF-EN) that

achieves decentralization through explicit negotiation among self-interested agents. Each

agent makes its own decisions about whether or not to join a possible coalition. Through a

properly designed multiparty negotiation protocol, the negotiation mechanism allows

automated multilateral negotiation among self-interested agents who have symmetric

authority (i.e., no mediator exists and agents are peers) in a multiagent system.

The resulting coalitions are stable in the core in terms of coalition rationality.

Compared with the centralized approaches, this mechanism significantly reduces the

complexity of coalition formation processes. In the next two chapters, I apply the DCF-EN

mechanism to two different applications for forming coalitions through explicit negotiation.

The DCF-EN mechanism can provide a trivial lower bound for the value of the resulting

coalition structure that is the value of the singleton coalition structure. I extend the DCF-

EN mechanism to the RDCF-EN mechanism that can always guarantee to find a better

coalition structure than the singleton coalition structure, if it exists.

 78

CHAPTER V

FORMING RESOURCE SHARING COALITIONS THROUGH DCF-EN

MECHANISM

In Chapter IV, I proposed a decentralized coalition formation (DCF-EN)

mechanism to enable self-interested agents to form coalitions through explicit multiparty

negotiation. In this chapter, I will show the experimental results of applying the DCF-EN

mechanism to forming resource sharing coalitions in computational grids.

In computational grids, the participating agents are organizations that own a large

amount of computational resources. Even so, these organizations sometimes need extra

computational capacity to satisfy their computational requirements (i.e. at peak times).

Meanwhile, most of their resources are idle at other times. The resource sharing

mechanisms in existing computational grids consist of agreements made through

negotiation among human representatives belonging to these organizations. Afterwards, if

there are internal or external changes (e.g. hardware or software upgrades), the resource

sharing agreements have to be changed by additional negotiations. By applying the DCF-

EN mechanism, autonomous agents can execute these negotiation processes.

FORMING RESOURCE SHARING COALITIONS IN COMPUTATIONAL GRIDS

Applying the DCF-EN mechanism to computational grids is essential for

automatically making resource sharing agreements among different organizations. The

basic idea is to build resource sharing coalitions through multilateral negotiation among

 79

self-interested agents. Resources owned by all members in a formed coalition are inter-

connected via a network and can be accessed by every member.

A key step in the DCF-EN mechanism is that each agent needs to compute the

utilities of all its possible coalitions. The utility for an agent of joining a resource sharing

coalition should reflect the benefit obtained from the coalition by the agent. Previously, it

was assumed that a general currency existed (denoted by grid dollars (Buyya 2002)) for

expressing the cost of using a computational resource. However, it is unclear how to

consistently map the values of different type of resource usages to different amounts of grid

dollars. Therefore, I propose a task-oriented mechanism for measuring the value of resource

usage in computational grids.

Economic Value of Computational Resource Usage

Let us start from a simple observation. Suppose there are three processors P1, P2,

and P3 that have different speeds from the highest to the lowest respectively. Here, I do not

specify what the exact meaning of the speed of a CPU is. It could be measured by MIPs,

clock rates, or any other kind of standard units. Given an identical job, these three

processors would finish it in different amounts of time. Figure 5.1 shows the performance

of each processor, assuming all other conditions are the same (e.g. same amount of RAM

associated with each processor). The equivalent performance line depicts the fact that these

three processors P1, P2, and P3 finish an identical job within H1, H2, and H3 CPU hours

respectively.

 80

If a resource user gives the same job to P1, P2, and P3, how should the processor

owner charge the user for using different processors? If all processors can satisfy the

deadline of a job, the resource user would prefer not to pay extra for using P1. But if the

deadline of the job is tight, he may be willing to pay more for using P1. Therefore, in order

to set proper prices for using P1, P2, and P3 to execute an identical job, the resource

suppliers need to consider both the different capabilities of the processors and the users’

performance preferences.

Modeling Resource Capabilities

For simplicity, I consider time constraints as the only performance requirement for

modeling the capabilities of computational resources (e.g. CPU, storage, bandwidth etc.). I

define the capability of a group of heterogeneous resources as the following:

Definition 5.1: Let K be a set of tasks, {k1, …, kn}, with a given duration, D (which is the

total amount of time for accomplishing all tasks in K), and a group of resources, G = {R1,

…, Rm}. The capabilities of a group of resources in G for executing the tasks in K is

CPU Hours

Speed

C(P1)
Equivalent

Performance
Line

FIGURE 5.1. Equivalent Performance by Different Processors

C(P2)

C(P3)

H1 H2 H3

 81

denoted by CanGroup(G, K, D). CanGroup(G, K, D) is true if and only if the resources in

G can finish all tasks in K within duration D.

Pragmatically, to determine if G is capable, there needs to be some scheduling

algorithms for resources in G that can schedule the tasks in K properly so that the resources

in G can accomplish them within duration D. The quality of the scheduling algorithm has a

strong impact on the practical assessment of the capabilities of a group of resources (He

and Ioerger 2003). The scheduling algorithm used for assessment should be transparent to

resource users. This definition encapsulates the physical differentiation of resources to

users. They allow users to ignore the different physical capabilities of resources and only

consider their own performance preferences.

Economic Value of Resource Usage

From a user’s perspective, regardless of the type of resources that are provided to

execute a task, the economic values of using these resources are equivalent if they can

accomplish the task while satisfying the same performance requirements. The following

claim addresses the equivalent values of the usages of two groups of resources:

Claim 5.1: Let K a set of tasks K = {k1, …, kn} with duration D and groups, G1 and G2, with

resources, {R11, …, Rm1} and {R11, …, Rr1}, respectively. The economic value of using G1

to execute the tasks in K is denoted by V1(K). V1(K) = V2(K) if and only if both

CanGroup(G1, K, D) and CanGroup(G2, K, D) are true. In other words, if CanGroup(G1,

K, D) is true and CanGroup(G2, K, D) is not true, V1(K) > V2(K); if CanGroup(G1, K, D) is

not true and CanGroup(G2, K, D) is true, V1(K) < V2(K).

Note that no agent in a computational grid has the power to set the true economic

value of using a resource. The value is determined by the interaction among the resource

 82

users and suppliers. Whether the established economic value of the usage of a resource is

stable depends on the relationship between the supply of resources and the demand (Mas-

Colell et al. 1995). The value of resource usage is not the price of using the resource, but a

fair price should reflect the real value of using the resource.

Based upon the above analyses, any mechanism for measuring the economic value

of a computational resource usage should obey the following principles:

• The economic value of using a resource is determined by the task executed by the

resource.

• The values of using two groups of resources relative to a given set of tasks are equal if

they can accomplish the set of tasks with satisfying the same performance requirements.

• The real economic value of using a resource is established through the interactions

among agents in computational grids.

Task-Oriented Mechanism for Measuring the Economic Value of Resource Usage

Based upon the above capability model of computational resources, I establish a

new mechanism for measuring the economic value of resource usage. Note that the

economic value of a resource usage is not the intrinsic value of a resource itself, but the

value of using the resource.

I use CPUs as an example to illustrate the mechanism. Referring to Figure 5.1, three

processors with different speeds can be used to execute an identical task. The usage of each

processor for the task is the same. Mathematically, “the usage of each processor” refers to

the area of each rectangle in Figure 5.1. The formal definition of the usage of a processor

to execute a computational task is given as follows:

 83

Definition 5.2: Given a task, k, and a processor, P, the speed of P is C(P). P needs H hours

to finish k. The usage, S(k), of P for executing k is the following:

S(k) = C(P) × H

This definition reflects the amount of processor usage to execute a task no matter what kind

of processors are used. The following claim is obviously true:

Claim 5.2: Sx(k) = Sy(k) for given two processors Px and Py with different speeds.

Based on this claim, a mechanism can be established to translate the usage of CPUs

with different speeds to a common measurement. The idea is to establish a standard speed

and convert real CPU usage to the usage of a virtual CPU with the standard speed. Hence

there are two directions to convert the CPU usage of a task, one is changing the duration

and the other is changing number of CPUs with the standard speed.

Users in computational grids generally expect to finish their tasks as soon as

possible. Given a task with certain duration, I can measure the usage of CPU for executing

the task by calculating how many standard CPUs should be used to execute the task while

satisfying the time constraints given by the user. I also define a standard time unit to

measure the expected duration of a task. Thus, the definition of the usage of processors to

execute a computational task is modified as follows:

Definition 5.3: Given a task, k, with a certain expected duration, D, the standard CPU speed

is C(Ps) and the standard time unit is Ds. D = m × Ds, where m is the number of standard

time units that D includes. In order to finish k within D, there must be at least n processors

with speed C(Ps) working simultaneously (assume k can be divided into n subtasks evenly)

or a processor with speed n × C(Ps). The usage S(k) of CPUs for executing k is the

following:

 84

S(k) = n × C(Ps) × m × Ds

This definition implies that the CPU usage of any task can be measured through a

standard speed and a standard time unit. The standard unit of CPU usage is given by the

following equation:

Ss = C(Ps) × Ds

Therefore, the CPU usage for executing a task can be measured through Ss by changing the

number of CPUs with the standard speed or the number of the standard time units to finish

a task. Thus,

S(k) = n × m × Ss

If the economic value of Ss is Vs, it is easy to calculate the corresponding economic value

V(k) of CPU usage for executing the task.

V(k) = n × m × Vs

However, it does not reflect the common sense that the CPU usage for executing a task in a

shorter duration might have higher value than the one for executing the same task with a

longer duration. In order to account for this,

V(k) = (1+λ1n)× (1+λ2m) × Vs

where, n and m refer to the increasing number of CPUs with the standard speed and the

number of the standard time units respectively. The coefficients λ1 and λ2 imply that

changing the number of CPUs with standard speed and the number of the standard time

units to finish the same task could result in different economic values of CPU usage. If λ1 ≠

λ2, then changing the number of CPUs with standard speed and the number of the standard

time units to finish the same task causes different economic values of CPU usage.

 85

Now, a task-oriented mechanism for measuring the economic value of

computational resource usage for executing a task has been established.

Forming Resource Sharing Coalitions in Computational Grids

Agents in a computational grid generally have peak workloads at different times, so

they can potentially utilize others’ resources at their idle time. Thus, I need to define the

relationship between the workload of each agent and time (Tulga and Sheridan 1980;

O’Donnell and Eggemeier 1986; Tsang and Wilson 1997). It is called a workload

distribution function.

Workload Distribution Function

Based on the measure of resource usage in the last section, I can define the computational

capability of an agent (representing the computational resources of an organization on the

grid) by converting all its CPUs with different speeds to the CPUs with the standard speed.

The entire CPU capacity of a group of CPUs is defined as follows:

Definition 5.4: Let U be a group of processors, {P1, …, Pm}, where different Pi in U could

have different speeds. The standard CPU speed is C(Ps). The speed C(Pi) of Pi is equal to

ni×C(Ps). The entire CPU capacity C(U) of a group of processors in U within time interval

[t1, t2] is:

C(U) = ∑ =

m

i in
1

×C(Ps)× | t1-t2|

Hence, the workload of an agent at a certain time point is decided by how many standard

CPU Pss are needed to run its tasks at that time.

 86

Definition 5.5: The workload of an agent at certain time point t is defined as m×C(Ps), if the

agent needs m standard CPU Pss to run its tasks at time t.

Definition 5.6: The workload distribution function is defined as a function of time, w(t): T

→ R, that is the workload of the agent at time t (T is the set of time points).

The workload at a certain moment in a workload distribution function is larger than

the entire computational capability of an agent because the tasks require more resources

than it has available. Figure 5.2 shows an example of workload distribution function. In this

work, it is assumed that the workload distribution function is known (or can be estimated

t1

t

w(t)

C(U)

FIGURE 5.2. Workload Distribution Function

t2

t

g(t)

FIGURE 5.3. Idle CPU Distribution Function

t1 t2

 87

ahead of time). So negotiation can be done prior to execution of any tasks. (The problem

could be more difficult if future workloads were unknown, and agents had to adapt and

adjust cooperation dynamically.)

To evaluate the cooperation among agents, an idle resource distribution function

also needs to be defined because resource sharing in grids is mainly related to how much

idle resource capacity is available for involved agents.

Definition 5.7: Given a workload distribution function w(t) of an agent within time interval

[t1, t2] and the entire CPU capacity of the agent is C(U). The idle CPU distribution function

g(t) is defined as:

g(t) = C(U) –w(t), t ∈ [t1, t2]

Figure 5.3 shows an example of g(t) when w(t) is given by Figure 5.2. When g(t)>0,

the agent has idle CPUs. When g(t)<0, the agent is overloaded. Agents are self-interested in

computational grids. Considering only the idle resource distribution is not enough to form a

resource-sharing coalition. Each agent needs to consider the economic value of contributing

its idle resource to others and the cost of using others’ idle resource.

Definition 5.8: Given the idle CPU distribution function g(t) of agent a within time interval

[t1, t2], the amount CR of CPU capacity required for agent a is:

∫=
1

2

t

t

-

R (t)g g(t))(a,C

where, g-(t) is equal to g(t) when g(t) < 0 and g-(t) is equal to 0 otherwise. The economic

value VR of using the idle CPUs of others to finish agent a’s tasks is:

S

s

R

R V
S

g(t))(a,C
(g(t))V ×=

 88

Definition 5.9: Given the idle CPU distribution function of agent a within a time interval,

[t1, t2], the amount CI of CPU capacity of agent a is idle:

∫
+

=
1

2

t

t
I (t)gg(t))(a,C

where, g+(t) is equal to g(t) when g(t) > 0 and g+(t) is equal to 0 otherwise. The economic

value VI of agent a’s idle CPUs is:

S

s

I

I V
S

g(t)) (a,C
(g(t))V ×=

Based on the above analyses, the formal problem definition of forming resource-sharing

coalitions in a computational grid is as follows:

Definition 5.10: Resource Sharing Coalition Formation Problem

Let A be a set of agents in a computational grid, {a1, a2, …, ar}. Each agent ai also has its

CPU capacity Ni×C(Ps)× | t1-t2| within time interval [t1, t2]. Each agent ai needs to run a set

of tasks Ki = { ki1, ki2, …, kil } which generates its idle resource distribution function gi(t)

within [t1, t2]. The objective is to form appropriate coalitions such that each agent ai can

have the optimal idle resource capacity exchanging with other agents in A within time

interval [t1, t2].

For each agent in A, the best exchange is to contribute a minimal amount of its own

idle resource capacity and to obtain a maximal amount of idle resource capacity from a

resource sharing coalition while finishing as many of its own tasks as possible. To

determine the optimal idle resource capacity exchange for each agent, the utility function of

an agent needs to be defined. The utility is composed of two parts. One is the difference

between the resource capacity the agent obtains from the coalition and the resource capacity

 89

it contributes to the coalition. The other is the economic value of finishing tasks by using

the resource capacity it obtains.

Definition 5.11: Suppose that agent ai obtains idle CPU capacity Cgain(ai, CLj) by joining a

resource coalition, CLj, and it contributes its own idle CPU capacity, Cgive(ai, CLj). By

obtaining Cgain(ai, CLj), agent ai can finish a subset of tasks Ki’ in Ki while satisfying the

time constraints. The utility, U(ai, CLj), that agent ai obtains by joining coalition CLj is

given by:

S

s

ijigivejigain

ji V
S

)'S(K)CL ,(aC -)CL ,(aC
)CL,U(a ×

+
=

 Start Message Listener
 FinishCF = false
 AcceptCF = false
 While true
 If receive a new message
 Then process the message by calling corresponding message handler
 If FinishCF = false
 Then If startCF=false
 Then Calculate all possible resource-sharing coalitions
 Sort all possible coalitions in a descending order in PCF
 StartCF = true
 Else If PCF=Ф and SCF=Ф
 Then There does not exist possible coalition
 FinishCF = true
 Else If RCF=Ф
 Then If SCF=Ф and PCF!=Ф
 Then Send the current best possible coalition proposal in PCF
 Assert the send-out CF into SCF
 Remove it from PCF
 Else If (SCF!=Ф and SCF∈RCF) or (SCF=Ф and PCF.elementAt(0) ∈RCF)
 Then Send CFAccept message to the corresponding agent
 AcceptCF = true

FIGURE 5.4. Agent Algorithm for Resource Sharing Coalition Formation

 90

where S(Ki’) is the amount of CPU capacity that agent ai obtaining from CLj for finishing

tasks in Ki’. Each agent ai uses this utility function to evaluate its decision on which

coalitions in the grid it should join by maximizing its utility.

Agent Algorithm for Forming Resource Sharing Coalitions

After defining the utility function of each agent, I can now apply the DCF-EN

mechanism to solve the problem of forming resource sharing coalitions in computational

grids. Figure 5.4 gives the agent algorithm, in which PCF, SCF and RCF denote the

possible coalition proposal set, sent-out coalition proposal set and received coalition

proposal set, respectively. In the following, I present the experimental results that aim to

show how well the DCF-EN mechanism performs in this application domain.

EXPERIMENTS

The main goal of my experiments is to evaluate how well the DCF-EN mechanism

performs on the resource sharing coalition formation in computational grids.

Experimental Objective

I mainly focus on the values of resulting coalition structures and the communication

load caused by negotiation among agents. As for the value of resulting coalition structure, I

will show that the average lower bound of the DCF-EN mechanism is better than the value

of the singleton coalition structure (the lower bound was established in Chapter IV). Since

the DCF-EN mechanism uses a time-out strategy to detect and break deadlocks, Student’s

 91

t-test will be used to compare two different time-out strategies: one that waits for a constant

amount of time, and the other where the amount of wait time is proportional to the

difference between the utility of the current coalition proposal and that of the next proposal.

As for the communication load, I will examine that the total number of messages that each

agent receives during a coalition formation. In other words, I will test the following

hypotheses:

• If there exist better coalition structures than a singleton coalition structure, through the

DCF-EN mechanism, the value of a resulting coalition structure will be higher than the

value of the singleton coalition structure.

• The communication load caused by the negotiation among agents is much lower than

the one in the worst case. (I believe that this hypothesis is valid because agents prefer

smaller size of coalitions if possible coalitions result in the same utility, and whenever a

coalition is formed, all members in that coalition will exit the negotiation process.)

• By using proportional time-out strategies, the DCF-EN mechanism will generate better

values of resulting coalition structures. Intuitively, I believe that associating wait time

with utilities of the corresponding coalition proposals is a better strategy, compared to

waiting for constant amount of time for all possible coalition proposals. Here, a better

strategy is a strategy that results in higher coalition structure value or causing less

communication load.

In real computational resource sharing applications, different workload distributions

of agents will result in different strategies for resource sharing. If an agent always has a

heavy workload or mostly has a nearly full workload, it could be hard for this agent find a

partner to share resources, as it cannot provide much help to others. If an agent always has a

 92

low workload at most time and it is only overloaded occasionally, the organization could

easily find a partner as it can help others a lot. However, the agent might choose not to help

if it does not see any benefit to itself. For example, a restaurant web server might be only

busy at lunch or dinnertime and be idle at most other time in a day. If an agent always has a

regular workload distribution in the sense that it is sometimes overloaded and has idle

capacity at other times, then the agent may easily find partners because it is able provide

help to others when it has idle capacity and also needs help from others when it is

overloaded.

Since the utilities of possible coalition proposals are determined by the workload

distributions in resource sharing coalition formation, I need to examine whether different

workload distributions will result in different coalition structures and different

communication load. Hence, additional hypotheses need to be tested:

• Agents with nearly full workload distribution are more likely to choose not to join any

coalition than agents with the other two types of workload distributions.

• Different workload distributions will cause different communication load.

Experimental Settings

I consider 10 time units for each experiment. For simplicity, instead of randomly

generating workload distributions, I directly generate idle resource distribution for resource

sharing coalition formation. Since I need to test how different workload distributions affect

coalition formation, I design three types of idle resource distributions: FULL, SPIKE and

TRIANGULAR.

 93

FULL idle resource distribution represents the situation in which an agent has a

nearly full workload at most time (i.e., has a low utilizable idle resource capacity). SPIKE

idle resource distribution implies the situation in which an agent is overloaded for short

durations and has idle capacity at most time. TRIANGULAR implies the situation in which

an agent is overloaded at some time and has idle capacity at other times.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

FIGURE 5.5. FULL Workload Distribution

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

FIGURE 5.6. SPIKE Workload Distribution

 94

In order to let the values of the resulting coalition structures be comparable, the idle

capacity is generated randomly using a uniform distribution from 0 to 10 for FULL idle

resource distribution; from 0 to 1000 for both SPIKE and TRIANGULAR distribution,

assuming the maximal capacity of each agent is 1000. Figures 5.5 to 5.7 illustrate the

corresponding workload distributions of these three types of idle resource distributions.

I chose 5 agents for each experiment. For each type of idle resource distribution and

each type of time-out strategy, I ran 20 experiments. Hence, there are a total of 120

experiments. Table 5.1 lists all values that I collected from each experiment. UCL is defined

as NOPCL CCU +−= and Ua is defined as Pa CU −= , where CP is the total amount of

positive idle capacity that the agent owns and CNO is the total amount of idle capacity that

the agent obtains from other agents. The basic idea is that idle capacity owned by the agent

itself decreases its utility and idle capacity obtained from others increases its utility.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

FIGURE 5.7. TRIANGULAR Workload Distribution

 95

Values Description

CS The resulting coalition structure

UCL The utility that each agent obtains by joining the coalition it chooses

Ua The utility that each agent obtains without joining any coalition

numMsgs[] Numbers of messages that each agent receives for coalition formation

Values Description

VCS The value of the resulting coalition structure, which is equal to the sum of
the utilities that all agents can obtain in the coalition structure

Va The value of the singleton coalition, which is equal to the sum of the
utilities that all agents obtain without joining any coalition

VCL-a The difference between the value of the resulting coalition structure and
the singleton coalition

NS The number of agents who still stay alone after coalition formation

ANM The average number of messages that an agent receives for coalition
formation

Based on the data that I collected from each experiment, I computed the following

values in Table 5.2.

Experimental Results

In order to examine my hypotheses, VCL-a, ANM and NS are three main values that I

am interested in. Table 5.3 lists the experimental results by time-out strategy of

proportional wait time. PT_Full, PT_Spike and PT_Triangular refer to experiments with

FULL, SPIKE and TRIANGULAR idle resource distribution respectively. Table 5.4 lists

the experimental results when the time-out strategy is to wait for constant amount of time.

TABLE 5.2. Values Needed to be Computed

TABLE 5.1. Values Collected from Experiments

 96

CT_Full, CT_Spike and CT_Triangular refer to experiments with FULL, SPIKE and

TRIANGULAR idle resource distribution respectively.

PT_Full PT_Spike PT_Triangular
ANM VCL-a NS ANM VCL-a NS ANM VCL-a NS

Mean 17.42 28.53 2.9 25.26 3887.05 2.25 29.1 2527.64 1.65

StdV 5.06 18.88 1.17 6.26 2371.41 0.97 3.18 1469.92 1.31

CT_Full CT_Spike CT_Triangular
ANM VCL-a NS ANM VCL-a NS ANM VCL-a NS

Mean 20.84 31.4 2.9 23.75 3967.35 2 28.05 2439.6 1.55

StdV 6.21 25.98 0.97 7.51 2000.88 0.97 6.24 1275.27 1.1

I ran 120 experiments with 5 agents. Only 7 of them resulted in singleton coalition

structures. 6 of these 7 experiments are based on FULL idle resource distribution.

Therefore, the DCF-EN mechanism can generally result in coalition structures that are

better than singleton coalition structure. Based on the experimental results, the following

hypothesis is true:

If there exist better coalition structures than a singleton coalition structure,

through the DCF-EN mechanism, the value of a resulting coalition structure

will be higher that the value of the singleton coalition structure.

The second conclusion that I can draw is that the real communication load is much

less than the theoretic worst case. For 5 agents, in the worst case, there could be around 240

TABLE 5.3. Experimental Results for Proportional Wait Time

TABLE 5.4. Experimental Results for Constant Wait Time

 97

messages for each agent. In my 120 experiments, the highest number of messages that an

individual agent receives is 43. The mean of the numbers of messages that each agent

receives during coalition formation is from 18 to 30. Therefore, the following hypothesis is

also true:

The resulting communication load caused by the negotiation among agents

is much lower than the one in the worst case.

In order to compare two different time-out strategies for detecting and breaking

deadlocks during coalition formation, I did Student’s t-test5 to test the values of resulting

coalition structures with the same type of idle resource distribution. In my t-test, the values

generated by PT is group A and values generated by CT is group B. PT refers to the time-

out strategy in which the wait time is proportional to the utility difference between the

current possible coalition and the next possible coalition. CT refers to the time-out strategy

by which the wait time is a constant.

5 The t-test results are generated at http://www.physics.csbsju.edu/stats/t-test_bulk_form.html

 FULL (A-PT, B-CT)
The results of an unpaired t-test

t = -0.399
sdev = 22.7

∆ ≅ -2.9
degrees of freedom = 38
The probability of this result, assuming the null hypothesis, is 0.69

FIGURE 5.8. T-Test for FULL Idle Resource Distribution

 98

My hypothesis is that the proportional wait time strategy should outperform the

constant wait time strategy in the sense that the value of resulting coalition structure should

be higher. Therefore, the hypothesis of the t-test is that the mean of group A is larger than

the mean of group B.

Figures 5.8 to 5.10 show the results of unpaired6 t-tests for FULL, SPIKE and

TRIANGULAR idle resource distribution respectively. In the t-test results, for both FULL

and SPIKE idle resource distribution, the t values are all near zero, i.e., the mean for PT is

not larger than the one for CT. Only the t value for the TRIANGULAR idle resource

6 I use unpaired t-tests because we want to see the significance of the difference between the means of two
independent groups of results.

 SPIKE (A-PT, B-CT)

The results of an unpaired t-test

t=-0.116
sdev= 0.219E+04

∆ ≅ -100.3
degrees of freedom = 38
The probability of this result, assuming the null hypothesis, is 0.91

FIGURE 5.9. T-Test for SPIKE Idle Resource Distribution

 TRIANGULAR (A-PT, B-CT)

The results of an unpaired t-test

t= 0.202
sdev= 0.138E+04

∆ ≅ 88.04
degrees of freedom = 38
The probability of this result, assuming the null hypothesis, is 0.84

FIGURE 5.10. T-Test for TRIANGULAR Idle Resource Distribution

 99

distribution is positive. The t values for all idle resource distributions implies that the

probabilities of the corresponding null hypotheses (i.e., there is no big difference between

the mean for PT and the mean for CT.) being true is high, 0.69, 0.91 and 0.84 for FULL,

SPIKE and TRIANGULAR respectively.

 The results of the t-tests do not support the hypothesis by which the performance of

PT is better than that of CT. To further evaluate the t-test results, I need to test whether the

DCF-EN mechanism is sensitive to two important parameters, cd (the amount of time that

an agent needs to wait to detect a deadlock) and cb (the maximal amount of time that an

agent is willing to wait to join a coalition except the amount of time it needs to detect

deadlocks). In the above experiments, I let n

n

d cc 2= , where cn is the amount of time

required to process a possible coalition proposal without deadlock. In my experiments, cn is

estimated manually through prior empirical experiments. I also let cb = cd.

ST_Triangular PT_Triangular LT_Triangular
ANM VCL-a NS ANM VCL-a NS ANM VCL-a NS

Mean 27.22 2316.48 1.9 29.1 2527.64 1.65 28.78 2261.75 2.05

StdV 4.42 1345 1.3 3.18 1469.92 1.31 2.97 1275.97 1.15

In order to test whether the DCF-EN mechanism is sensitive to cb and cd, I

conducted the following experiments: I ran two groups of experiments with proportional

wait time strategy and TRIANGULAR idle resource distribution. In one group, I reduced cd

by half and doubled it in another group. I ran 20 experiments for each group. Let ST denote

TABLE 5.5. Experimental Results with Different cb and cd

 100

the experiments with shorter cb and cd. LT denotes the experiments with longer cb and cd.

Table 5.5 shows the experimental results.

Figure 5.11 shows that the error bars of VCL-a by experiment ST, LT and PT which

is the experiment with original cb and cd. Figure 5.12 shows that the error bars of ANM by

experiment ST, LT and PT. Figure 5.13 shows the error bars of the average number (NS) of

agents who choose not join any coalition after coalition formation. The experimental results

0

500

1000

1500

2000

2500

3000

FIGURE 5.11. Error Bar of VCL-a

ST LT PT

0

5

10

15

20

25

30

35

FIGURE 5.12. Error Bar of ANM with Different cb and cd

ST LT PT

 101

do not show a big difference among ST, LT and PT. Therefore, the previous t-test results

are not very sensitive to parameters cb and cd.

Another observation is that the different types of idle resource distribution cause

different communication load. Figure 5.14 shows the error bar of average number of

messages for each agent in experiments with different types of idle resource distribution.

0

0.5

1

1.5

2

2.5

FIGURE 5.13. Error Bar of NS with Different cb and cd

ST LT PT

0

5

10

15

20

25

30

35

FIGURE 5.14. Error Bar of ANM with Different Workload Distributions

PT_F CT_F PT_S PT_T CT_S CT_T

 102

The error bars of the average number of received messages with the same type of idle

resource distribution fall into a similar range no matter what kind of time-out strategy used.

FULL idle resource distribution causes the lowest communication load because agents have

fewer chances to find partners. TRIANGULAR idle resource distribution results in the

highest communication load as agents have more opportunities to find partners.

By examining the number of agents who choose not join any coalition after

coalition formation, I found that FULL idle resource distribution produces the maximum

agents who choose not join any coalition after coalition formation, and TRIANGULAR idle

resource distribution results in minimum agents who choose not join any coalition after

coalition formation. Figure 5.15 shows the error bars of the average number (NS) of agents

who stay alone after coalition formation with different idle resource distribution.

Since the different types of idle resource distribution implies different types of

workload distribution, the following two hypotheses are also valid:

• Different workload distributions will cause different communication load.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FIGURE 5.15: Error Bar of NS with Different Workload Distributions

PT_F CT_F PT_S PT_T CT_S CT_T

 103

• Agents with nearly full workload distribution are more likely to choose not join

any coalition than agents with the other two types of workload distributions.

SUMMARY

In this chapter, I applied the DCF-EN mechanism to resource sharing coalition

formation in computational grids. To compute the utility that an agent can obtain by joining

a coalition, I developed a task-oriented mechanism to measure the economic value of

computational resource usage. Based on this measurement, agents can compute the utilities

of sharing others’ idle resource capacity as well as the utilities of contributing their own

idle resource capacity to other agents in a grid.

To examine how well the DCF-EN mechanism performs on resource sharing

coalition formation, I designed experiments with three types of idle resource distribution,

FULL, SPIKE and TRIANGULAR. The experimental results support the following

hypotheses:

• If there exists better coalition structures than a singleton coalition structure, through the

DCF-EN mechanism, the value of the resulting coalition structure will be higher than

the value of the singleton coalition structure.

• The communication load caused by the negotiation among agents is much lower than

the one in the theoretic worst case. Different workload distributions will cause different

communication load.

• Agents with nearly full workload distributions will have more chances to choose to not

join any coalition than agents with other two types of workload distributions.

 104

Before I ran the experiments, I expected that by using different time-out strategies,

the DCF-EN mechanism would generate different values of resulting coalition structures.

However, the t-test results showed that there was not much difference between the time-out

strategy with proportional wait time and the time-out strategy with constant wait time.

Overall, the experimental results show that the DCF-EN mechanism can generally generate

better coalition structures than the singleton coalition structure (i.e., working alone). The

communication load of the DCF-EN mechanism is also practical.

 105

CHAPTER VI

COMBINING BUNDLE SEARCH WITH BUYER COALITION FORMATION

The DCF-EN mechanism is not only applicable for establishing virtual communities

for computational resource sharing, but it is also practical for other applications such as

buyer coalition formation in electronic markets. Small buyers without bargaining power

(Proter 1980) individually can form a coalition as a virtual big buyer (He and Ioerger

2004b, 2005a). As a result, sellers could be willing to give a greater discount to the whole

group.

Combinatorial trade in electronic markets is becoming more and more important. In

electronic markets, buyers are able to access an incredible amount of product information

through the Internet. This advantage allows buyers to build better purchasing strategies to

save costs. Forming buyer coalitions among small buyers is one such purchasing strategy

that allows small buyers with little individual bargaining power to form a virtual big buyer

that can obtain better discounts.

Another very interesting buyer strategy is called the “bundle search” that addresses

the situation where a buyer needs to buy different goods as a bundle. A typical example is

the travel package search problem (Chang et al. 2003). Because of the different retail prices

and discount policies of different suppliers, different bundles result in different discounts.

The problem is to find the optimal bundle that results in minimum cost. Actually, searching

for the maximal discount of a buyer coalition can be viewed as a bundle search problem if

the discount policies of sellers are based on the total cost to all buyers in the buyer

 106

coalition. Under this kind of discount policy, it is valuable for buyers to use both bundle

search and buyer coalition formation to obtain better discounts.

In this Chapter, I consider both combinatorial coalition formation and bundle search

together when the discount policies of sellers depend on the total cost of all goods sold in

each transaction. I apply the DCF-EN mechanism to solve the following purchasing

problem:

Definition 6.1: A Purchasing Problem

Let G = {g0, g1, …, gl-1} denote a collection of goods. Let B be a group of buyers, {b0, b1,

…, bm-1}, where each of them has a shopping list denoted by vector Qi = (qi0, qi1, …, qi,l-1),

where qik refers to the quantity of each item, gk, buyer bi needs to buy (i = 0, 1, .., m-1; k =

0, 1, .., l-1). There is a set of sellers, S = {s0, s1, …, sn-1}, who can supply some or all of the

goods in G. Each seller, sj (j = 0, 1, .., n-1), has its own discount function δj(c):
+

ℜ →
+

ℜ ,

that is the discount a buyer obtains when the cost of his purchase from seller, sj, is c. Pj =

(pj0, pj1, … pj, n-1) is a retail price (per unit) vector for each seller, sj. The cost of buyer, bi is

denoted by ci: ∑ ∑∑ ×δ−×=
−

=

−

=j ikjk

l

kjikjk

l

ki qpqpc))((
1

0

1

0 . If seller, sj, has no good, gk,

available, Pjk = 0. The objective of the problem is to minimize the cost to each buyer in the

buyer set, B, i.e. min∑
−

=

1

0

m

i ic .

Definition 6.2: Discount Ratio

The discount ratio is defined as the ratio of the discount to the corresponding cost:

ccrd /)(δ= , where δ(c) is the amount of discount that a buyer can obtain by spending c

dollars in one transaction. The discount ratio must have an upper bound in a real market,

because sellers need to guarantee that their profit is positive. Hence, searching the

 107

maximum discount could be interpreted as finding the highest discount ratio the buyers can

obtain.

The discount ratio function may not be monotonic increasing along with the amount

of cost. In other words, more cost will not necessarily result in a higher discount ratio. For

example, J.C. Penney provides $10 off for purchases over $50, $15 off for purchases over

$75 and $35 off for purchases over $150 on certain sale days. Figure 6.1 shows the

corresponding discount ratio function.

Definition 6.3: Buyer Utility

The utility of a buyer is defined as the difference between the discount he can obtain by

shopping alone and the one he can get by using a purchase strategy based on buyer coalition

formation: bCL ddu −= , where db is the discount that a buyer can obtain by shopping alone

and dCL is the discount that the buyer can obtain by shopping with partners. Each buyer tries

to maximize its own utility.

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200

FIGURE 6.1. Discount Ratio Function

Discount Ratio

Purchase Cost

 108

Note that dCL for each buyer depends on how the corresponding shopping group

divides the total discount that it obtains. Assume that the discount of each buyer is

proportional to the cost it contributes to the group, i.e., for buyer bi, c

c
cd i

j

i

CL ×δ=)(where

c is the total cost of the group, ci is the cost of buyer bi and δj(c) is the total amount of

discount the group obtains from seller sj,

TRADITIONAL CENTRALIZED APPROACH

Traditionally, the above purchase problem can be solved by a centralized approach.

Suppose there is a buyer leader who has all information about buyers and sellers. The buyer

leader searches for the optimal strategies for buyers (Li and Sycara 2002). The simplest

centralized approach is to enumerate all possible coalition structures of all goods that

buyers need to purchase and find the optimal coalition structure that minimizes the costs of

all buyers.

However, the computational cost of this approach is prohibitively expensive. The

total number of all possible coalitions is 2NQ – 1. Sandholm et al (1999) have already

proved that the total number of all possible coalition structures is O(NQ
NQ), which is so

huge that not all coalition structures can be enumerated unless the number of all goods is

extremely small (below 15 or so in practice). Also, for each coalition, an optimal bundle

search needs to be done. The time complexity of the optimal bundle search is O(NM) in the

worst case, where M is the number of goods, and N is the number of sellers (Chang et al.

2003).

 109

Another costly computation of this centralized approach is evaluating whether the

resulting coalitions are stable in the core (Kahan and Rapoport 1984; Li and Sycara 2002).

The reason to do this is because buyers will refuse to join a coalition that causes higher cost

than the cost of joining other coalitions. A buyer leader needs to calculate the total cost to

each buyer in every coalition structure and determine whether the coalitions are stable (Li

and Sycara 2002).

In real electronic markets, buyers are self-interested and geographically distributed.

They make purchase decisions based on their local information and on minimizing their

own cost. The incentive of buyers to join a buyer coalition is to obtain a greater discount

than they would from purchasing individually. It is more realistic to let buyers make their

own decisions (Shehory and Kraus 1999; Lerman and Shehory 2000) and form coalitions

through negotiation than it is to set a coalition formation leader to evaluate the coalition

value and distribute the payoff. I propose a distributed approach based on the DCF-EN

mechanism for solving the purchasing problem. It is much more efficient and practical than

the centralized approach for real applications.

A DISTRIBUTED APPROACH

My approach to solving this purchasing problem involves two steps. First, buyers

do their individual bundle searches to find the optimal bundle for their own shopping lists.

If the discount ratios obtained from the sellers involved in the optimal bundle are the

maximal discount ratios that the sellers can offer, buyers do not have incentive to form or

join any buyer coalition, since they cannot increase the amount of discount they can gain.

 110

Otherwise, buyers start the second step by either searching for coalitions proposed by other

buyers or proposing new coalitions to related buyers.

The reason for a buyer to do a bundle search first is that the discount resulting from

the individual bundle search belongs to the buyer for sure. The possible discount obtained

from joining a buyer coalition is uncertain because it depends on whether buyers can

achieve a consensus. It is possible to miss the optimal result by separating the bundle

search and the coalition formation into two steps, but it ensures that buyers obtain the

discount at least as much as they can get individually.

The objective for buyers to join a coalition is to obtain a greater discount from one

seller. I set an independent buyer club agent for each seller in S. If buyers are interested in

joining the coalitions related to a specific seller, they register in its buyer club and obtain

information about other buyers who need to join coalitions from the buyer club. Buyer club

agents have nothing to do with the negotiation process among buyer agents except for

providing the initial information about possible partners.

BUNDLE SEARCH PROBLEM

Compared with buyer coalition formation, the bundle search problem targets a

single buyer who has a shopping list that includes a set of desired items.

Definition 6.4: Bundle Search Problem

let Qi be a shopping vector (qi0, qi1, …, qi,l-1), where qij is equal to 1 or 0. Let S be a set of

sellers {s0, s1,…, sn-1}, who can supply some or all of the goods in Qi. Each seller sj (j = 0,

1, .., n-1) has its own discount function δj(c): R
+
 → R

+. The problem is to find an optimal

 111

purchasing strategy (i.e., partitioning goods in Qi by the targeting sellers in S) in the sense

that it takes buyer bi the minimal cost to purchase all goods with qij = 1 in Qi.

The optimal algorithm for the bundle search problem is trivial. The idea is to

enumerate all partitions of goods on the buyer’s shopping list based on different

combinations of sellers. The partition that results in minimal cost is the optimal bundle.

The time complexity of this algorithm in the worst case is O(N
M

) (Chang et al. 2003). If the

prices of items on the shopping list are not affected by adding more items, dynamic

programming can be used to solve this problem with time complexity O(N
2
). However, this

is not the case for the purchasing problem here. The price of each item is changed by the

discount ratio that the buyer obtained. The discount ratio is a function of the total cost to a

buyer. If a dynamic programming algorithm is used, when a new item is added, the total

cost may change and the discount ratio may also change. In this case, the price of items that

have already been calculated may change. Hence, the dynamic programming algorithm is

not appropriate for this problem.

I have developed an efficient heuristic algorithm to solve this bundle search

problem. It is called Maximal Gain Bundle Search (MGBS) algorithm. The algorithm is

based on the following three heuristic rules:

Rule #1 Maximal Bundle: The problem of bundle search comes from the general economic

situation where the more one spends with a single seller, the more discount one gets from

that seller. I call the bundle purchase from one seller that provides the maximal discount the

“Maximal Bundle”. If the cost of a bundle with the maximal discount from every available

seller is larger than the sum of the corresponding minimal retail prices for the goods in the

 112

bundle, then it is not necessary to continue the bundle search. The buyer just needs to buy

all goods in the bundle at the lowest retail prices.

Rule #2 Maximal Gain Ratio: If the costs of maximal bundles from multiple sellers are less

than the sums of the corresponding minimal prices, the seller with the best ”Maximal Gain

Ratio” is picked as the candidate seller.

To define this term, I need to define the gain of each bundle purchase from one

seller. In this paper, the gain of each bundle purchase is not defined by the amount of the

discount. If the prices provided by a seller are too high, even if it gives a large discount, the

purchase cost could still be very high. So, the gain of each bundle purchase is defined to be

the difference between the final cost of this bundle purchase and the sum of the

corresponding minimal prices. The gain ratio is defined to be the ratio of the gain of a

bundle purchase to the sum of the corresponding minimal prices; so the maximal gain ratio

is the ratio of the gain of the maximal bundle purchase to the sum of the corresponding

minimal prices.

Suppose that there is a set of sellers, Sb = (Sb0, Sb1, …, Sbk) for a bundle of goods,

Gb = (Gb0, Gb1, …, Gbk). The gain ratio g(Gb, Sb) of the bundle of Sb is defined by the

following equation:

∑
∑∑∑ −−

=
G b

G b

S b

G b

S b

G b

P

DPP
S bG bg

m i n

m i n)(
),(

∑ Gb

SbP denotes the sum of the prices of all goods in Gb of the sellers in Sb. ∑
GbPmin denotes the

sum of the minimal prices to purchase all goods in Gb. denotes the sum of the discounts

obtained from all of the sellers in Sb for purchasing goods in Gb as a bundle. Maximal gain

ratio is defined as a ratio of the difference between the sum of minimal retail prices of the

 113

bundle and the cost of the bundle after applying a discount to the sum of minimal retail

prices of the bundle.

 Begin MGBS (G, S, Mp, Mr)

|PV| = |G|, | minP | = |G |, | minSV | = |G |

(minP is the minimal price vector and minSV is the corresponding seller Vector)

MaxCost = ∑ i
Pmin - ∑δi(

iPmin)

For each seller Sj

 MaximalBundle[j] = ∑Mpj

 MaxDiscount[j] = δj (MaximalBundle[j])
 BundleCost[j] = MaximalBundle[j] - MaxDiscount[j]
For all BundleCost[j]
 If All of BundleCost[j]s > MaxCost[j]

 Then PV = minSV , PC = MaxCost

 Return PV, PC
 Else
 For each BundleCost[j]

 MinBundleCost[j] = δj
-1

(MaxDisicount[j])
 MinBundle[j] = FindMinBundle (MinBundleCost[j], j, Mp)
 g(MinBundle[j], Sj) = (MaxSubCost[j]-BundleCost[j])/MaxSubCost[j]
Pick MinBundle[k] of seller Sk with argmax g(MinBundle[k], Sk)
For each item m in MinBundle[k]
 PVm = Sk
PC = PC + MinBundle[k] - discountFunction(MinBundle[k], Sk)
Set the entries of the corresponding rows of this MinBundle[k] to 0 in Mp and Mr

 If All entries in Mr are 0
 Return PV, PC
Else MGBS(Mp, Mr)

End MGBS (Mp, Mr).

Begin Procedure FindMinBundle (MinBundleCost, j, Mp)
Fetch the column j in Mp to be the good vector GVj of seller Sj
Sort GVj according to the price increasingly
s = |GVj|
While (s>0)
 Remove the last element L in GVj
 If the sum of prices in GVj < MinBundleCost

 then GVj ← GVj + L

 s ← s – 1
Return GVj

End FindMinBundle (MinBundleCost, j, Mp)

FIGURE 6.2. Maximal Gain Bundle Search Algorithm

 114

Rule #3 Bundle Regression: Since the discount ratio may not be monotonic increasing,

through the inverse function of the discount function, the minimal cost to get the same

amount of discount of a maximal bundle can be found. Based on this minimal cost, I can

search for the cheapest bundle purchase with the same amount of discount from this seller,

and leave the other goods for another round of searching. Before calculating the maximal

gain ratio, the maximal bundle for each seller should be refined to the “minimal bundle”

from the seller with the same amount of discount as the maximal bundle. This rule provides

a method to refine the search results already obtained from the two rules above. The

heuristic goal here is to achieve a higher discount ratio for each partial bundle purchase.

DonePurchase = false
Run the MGBS algorithm to get the optimal bundle with a seller vector SV
For each si in SV
 If The cost in the optimal bundle does not cause the seller to offer its highest discount ratio
 Then Send CFRequire to the corresponding buyer club agent
If All sellers in SV do not need to send CFRequire
Then DonePurchase = true
Else While true

 If receive a new message
 Then process the message by calling corresponding message handler (defined in Chapter IV)
 If DonePurchase = false
 Then If startCF=false
 Then Calculate all possible resource-sharing coalitions
 Sort all possible coalitions in a descending order in PCF
 StartCF = true
 Else If PCF=Ф and SCF=Ф
 Then There does not exist possible coalition
 DonePurchase = true
 Else If RCF=Ф
 Then If SCF=Ф and PCF!=Ф
 Then Send the current best possible coalition proposal in PCF
 Assert the send-out CF into SCF
 Remove it from PCF
 Else If (SCF!=Ф and SCF∈ RCF) or (SCF=Ф and PCF.elementAt(0)∈ RCF)
 Then Send CFAccept message to the corresponding agent
 AcceptCF = true

FIGURE 6.3. Buyer Agent Algorithm

 115

The outputs of the bundle search for buyer bi is a seller vector SVi = (svi0, svi1, …,

svi,l-1), where svij = null if qij = 0, otherwise svij is equal to the corresponding seller’s ID.

With the seller vector, buyer bi can calculate whether he has obtained the highest discount

ratios from sellers in SVi. Figure 6.2 gives the algorithm (He and Ioerger 2003).

COMBINING BUNDLE SEARCH AND BUYER COALITION FORMATION

Buyers start their coalition search based on the results of their bundle search in the

first step. Each buyer only registers with the buyer clubs involved in the individual optimal

bundle result. When buyers’ bundle searches do not include a particular seller, or when they

have already obtained the optimal discount ratio from a seller, they do not register with the

corresponding buyer clubs. I apply the DCF-EN mechanism to the buyer coalition

formation processes. The complete buyer agent algorithm is in Figure 6.3.

SIMULATION RESULTS

To evaluate the results of my solution to the purchase problem and the efficiency of

the distributed coalition formation mechanism, I need to evaluate the costs of buyers using

different purchasing strategies. The main goal of my simulation is to evaluate the average

cost to each buyer and the total cost to all buyers with different purchasing strategies.

I will compare the cost to each buyer and the total cost to all buyers using the

following four purchasing strategies:

• Purchasing each of the goods with the lowest price in the market;

 116

• Combining the optimal bundle search and buyer coalition formation through the DCF-

EN mechanism;

• Combing the MGBS bundle search and buyer coalition formation through the DCF-EN

mechanism;

• The optimal solution of the purchasing problem (Since the computational cost is too

high to run an optimal algorithm for the purchasing problem, to compare the results

with the optimal results for a certain purchase problem, I use the lower bound of the

optimal cost for a buyer, which is the sum of the minimal retail prices of all his goods

with obtaining the highest discount ratio in the market. In real markets, it is impossible

for buyers to obtain this lower bound cost).

Parameters Experimental Values

N×M 3×3, 4×4, 5×5

Numbers of Buyers 3, 4, 5, 6, 7, 8, 9

Discount Function

 10, if 50 ≤ c < 100;

δ1 (c) = 20, if 100 ≤ c < 150;

 35, if 150 ≤ c < 200;

 c×20%, if c ≥ 200.

Based on the purchasing problem definition, the input parameters and the discount

function used in my simulation are given in Table 6.1, where G refers to the vector of

goods and S refers to the vector of the corresponding sellers, N = | G | and M = | S |. Indeed,

the discount function defined in Table 6.1 is used by JCPenny, Dillards and Foleys etc.

department store very often. Since, in a real market, the buyers with a small amount of

TABLE 6.1. Parameters Used for Simulation

 117

purchase cost are more likely join a buyer coalition, I did not use large numbers of items

and sellers in my simulation.

In real markets, sellers adjust retail prices very often. For example, Walmart and

HEB change food prices every week. However, JCPenny does not adjust its discount policy

very often. Thus, I assume that sellers have the same discount policies, but the retail prices

offered by different sellers are different (I will test different discount policies later). I

0

100

200

300

400

500

600

700

RetailMinPrice LBOptimal

OptimalBundleCF MGBSBundleCF

FIGURE 6.4. Total Cost to All Buyers Using Different Purchasing Strategies

Costs

0

20

40

60

80

100

120

140

FIGURE 6.5. Error Bar of the Average Cost to Each Buyer

Costs

RetailMinPrice

LBOptimal

OptimalBundleCF

MGBSBundleCF

 118

generated the seed price of each goods from each seller randomly using a uniform

distribution from 0 to 50. For the same goods, based on the corresponding seed price, I

generated the price for each seller by adding a random number, which is generated using a

uniform distribution form 0 to 10. Therefore, for same goods, the price difference between

two sellers is less than 10.

Given different combinations of N×M, I ran the experiments for different number

(3-9) of buyers. For each different number of buyers, I ran 20 experiments.

Figure 6.4 shows the mean of the total cost to all buyers using different purchasing

strategies when N×M is 4×4 and the total number of buyers is 5. Figure 6.5 shows the error

bars of the average cost of each buyer. RetailMinPrice denotes the cost to a buyer using the

 A-LBOptimal, B-RetailMinPrice
The results of an unpaired t-test

t = -3.66
sdev = 24.0

∆ ≅ 27.78
degrees of freedom = 38
The probability of this result, assuming the null hypothesis, is 0.0008

FIGURE 6.6. T-Test for Comparing RetailMinPrice and LBOptimal

 A-LBOptimal, B-OptimalBundleCF
The results of an unpaired t-test

t = -1.18
sdev= 21.9

∆ ≅ -8.15
degrees of freedom = 38
The probability of this result, assuming the null hypothesis, is 0.25

FIGURE 6.7. T-Test for Comparing OptimalBundleCF and LBOptimal

 119

strategy of only searching for the minimal retail price in the market for each item needed.

OptimalBundleCF denotes the cost to a buyer of doing an optimal bundle search first and

then trying to join buyer coalitions. MGBSBundleCF denotes the cost to a buyer of doing

an MGBS bundle search first and then trying to join buyer coalitions. LBOptimal is the

lower bound of the optimal cost that a buyer has to pay, which is equal to the sum of the

minimal retail prices of all the buyer’s goods with obtaining the highest discount ratio.

Based on the above experimental results, both OptimalBundleCF and

MGBSBundleCF are very close to the lower bound of the optimal value and much better

than using the strategy of only searching for the minimal retail price in the market. For each

buyer, the difference between using MGBSBundleCF and LBOptimal is 8.54, and the

difference between using OptimalBundleCF and LBOptimal is 8.15. However, the

difference between using RetailMinPrice and LBOptimal is 27.78. Figures 6.6 to 6.8 show

the Student t-test results7 of comparing RetailMinPrice and LBOptimal, OptimalBundleCF

and LBOptimal, MGBSBundleCF and LBOptimal respectively. The t-tests results also

support the above conclusion.

7 The null hypothesis is that the mean of group A is not less than the mean of group B.

 A-LBOptimal, B-MGBSBundleCF
The results of an unpaired t-test

t = -1.22
sdev = 22.0

∆ ≅ -8.45
degrees of freedom = 38
The probability of this result, assuming the null hypothesis, is 0.23

FIGURE 6.8. T-Test for Comparing MGBSBundleCF and LBOptimal

 120

Figure 6.9 shows the total cost to all buyers for using different purchasing strategies

with different number of buyers when N×M is 4×4. For different numbers of buyers, both

OptimalBundleCF and MGBSBundleCF are also close to the lower bound of the optimal

value and much better than using the strategy of only searching for the minimal retail price.

0

100

200

300

400

500

600

700

800
RetailMinPrice
LBOptimal
OptimalBundleCF
MGBSBundleCF

FIGURE 6.9. Total Cost to All Buyers Using Different Purchasing Strategies

3 4 5 6 7 8 9

Costs

Buyers

0

10

20

30

40

50

60

70

80

90

OptimalBundleCF MGBSBundleCF

OptimalBundle MGBSBoundle
LBOptimal

3

Buyers

FIGURE 6.10. Average Cost to Each Buyer

Costs

4 5 6 7 8 9

 121

Figure 6.10 shows the average cost to each buyer. The difference between the

average cost to each buyer does not increase or decrease significantly as the number of

buyers increases in the market. OptimalBundle denotes the cost to a buyer of doing an

optimal bundle search without joining any buyer club. MGBSBundle denotes the cost to a

buyer of doing a MGBS bundle search without joining any buyer club. It also shows that

combining bundle search strategy and buyer coalition formation strategy can reduce the

cost more than just doing a bundle search and that the cost is very close to the optimal cost.

Indeed, buyer coalition formation can be viewed as an extension of the bundle search

strategy by extending the shopping list of one buyer to multiple buyers. In order to

guarantee to obtain the discount that each buyer can obtain by himself, my current

algorithm makes each buyer do bundle search first. Then, based on the result of bundle

search, each buyer decides whether to participant in buyer coalition formation or not.

Therefore, the results show that combining bundle search strategy and buyer coalition

formation strategy can reduce the cost more than just doing a bundle search in every single

experiment.

In order to test how my algorithm perform under different discount policies, I

considered the following two discount policies: δ2(c) = 10 if c ≥ 50 and δ3(c) = 35 if c ≥

150. It is very easy to find real examples for these two discount policy. At many online

stores (e.g. Amazon.com), if you spend $50, they normally give you free shipping that may

cost you $10 in one transaction. In many fashion stores, it is very normal to obtain a $35

gift card if you spend over $150 in one transaction. Another reason to consider these two

discount policies is that they are comparable to the previous discount policy δ1(c) (defined

in Table 6.1). I want to test the following hypotheses:

 122

• Since discount policy δ1(c) allows buyers have more choices to obtain discounts, each

buyer will obtain more discount under discount policy δ1(c) than under the other two

discount policies.

• For all three discount policies, combining buyer coalition formation and bundle search

can reduce the cost more than just doing a bundle search.

• For discount policy δ2(c), there are few chances for buyers to form coalitions because as

long as the total cost is larger than $50, no matter how much more a buyer spends, the

total amount of discount is $10. For discount policy δ3(c), there are more chances (than

δ2(c)) for buyers to form coalitions because the input price for each goods is less than

$50. In order to obtain a discount, a buyer needs to spend $150.

• For discount policy δ2(c), the communication load is lower than the one under another

two discount policies because few negotiation processes were required.

 OptimalBundle MGBSBundle MGBSBundleCF OptimalBundleCF

δ1(c) 518.367 520.85 507.97 506.02

δ2(c) 530.47 533.30 528.30 505.81

δ3(c) 590.99 590.99 554.97 530.98

Given N×M is 4×4 and the total number of buyers is 5, for each combination of

discount policy (including δ1(c), δ2(c) and δ3(c)) and purchasing strategy (including

MGBSBundle, OptimalBundle, MGBSBundleCF and OptimalBundleCF), I ran 20

experiments. Table 6.2 lists the total cost for all 5 buyers using different type of purchasing

TABLE 6.2. Total Cost to All Buyers

 123

strategies under different discount policies. The results show that δ1(c) has the best

performance in the sense that it costs the buyer the least.

Figure 6.11 depicts the average cost to each buyer for using different purchasing

strategies under different discount policies. Figure 6.11 also shows the costs to buyers using

RetailMinPrice and LBOptimal. All purchasing strategies, MGBSBundle, OptimalBundle,

MGBSBundleCF and OptimalBundleCF can reduce costs more than RetailMinPrice.

MGBSBundleCF and OptimalBundleCF can reduce costs more than MGBSBundle and

OptimalBundle. Thus, the experimental results support hypothesis 1 and 2. However, the

improvement in savings for MGBSBundleCF is less pronounced under δ3(c), compared to

δ1(c) and δ2(c).

0

20

40

60

80

100

120

140

RetailMinPrice LBOptimal OptimalBundle

MGBSBundle MGBSBundleCF OptimalBundleCF

δδδδ1(c) δδδδ2(c) δδδδ3(c)

FIGURE 6.11. Average Cost to Each Buyer Using Different Purchasing Strategies

 124

 MGBSBundleCF OptimalBundleCF

δ1(c) 2 1

δ2(c) 15 12

δ3(c) 4 2

Table 6.3 lists the numbers of experiments in which no buyer coalitions were

formed under different discount policies and different purchasing strategies (For each

combination of a discount policy and a purchasing strategy, I ran 20 experiments). The

results show that buyers did not form coalitions very often under discount policy δ2(c).

Under discount policy δ1(c) and δ3(c), buyers formed coalitions very frequently. Therefore,

hypothesis 3 is valid.

TABLE 6.3. Numbers of Experiments without Buyer Coalitions Formed

0

5

10

15

20

25

OptimalBundleCF MGBSBundleCF

δδδδ1(c) δδδδ2(c) δδδδ3(c)

FIGURE 6.12. Average Number of Messages Received by Each Buyer

 125

 As for communication load, Figure 6.12 shows the average number of messages

that each buyer received in each experiment and the error bars. Under discount policy δ2(c),

each buyer received the least number of messages. Hence, hypothesis 4 is valid.

SUMMARY

In electronic markets, both bundle search and buyer coalition formation are

profitable purchasing strategies for buyers who need to buy small amount of goods and

have no individual bargaining power. It is very valuable to combine these two purchasing

strategies for buyers to obtain greater discounts based on the different discount policies of

multiple sellers. In this chapter, I presented a distributed mechanism that allows buyers to

use both purchasing strategies. The mechanism includes a very efficient heuristic bundle

search algorithm and a distributed coalition formation scheme that is based on the DCF-EN

mechanism. The simulation results show that the cost to buyers is close to the optimal cost.

I also tested how the DCF-EN mechanism performs under different discount policies. The

simulation results show that combining bundle search and buyer coalition formation can

always outperform only searching for the minimal retail price or only doing bundle search.

Also, buyers participate in buyer coalition formation more often when the discount policy

requires more cost.

 126

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

This dissertation studies the problems of distributed task and resource allocation

among self-interested agents in virtual organizations. The developed solutions are not

allocation mechanisms that can be imposed by a centralized designer but decentralized

interaction mechanisms that provide incentives to self-interested agents to behave

cooperatively in a multiagent system. Besides incentive compatibility, these mechanisms

also take computational tractability into consideration due to the inherent complexity of

distributed task and resource allocation problems. The virtual organizations are not

established through centralized administrative regulations but formed through the

interaction among self-interested agents. The developed mechanisms can easily be

implemented in autonomous agent systems. These decentralized task and resource

allocation mechanisms can eventually make automated resource management in virtual

organizations a reality.

During the last decade, researchers in distributed artificial intelligence endeavored

to establish theoretic models that can address incentive compatibility and computational

tractability together when evaluating interaction mechanisms among self-interested agents

in multiagent systems. Their approaches are normally developing theoretic models that

consider both the classic game-theoretic solution concepts for noncooperative games and

computational complexity analysis. Typical example problems of these theoretic models

are distributed task and resource allocation problems. However, little work has focused on

developing practical solutions for those problems. This dissertation applies these models to

 127

formalizing the distributed task and resource allocation problems that have a variety of

applications in grid and peer-to-peer computing, electronic commerce and virtual

organizations. The developed solutions for these problems are decentralized interaction

mechanisms among self-interested agents that can lead to global task allocation efficiency

in a multiagent system or stable resource sharing virtual communities based on agents’ own

decisions on whether or not to behave cooperatively. This dissertation contributes to the

following research areas in multiagent systems: synthetic task allocation, decentralized

coalition formation and automated multiparty negotiation.

SYNTHETIC TASK ALLOCATION

This dissertation presents two incentive compatible mechanisms for synthetic task

allocation problems in which each task needs to be accomplished by a virtual team

composed of self-interested agents from different real organizations. Compared with

traditional task allocation problems (Zweben and Fox 1994; Clearwater 1996), the synthetic

task allocation needs to consider both individual efficiency and team efficiency. The

participating agents have different owners and are designed by different designers. Agents

who have tasks that need to be accomplished have no authority to force task-executing

agents to disclose their true capabilities. Providing incentives to task executing agents to

report their true capabilities is the key for developing efficient synthetic task allocation

mechanisms.

My approach is to formalize the synthetic task allocation problems as an

algorithmic mechanism design optimization problem. I have developed two incentive

 128

compatible mechanisms for the synthetic task allocation problem. The MinTeamwork is n-

approximation mechanism and a strongly truthful implementation for monotonic teamwork.

Through changing the valuation function and having a more restrictive assumption, the

MinCompletion mechanism is a truthful implementation with 2-approximation for strongly

monotonic teamwork. It shows that designing both incentive compatible and

computationally tractable mechanisms is feasible for synthetic task allocation problems in

virtual organizations.

DECENTRALIZED COALITION FORMATION

The inherent complexity of coalition formation among self-interested agents makes

the traditional centralized approaches for coalition formation computationally intractable.

Another major contribution of this dissertation is developing a decentralized coalition

formation mechanism that is based on explicit negotiation among self-interested agents.

Compared with the centralized approaches, the developed mechanism significantly reduces

the computational cost of the coalition formation process. The communication cost caused

by negotiation processes is low due to the properly designed multiparty negotiation

protocol. Each agent makes its own decisions about whether or not to join a possible

coalition. The resulting coalitions are stable in the core in terms of coalition rationality.

I have applied this mechanism to form resource sharing coalitions in computational

grids and to form buyer coalitions in electronic markets. The simulation results show that

the coalition formation process is successful in the sense that explicit negotiation processes

can lead agents to find the appropriate coalitions and that a coalition formation process can

 129

end properly. The communication load increases almost linearly with the total number of

agents. Particularly, the simulation results reflect that self-interests can still lead to resource

sharing in computational grids. This invalidates the need to assume that agents are

cooperative in the existing systems. For buyer coalition formation, my distributed coalition

formation mechanism can result in nearly optimal cost savings.

AUTOMATED MULTIPARTY NEGOTIATION

The multiparty negotiation mechanism in the decentralized coalition formation

mechanism is itself a very unique contribution of this dissertation.

In this negotiation mechanism, the negotiation protocol is designed to allow

multiple agents to make agreements among multiple choices. An agent’s decision about

whether or not to accept an offer may not only depend on the decisions of other members in

a proposed coalition but may also depend on the decisions of agents outside of the proposed

coalition. The negotiation protocol also includes a conflict handling method that can detect

and break deadlocks caused by parallel negotiation processes. The simulations show that

the negotiation protocol can conduct the negotiation processes properly.

FUTURE APPLICATIONS

Designing both incentive compatible and computationally tractable mechanisms for

distributed task and resource allocation among self-interested agents is one of the most

difficult and important themes in multiagent systems. It is essential to realizing a world

 130

where the aggregate power on the Internet will be optimally and dynamically allocated

online to appropriate users. The methods we described can be applied in either of the

following two ways toward this vision.

Resource Management in Virtual Organizations

Little is known about how to run a virtual organization efficiently. There does not

exist a well-understood organizational structure that can represent a virtual organization

(Hatch 2005). There are many open problems and new research directions. The techniques

developed in this dissertation can be adapted to perform resource management in virtual

organizations. The allocation of proper resources to proper tasks so that the global

performance of a virtual organization can be maximized even if the participating agents are

self-interested. This will require improving the current task and resource allocation

mechanisms for more complex scenarios and embedding those mechanisms into existing

systems such as computational grids, wireless sensor network and supply chain

management in electronic commerce.

Task and Resource Allocation in Scalable Multiagent Systems

One of the major research trends in multiagent systems is to make systems open and

scalable. Decentralized task and resource allocation in such a system is highly non-trivial

because the system dynamically changes and the scalability invalidates effective

communication among agents. How to get self-interested agents to behave cooperatively so

 131

that a global efficiency is achieved by the local decision of each participating agents is the

key issue for task and resource allocation in open and scalable multiagent systems. I

believe that the decentralized allocation mechanisms presented in this dissertation have laid

a foundation for overcoming this challenge in the future.

 132

REFERENCES

Azoulay-Schwartz, R. and S. Kraus. 2004. Stable Repeated Strategies for Information

Exchange between Two Autonomous Agents. Artificial Intelligence 154: 43-93.

Berman, F., G. Fox, and T. Hey (Editors). 2003. Grid Computing: Making The Global

Infrastructure a Reality. Chichester, England: John Wiley & Sons.

Bernstein, P.A., V. Hadzilacos, and N. Goodman. 1987. Concurrency Control and

Recovery in Database Systems. Reading, MA: Addison-Wesley Publishing

Company.

Buyya, R., 2002. Economic-Based Distributed Resource Management and Scheduling for

Grid Computing. Ph.D. Dissertation, Monash University, Melbourne, Australia.

Buyya, R., D. Abramson, J. Giddy, and H. Stockinger. 2002. Economics Paradigm for

Resource Management and Scheduling in Grid Computing. Concurrency and

Computation: Practice and Experience. 14: Grid Computing Environments Special

Issue 13-14.

Caillou, P., S. Aknine, and S. Pinson. 2002. A Multi-Agent Method for Forming and

Dynamic Restructuring of Pareto Optimal Coalitions. In Proceedings of the First

International Joint Conference on Autonomous Agents and Multi-agent Systems.

Pages 1074-1081, Bologna, Italy, July 15-19.

Chang, Y., C. Li, and J. R. Smith. 2003. Searching Dynamically Bundled Goods with

Pairwise Relations. In Proceedings of ACM Electronic Commerce. Pages 135-143,

San Diego, CA, June 9-12.

 133

Chen, J., 2004. Introduction to Tractability and Approximability of Optimization Problems.

Book Manuscript, Department of Computer Science, Texas A&M University.

Clarke, E. H. 1971. Multipart Pricing of Public Goods. Public Choice 2: 17-33.

Clearwater, S.H. (Editor). 1996. Market-Based Control: A Paradigm for Distributed

Resource Allocation. Singapore: World Scientific.

Coffman,E.G., L. Flatto, M.R. Garey and R.R. Weber. 1987. Minimizing Expected

Makespans on Uniform Processor Systems. Advances in Applied Probability

19:177-201.

Davis, R. and R.G. Smith. 1983: Negotiation as a Metaphor for Distributed Problem

Solving. Artificial Intelligence 20 (1): 63-109.

Feigenbaum, J., A. Krishnamurthy, R. Sami, and S. Shenker. 2001. Approximation and

Collusion in Multicast Cost Sharing. In Proceedings of the Third Annual ACM

Conference on Electronic Commerce. Pages 253-255, Tampa, Florida, October 14-

17.

Feigenbaum, J. and S. Shenker. 2002. Distributed Algorithmic Mechanism Design: Recent

Results and Future Directions. In Proceedings of the Sixth International Workshop

on Discrete Algorithms and Methods for Mobile Computing and Communications.

Pages 1-13, Atlanta, GA, September 26 – 28.

Foster, I. and C. Kesselman. 1998. The Grid: Blueprint for a New Computing

Infrastructure (First Edition). San Francisco, CA: Morgan Kaufmann.

Foster, I. and A. Iamnitchi. 2003. On Death, Taxes, and the Convergence of Peer-to-Peer

and Grid Computing. In Proceedings of the Second International Workshop on

Peer-to-Peer Systems. Pages 118-128, Berkeley, CA, February 20-21.

 134

Foster, I., N.R. Jennings, and C. Kesselman. 2004. Brain Meets Brawn: Why Grid and

Agents Need Each Other. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multi-agent Systems. Pages 8-15, New

York , July 21-23.

Fudenberg, D and J. Tirole. 1991. Game Theory. Cambridge, MA: MIT Press.

Garey, M. R. and D. S. Johnson. 1979. Computers and Intractability: A Guide to the

Theory of NP-Completeness. San Francisco, CA: W. H Freeman and Company.

Groves, T., 1973. Incentives in Teams. Economica 41: 617-631.

Harsanyi, J. C., 1967. Games with Incomplete Information Played by “Bayesian” Players.

Management Science 14(3):159-182.

Harsanyi, J. C., 1977. Rational Behavior and Bargaining Equilibrium in Games and Social

Situations. Cambridge, UK: Cambridge University Press.

Hatch P.J., 2005. Offshore 2005 Research Preliminary Findings and Conclusions.

Vers.1.2.5. Ventoro Report. Portland, OR, Ventoro Corporation.

He, L. and T.R. Ioerger 2003. A Quantitative Model of Capabilities in Multi-Agent

Systems. In Proceedings of the International Conference on Artificial Intelligence.

Pages 730-736, Las Vegas, NV, June 23-26.

He, L. and T.R. Ioerger. 2004a. An Efficient Heuristic Bundle Search Algorithm for Buyers

in Electronic Markets. In Proceedings of the 2004 International Conference on

Artificial Intelligence. Pages 729-735, Las Vegas, NV, June 23-26.

He, L. and T.R. Ioerger. 2004b. Combining Bundle Search with Buyer Coalition Formation

in Electronic Markets: A Distributed Approach through Negotiation. In Proceedings

 135

of the Sixth International Conference on Electronic Commerce. Pages 95-104,

Delft, The Netherlands, October 25-27.

He, L. and T.R. Ioerger. 2005a. Combining Bundle Search with Buyer Coalition Formation

in Electronic Markets. Electronic Commerce Research and Applications Journal

4(4): 329-344.

He, L. and T.R. Ioerger. 2005b. Forming Resource-Sharing Coalitions: A Distributed

Resource Allocation Mechanism for Self-Interested Agents in Computational Grids.

In Proceedings of the Twentieth Annual ACM Symposium on Applied Computing.

Pages 84 – 91, Santa Fe, NM, March 13 – 17.

He, L. and T.R. Ioerger. 2005c. Incentive Compatible Mechanism Design for Synthetic

Task Allocation in Virtual Organizations. In Proceedings of the 2005 IEEE

International Conference on Integration of Knowledge Intensive Multi-Agent

Systems. Pages 205-210, Waltham, MA, April 18 – 21.

Holliday, J. and A. El Abbadi. 2005. Distributed Deadlock Detection. Encyclopedia of

Distributed Computing. Kluwer Academic Publishers, Norwell, MA, accepted for

publication.

Jackson, M.O., 2001. A Crash Course in Implementation Theory. Social Choice and

Welfare 18: 655-708.

Jennings, N., P. Faratin, A. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge. 2001.

Automated negotiation: Prospects, Methods and Challenges. International Journal

of Group Decision Negotiation 10(2): 199-215.

Kahan, J.P. and A. Rapoport 1984. Theories of Coalition Formation. London, UK:

Lwarence Erlbaum Associates, Inc.

 136

Kraus, S. and T. Plotkin. 2000. Algorithms of Distributed Task Allocation for Cooperative

Agents. Theoretical Computer Science 242(1-2): 1-27.

Kraus, S., 2001. Strategic Negotiation in Multiagent Environments. San Francisco, CA:

The MIT Press.

Krishna, V., 2002. Auction Theory. London, UK: Academic Press.

Lan, Z., V. Taylor and G. Bryan. 2002. A Novel Dynamic Load Balancing Scheme for

Parallel Systems. Journal of Parallel and Distributed Computing 62(12):1763-

1781.

Larson, K. and T. Sandholm 2001. Bargaining with Limited Computation: Deliberation

Equilibrium. Artificial Intelligence. 132(2): 183-217.

Lerman, K. and O. Shehory. 2000. Coalition Formation for Large Scale Electronic Markets.

In Proceedings of the International Conference on Multi-Aent Systems. Pages 167-

174, Boston, MA, July 10-12.

Li, C. and K. Sycara. 2002. Algorithm for Combinatorial Coalition Formation and Payoff

Division in an Electronic Marketplace. In Proceedings of the First International

Joint Conference on Autonomous Agents and Multi-agent Systems. Pages 120-127,

Bologna, Italy, July 15-19.

Mas-Colell, A., M.D. Whinston and J.R. Green 1995. Microeconomic Theory. New York:

Oxford University Press.

Milojicic, D.S., V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins,

and Z. Xu 2002. Peer-to-Peer Computing. Technique Report, HPL-2002-57, HP

Laboratories, Palo Alto, CA.

 137

Nisan, N. and A. Ronen. 1999. Algorithmic Mechanism Design. In Proceedings of the 31st

Annual ACM Symposium on Theory of Computing. Pages 129-140, Atlanta, GA,

May 1-4.

O’Donnell, R.D. and F.T. Eggemeier. 1986. Workload Assessment Methodology. In:

Handbook of Perception and Human Performance: Volume II. Cognitive Processes

and Performance, eds. K.R. Boff, L. Kaufman, and J. Thomas, Chap. 42, New

York: John Wiley and Sons.

O’Hare G. and N. Jennings. 1996. Foundations of Distributed Artificial Intelligence. Sixth-

Generation Computer Technology Series. Soucek B. (Series Editor). New York:

John Wiley and Sons.

Osborne, M.J. and A. Rubinstein. 1994. A Course in Game Theory. New York: MIT Press.

Papadimitriou, C., 2001. Algorithms, Games, and the Internet. In Proceedings of the 33rd

Symposium on Theory of Computing. Pages 749-753, Heraklion, Crete, Greece, July

6-8.

Parkes, D.C., 2000. Iterative Combinatorial Auctions: Achieving Economic and

Computational Efficiency. Ph.D. Dissertation, University of Pennsylvania,

Philadelphia, PA.

Porter, R., 2004. Mechanism Design for Online Real-time Scheduling. In Proceedings of

the ACM Conference on Electronic Commerce. Pages 61–70, New York, May 17-

20.

Proter, M. E., 1980. Competitive Strategy. New York: The Free Press.

Raiffa, H., 1982. The Art and Science of Negotiation: How to Resolve Conflicts and Get the

Best out of Bargaining. Cambridge, MA: Harvard University Press.

 138

Ronen, A., 2000. Solving Optimization Problems among Selfish Agents. Ph.D Dissertation,

Hebrew University, Jerusalem.

Rosenschein, J. S. and G. Zlotkin 1994. Rules of Encounter: Designing Conventions for

Automated Negotiation among Computers. Cambridge, MA: The MIT Press.

Sandholm, T. and V. Lesser. 1995. Issues in Automated Negotiation and Electronic

Commerce: Extending the Contract Net Framework. In Proceedings of the First

International Conference on Multi-Agent Systems. Pages 328-335, San Francisco,

CA, June 12 -14.

Sandholm, T., 1996. Negotiation among Self-Interested Computationally Limited Agents.

Ph.D. Dissertation, University of Massachusetts at Amherst.

Sandholm, T. and V. Lesser. 1997. Coalitions among Computationally Bounded Agents.

Special issue on Economic Principles of Multiagent Systems, Artificial Intelligence

94(1): 99-137.

Sandholm, T., K. Larson, M. Andersson, O. Shehory, and F. Tohme. 1999. Coalition

Structure Generation with Worst Case Guarantees. Artificial Intelligence Journal

111: 209-238.

Sandholm, T. and V. Lesser. 2002. Leveled Commitment Contracting: A Backtracking

Instrument for Multiagent Systems. AI Magazine 23 (3): 89-100.

Sandholm, T., 2003. Making Markets and Democracy Work: A Story of Incentives and

Computing. In Proceedings of the International Joint Conference of Artificial

Intelligence. Pages 1649-1671, Acapulco, Mexico, August 9-15.

 139

Sen, S. and P. S. Dutta. 2000. Searching for Optimal Coalition Structures. In Proceedings

of the Forth International Conference on Multiagent Systems. Pages 286-292,

Boston, MA, July 7-12.

Shan, H., L. Oliker, and R. Biswas. 2003. Job Superscheduler Architecture and

Performance in Computational Grid Environment. In Proceedings of Super

Computing’03. Pages 44, Phoenix, AZ, November 15-21.

Shehory, O. and S. Kraus. 1995. Task Allocation via Coalition Formation among

Autonomous Agents. In Proceedings of the International Joint Conference of

Artificial Intelligence. Pages 655-661, Quebec, Canada, August 20-25.

Shehory, O. and S. Kraus. 1998. Methods for Task Allocation via Agent Coalition

Formation, Artificial Intelligence Journal 101 (1-2): 165-200.

Shehory, O. and S. Kraus. 1999. Feasible Formation of Coalitions among Autonomous

Agents in Non-Super-Additive Environments. Computational Intelligence 15(3):

218-251.

Sierra, C., P. Faratin, and N.R. Jennings. 1997. A Service-Oriented Negotiation Model

between Autonomous Agents. In Proceedings of the Eighth European Workshop on

Modeling Autonomous Agents in a Multi-Agent World. Pages 17-35, Ronneby,

Sweden, May 13-16.

Silberschatz, A., P.B. Galvin, and G. Gagne. 2002. Operating System Concepts. Fifth

Edition, Palo Alto, CA: Sun Microsystems Press.

Sycara, K.P., 1987. Resolving Adversarial Conflicts: An Approach to Integrating Case-

Based and Analytic Methods. Ph.D. Dissertation, Georgia Institute of Technology,

Atlanta, GA.

 140

Sycara, K.P., 1990. Persuasive Argumentation in Negotiation. Theory and Decision 28:

203-242.

Tesfatsion, L., 2002. Agent-based Computational Economics: Growing Economies from

the Bottom Up. Artificial Life 8:55--82.

Tsang P. and G.F. Wilson. 1997. Mental Workload. In: Handbook of Human Factors and

Ergonomics (Second Edition), 417-449, New York: John Wiley & Sons.

Tulga, M.K. and T.B. Sheridan. 1980. Dynamic Decision and Workload in Multitask

Supervisory Control. IEEE Trans. On Systems, Man, and Cybernetics 10(5):217-

232.

Varian, H.R., 1995. Economic Mechanism Design for Computerized Agents. In

Proceedings of the First Usenix Workshop on Electronic Commerce. Pages 13-21,

New York, July 11-12.

Vickery, W., 1961. Counterspeculation, Auctions and Competitive Sealed Tenders. Journal

of Finance March:8-37.

Weiss, G.(Editor), 1999. Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. Cambridge, MA: The MIT Press.

Wickens C.D., 1999. Attention, Time-sharing, and Workload. In: Engineering Psychology

and Human Performance, eds. C.D. Wickens and J.G. Hollands, 439-479, Upper

Saddle River, NJ: Prentice Hall.

Wolski, R., J.S. Plank, J. Brevik, and T. Bryan. 2001. Analyzing Market-based Resource

Allocation Strategies for the Computational Grid. International Journal of High

Performance Computing Applications 15(3): 258-281.

 141

Wolski, R., J. Brevik, J. Plank, and T. Bryan. 2003. Grid Resource Allocation and Control

Using Computational Economies. In: Grid Computing: Making the Global

Infrastructure a Reality, eds. F. Berman, G. Fox, and T. Hey, 747-772, Chichester,

England: John Wiley and Sons.

Yamamoto, J. and K. Sycara. 2001. A Stable and Efficient Buyer Coalition Formation

Scheme for E-Marketplaces. In Proceedings of the Fifth International Conference

on Autonomous Agents. Pages 576-583, Montreal, Canada, May 28 - June 1.

Ye, Y. and Y. Tu. 2003. Dynamics of Coalition Formation in Combinatorial Trading. In

Proceedings of International Joint Conference of Artificial Intelligence. Pages 625-

632, Acapulco, Mexico, August 9-15.

Zeng, D. and K. Sycara. 1998. Bayesian Learning in Negotiation. International Journal of

Human-Computer Studies 48:125-141.

Zweben, M. and M.S. Fox (Editors). 1994. Intelligent Scheduling. San Francisco, CA:

Morgan Kaufmann Publishers.

 142

VITA

Linli He received her Master of Science degree in computer science from Southwest

Petroleum Institute, P. R. China in 1999. She entered the computer science program at

Texas A&M University in September 2000, and she received her Doctor of Philosophy

degree in May 2006. Her research interests include artificial intelligence, multiagent

systems, game theory, information fusion and operations management.

Linli He may be reached at Knowledge Based Systems, Inc., 1408 University Drive

East, College Station, TX 77840. Her email address is lhe@kbsi.com.

