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ABSTRACT 

 

Mechanism Design for Distributed Task and Resource Allocation Among Self-Interested 

Agents in Virtual Organizations. (May 2006) 

Linli He, M.S., Southwest Petroleum Institute 

Chair of Advisory Committee: Dr. Thomas R. Ioerger 

The aggregate power of all resources on the Internet is enormous. The Internet can 

be viewed as a massive virtual organization that holds tremendous amounts of information 

and resources with different ownerships. However, little is known about how to run this 

organization efficiently. 

This dissertation studies the problems of distributed task and resource allocation 

among self-interested agents in virtual organizations. The developed solutions are not 

allocation mechanisms that can be imposed by a centralized designer, but decentralized 

interaction mechanisms that provide incentives to self-interested agents to behave 

cooperatively. These mechanisms also take computational tractability into consideration 

due to the inherent complexity of distributed task and resource allocation problems.  

Targeted allocation mechanisms can achieve global task allocation efficiency in a 

virtual organization and establish stable resource-sharing communities based on agents’ 

own decisions about whether or not to behave cooperatively. This high level goal requires 

solving the following problems: synthetic task allocation, decentralized coalition formation 

and automated multiparty negotiation. 



 iv

For synthetic task allocation, in which each task needs to be accomplished by a 

virtual team composed of self-interested agents from different real organizations, my 

approach is to formalize the synthetic task allocation problem as an algorithmic mechanism 

design optimization problem. I have developed two approximation mechanisms that I prove 

are incentive compatible for a synthetic task allocation problem.  

This dissertation also develops a decentralized coalition formation mechanism, 

which is based on explicit negotiation among self-interested agents. Each agent makes its 

own decisions about whether or not to join a candidate coalition. The resulting coalitions 

are stable in the core in terms of coalition rationality. I have applied this mechanism to 

form resource sharing coalitions in computational grids and buyer coalitions in electronic 

markets.  

The developed negotiation mechanism in the decentralized coalition formation 

mechanism realizes automated multilateral negotiation among self-interested agents who 

have symmetric authority (i.e., no mediator exists and agents are peers).  

In combination, the decentralized allocation mechanisms presented in this 

dissertation lay a foundation for realizing automated resource management in open and 

scalable virtual organizations. 
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CHAPTER I
     

INTRODUCTION AND MOTIVATION 

 

The main theme of this dissertation is to design decentralized mechanisms for 

distributed task and resource allocation among self-interested agents who are trying to 

maximize their own benefit without concern of the global good in a multiagent system. The 

developed mechanisms are targeted to establish virtual organizations through interactions 

among self-interested agents. Within such a virtual organization, self-interested agents must 

have incentives to behave cooperatively if global efficiency of distributed task and resource 

allocation is to be achieved without a centralized controller. 

 

MOTIVATION 

 

Distributed task and resource allocation have been fundamental research topics in 

distributed computer science (Zweben and Fox 1994; Clearwater 1996; Kraus and Plotkin 

2000). Multiple agents need to work together due to an inherent distribution of resources 

such as knowledge, capability, information, and expertise among the agents. Agents are 

often unable to accomplish their own tasks alone, or they might be able to accomplish tasks 

better when working with others (Weiss 1999). Traditionally, the designers of distributed 

task and resource allocation algorithms and protocols have made an implicit assumption 

 that the participating agents will act as instructed – except, perhaps, for faulty or malicious 

                                                 
This dissertation follows the style of Applied Artificial Intelligence. 
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ones (Nisan and Ronen 1999; Ronen 2000). The main concerns of designing distributed 

allocation algorithms are algorithmic complexity and communication load (network 

complexity). 

This assumption can no longer be taken for granted with the emergence of the 

Internet as the platform of computation. The aggregate power of all resources on the 

Internet is huge. Ideally, this aggregate power would be optimally and dynamically 

allocated online to appropriate users (Nisan and Ronen 1999; Ronen 2000). The resources 

on the Internet have many new features that do not exist in traditional computational 

platforms. Notably, the resources are heterogeneous with different ownerships, dynamic 

availability, and geographical dispersion. Thus, the Internet has the characteristics of an 

economy as well as those of a computational system (Feigenbaum et al. 2001; Feigenbaum 

and Shenker 2002). The majority of the participating agents are neither obedient nor 

adversarial, but rational or self-interested in the sense that each agent has its own goals and 

preferences. The decision for a self-interested agent to be cooperative is based upon 

whether the cooperation can bring greater benefit than working alone. They will not 

necessarily follow prescribed algorithms but will respond to punishments and incentives.  

Existing distributed task and resource allocation mechanisms typically have been 

constructed from the top down (Rosenschein and Zlotkin, 1994), namely, by imposing 

fixed allocation rules to handle all possible situations. This design philosophy does not 

work well in a computational platform like the Internet because there does not exist an 

omniscient designer who can develop a task and resource allocation mechanism that 

satisfies the preferences of all self-interested resource users and suppliers and maximizes 

the global efficiency. Instead, task and resource allocation mechanisms need to be 
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established from the bottom up (Clearwater 1996, Tesfatsion 2002), meaning that every 

participating agent makes individual decisions based on local knowledge and preferences 

(most likely with incomplete information about other agents) without considering the 

global efficiency. The global efficiency is generated from the bottom up through 

interactions among self-interested agents. A decentralized mechanism for a distributed 

allocation problem is indeed an interaction mechanism for self-interested agents who 

normally have incomplete information about others (Rosenschein and Zlotkin 1994). The 

objective of designing such an interaction mechanism is to establish a stable system where 

resources are shared through interactions among self-interested agents. Computational grids 

and Peer-to-Peer systems are typical examples of such a system. 

Interactions among self-interested agents have been studied intensively in game 

theory (Kahan and Rapoport 1984; Fudenberg and Tirole 1991; Osborne and Rubinstein 

1994). The focus of game theory is to analyze whether a given solution is stable in terms of 

the willingness of self-interested agents to behave cooperatively. Game theorists have 

developed a number of solution concepts such as dominant strategy, core, bargain set, 

Sharply value, Nash equilibrium, etc. to evaluate this stability. The preferred solution 

concept is dominant strategy, which means that each agent can maximize its own utility no 

matter what kind of strategies that other agents are using (Fudenberg and Tirole 1991; 

Osborne and Rubinstein 1994).  

Mechanism design is a sub-field of game theory that has focused on problems 

where the goal is to satisfactorily aggregate privately known preferences of several agents 

towards a “social choice” (Jackson 2001). In other words, it studies how “rules of a game” 

constrains the public behavior of the participating agents by providing proper incentives or 
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punishments. The desired mechanisms are incentive-compatible in the sense that the 

designed mechanisms can provide incentives to self-interested agents to behave 

cooperatively in a multiagent system.    

However, game theory does not provide actual methodologies to design such a 

mechanism.  For a decade, distributed artificial intelligence has been studying how to 

develop automated interaction mechanisms for self-interested agents in multi-agent systems 

(Rosenschein and Zlotkin 1994; Sandholm 1996; Parkes 2000). Game theory plays an 

irreplaceable role in providing a mathematic foundation to evaluate developed mechanisms. 

Researchers soon recognized that game theory downplays the complexity aspect of these 

mechanisms. Self-interested agents in game theory are assumed to be perfectly rational in 

the sense that the computational cost of rational reasoning is not taken into account 

(Fudenberg and Tirole 1991; Osborne and Rubinstein 1994). This assumption is invalid in 

the real world. There are many optimization allocation problems that are computationally 

intractable (Sandholm 1996). Yet, it has been proved that some approximation algorithms 

might cause a mechanism to be no longer incentive-compatible (Parkes 2000). Therefore, 

to solve distributed task and resource allocation problems among self-interested agents, 

incentive compatibility and computational tractability need to be jointly addressed. 

Researchers in distributed artificial intelligence have put a great deal of attention 

into developing theoretic models that consider incentive compatibility and computational 

tractability jointly. Established by Nisan and Ronen (1999), algorithmic mechanism design 

(AMD) is a formal model of centralized computation that combines incentive compatibility 

(the “mechanism design” part) with computational tractability (the “algorithmic” part). 

Feigenbaum et al. (2001) extended this model to distributed algorithmic mechanism design 
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(DAMD), in which the same goals of incentive compatibility and computational tractability 

are considered. In addition, the agents, the relevant information, and the computational 

model are all inherently distributed. Network complexity also needs to be taken into 

consideration. Sandholm and Lesser (1995, 1997) developed a domain-independent model 

for coalition formation in a situation where the rationality of self-interested agents is 

bounded by computational complexity. These theoretic models bring game theory and 

complexity theory together and provide tangible criteria for evaluating whether a 

mechanism is both incentive-compatible and computationally tractable. 

The focus of this dissertation is not to invent a new incentive-compatible and 

computationally tractable theoretic model, but to use the existing models (Rosenschein and 

Zlotkin 1994; Sandholm and Lesser 1997; Nisan and Ronen 1999; Papadimitriou 2001; 

Azoulay-Schwartz and Kraus 2004; Porter 2004) to analyze the mechanisms that I develop 

for solving distributed task and resource allocation problems that have a variety of 

applications in virtual organizations, grid and peer-to-peer computing and electronic 

commerce. This dissertation also focuses on designing decentralized mechanisms where a 

system-wide solution for a distributed allocation problem consists of agreements made by 

multiple participating agents. How to achieve those agreements in a distributed and 

dynamic environment is one of the major focuses of this dissertation.  

Negotiation is essential to achieving an agreement among self-interested agents 

(Kraus 2001). Social scientists have studied negotiation from many different perspectives 

(Raiffa 1982). Game theorists are interested in how self-interested agents divide the payoff 

of cooperation through negotiation (Raiffa 1982; Fudenberg and Tirole 1991; Osborne and 

Rubinstein 1994). Bargain theory (Harsanyi 1967, 1977) is a typical example. Researchers 



 6 

in distributed artificial intelligence have put a great deal of effort into implementing 

automated negotiation among self-interested agents. Most previous studies focus on 

bilateral negotiation between two agents (Rosenschein and Zlotkin 1994; Jennings et al 

2001; Larson and Sandholm 2001). As for how to achieve an agreement among multiple 

agents, little work has been done. In this dissertation, implementing automated multiparty 

negotiation among self-interested autonomous agents is one of the most important methods 

for solving distributed allocation problems.  

 

EXAMPLE DISTRIBUTED TASK AND RESOURCE ALLOCATION SCENARIOS 

 

To address the motivation of this research from a practical perspective, the 

following section describes some example scenarios in real applications where the 

distributed task and resource allocation mechanisms developed in this dissertation are 

needed. The formal distributed allocation problems that this dissertation will address are 

abstracted from these real applications. 

 

Outsourcing/Virtual Teamwork 

 

As information and communication technologies overcome the constraints of time 

and distance, it becomes a necessary to create virtual organizations that consists of a 

temporary network of independent companies linked by IT infrastructure to share skills, 

costs, and access to one another's markets. One of the most important advantages of a 

virtual organization is executing synthetic tasks by forming temporary teams composed of 
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experts from different fields and independent organizations (which are most likely 

geographically dispersed) through the Internet.  

One typical example is to construct temporary offshore software development teams 

to accomplish multiple projects (Hatch 2005).  The problem is how to construct the most 

efficient offshore teams from various outsourcing service vendors to finish these projects as 

soon as possible. One of the major challenges of this problem is that the actual capabilities 

of software engineers from different outsourcing service vendors are private information 

that cannot be accessed directly from outside. The project manager has to construct virtual 

software development teams and allocate tasks based on the reported capabilities.  

 

 

Project 

Manager 

Group#1 Group#m 

Projects 

Group#j 

… … 

… … 

Project#i 

… … 

a1i aji ami 

FIGURE 1.1. Synthetic Task Allocation 
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Obviously, each vendor is self-interested in the sense that its goal is to maximize its 

own profit. Therefore, an incentive-compatible allocation mechanism is required to induce 

outsourcing service vendors to be willing to report the true capability of their software 

engineers.  

Suppose there is a project manager who has a number of projects at hand, and each 

project cannot be accomplished by only one of software engineers due to multiple skills 

required (e.g., one project might need a GUI engineer and a database designer working 

together). People with different expertise might belong to different groups that are self-

interested, and experts in one group might have different capabilities in terms of how 

efficient they are. How does the project manager determine the true capabilities of all the 

experts in different groups and compose a temporarily appropriate team for each project? 

Intuitively, a senior software engineer might be slowed down because of working with a 

junior graphic designer. Therefore, the problem becomes how does the project manager 

build efficient teams for synthetic tasks without knowing the true capabilities of agents in 

different groups so that he can accomplish all projects in the minimal amount of time? 

Figure 1.1 illustrates the synthetic task allocation problem considered in this 

dissertation. A set of projects needs to be done. Each of these projects requires cooperation 

among agents from different groups with different expertise. Within each group, different 

agents require different amounts of time to finish identical tasks. I use the capability model 

in (He and Ioerger 2003) to represent the capability differentiation among agents in each 

group. Without loss of generality, I assume that each project needs exactly one agent from 

each group. I call these kinds of projects synthetic tasks. The project manager needs to 

build a temporary team for each project. The amount of time required to finish a project 
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depends on the capability of the most inefficient member of that team. The objective of the 

project manager is to minimize the total amount of time required to accomplish all projects. 

As shown in Figure 1.1, the number of possible teams that need to be considered is 

n
m in the worst case, where m is the number of groups and n is the number of members in 

each group. In fact, even if there is only one group and agents are cooperative, the task 

allocation problem is NP-hard (Coffman et al. 1987). Complexity cannot be ignored in 

solving this synthetic task allocation problem. Therefore, an efficient synthetic task 

allocation mechanism is needed that is both incentive-compatible and computationally 

tractable. 

Indeed, the synthetic task allocation problem described above is essential to 

conducting efficient task allocation in a virtual organization. The Internet is becoming a 

large-scale virtual organization that holds a tremendous amount of information and 

resources with different owners. Little is known about how to run this organization 

efficiently. There does not exist a well-understood organizational structure that can model 

this system. In this system, allocating tasks to appropriate computational resources is 

analogous to allocating synthetic tasks to offshore teams. Computational tasks might need 

different resources from different resource owners on the Internet. Also, computational 

resources are most likely heterogeneous. Resources of the same type may have different 

capabilities (e.g. CPUs with different speeds). Incentive-compatible allocation mechanisms 

are required to induce resource owners to reveal the true capabilities of their computational 

resources. 
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Resource Sharing in Computational Grids and Peer-to-Peer Systems 

 

Many scientific and commercial computational applications require increasingly 

powerful computational resources to satisfy computational performance requirements. 

Large amounts of computational resources connected via the Internet are idle most of the 

time. Utilizing these idle resources that are owned by different organizations or individuals 

and are geographically dispersed to satisfy intensive computational power requirements 

from numerous scientific and commercial applications has become a major goal of 

distributed computer science.  The emergent areas of grid computing and peer-to-peer 

computing are aimed at overcoming this challenge (Foster and Kesselman 1998; Buyya 

2002; Buyya et al. 2002; Milojicic et al. 2002; Berman et al. 2003). 

The recent developments in grid and peer-to-peer computing have positioned them 

as promising next-generation computing platforms. They enable the creation of virtual 

enterprises for sharing computational resources distributed across the world. Both of these 

two research areas in distributed computing are aimed at addressing the problem of 

organizing large-scale computational societies for resource sharing within virtual 

communities where resources may not be controlled by any single organization.  

The participating agents are inherently self-interested in computational grids and 

peer-to-peer systems. Providing incentives for those self-interested agents to participate in a 

computational grid or peer-to-peer system is a key to making these computational systems 

feasible. A basic assumption is that agents in a computational grid or a computational peer-

to-peer system have peak workloads at different times so that they can utilize others’ 

resources at idle times. That necessitates distributed load balancing (Lan et al. 2002; Shan 



 11 

et al. 2003) among self-interested agents. Agents share their resources with their partners. 

The question is how to establish such partnerships? 

In current computational grids, community standards are represented via explicit 

policies (Foster and Iamnitchi 2003; Foster et al. 2004). Resources owned by various 

administrative organizations are shared under locally defined policies that specify what is 

shared, who is allowed to share, and under what conditions. Normally, a small number of 

sites are connected in collaborations engaged in complex scientific applications. As system 

scale increases, grid developers are now facing problems relating to autonomic 

configuration and management. How to automatically adjust system level policy to be 

adaptive to system updates (both hardware and software) and user requirement changes 

remains a major challenge in grid computing. As Foster and Iamnitchi (2003) pointed out: 

“Over all, scalable autonomic management remains a goal, not an accomplishment, for 

Grid computing.”  

The explicit grid policy implemented in the existing computational grids can be 

viewed as agreements achieved through negotiation among participating organizations. 

This dissertation proposes a resource sharing mechanism that is based on a distributed 

coalition formation mechanism through automated multiparty negotiation among self-

interested agents. This approach aims to establish resource management policies in 

computational grids autonomously and dynamically through automated negotiations among 

participating agents.  
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Combinatorial Trade in Electronic Markets 

 

In electronic markets, the distance between producers, wholesalers, distributors, 

retailers, and consumers has practically disappeared (Ye and Tu 2003). There are many 

more choices faced by all parties involved in electronic combinatorial trade than in a 

traditional trade system. The relationship between suppliers and customers is under-going 

revolutionary change. 

Buyers vary a great deal in the quantity of goods they want to purchase, in customer 

service requirements, in income, in time constraints and in many other dimensions. 

Different purchasing goals can cause widely varying production and transaction costs. 

Suppliers have their own “buyer selection” strategies to achieve better profitability. Quickly 

differentiating the supplier’s marketing strategy based on the difference of purchasing goals 

among various buyers plays a key role in improving the sellers’ competitive capabilities in 

electronic markets (He and Ioerger 2004a, 2005a and 2005b).  

In traditional markets, it is impractical for buyers to build such purchasing strategies 

because of the expense of access to product information. However, in the age of electronic 

commerce, buyers can access product information easily and inexpensively. Small buyers 

with little or zero bargaining power in traditional markets now can build collaborative 

purchasing strategies to minimize their cost in electronic markets. A well-known example 

of building such a purchasing strategy for buyers is to form buyer coalitions (e.g., Buyer 

Club) to enlarge the total quantity of goods purchased in each transaction (Lerman an 

Shehory 2000; Yamamoto and Sycara 2001; Li and Sycara 2002). Buyers can obtain lower 

prices without buying more than their real need. If the buyers are heterogeneous in the 
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sense that they need to buy different goods in a combinatorial market, the mechanism is the 

so-called combinatorial coalition formation. 

Buyer coalition formation is a distributed combinatorial optimization problem, 

which is a highly non-trivial problem that needs to be solved by considering incentive 

compatibility and computational tractability jointly. In contrast to the previous work, this 

dissertation focuses on solving this problem in a pure decentralized manner, which is more 

realistic than solving the problem through a centralized mediator. I apply my distributed 

coalition formation mechanism that is based on automated multiparty negotiation. This 

approach allows agents to make their own decisions, and significantly reduces the 

computational complexity by distributing the computational costs among all participating 

agents.  

 

DISTRIBUTED METHODS FOR TASK AND RESOURCE ALLOCATION 

 

I have developed the following distributed methods for task allocation and resource 

sharing in virtual organizations. 

 

Incentive-Compatible Mechanisms for Synthetic Task Allocation  

 

In this dissertation, designing incentive-compatible mechanisms for synthetic task 

allocation (He and Ioerger 2005c) among self-interested agents is one of the major 

contributions. I develop both incentive-compatible and computationally intractable 

mechanisms for synthetic task allocation problems, in which each task needs to be 
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accomplished by a virtual team composed of self-interested agents from different real 

organizations.  I formalize the synthetic task allocation problem as an algorithmic 

mechanism design optimization problem. I have developed two incentive-compatible 

mechanisms for the synthetic task allocation problem. It shows that designing both 

incentive-compatible and computationally tractable mechanisms is feasible for synthetic 

task allocation problems in virtual organizations.   

 

Forming Resource Sharing Coalition through Multiparty Negotiation 

 

Another major contribution of this dissertation is that I develop a decentralized 

coalition formation mechanism, which is based on explicit negotiation among self-

interested agents (He and Ioerger 2004a, 2005a and 2005b). The developed coalition 

formation mechanism achieves decentralization through explicit negotiation among self-

interested agents. Each agent makes its own decisions on whether or not to join a possible 

coalition. The resulting coalitions are stable in the core in terms of coalition rationality.  

Compared with the centralized approaches, this mechanism significantly reduces the 

complexity of coalition formation processes. The communication load caused by 

negotiation is very low due to a properly designed multiparty negotiation protocol.  

The multiparty negotiation mechanism itself is unique because existing negotiation 

mechanisms in distributed artificial intelligence are bilateral. The developed negotiation 

mechanism extends the Monotonic Concession Protocol (Rosenschein and Zlotkin 1994) 

for negotiation between two agents and realizes automated multilateral negotiation among 
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self-interested agents who have symmetric authority (i.e., no mediator exists and agents are 

peers) in a multiagent system.  

I have applied this mechanism to form resource sharing coalitions in computational 

grids and buyer coalitions in electronic markets. The simulation results show that the 

coalition formation process is successful in the sense that automated multiparty negotiation 

processes can lead agents to find appropriate coalitions and a coalition formation process 

can end properly. The communication load is practical in the sense that the number of 

messages received by each agent is much less than the worst case. For buyer coalition 

formation, my distributed coalition formation mechanism can result in nearly optimal 

results. 

 

OVERVIEW OF CONTRIBUTIONS 

 

This dissertation develops decentralized mechanisms for distributed task and 

resource allocation among self-interested agents in virtual organizations. These 

mechanisms are both incentive-compatible and computationally tractable. Based on these 

mechanisms, stable virtual organizations (or communities) can be established through 

interactions among self-interested agents without a centralized controller. These 

mechanisms are also easy to implement, so that they can be built in autonomous agent 

systems. This has the potential to dramatically change the current reality in which most 

resource management policies in virtual organizations (e.g. computational grids) are 

manually enforced. 

 



 16 

CHAPTER II 

RELATED WORK 

 

Many researchers in distributed artificial intelligence (Rosenschein and Zlotkin 

1994; Sandholm 1996, 2003; Parkes 2000) have reviewed related game-theoretic aspects in 

terms of incentive compatible issues in multiagent systems. This chapter mainly focuses on 

the related work that has been done in distributed artificial intelligence because I am 

interested in applying existing theoretic models to formalize distributed task and resource 

allocation problems for self-interested agents. The goal of this dissertation is to design 

mechanisms for distributed task and resource allocation among self-interested agents that 

can result in stable resource-sharing communities. This chapter reviews existing theoretic 

models that jointly address incentive compatibility and computational tractability and the 

methodologies for distributed task and resource allocation problems in distributed artificial 

intelligence.  

 

ALGORITHMIC MECHANISM DESIGN 

 

Established by Nisan and Ronen (1999), algorithmic mechanism design (AMD) is a 

formal model that considers both incentive compatibility (the “mechanism design” part) 

and computational tractability (the “algorithmic” part).  
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Mechanism Design 

 

A mechanism design problem has two components: the algorithmic output 

specification and descriptions of what kind of benefits the participating agents can obtain. 

These components are given as utility functions over the set of possible outputs. 

Definition 2.1: Mechanism Design Problem 

A mechanism design problem is given by an output specification and by a set of agents’ 

utilities. There is a collection of agents A = {a1, …, an}. Each agent ai has some private 

information termed as its type ti ∈ Ti. The output specification maps to a type vector t = (t1, 

…, tn). Each agent ai’s preferences are given by a real valued function: vi(o, ti) in terms of 

some common currency. If the mechanism’s output is o and the mechanism hands this 

agent pi units of this currency, then its utility will be ui =  pi + vi(o, ti) (termed quasi-linear 

utility). The agent aims to optimize this utility. 

Definition 2.2: Mechanism Design Optimization Problem 

This is a mechanism design problem where the output specification is given by a positive 

real valued objective function g(o, t) and a set of feasible output F. The objective is to find 

an output o ∈ F that optimizes g(o, t). 

A mechanism solves a given problem by assuring that the required output occurs 

even as agents choose their strategies so as to maximize their own utilities. The formal 

definition of a mechanism is given as the following: 

Definition 2.3: A Mechanism 

There is a collection of agents A = {a1, …, an}. The mechanism defines a family of 

strategies Si for each agent ai. The agent can choose any si ∈ Si. A mechanism m = (o, p) is 
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composed of two elements: An output function o = o(s1 … sn) and an n-tuple of payments 

p1(s1 … sn), …, pn(s1 … sn). A mechanism is poly-time computable if the output and 

payment functions are computable in polynomial time. 

 

The Revelation Principle 

 

Definition 2.4: Dominant Strategy 

A mechanism is an implementation of dominant strategies if for each agent ai and each type 

ti there exists a strategy si ∈ Si, termed as dominant strategy, such that for all possible 

strategies of the other agents a-i (i.e. {A/ ai}), si maximizes agent ai’s utility. 

Definition 2.5: Truthful Implementation 

A mechanism is truthful if for each agent ai and all its ti, Si = Ti, i.e., its dominant strategy is 

to report its real type. 

Definition 2.6: Strongly Truthful Implementation 

A mechanism is a strongly truthful implementation if truth-telling is the only dominant 

strategy for agents. 

 

Vickrey-Groves-Clarke Mechanisms 

 

The most positive result in mechanism design is the generalized Vickrey-Groves-

Clarke (VGC) mechanism (Vickery 1961; Clarke 1971; Groves 1973). The VGC 

mechanism applies to mechanism design problems where the objective function is simply 

the sum of all agents’ valuations.  
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Definition 2.7: Utilitarian Functions 

A maximization mechanism design problem is called utilitarian if its objective function 

satisfies g(o, t) =  ∑i vi(o, ti). 

Definition 2.8: A VGC Mechanism 

A direct revelation mechanism m = (o(t), p(t)) belongs to the VGC family if  

• o(t) ∈ argmaxo∑ =

n

i ii tov
1

),(  

• )()),(()( iiij jji thttovtp
−≠

+=∑  where pi(t) is the payment that agent ai obtains when 

the type vector is t, ∑ ≠ij jj ttov )),(( is the sum of values of all agents except agent ai 

when the type vector is t, hi() is an arbitrary function of t-i and t-i = (t1, … ti-1, ti+1, …, 

tn). A very important theorem of VGC mechanism has been proved by Groves (1973): 

Theorem 2.1: A VGC mechanism is truthful. 

Feigenbaum et al. (2001) extended this model to distributed algorithmic mechanism 

design (DAMD), in which the same goals of incentive compatibility and computational 

tractability are presented. In addition, the agents, the relevant information, and the 

computational model are all inherently distributed. Network complexity also needs to be 

considered. In Chapter III, I will study the synthetic task allocation problem by formalizing 

this problem as the algorithmic mechanism design optimization problem.  

 

COALITION FORMATION 

 

Sandholm (1996) probably did the most complete survey of literature related to the 

theory of coalition formation among self-interested agents in his dissertation. He points out 
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that coalition formation includes three activities. The first is coalition structure generation, 

that is, formation of coalitions by the agents such that agents within each coalition 

coordinate their activities. Mathematically, it means partitioning a given set of agents into 

disjoint coalitions.  

 

 

The partition is called a coalition structure. Different subsets have different values 

(e.g. due to cost savings, or synergies of capabilities), and the goal is to find a partition of 

the agents that maximizes this value (summed over each group). The second is solving the 

optimization problems within each coalition. In a task allocation problem, this decides how 

to distribute tasks among the member agents of a coalition. The third activity involves 

payoff division.  It deals with how to divide the gain of a coalition to its member agents. 

 

Agent1 Agent2 Agent3 Agent4 Agentn 

… 

Coalition Structure Generation  

Coalition1 Coalition2 Coalition3 

Solving the optimal problems within each coalition 

Payoff Division 
Payoff Division 

FIGURE 2.1. Activities in Centralized Coalition Formation 
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The stability of the coalition depends on whether each member agent agrees with the actual 

payoff division. These activities interact with each other. Figure 2.1 illustrates these three 

activities.  

The first two activities described above are difficult in terms of their complexities. 

Sandholm et al. (1999) has proved that the complexity of coalition structure generation is 

O(nn). Normally, most allocation optimization problems are NP-hard problems (Sandholm 

1996; Parkes 2000). Payoff division is also a hard problem in terms of its complexity. The 

stability of a coalition depends on whether the payoff division is incentive-compatible in 

the sense that each member agent will not obtain more benefit by leaving the coalition. 

Therefore, coalition formation also needs to be addressed by jointly considering incentive 

compatibility and computational tractability. 

 Game theory provides many solution concepts for evaluating the stability of a 

coalition (Fudenberg and Tirole 1991; Osborne and Rubinstein 1994) under the assumption 

that agents involved in coalition formation have perfect rationality (i.e., algorithms can find 

the optimal solution with zero computational cost), which is not realistic in the real world. 

Sandholm and Lesser (1997) extended coalition formation in game theory to a normative 

theory of coalitions in combinatorial domains based on a domain classification for bounded 

rational agents. 

Game theorists did not provide actual methods of forming coalitions in real 

applications. Researchers in distributed artificial intelligence have put a great deal of effort 

into developing feasible algorithms (Sandholm and Lesser 1997; Sen and Dutta 2000; 

Caillou et al. 2002; Li and Sycara 2002) for all three activities of coalition formation 

among self-interested agents. Most of these works take centralized approaches by 
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formalizing coalition formation as a set of optimization problems. Generally, a group leader 

is chosen for organizing the coalition formation process and is in charge of payoff division. 

It is unclear how to select such an unselfish leader who is fair and acts in each member’s 

and the group’s best interests. The computational intractability of the centralized 

approaches also makes these algorithms only applicable for a small number of agents. 

There are only a few works on coalition formation that adopt distributed 

approaches. Shehory and Kraus (1995, 1998) developed distributed any-time algorithms of 

forming coalitions for cooperative agents for task allocation problems. They proposed two 

additional distributed algorithms for coalition formation among self-interested agents in 

non-super-additive games (Shehory and Kraus 1999). A merging process of coalition 

configurations from all agents is required. Voting is suggested to be one of the possible 

decision-making methods. Lerman and Shehory (2000) developed a distributed buyer 

coalition formation mechanism for a large-scaled electronic market, where a buyer coalition 

may form when buyers encounter other buyers or existing coalitions randomly. 

This dissertation proposes a distributed coalition formation mechanism that is based 

on conducting explicit negotiation among self-interested agents. By “explicit”, I mean that 

there are clear procedures for either accepting or rejecting a proposed coalition. An 

automated multiparty negotiation protocol is developed for autonomous agents. This 

distributed coalition formation mechanism allows self-interested agents to make their own 

decision about whether or not to join a coalition. A coalition is formed if all members agree 

to join this coalition. All agents are symmetric in terms of their equal roles in a coalition 

formation process. There does not exist any group leader or matchmaker to mediate the 

coalition formation process. Each agent only knows its own benefits of joining a coalition, 
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which is private information that cannot be accessed by other agents directly. An agreement 

about forming a coalition is achieved by negotiation among participating agents. 

This decentralized approach to coalition formation is more realistic in practice than 

previous approaches. Coalitions in the real world are generally formed through explicit 

negotiation among multiple agents. Agents make their own decisions on whether or not to 

join a coalition. Most likely, agents have no complete information about other agents' 

preferences. My mechanism tries to capture these features in a coalition formation process 

among human agents. Furthermore, by letting agents make their own decisions, my 

mechanism removes two computationally intractable activities of coalition formation: 

coalition structure generation and payoff division. The ultimate objective of this research is 

to maximizing social welfare (optimal coalition structure) through providing appropriate 

incentive to agents so that their decisions on joining a coalition will lead to an optimal 

coalition structure under constraints that agents are self-interested and willing to maximize 

their own utilities. 

 

NEGOTIATION AMONG SELF-INTERESTED AGENTS 

 

Negotiation has been studied in many different disciplines such as politics, 

economics, business and public relations. Rosenschein and Zlotkin (1994) pointed out that 

the world functions through interacting agents. Each person pursues his own goals through 

encounters with other people or machines. The process of negotiation takes place in both 

formal and informal contexts. It is part of our daily life. 
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The importance of studying negotiation is straightforward for designing 

decentralized mechanisms for distributed task and resource allocation problems 

(Rosenschein and Zlotkin 1994; Sandholm 1996; Kraus 2001; Jennings et al 2001). 

Negotiations are initialized when agents need to make agreements on how to allocate a 

shared resource, how to do distributed load balancing, how to exchange resources etc. In 

this dissertation, negotiation is used for coalition formation, namely, agents making 

agreements about whether or not to form a coalition through multiparty negotiation. 

 There are two main research issues on negotiation in multiagent systems. The first 

is how to develop practical negotiation strategies (Kraus 2001), i.e., what kind of strategies 

that agents should use to maximize their own good during a negotiation process. The 

second is to develop protocols that allow automated negotiation agents (Jennings et al 

2001) to negotiate with each other. Game theory tools (e.g., Nash equilibrium, dominant 

strategy etc.) are used to evaluate negotiation strategies and protocols. 

 

The Art and Science of Negotiation 

 

Although I mainly focus on introducing the related work on negotiation in 

multiagent systems, I do not want to ignore Raiffa’s book (1982) “The Art and Science of 

Negotiation”, which is probably the most popular reference book for research work on 

negotiation. "Art" means dealing with the human element. "Science" means those aspects 

of the negotiation process that are capable of being analyzed in a fairly structured manner. 

The book conveys an idea that the “zero-sum” way of thinking, according to which one side 

must lose if the other wins, often makes both sides worse off than they would be when 
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bargaining for joint mutual gains. Raiffa is mainly interested in determining which 

outcomes to negotiation are optimal for both parties. Much of his analysis is based on the 

premise that both parties will act in an ultimately rational manner and make decisions that 

will be optimal. These analyses may not be practical in negotiation among human subjects 

due to the assumption that the negotiation subjects are always rational (i.e., each subject 

always tries to maximize its own utility). I believe it is the main reason why the researchers 

in multiagent systems would like to borrow ideas from this book because autonomous 

agents can be built to be rational. As with most work in game theory, this book does not 

focus on developing actual negotiation strategies and protocols.  It instead analyzes existing 

cases.  

 

Rules of Encounter  

 

“Rules of Encounter: Designing Conventions for Automated Negotiation among 

Computers” is a very well-known book about negotiation among autonomous agents 

written by Rosenschein and Zlotkin (1994), who are pioneers of introducing game theory to 

distributed artificial intelligence. The book presents the beginnings of the theory of 

designing interaction protocols among computers with different designers and owners by 

using game theory tools. It identifies three distinct domains (task oriented, state-oriented 

and world oriented domain) where negotiation is applicable and addresses different 

strategies for each domain.  

There are two main points that the book tries to make about designing negotiation 

strategies. The first is that by appropriately adjusting the rules of public behavior (rules of 
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the game) by which agents must interact, the private strategies of each agent will be 

influenced. This can ensure desirable global attributes for a distributed and heterogeneous 

system. The second is that the participating agents must agree on the rules of the game. 

This can result in stable interaction protocols. Game theory tools are mainly used to 

evaluate these two criteria. 

Throughout the book, only two-agent domains and encounters are analyzed. The 

book presents a famous two-agent negotiation protocol, which is called “Monotonic 

Concession Protocol” (MCP). In the MCP protocol, agents start by simultaneously 

proposing one deal from the space of possible deals. An agreement is reached if one of the 

agents matches what the other one asked for in terms of utility. My focus in this dissertation 

is to let multiple self-interested agents achieve agreements through a multiparty negotiation 

protocol, which extends the MCP protocol to multiple-agent domains. 

 

Strategic Negotiation in Multiagent Systems 

 

Kraus (2001) presented a strategic-negotiation model, which is based on 

Rubinstein’s model of alternating offers where agents exchange offers until they reach an 

agreement or until one of them opts out of the negotiation. The goal of developing this 

model is to resolve conflicts among agents by reaching agreements through negotiation. 

The applications of this model include the data allocation problem in information server, 

common resource allocation problem, task delegation within a team, and the pollution 

allocation problem. The objective of this strategic-negotiation model is to provide the 
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agents with ways to reach mutually beneficial agreements without delay. In this model, 

there are n agents who need to reach an agreement on a given issue.  

This dissertation embeds negotiation into coalition formation. Agents might be 

involved in multiple negotiation processes during a coalition formation process. An agent’s 

decision on whether or not to accept an offer may not only depend on the decisions of other 

members in a proposed coalition but also depend on the decisions of agents outside of the 

proposed coalition. 

 

Automated Negotiation 

 

Jennings et al. (2001) proposed a generic framework for classifying and viewing 

automated negotiations. This framework was then used to discuss and analyze the three 

main approaches that have been adopted to automated negotiation: game theoretic, heuristic 

and argumentation-based approaches. For each approach, a brief appraisal of its relative 

merits and drawbacks is presented. They pointed out that much research still needs to be 

performed in the area of automated negotiation. The aim of this work is not to develop 

actual automated negotiation strategies or protocols for particular domains. It analyzes 

existing automated negotiation implementation.  

 

Other Work Related to Negotiation in Multiagent Systems 

 

Negotiation has been studied in distributed artificial intelligence both in distributed 

problem solving (DPS) where agents are cooperative and in Multiagent Systems (MAS) 
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where agents are self-interested. Negotiation is used in DPS for solving conflicts, 

distributed planning and distributed search (O’Hare and Jennings 1996). This dissertation 

does not focus on cooperative agents.  

Sycara (1987, 1990) developed a model of negotiation that combines case-based 

reasoning and optimization of multi-attribute utilities. Zeng and Sycara (1998) embedded 

learning into negotiation. Agents can learn from previous encounters about their opponents’ 

negotiation strategies so that they choose corresponding strategies to influence their 

opponents or to obtain a better deal. Sierra et al. (1997) presented a model of negotiation 

for autonomous agents, which is distilled from intuitions about good behavioral practice in 

human negotiation. Sandholm and Lesser (2002) explored issues such as levels of 

commitment that arise in automated contract among self-interested agents whose rationality 

is bounded by computational complexity. I will discuss about their research more in the 

related work about distributed task and resource allocation. 

 

DISTRIBUTED TASK AND RESOURCE ALLOCATION IN MULTIAGENT 

SYSTEMS 

 

Distributed task and resource allocation is a central theme of distributed computer 

science (Clearwater 1996). I do not address the allocation issues of distributed computer 

systems when those systems have been centrally designed to pursue a single global goal 

such as a distributed operating system. I am interested in cooperative task allocation and 

resource sharing problems in systems that are established through interactions among 

multiple self-interested agents that are developed by different designers and belong to 
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different owners. This type of allocation problems has a variety of applications in grid and 

peer-to-peer computing, electronic commerce and virtual organizations.  

 

Contract Net and Levels of Commitment  

 

The most influential distributed task allocation mechanism in distributed artificial 

intelligence is the Contract Net protocol (Davis and Smith, 1983), which can be used for 

both cooperative agents and self-interested agents. The basic idea is that a task manager 

auctions a group of tasks, agents bid on these tasks based on their local marginal cost 

calculations. The original Contract Net does not take computational tractability into 

consideration, even though the marginal cost calculation for combinatorial problems are 

most likely intractable. Sandholm and Lesser (2002) extended the Contract Net protocol to 

allow it to work among self-interested computationally limited agents. Agents can 

reallocate tasks to each other for dynamically constructed charges. As a result, a more 

profitable global task allocation is reached than the initial one, while not executing a 

centralized task allocation algorithm. 

This dissertation studies the distributed synthetic task allocation problem. A 

synthetic task must be accomplished by an agent team, which is composed of self-interested 

agents from different organizations.  The objective to minimize the completion time of a set 

of synthetic tasks even though the true capabilities of agents are not known by the task 

allocation mechanism.    
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Methods for Task Allocation via Agent Coalition Formation 

 

As mentioned before, Shahory and Kraus (1995, 1998) developed distributed any-

time algorithms for forming coalitions among cooperative agents for task allocation 

problems. They considered situations where it is necessary to execute a task by a group of 

agents because it is more efficient or a single agent is not able to perform the task. The 

objective of this work is to improve the efficiency by allocating tasks to cooperative agent 

coalitions, which are formed through distributed algorithms. There is not an explicit 

negotiation protocol among agents. Each agent calculates the costs of coalitions it involves 

by itself and joins the coalition with the lowest cost for a certain task. The procedure is 

executed iteratively until there are no more tasks or no existing coalition is beneficial. 

This dissertation addresses distributed task and resource allocation among self-

interested agents. By forming resource sharing coalitions, agents with both tasks and 

resources can improve the efficiency of task execution (e.g. reduce task execution time) 

without increasing the amount of resources owned by each agent individually. The 

coalitions are formed through explicit negotiation among multiple agents. 

 

Auction and Market Based Resource Allocation Mechanisms 

 

Auctions and markets represent two ends of a spectrum of market formulations 

(Wolski et al 2001, 2003). On the market end, an attempt is made to satisfy all bidders and 

sellers at a given price. At the auction end, one bidder and seller is satisfied at a given price.  
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Market based resource allocation mechanisms are decentralized and no direct 

communication is needed. The balance between supply and demand decides the actual 

resource allocation. When the supply and demand for a certain resource reaches 

equilibrium, the price becomes stable.  How long it will take to reach equilibrium is 

normally unpredictable. Hence, price setting is a big obstacle for developing a market based 

resource allocation mechanism (Wolski et al 2001, 2003). 

An auction (Krishna 2002) is the simplest resource allocation mechanism for self-

interested agents in terms of its implementation. Auction-based distributed resource 

allocation mechanisms have been successful in many real distributed allocation 

applications.  The most positive result about auction is that the second sealed price auction 

belongs to VGC family and is a truthful implementation. Also, an auction has no problem 

with price setting. The bad news about auctions is that deciding the winner of a 

combinatory auction is a computationally intractable problem, but the distributed allocation 

problems in this dissertation are all combinatory optimization problems.  

These two types of allocation mechanisms are basically monetary approaches 

(Buyya et al. 2002). When computational resource allocation among self-interested agents 

is considered, agents do not explicitly buy others’ resources but use them when they are 

idle. It is very hard for agents to decide whether they should buy the time slots of using a 

resource or buy the resource itself. 

This dissertation focuses on bartering approaches (He and Ioerger 2005b) for 

developing computational resource allocation mechanisms. The idea is to let agents 

exchange their idle time slots of their computational resources. 
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CHAPTER III 

SYNTHETIC TASK ALLOCATION IN VIRTUAL ORGANIZATIONS 

 

In traditional computational organization models, the designers of task allocation 

mechanisms generally make an implicit assumption that organizational agents will report 

their true capabilities for achieving certain tasks. This assumption might not be true for 

virtual organizations. Organizational agents with self-interests are typical in virtual 

organizations. Incentive-compatible task allocation mechanisms must be designed for 

synthetic task allocation in virtual organizations. In this chapter, I study a synthetic task 

allocation problem by formalizing this problem as an algorithmic mechanism design 

optimization problem (Nisan and Ronen 1999). 

 

SYNTHETIC TASK ALLOCATION 

 

Recalling the synthetic task allocation problem illustrated in Figure 1.1, a number of 

tasks need to be done. Each of these tasks requires cooperation among different groups, 

which belong to different organizations. Members in different groups have different 

expertise. Within each group, all members have the same specialty, but they have different 

capabilities in the sense that different members might require different amounts of time to 

finish an identical task (or with a different quality, accuracy etc.). A member in a group is 

referred as an agent. A task needs to be done by a team that is composed of agents from 

different groups. It is assumed that there is no dependency among tasks and that tasks can 

be executed in parallel. 
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 It is assumed that each task needs exactly one agent from each group. These kinds 

of projects are referred as synthetic tasks. The project manager needs to build a temporary 

team for each task. The amount of time required to finish a task depends on the capabilities 

of members in that team. The objective of the project manager is to minimize the total 

amount of time required to accomplish all tasks. Definition 3.1 gives the formal definition 

of synthetic tasks. 

Definition 3.1: Synthetic Task 

A task, t, is called a synthetic task if t requires a set of activities X = { x1, …, xm }. Each of 

these activities needs to be performed by an agent with special skills. The synthetic task t, 

needs to be executed by an agent team, T, composed of m agents. Each of these agents is 

only able to perform one of the activities in X. Different agents in T differ in the activities 

that they can perform. 

A typical example of a synthetic task is a software development project that needs 

to be accomplished by a software development team. For instance, to build such a 

development team, a software project manager might need to have a software architect, a 

database administrator, a networking administrator and a few software developers who are 

good at different programming languages. These experts might actually belong to different 

groups in an organization. How to allocate the project to the most efficient team to 

accomplish the project is a big challenge.  

Before formally defining the synthetic task allocation problem, I need to define how 

efficient an individual agent is for executing a single activity (which needs to be done by 

only one agent) and how efficient an agent team is for executing a synthetic task (which 

needs to be done by a team of agents with different specialties). Here, I only consider the 
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amount of time required to finish a task as the evaluation criterion1 for both individual and 

team efficiency.  Greater efficiency means less time required to finish a task.    

The concept of individual efficiency is used to distinguish the different capabilities 

of agents in one group. They have the same specialty, but they differ in their efficiencies in 

the sense that they need different amounts of time to finish the same single activity. 

Definition 3.2: Individual Efficiency 

Individual efficiency is defined as a function fI(ai, x): I × Ω → 
+

ℜ  , where  I is a set of 

agents and Ω is a set of activities. For ∀  ai ∈I, it can accomplish an activity x ∈  Ω. The 

value of fI(ai, x) is equal to the amount of time required by agent ai to finish a single activity 

x. Given a set G = {a1, …, an} of n agents and a single activity x, an agent ai is individually 

more efficient than aj if fI(ai, x) < fI(aj, x).  

My goal is to design a reward mechanism that will get a distributed group of self-

interested agents to automatically solve the synthetic task allocation problem. Individual 

efficiency has a strong effect on team efficiency. Besides individual efficiency, the amount 

of time that the team needs to finish the task might be also affected by some other factors 

such as how often these agents work together and how good these agents are at teamwork. 

If only individual efficiency is known, it is still unclear how to evaluate how efficient an 

agent team is. Therefore, I define the following concept of team efficiency to distinguish 

the different capabilities of agent teams, which are composed of agents from different 

                                                 
1 To evaluate the efficiency of an individual agent or an agent team, the performance quality of accomplishing 
a task can be another criterion, such as cost or accuracy. However, higher quality performance usually 
requires more time. Here, assume the performance criteria for each task is the same. More efficient agents or 
agent teams spend less time to achieve the quality requirement than less efficient agents or agent teams. 
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groups. The composed teams differ in their efficiencies in the sense that they need different 

amounts of time to finish a same synthetic task.  

Definition 3.3: Team Efficiency 

Team efficiency is defined as a function fT(Ti, y): V × Φ → 
+

ℜ , where V is a set of agent 

teams and Φ is a set of synthetic tasks. For ∀  Ti ∈V, Ti = (ai1, …, aim) is an agent team. 

For ∀  y ∈  Φ,  y requires a set of activities X = { x1, …, xm }.  aij in Ti is able to perform 

activity xj. The value of fT(Ti, y) is equal to the amount of time required by agent team, (ai1, 

…, aim), to finish synthetic task y.  Let G1, …, Gm denote m groups of agents and  y ∈  Φ 

denote a synthetic task. Agents in group Gj are able to perform activity xj. Synthetic task y 

needs to be accomplished by a team composed of m agents. Agent team (ai1, …, aim) is 

more efficient than agent team (aj1, …, ajm) if fT(Ti, y) < fT(Tj, y). 

Now, how does individual efficiencies affect team efficiencies? Currently, I assume 

that the efficiency of a team composed of more efficient agents is not worse than the 

efficiency of a team composed of less efficient agents. This kind of teamwork is defined as 

monotonic teamwork.   

Definition 3.4: Monotonic Teamwork 

Given a set G = {G1, …, Gm} of m groups of agents and a synthetic task, y, y needs to be 

accomplished by a team composed of m agents and different agents in a team are from 

different groups in G.  For any two teams A1 and A2 that differ by only one agent, i.e., A1\ 

A2 = {aj1} and A2\ A1 = {aj2}, where aj1 and aj2 to the same group Gj (meaning that aj1 and 

aj2 can do the same type of single task x), agent teamwork is monotonic teamwork iff  fT(A1, 

y) ≥  fT(A2, y) when  fI(aj1, x) ≥  fI(aj2, x). 
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In many real applications, the most inefficient team member may slow down the 

efficiency of the whole team significantly. For example, if a software development team 

has an inefficient network administrator, the efficiency of the network administrator might 

determine the whole team efficiency. If the network administrator cannot recover the 

computer network from some disaster events on time, the other team members may not be 

able to do any of their jobs. Let’s consider another assumption: for the most efficient team, 

if one agent is replaced by the second most efficient agent in the corresponding group, the 

efficiency of the team is immediately decreased to the same level of the team in which 

every member is the second most efficient team from each group. The same rule applies to 

the transformation from the second most efficient team to the third one, and so on. This 

type of teamwork is defined as strongly monotonic teamwork.  

Definition 3.5: Strongly Monotonic Teamwork 

Given a set G = {G1, …, Gm} of m groups of agents and a synthetic task, y, y needs to be 

accomplished by a team composed of m agents and different agents in a team are from 

different groups in G. Assume that each group has n agents and the agents in any group Gj 

are ordered by efficiency for any given activity x: fI(aj1, x) ≤ fI(aj2, x) ≤ … ≤ fI(ajn, x).  Let Ai 

denote the agent team (a1i, …, ami) and Ak denote that agent team (a1k, …, amk). Let '

iA  

denotes an agent team in which m-1 members are the same as Ai except for one member 

from Ak and i < k. Agent teams are strongly monotonic teamwork iff fT(Ai, y) ≥  fT(Ak, y)  

and fT( '

iA , y) =  fT(Ak, y)  . 

Based upon the concept of team efficiency, the synthetic task allocation problem is 

defined as follows: 
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Definition 3.6: Synthetic Task Allocation Problem 

The synthetic task allocation problem is denoted by a tuple QSTA  = <Φ, G , fT>, where Φ is 

a set of synthetic task { t1, …, tk }; G is a set of agent groups {G1, …, Gm}; and fT is the 

team efficiency function for tasks in Φ. Within a group Gj, there are n agents {aj1, …, ajn}, 

who have the same specialty but with different capabilities. Namely, they can accomplish 

the same activity in different amounts of time. To accomplish a synthetic task ti, a team 

composed of a1i, …, aji, …, ami is required. There is no pair in these m agents from the 

same group in G. Assume that every synthetic task in Φ needs to be accomplished by a 

team composed of m agents2 and each task is independent from other tasks in Φ. The 

amount of time di required to finish task ti is a function of vector Ai = (a1i, …, aji, …, ami): 

di = fT(Ai; ti). Furthermore, if an agent has been allocated to a team for a certain task, it 

cannot start a new task before the whole task has been finished. The objective of this 

problem (where agents are assumed to be implicitly cooperative, not self-interested, and all 

individual capabilities are known) is to minimize the total amount of time for finishing all 

tasks (makespan). The designed allocation algorithm for this problem can be represented as 

follows: 

• A feasible output of the allocation algorithm is a set of agent vectors A = {A1, .., Ak} 

where synthetic task ti is assigned to Ai.  

• Without loss of generality, assume that each group has the same size of n. Then, the 

total number of possible teams is n
m, but there are only n teams that can exist in 

parallel. Assume that the total number of tasks is much larger than the size of each 

                                                 
2 This assumption requires that all synthetic tasks in Φ are the same type of task in the sense that these tasks 
need to be finished by an agent team composed of m different experts. 
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group, i.e., k >> n3. Since there are only n teams that can exist in parallel, each agent in 

a group Gj might be needed to participate in executing multiple tasks.  Hence, from the 

view of group Gj, an output of the allocation algorithm results a task partition Xj = (xj1, 

…, xjn). Agent ajr will participant in tasks in xjr. Xj is the function of the allocation 

output A: Xj = Xj(A). Agents of group xj can execute their tasks in parallel. 

• The objective of the allocation algorithm is to minimize TE(A, Φ), which is the total 

completion time of all synthetic tasks in Φ. The objective function can be as: 

TE(A, Φ) = ));((maxmax ∑ ∈ jrxl llTrj tAf  

where j is the index of a group, r is the index of an agent in group Gj, and l is the index 

of a task in a task subset, xjr, in which agent ajr participates. );(∑ ∈ jrxl llT tAf  is the total 

amount of time that agent ajr (who belongs to group Gj) has to spend on participating in 

executing tasks in  xjr. The amount of time that agent ajr needs is equal to the amount of 

time that tasks in xjr need to be finished because agent ajr cannot start to participating in 

another new task until its current task has been finished. From the view of group Gj, all 

n agents in Gj execute task subsets in Xj in parallel. Since the task allocation process is 

offline, there is no idle time for each agent between any two tasks in which it 

participates4. Therefore, the maximum amount of time that an agent participates in the 

                                                 
3 This assumption makes the synthetic task allocation problem nontrivial. If k=1, the allocation problem is 
trivial because the project manager only needs to allocate this task to the most efficient agent team. 
4 Proof: Since no team member can quit from a task execution, after a task ends, all involved agents are free 
for other tasks. The scheduling process is offline. The project manager can construct proper teams before the 
scheduling. Since all tasks are the same type and independent, the project manager can build fixed n teams 
that are the best combinations based on the reported types. Then, the project manager schedules all tasks to 
proper teams. In other words, during the scheduling, the project manager does not reshuffle teams. As a result, 
there is no idle time for each agent between any two tasks in which it participates. 
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whole task execution process can be used to represent the minimum amount of time for 

completing all tasks in Φ.  

If agents in each group have the same capability, which is known by an allocation 

algorithm in advance, the synthetic task allocation problem would be equivalent to the 

Makespan problem (Coffman et al. 1987), which is how to minimize the completion time 

of a set of single tasks by scheduling them to multiple processors with the same capacity. 

The Makespan problem is a well-known NP-hard problem (Chen 2004).  

Lemma 3.1: The synthetic task allocation is an NP-hard problem. 

Proof: Even though the total number of possible teams is nm in the synthetic task allocation, 

there are only n teams than can exist in parallel because any agent cannot join two teams at 

the same time. Therefore, the synthetic task allocation problem can be simplified to be the 

Makespan problem if the capabilities of all agents in each group are the same and known by 

the allocation mechanism in advance. The mechanism only needs to allocate k tasks to n 

teams with the same capability and tries to minimize the completion time of those k tasks. 

The NP-hard Makespan problem (Garey and Johnson 1979) is polynomial reducible to the 

synthetic task allocation problem. The Makespan problem is defined as follows (Chen 

2004): given the set of tuples T = {c1, …, cn; m}, where ci is the processing time for the ith 

job and m is the number of identical processors. Can {c1, …, cn} be partitioned into m 

subsets, P1, …, Pm, such that the processing time of the largest subset can be minimized? 

Given an instance T = {c1, …, cn; m} of the Makespan problem, an instance α  = < 

Φ, G , fT> for the synthetic task allocation problem can be constructed. There are n tasks in 

Φ  = {t1, …, tn } and only one group G of m agents (a1, …, am). Each task in Φ needs to be 

executed by one agent in G. For task ti, the amount of time, ci, is calculated by function fT. 
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Therefore, T is a yes-instance for the Makespan problem if and only if an optimal solution 

to the instance α of the synthetic task allocation problem is minimizing the maximum 

amount of time that an agent in G participates in executing tasks assigned to the agent.  

There exist efficient approximation algorithms for the Makespan problem that can 

be extended to solve the synthetic task allocation problem. For example, Coffman et al. 

(1987) developed a 2-approximation algorithm for the Makespan problem. I extend it to a 

2-approximation algorithm for the synthetic task allocation problem if the teamwork among 

different groups is strongly monotonic. 

 

SYNTHETIC TASK ALLOCATION FOR SELF-INTERESTED AGENTS 

 

If the project manager knows the capabilities of agents in each group in advance, he 

can build a proper agent team for each task. The synthetic task allocation problem can be 

solved as a Makespan problem (Chen 2004). We only need to consider the issue of 

complexity (e.g., use an approximation algorithm for efficiency). However, in virtual 

organizations, the project manager most likely does not know the true capability of agents 

in each group in advance. Each agent group belongs to different real organizations. How to 

give each group incentive to report the true capabilities of their agents also needs to be 

considered.  

Intuitively, if the project manager would pay each team in proportion to its 

efficiency, each group might have incentive to send its most efficient agent to assigned 

tasks. However, this policy gives each group incentive to lie about the efficiencies of its 

agents because reporting higher efficiency than the real efficiency can bring better payment 
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for each group. Therefore, the project manager needs to have a better payment policy to 

induce each group to always tell the truth. 

My approach is to extend the synthetic task allocation problem as an algorithm 

mechanism design problem (AMD) (Nisan and Ronen 1999). The idea is to give each 

group incentives to report the true capabilities of their agents by providing appropriate 

payments. 

 

EXTENDING SYNTHETIC TASK ALLOCATION TO AN AMD PROBLEM 

 

Assume that all members in one group are cooperative in the sense that all members 

want to maximize the benefit of the group. The self-interested entities in the synthetic task 

allocation domain do not refer to group members but to groups. Each group is self-

interested in the sense that its goal is to maximize its own utility. For example, a law firm 

that has lawyers to outsource and a CPA firm with accountants for hire. Typically, there is 

no communication between groups. Each group does not know about other groups’ 

strategies and states. I also assume that the project manager does not know the true 

capability of each agent in a group. He builds a team for each synthetic task by using 

available agents as reported by agent groups. The only way that the project manger can 

affect the truth-telling of each group is by giving an appropriate amount of payment to each 

group. I extend synthetic task allocation to the following algorithmic mechanism design 

optimization (AMDO) problem: 
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Definition 3.7: Synthetic Task Allocation AMDO Problem 

The synthetic task allocation AMDO problem is denoted by a tuple QSTA-AMDO = < Φ, G , 

fT(T), PMAX>, where Φ, G , fT(T) are the same as the synthetic task allocation problem 

(Definition 3.5). PMAX is the total reward available that can be distributed among the groups 

for tasks accomplished. The objective of this problem is to design a payment policy that 

will cause each self-interested group to report the true capabilities of its agents (assuming 

each group is rational). Then the project manager can use an algorithm for the synthetic 

task allocation problem (definition 3.5) to minimize the total amount of time for finishing 

all tasks in Φ (makespan).  

The synthetic task allocation problem can be extended as the following algorithmic 

mechanism design optimization problem: 

• The objective of the synthetic task allocation algorithmic mechanism design 

optimization problem is to search for an optimal payment policy π* in a payment policy 

space such that each group has incentive to reveal the true capabilities of its agents. Let 

π denote a payment policy that maps a feasible synthetic task allocation A to a set of 

payment vectors, {p1, …, pm}. pj is the payment vector, (pj1, …, pjk), of group Gj for 

tasks in Φ. pji is the payment that group Gj obtains by sending an agent to execute task 

ti. In real applications, a payment function must satisfy that the sum of the payments of 

all agents in a team for a certain synthetic task must be less than or equal to PMAX, 

which is the maximum payment that a project manager can afford for all synthetic 

tasks. 
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• pji is the payment group Gj can obtain from sending agent aji to participate executing 

task ti. pji can be defined as a function f(ti, aji, PMAX). 

• The utility of group Gj is the sum of pay for all tasks its agents help accomplishing 

uj(A) = ji

k

i
p∑ =1  

The objective of group Gj is to maximize uj(A) (i.e. group Gj is assumed to be rational.) 

Solving this problem requires building proper teams for all synthetic tasks and to 

schedule tasks for those teams. There are totally nm possible teams. In the worst case, the 

complexity could be O(nm). In order to give each group incentive to report the true 

capabilities of their agents, I need to develop an algorithm for calculating payments for 

possible teams for each task.  

 

INCENTIVE-COMPATIBLE SYNTHETIC TASK ALLOCATION 

 

In this section, I present my incentive-compatible mechanisms for the above 

synthetic task allocation AMD problem. The incentive compatible mechanism is the one 

that gives each group the proper amount of payment that can induce each group to report 

the true capabilities of its agents so that the group can maximize its utility.  Assume that 

teamwork is monotonic teamwork (see Definition 3.4). This assumption results in the 

following heuristic: picking the most efficient agent from every group and putting them in 

one team will create the most efficient or the fastest team. If the efficiency of a team 

depends on the most inefficient team member, then having the most efficient agents from 

some groups cannot improve the efficiency of a team within which there are some 
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inefficient agents from other groups. Based on this assumption, I propose the following 

MinTeamwork Mechanism. 

 

MinTeamwork Mechanism 

 

Based upon this assumption, a simple approximation mechanism for the synthetic 

task allocation problem can be developed similar to the MinWork mechanism that was 

described by Nisan and Ronen (1999) for the single task scheduling problem. Since I am 

dealing with synthetic tasks, I call it the MinTeamwork mechanism. 

MinTeamwork Mechanism 

• Allocation algorithm: Task ti is allocated to the most efficient team that can finish task 

ti with minimum amount of time. 

• Payment policy: By participating in executing task ti, group Gj can receive payment 

Pji(A) ));();((min *

iiTiiTAA tAftAfc
Ii

−=
∈ such that 

*

ii AA ≠ , 

where  );(min);( *

iiTAAiiT tAftAf
Ii ∈

= and AI is the set of all possible agent team for 

task ti; c is the factor that maps time to payment unit of PMAX and 

));();(min( *
* ∑∑ −

=

≠ i iiTiiTAAi

MAX

tAftAfm

P
c

ii

. In other words, for each task, the 

payment is proportional to the value that is equal to the amount of time that the second 

most efficient team requires to finish this task minus the optimal execution time of task 

ti.  
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The MinTeamwork mechanism lets each team member receive the same amount of 

payment for executing a task because the corresponding synthetic task cannot be finished if 

lacking any of the team members. 

Theorem 3.1: The MinTeamwork mechanism is truthful for the synthetic task allocation 

problem. 

Proof: I can show that truth-telling is the only dominant strategy. Since the synthetic tasks 

are assumed to be independent, I only need to show the case of one synthetic task, y (Varian 

1995; Nisan and Ronen 1999). Consider the case where there are only two groups of 

agents, G1 and G2. Let A denote the most efficient team and A’ denote the second most 

efficient team for the given task y according to the reported capabilities of group G1 and G2. 

For group G1, its utility is  

);();'( yAfyAfU TTj −= , 

where );( yAfT  refers to the amount of time that A needs to finish the given task and 

);'( yAfT  refers to the amount of time that A’ needs to finish task y. The problem is that G1 

does not know G2‘s capabilities, so it cannot directly evaluate );'( yAfT or Uj. Hence it 

must make a decision based on the possible values of );'( yAfT . 

If );'();( yAfyAf TT < , group G1 wants to make the difference between );'( yAfT and 

);( yAfT as large as possible. Making );( yAfT  as small as possible is the best way to 

maximize Uj. Therefore, the best strategy of group G1 is to tell its true type, which is its 

most efficient agent for this task.  
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If );'();( yAfyAf TT > , then group G1 wants to make the difference between 

);'( yAfT and );( yAfT as small as possible. Making );( yAfT  as small as possible is the 

best way to maximize Uj. Again, the best strategy for group G1 is to tell its true type.       

Theorem 3.2: For the synthetic task allocation problem, MinTeamwork is an n-

approximation mechanism. 

Proof: Let Aopt denote the optimal allocation.  The following statements are true: 

TE(A, Φ) ∑ =
≤

k

i iiT tAf
1

* );(  

and  TE(Aopt, Φ) ∑ =
≥

k

i iiT tAf
n 1

* );(
1

. 

n is the total number of teams that can exist in parallel. In other words, all tasks are 

executed sequentially by the most efficient team. Since there can be n teams existing in 

parallel, in the worst case, these n teams have the same efficiency, the MinTeamwork 

mechanism needs n times of the optimal amount of time to complete all tasks.  

TE(A, Φ) ≤ n TE(Aopt, Φ) 

Therefore, the MinTeamwork mecanism is an n-approximation.  

 

MinCompletion Mechanism 

 

Since the MinTeamwork mechanism needs to pay the most efficient team with the 

payment that is based on the performance of the second most efficient team and the 

teamwork is assumed to be monotonic teamwork, then the complexity could be O(2m) in 

the worst case. The reason is that all possible teams composed of team members who are 

the first and second most efficient agents in each group should be considered. 
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The MinTeamwork is not a poly-time computable mechanism because it needs to 

find out the second most efficient team for each task in order to calculate the payment for 

each task.  Also, n-approximation is not a very good allocation algorithm. This mechanism 

just allocates all tasks to the most efficient team that includes the most efficient agent from 

each group. Other agents in each group are idle.  

In many real applications, no group would be happy if only its most efficient agent 

is working and others are idle. There is a more realistic payment function for group Gj in G 

as follows: 

Pj(A) = ));((max' 1 ∑ ∈=
−

jrxl llT

n

r tAfc  

Namely, group Gj in G values the execution of all tasks by the makespan as the shorter the 

better. This means that all groups have the same objective as the project manager. If the 

teamwork is strongly monotonic teamwork, there is another new mechanism for this special 

case: 

MinCompletion Mechanism 

• Allocation algorithm: Task ti is allocated to the currently most efficient team that can 

finish task ti with minimum completion time (completion time is equal to the duration 

from the starting time of the first task to the finishing time of task ti). 

• Payment policy: The payment of group Gj is equal to  

Pj(A) = ));((max' 1 ∑ ∈=
−

jrxl llT

n

r tAfc  
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When conditions satisfy strongly monotonic teamwork, the best way to construct 

teams is to make agents the same level of individual efficiency as a team because mixing 

agents with different levels of individual efficiency does not help improving the team 

efficiency.  

Theorem 3.3: MinCompletion mechanism is a truthful implementation. 

Proof: If group Gj declares a more efficient agent than the real most efficient agent, it does 

not help to decrease the completion time of a task, i.e., uj(A) will not increase. If group Gj 

commits a less efficient agent than its real most efficient agent to a task, it will increase the 

completion time of a task, i.e., uj(A) will be less than the one by telling truth. Therefore, 

MinCompletion is truthful.  

Theorem 3.4: For the synthetic task allocation problem, MinCompletion is a 2-

approximation mechanism and poly-time computable. 

Proof: Under the above assumption, the MinCompletion mechanism automatically 

constructs n teams for k tasks in the following way: every member of the most efficient 

team is the most efficient agent from each group; every member of the second most 

efficient team is the second most efficient agent from each group and so on. The synthetic 

task allocation is equivalent to a task scheduling problem in which k tasks are assigned to n 

agents with different capacities. Let Aopt denote the optimal allocation. Let D1 denote the 

time period within which all n team are executing tasks in parallel and D2 denote the time 

period from the end of D1 to the completion of all tasks by the MinCompletion mechanism. 

∑ ∈=
=

jrxl llT
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Therefore, TE(A, Φ) = D1 + D2 

where TE(A, Φ) is the completion time for all tasks. Since all teams are executing tasks 

during D1,   

TE(Aopt, Φ) ≥ D1, 

where TE(Aopt, Φ) is the optimal completion time of all tasks. During D2, there is at least 

one team idle. Since the MinCompletion mechanism allocates each task to the team that 

can finish the task within minimum completion time, in the worst situation, there is one big 

task left after D1. This task should be allocated to the most efficient team. In this worst 

case, the optimal completion time is longer than D2. Therefore, 

TE(Aopt, Φ) ≥ D2 . 

Then, 2TE(Aopt, Φ) ≥ TE(A, Φ).  

The running time of the allocation algorithm of the MinCompletion mechanism is O(nk), 

where k is the total number of synthetic tasks and n is the total number of teams. For each 

task, which team can finish the task within the minimum completion time needs to be 

computed. The allocation algorithm allocates each task to the team that can finish it earliest 

based on the reported types. 

 

SUMMARY 

 

In this chapter, I studied a synthetic task allocation problem by formalizing this 

problem as the algorithmic mechanism design optimization problem (Nisan and Ronen 

1999). Each synthetic task needs to be accomplished through the cooperation among agents 
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who belong to different groups that are self-interested and have different specialties. If the 

capabilities are known, this problem can be solved as a makespan problem. But with self-

interested agents, our goal is to design a payment mechanism that gives agents incentive to 

tell the truth and form optimal teams automatically. The problem is extremely hard in the 

sense that there are O(nm) possible teams (n is the size of a group, and m is the number of 

groups.) and k>>n tasks needs to be executed. Indeed, even the individual task allocation 

problem is NP-hard (Coffman et al. 1987). Therefore, the synthetic task allocation problem 

needs to jointly address incentive compatibility and computational tractability. 

For self-interested agents, I have developed two incentive-compatible mechanisms 

for this problem. The MinTeamwork is an n-approximation mechanism and a strongly 

truthful implementation for monotonic teamwork. By changing the valuation function and 

having a more restrictive assumption, the MinCompletion mechanism is a truthful 

implementation with 2-approximation for strongly monotonic teamwork. I have shown that 

incentive-compatible mechanism design is applicable for synthetic task allocation problems 

in virtual organizations. 
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CHAPTER IV 

DECENTRALIZED COALITION FORMATION THROUGH EXPLICIT 

NEGOTIATION 

 

Distributed task and resource allocation are intertwined problems. Resource users 

need to allocate their tasks to the most efficient resources with the lowest cost. Resource 

providers want to allocate their resources to the most profitable tasks. In many real 

applications such as computational grids and peer-to-peer systems, the participating agents 

are both resource users and providers. The basic idea behind these systems is that agents 

have peak workloads at different times so that they can utilize the resources of others at idle 

time. The task and resource allocation mechanisms can be used to build a virtual 

community, in which participating agents (who might belong to different organizations) can 

share their computational resources to satisfy their excess resource capacity demands 

without purchasing more actual resources individually. In other words, distributed load-

balancing crosses the boundaries of ownership. The aim of this study is to develop a 

decentralized approach to enable coalition formation among self-interested agents through 

automated negotiation.  

As Sandholm (1996) points out, coalition formation processes for self-interested 

agents include three activities: coalition structure generation, solving the problem optimally 

within each coalition and payoff division. The computational cost of this approach has been 

proved extremely expensive. Sandholm et al. (1999) have proved that the complexity of 

coalition structure generation is O(nn) in the worst case. The most important reason for the 

computational complexity is that this approach uses centralized methods (e.g. via a group 
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leader) to search for globally optimal solutions (Yamamoto and Sycara 2001; Li and Sycara 

2002; Ye and Tu 2003). Also, the centralized decision-making approach is not applicable in 

the real world where self-interested agents would like to make their own decisions. Ideally, 

the globally optimal solutions should be achieved through the interaction among agents. 

Toward this goal, I develop a distributed coalition formation mechanism called the 

decentralized coalition formation through explicit negotiation (DCF-EN) mechanism, in 

which self-interested agents reach agreements on whether or not to join a coalition through 

explicit negotiation. The DCF-EN mechanism can dramatically reduce the complexity of 

the coalition formation process by decentralizing two activities in centralized coalition 

formation approaches: coalition structure generation and payoff division.  

 

FORMALIZING COALITION FORMATION 

 

Definition 4.1 (Coalition Formation Problem) 

Let A= {a0, a1,  …, an-1} be a set of agents in a multiagent system. Each agent is willing to 

find partners in A to form a coalition so that it can obtain some benefit (e.g. saving cost) 

that it cannot gain when it acts alone. If no such a coalition exists, agents will act alone. 

Agents can communicate with each other symmetrically.  

Definition of Terms 

• Coalition: A coalition (CL) is a subset of the agent set A that is committed to 

cooperating for a certain purpose (e.g. accomplishing a task). 



 53 

• Coalition Structure: A coalition structure (CS) is defined as a partition of the agent set, 

(i.e., an exhaustive and disjoint set of coalitions, where each agent is in exactly 1 

coalition.)  

• Utility Function: The utility of an agent to join in a coalition is the benefit that the agent 

can obtain from being a member of the coalition. It is defined as a function of the 

corresponding coalition. Without loss of generality, assume that the value of a utility is 

a real number. For example, for agent ai to be a member of a coalition CLj, its utility is 

defined as: Ui(CLj): 2
A
 →ℜ . The goal of agent ai is to maximize its Ui. The utility of 

joining a coalition is computed by each agent itself, and it is based on the agent’s 

preferences and the domain features of the application.  

• Payoff Function: The payoff that agent ai obtains by joining coalition CLj is defined as: 

Pi(CLj) = Ui(CLj) - Ui({ai}). Let P(CL) denote a vector of payoffs of all agents in a 

coalition CL. Let P(CS) denote a payoff configuration that is a vector of P(CL)s of all 

coalitions in a coalition structure CS. 

• Coalition Value: The coalition value of a coalition CL is defined as the sum of the 

utilities that all members obtain through joining the coalition. It can be described with 

the following equation: 

)(CLUV
CLa xCL

x
∑ ∈

=  

• Value of Coalition Structure: The value of a coalition structure CS is defined as the sum 

of the values of all coalitions in the coalition structure. It can be described as the 

following equation: 

∑ ∈
=

CSCL CLCS
y y

VV  
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The objective of the coalition formation problem is to find the partition that maximizes VCS 

under the constraint that agents want to maximize their own utilities.  

 

DECENTRALIZED COALITION FORMATION THROUGH EXPLICIT 

NEGOTIATION (DCF-EN) 

 

Given the above coalition formation problem, in this section, I present the DCF-EN 

mechanism, which is a decentralized coalition formation mechanism based on multiparty 

negotiation. There are two main stages in coalition formation. The first is that each agent 

calculates the utilities of all possible coalitions that it could join. The second is that agents 

negotiate to achieve agreements on joining coalitions. The first stage is relatively simple. 

Each agent does exhaustive search for possible coalitions for itself. The second stage is 

much more complex, in the sense that it requires a multiparty negotiation mechanism, 

which involves negotiation strategies, negotiation protocol, and message handling methods. 

Since my goal is to develop a decentralized coalition formation mechanism to be used by 

autonomous agents, communication costs and conflicts need to be taken into consideration. 

 

Constructing Possible Coalition Space 

 

The first stage of coalition formation in the DCF-EN mechanism is constructing a 

possible coalition space for each agent in the agent set A. Each agent computes the utilities 

of all possible coalitions (subsets) in A that also include the agent itself. Then the agent 

removes all possible coalitions for which the utilities are less than the utility obtained by 
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the agent acting alone. It sorts other possible coalitions in a descending order and stores 

these possible coalitions (PCF) as its potential coalition space. In the worst case, for each 

agent, the complexity of computing its PCF is O(2n-2). Figure 4.1 illustrates this process. 

 

 

 

The main purpose of this process is to search for possible coalition proposals for the 

next negotiation stage. The sorting process is used to prioritize all the possible proposals. 

The approach in this work is based on an assumption under which each agent is able to 

compute the utility of joining a coalition according to its local knowledge. Although agents 

do not necessarily know the preferences of others at this stage, it is reasonable to have some 

expectation. In the real world, any agent who wants to join a proper coalition will have a 

prior expectation before it enters negotiations. This expectation could be calculated 

according to prior knowledge or the belief of others’ preferences in a given domain. The 

utility of joining in a possible coalition for an agent represents the expected benefit that this 

 

a1 

FIGURE 4.1. Constructing Possible Coalition Spaces 

a2 a3 

U11({ a1, a2 }) 
U12({ a1, a3 }) 
U13({ a1, a2 , a3 }) 
U14({ a1 }) 
 

PCF1 PCF2 PCF3 

U21({ a2, a1 }) 
U22({ a2, a3 }) 
U23({ a2, a1 , a3 }) 
U24({ a2 }) 

U31({ a3, a1 }) 
U32({ a3, a2 }) 
U33({ a3, a1 , a2 }) 
U34({ a3 }) 

Descending 
Order 



 56 

agent would obtain from joining in this coalition. I will give examples on how to compute 

the utility of various coalitions in real applications. 

 

Multiparty Negotiation Mechanism 

 

The purpose of developing a multiparty negotiation mechanism in this work is to 

facilitate coalition formation among self-interested agents. Therefore, it is not a single 

bargaining process within one agent group, but multiple bargaining processes within 

multiple agent groups. Assume that all agents have symmetric negotiation abilities in the 

sense that each agent can independently propose a possible coalition and no agent can force 

others to accept a proposal. The communication channels are also assumed to be 

symmetric. There are three main details that need to be defined in such a negotiation 

mechanism (Rosenschein and Zlotkin 1994): the space of possible deals, the negotiation 

strategy, and the negotiation process.  

The Space of Possible Deals 

In the DCF-EN mechanism, the space of possible deals for each agent is its PCF. In 

the worst case, the size is 2
n-1-1. For an entire coalition formation process, the space of 

possible deals is the union of all agents’ PCFs. In the worst case, the size is n2
n-1 for each 

agent. The reason why the DCF-EN mechanism is still exponential is that the number of 

possible coalitions is exponential in the number of agents n. Agents have to calculate their 

own utilities of joining a possible coalition. As Shehory and Kraus (1998) pointed out that 

the complexity can be reduced to polynomial time by restricting the maximum number of 

agents to participating coalition formation to a constant number, since large groups are 
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unreasonable (e.g. inefficient) in many domains (e.g. buyer coalition formation). If the 

number of agents is restricted to a small constant k, the total number of negotiation deals is 

2
k-1. In this situation, the DCF-EN mechanism runs in polynomial time, given k as a 

constant. 

Negotiation Strategy 

Negotiation strategy defines how an agent decides which deals to choose. The goal 

of DCF-EN mechanism is to form coalitions among n self-interested agents. The 

negotiation strategy of each agent should help it join a coalition so that its utility can be 

maximized.  There are two types of negotiation strategies involved in a coalition formation 

process. The first is a bargaining strategy for members in a possible coalition. The second is 

a coalition strategy for finding the best coalition among all possible coalitions. These two 

types of strategies interweave with each other.  

For each possible coalition, all members need to agree on whether or not to join it. 

When an agent proposes a possible coalition to all other members, bargaining can be used 

to determine payoff division. To evaluate all feasible coalitions and to decide which one is 

the best, each agent needs to compare the bargaining results of all possible coalitions and 

find the one that maximizes its utility.  

Since I assume each agent knows the utility that it will obtain by joining a coalition, 

in the current DCF-EN mechanism, the bargaining strategy is that if every member agrees 

on the proposal, the deal is closed; otherwise the agents move on to other possible 

proposals. Because each agent has prioritized its possible coalitions, the DCF-EN 

mechanism lets each agent do greedy searching, namely, always proposing the possible 

coalition with maximal utility first. This way, each agent can end its negotiation procedure 
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whenever it has decided to join a coalition without going through the remaining possible 

coalitions. As a summary, I list the negotiation strategies for an agent in DCF-EN 

mechanism as follows: 

• For each proposed coalition, agents can accept it if it is the best current possible 

coalition, put it into a waiting list if it is better than staying alone or reject it if it is 

worse than staying alone. 

• Agents greedily accept the best coalition they can get. If there are multiple choices, they 

will join a coalition with the smallest size because forming smaller size of coalitions 

through negotiation will result in lower communication cost. 

• Each agent might have multiple negotiation processes going on simultaneously, but all 

of the involved coalitions should result in the same utility for the agent at that time. 

• Each agent terminates a negotiation process when the coalition proposal is formed 

(accepted) or failed (refused). 

Negotiation Process 

A negotiation process defines how negotiation among coalition members is 

conducted. To do so, the following questions need to be answered: What kind of 

information needs to be exchanged among agents? Where does the information flow go 

during a negotiation process?  Because agents communicate with each other in a 

decentralized manner, how could they avoid communication conflicts during negotiation? 

Since multiple negotiation processes might execute in parallel during coalition formation, 

how do they affect each other?  

In the DCF-EN mechanism, agents negotiate with each other by sending messages. 

Three types of messages are needed: offering a proposal, accepting/rejecting a proposal 
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offered by others and closing a deal. Table 4.1 lists all messages exchanged in the DCF-EN 

mechanism.  Negotiation processes for an agent require processing negotiation messages 

from other agents and updating its PCF based on negotiation results in previous negotiation 

processes. A message handling method is called “message handler”. Any negotiation 

decision is made based on the negotiation strategy of buyers. Therefore, the message 

handlers implement the negotiation strategies of agents. 

 

 

Message Type Message Purpose 

CFPropose Proposing a possible coalition to a corresponding member 

CFAccept Accepting a received proposal 

CFReject Rejecting a proposal for a possible coalition 

CFFailed Informing an agent who has sent CFAccept that the corresponding 
proposal has been withdrawn 

CFConfirm Informing an agent who has sent CFAccept that all members have 
accepted the corresponding proposal 

CFNoNeed Informing an agent who proposes a new coalition that the decision 
on joining a coalition at this round has been made 

 

 

The message handlers also embed the negotiation protocol in the DCF-EN 

mechanism. The negotiation protocol is presented as follows: 

• An agent proposes a coalition by sending the proposal to all other members. 

• When an agent receives a proposal, it will send back its decision on whether or not to 

accept it. If it has found a coalition, it will send back its status. 

• After every member agrees to a proposal, the agent who proposed it will send 

confirmation to every member. If the proposal is rejected, the agent who proposed it 

will send failure message to the members who have accepted. 

TABLE 4.1. Messages in the DCF-EN Mechanism 
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• At any given time, each agent can only accept to join in one coalition. 

• Each agent can propose multiple best current coalitions simultaneously. However, all 

these coalitions that have been sent out in parallel should result in the same utility. 

• Each agent terminates a negotiation process on a coalition proposal 1) if the coalition is 

accepted by all members, 2) if the proposal is rejected by anyone of the members, and 

3) if the expected ending time of the corresponding coalition proposal has been 

approached. I will address the reason why this is one of reason to terminate a 

negotiation process in the next section. 

 

Handling Deadlocks in the DCF-EN Mechanism 

 

 

There exist multiple decentralized negotiation processes simultaneously because 

every agent can send out its proposals. Hence the last item of this protocol is designed to 

avoid conflicts and to end negotiations properly. One potential problem is deadlock (Figure 

 

FIGURE 4.2. An Example of Communication Deadlock  
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4.2). A deadlock occurs when an agent proposes to another agent who is waiting for a 

response from a third agent. Figure 4.2 illustrates a simple example. Agent a1 sends a 

current best proposal to agent a2; agent a2 sends a proposal to agent a3 and agent a3 sends a 

proposal to agent a1. Each agent is waiting for feedback. A circle is formed and a deadlock 

happens. 

Indeed, the reason why deadlocks exist is that agents’ individual preferences 

conflict with each other. If deadlocks do not happen during coalition formation, the DCF-

EN mechanism is able to find a coalition structure in which each agent can maximize its 

utility. As a result, the value of the coalition structure is also the maximum. In other words, 

a coalition structure does not exist when a deadlock happens. Resolving a deadlock is 

equivalent to letting each agent know the current proposal in which it is interested might 

not exist. In this case, the agent would move to the next possible coalition proposal. 

Handling these types of deadlocks includes two steps: detecting the deadlock and breaking 

the deadlock.  

There exist many excellent deadlock detecting algorithms in both distributed 

operating systems (Silberschatz et al. 2002) and database concurrency control mechanisms 

(Bernstein et al. 1987). Typical examples are time-out, token-passing and dependent graph. 

Any of them can be extended to detect deadlocks in coalition formation.  

However, breaking deadlocks in coalition formation is different from breaking 

deadlocks caused by multiple processes competing for a common resource in distributed 

operating systems or breaking deadlocks caused by writing to the same variable in a 

distributed database. In these two situations, breaking a deadlock means the common 

resource or the variable will eventually be assigned to one process. Breaking a deadlock in 
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coalition formation means that this coalition structure does not exist. None of the agents 

can be guaranteed to keep its current proposal because in order to break a deadlock, some 

agents need to move to other choices. There are more than two agents in coalition 

formation. The next possible proposal might not involve the same agents as the current 

proposal at all. Therefore, in order to break a deadlock, deciding whether to remain 

committed to the current proposal or to move to the next possible proposal is the key 

decision that each agent needs to make. In the following two subsections, I will address 

what kinds of strategies that the DCF-EN mechanism uses to detect and break deadlocks in 

detail. 

Detecting Deadlocks 

I have considered three approaches to detect deadlocks: time-out, token passing and 

dependent graph. Each has positive and negative consequences for detecting deadlocks in 

coalition formation. Time-out is the simplest method by which each agent detects a 

deadlock if the amount of time it waits for feedback on a proposal exceeds a reasonable 

amount of time. There are several benefits to the time-out approach (Bernstein et al. 1987).  

It is a pure distributed approach in the sense that each agent does not need extra 

information to make a decision. It does not require that any other agents reveal their private 

information, and it does not introduce any extra communication load. The down side of the 

time-out approach is that each agent needs to wait a certain amount of time that is long 

enough to detect the situation.  

Token passing approach (Holliday and El Abbadi, 2005) is also a distributed 

method by which each agent sends out a token with its proposed possible coalition. The 

agents that are involved in the coalition will propagate the token by attaching the token to 
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the proposals that they send out. If the original agent who starts the token receives the token 

later, it will detect that there is a deadlock. The benefit of this approach is that even though 

agents have to wait for a while to detect the deadlock, it is not necessary for each agent to 

wait the same amount of time every time. The down side of this approach is that agents 

need to reveal their private information about who wants to be their partners to their desired 

partners, and it will cause extra communication load. The number of tokens passed to 

agents is equal to the number of messages for proposing all possible coalitions.  

Dependent graph (Bernstein et al. 1987) is a centralized approach by which there 

exists a centralized deadlock detector who knows the proposals that are sent out by all 

agents. Based on the global information, this centralized detector can detect deadlocks by 

constructing a dependent graph and analyzing the dependencies between different 

proposals. In order to let the detector obtain information about all proposals sent out, I 

assume that each agent sends a proposal copy to this centralized detector whenever they 

send out a coalition proposal. The benefit of this approach is that agents do not have to wait 

for a long time to detect whether they are in a deadlock. The obvious down side of this 

approach is that self-interested agents have to reveal their private information to the third 

party and trust the detector absolutely.  Centralized construction of the dependent graph and 

detecting deadlocks are not trivial tasks but NP-hard problems (Bernstein et al. 1987). 

Furthermore, this approach also causes extra communication load. The number of messages 

sent to the centralized detector is equal to the number of proposals sent out. After the 

detector detects deadlocks, it will inform every agent who is involved in the deadlock. 

Functionally, all three of these approaches are able to detect deadlocks. However, 

token-passing and dependent graph approaches require that agents reveal their private 
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information and incur extra communication load. Since agents are self-interested in 

coalition formation, in the current DCF-EN mechanism, we use the time out strategy for 

detecting deadlocks. Furthermore, another reason to choose the time out strategy is that 

each agent needs to decide whether to move to other possible coalition proposals with less 

utility or wait for a while to see if the current proposal can be achieved because others 

might move to new proposals first after a deadlock has been detected. Therefore, agents 

still need to decide how long they would like to wait before they move to other possible 

coalition proposals. I will describe this in detail in the next section.   

Breaking Deadlocks 

During coalition formation, for each agent, breaking a deadlock is equivalent to 

deciding whether to shift to another possible coalition proposal with less utility or to wait a 

while to see if the current proposal can still be made because other agents shift to other 

coalition proposals.  If an agent decides to move to the next possible coalition proposal 

with less utility, it risks that it might lose the opportunity to achieve the current proposal 

with better utility if other agents move to their next proposals first. On the other hand, if the 

agent decides to stick with its current proposal, it risks that the current proposal might 

never be achieved. As a result, it also loses the opportunity to join a coalition with a better 

utility because other agents might form coalitions that do not include the agent at all. 

Hence, estimating how long an agent needs to wait to make a proper decision about 

whether to give up this proposal or not is a critical issue for breaking a deadlock. Agents 

need to consider the risks they will take to make a proper decision. 

In the DCF-EN mechanism, an agent calculates how long it should wait to move to 

the next possible coalition proposal by the following equation: 
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where d refers to the amount of time that an agent should wait to move to the next possible 

coalition proposal, cd refers to the amount of time that an agent needs to wait to detect a 

deadlock, cb refers to the maximal amount of time that an agent is willing to wait for 

joining a coalition (except the amount of time it needs to detect deadlocks), Ub refers to the 

utility that the agent can obtain if it joins the best possible coalition in its possible proposal 

list, Uc refers the utility that the agent can obtain if the current coalition is formed, Un refers 

to the utility that the agent can obtain if the next possible coalition is formed and Us refers 

to the utility that the agent can obtain if it does not join any coalition.  

Sandholm and Lesser (1995) extended the Contract Net Protocol to be used among 

bounded rational self-interested agents in a production scheduling domain. In this work, the 

authors pointed out that a more advanced agent should use a risk taking strategy to decide 

whether to accept the current offer now or wait longer to see if there are better offers later. 

Agents need to take the risk of missing opportunities due to others making related contracts 

first. In the DCF-EN mechanism, the current proposal is always better than future 

proposals. Agents need to decide whether or not to wait longer because if other agents give 

up earlier, the current proposal might not be made. The basic idea behind the above waiting 

time equation is that the amount of time that an agent should wait is proportional to the 

difference between Uc and Un (utility of the best and the next best proposal). The larger the 

difference, the longer an agent would like to wait. In other words, if Uc is much larger than 

Un, an agent would be willing to take the risk of waiting longer. If there is no big difference 

between Uc and Un, the agent should move to the next possible coalition proposal in order 
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this factor is, the more risk of waiting longer that an agent is willing to take.  The reason 

why I adopt this strategy is that agents do not know other agents' possible coalition 

proposal spaces and they have to make decisions according their local information. If the 

difference between Uc and Un is significant, an agent would be willing to take more risk of 

losing the opportunity to achieve Un because it is possible that it could achieve Uc if it waits 

long enough so that the involved agents make the agreement. 

Another important issue about this equation is how to determine cd (the amount of 

time for deadlock detection) and cb (the difference between the total amount of time that 

each agent is willing to wait in order to find a coalition to join and cd).  In the DCF-EN 

mechanism, setting cd is tricky but manageable (Bernstein et al. 1987). If it is too short, an 

achievable transaction will be aborted. If it is too long, the deadlock will not be detected 

until the timeout period has elapsed. The timeout period is therefore a parameter that needs 

to be tuned. It should be long enough so that most deadlocks are detected, but short enough 

that deadlocks are noticed without waiting too long. The cd should be longer than the 

maximal amount of time by which an agreement can be made without deadlocks 

happening. This maximal amount of time should be equal to or longer than the 

multiplication of 2k (k is the total number of agents and it is restricted as a small constant 

number) and the amount of time of making an agreement without waiting for any other 

proposals.  In the DCF-EN mechanism, each agent itself decides cd. Each agent can set cd 

based on its own preference (e.g. a deadline). In different domains, agents may have 

different preferences.  
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The DCF-EN Agent Structure and Algorithms of Message Handlers 

 

 

 

In my negotiation protocol in the DCF-EN mechanism, all possible coalitions 

construct the space of possible deals (SPCF) for an agent. An SPCF includes three sets of 

possible coalitions for each agent: the proposals an agent has sent out (SCF); the proposals 

it has received (RCF); and all other possible proposals (PCF) that are not in SCF and RCF.  

The relationship among the above coalition sets is given by the following two equations: 
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• SPCF = SCF ∪ RCF  ∪ PCF; 

• SCF ∩ RCF ∩ PCF = ∅. 

 

FIGURE 4.4. Message Handler for CFAccept 

If CFSearch is not done 
Then  
   If  All other members in the CF have accepted And not send out any CFAccept 
   Then Send CFConfirm to all other agents in the CF; 
             Send CFNoNeed to all agents who are not members in the CF; 
             If  The size of SCF > 1 
             Then Send CFFailed to all members of the other CFs in SCF 
Else Send CFNoNeed to the message sender 

 

FIGURE 4.5. Message Handler for CFPropose 

If  CFSearch is not done 
Then  
    If  the proposed CF not in RCF, SCF and PCF 
    Then  If  the CF is optimal 
               Then  Send CFAccept 
               Assert the CF to RCF. 
    If  the CF in SCF 
    Then   If  has not sent CFAccept 
               Then Send CFAccept 
    If  the CF in PCF 
    Then  Remove it from PCF; 
               Assert it to RCF; 
               If  the CF is optimal 
               Then Send CFAccept 

Else  Send CFNoNeed to the sender 
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Figure 4.3 shows the agent structure in the DCF-EN mechanism. The pseudo code of all the 

message handlers is presented from Figure 4.4 to Figure 4.9 

 

 

 

 

The diagram in Figure 4.10 illustrates what kind of information needs to be 

exchanged and where a message should go during negotiation. Suppose that the best 

possible coalition for agents a1, a2, a3 and a4 are (a1, a2), (a1, a1), (a3, a2, a4) and (a4, a2, a3) 

respectively. Agent a1 and a3 send CFProposes to agent a2 and a4 first. After agent a2 

 

FIGURE 4.6. Message Handler for CFReject 

If  CFSearch is not done 
Then  Accept new available CF again; 
           Send CFFailed to other members in the CF; 
    If  No more new Candidates 

    Then  Remove the CF from SCF 

 

FIGURE 4.7. Message Handler for CFFailed 

If  CFSearch is not done 
Then  

    If  Has accepted the CF 
    Then Accept new available CF again; 
    If  No more new candidates 
    Then Remove the CF from RCF 
 

 

FIGURE 4.8. Message Handler for CFConfirm 
 

Clean all CFs in SPCF; 
End the current CF search process. 

Send CFNoNeed to any new message sender. 
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receives the CFPropose(a1, a2) from agent a1, it accepts that proposal and sends CFReject 

to agent a3 because agent a3 has sent CFPropose(a3,  a2, a4).  

 

 

 

After agent a3 accepts CFReject, it sends CFFailed to agent a4 because agent a4 sent 

CFAccept before. Agent a1 sends CFConfirm to agent a2 to confirm their coalition. Then 

 

FIGURE 4.9. Message Handler for CFNoNeed 
 

If CFSearch is not done 
Then                        
     For the agent who send the message  
          Remove CFs in PCF, which include the agent; 
          If  Has accepted a CF in RCF, which include the agent  
         Then Accept new available CF again 
         Remove CF in RCF, which include the agent; 
         Send CFPropFailed to all members in CFs in SCF, which include the agent; 
         Remove CF in SCF, which include the agent. 
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agent a1 and agent a2 end their coalition formation process. Agent a3 and a4 may continue 

their processes if they can find other partners to form coalitions such that they can obtain 

better utilities than they act alone. The numbers in the circles represent the order of the 

messages being sent out. 

 

Properties of the DCF-EN Mechanism 

 

Compared with the traditional centralized coalition formation approach (Sandholm 

1996, Yamamoto and Sycara 2001; Li and Sycara 2002; Ye and Tu 2003), the DCF-EN 

mechanism has the following advantages: 

Complexity analyses 

• Coalition structure generation is not necessary any more. The DCF-EN mechanism 

significantly reduces the complexity of coalition formation. In the worst case, the total 

number of negotiation deals is 2
n-1 for each agent. The number of agents can be 

restricted to a small constant k (Shehory and Kraus 1998) so that the total number of 

negotiation deals is 2k-1. In this situation, the DCF-EN mechanism runs in polynomial 

time, given k as a constant.  

• Since the DCF-EN mechanism relies on communication among agents, the 

communication complexity needs to be examined. Practically, the communication costs 

are not expensive because there are at most three types of messages between two agents 

for each negotiation process: CFPropose, CFAccept/CFReject, CFConfirm/CFFailed. In 

the worst case, the total number of messages for negotiation in coalition formation is 

3n•2n. Again, if the number of agents is restricted to a small number k, the total number 
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of messages is reasonable. In practice, since agents would select the smallest size of 

coalition to join if multiple coalitions result in the same utility, the communication load 

can be further reduced. 

• In traditional centralized approach for coalition formation, payoff division is another 

big challenge in terms of not only stability of formed coalitions but also computational 

complexity (Sandholm 1996). Since each agent makes its own decision on whether or 

not to join a coalition, payoff division is excluded through explicit negotiation 

processes in the DCF-EN mechanism.  

Stability 

The DCF-EN mechanism is a core-stable mechanism in terms of coalition 

rationality. The formal proof is given in the following text. 

The classical core is the strongest of the solution concepts in coalition formation 

(Sandholm 1999). The core of a game is a set of payoff configurations P(CS), where each 

P(CL) is a vector of the payoff of a coalition CL in a coalition structure, CS, to the agents, 

and no subgroup is motivated to depart from the CS. The purpose of this concept is to 

maximize the value of coalition structure, VCS (group rationality) and to motivate agents to 

stay with the coalition structure that maximizes the social welfare (individual rationality). 

Furthermore, every subgroup of agents in a coalition is better off staying within this 

coalition than forming a coalition of their own (coalition rationality). 

The core concept is so strong that the core of a coalition game can be empty in 

many cases. Here, I relax the classical core concept to emphasize only the coalition 

rationality. After a coalition is formed, no subgroup of the coalition is willing to form its 
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own coalition. I define a coalition as stable in the core in terms of coalition rationality as 

the following: 

Definition 4.2: Core-Stable in Terms of Coalition Rationality 

A coalition CL is stable in the core in terms of coalition rationality iff for CLC ⊂∀  and 

Cai ∈∀ , )()( CLPCP ii ≤  is always true. 

Claim 4.1: The coalitions formed through the DCF-EN mechanism are stable in the core in 

terms of coalition rationality.  

Proof: Each agent always tries to join the best coalitions that it can find by using the DCF-

EN mechanism. The best coalition for an agent is the one that maximizes its own utility. 

Before an agent starts any coalition formation process, it will calculate the utilities of all 

possible coalitions to which it could belong. Then it sorts all these coalitions in descending 

order based on the corresponding utilities. The agent greedily proposes or accepts the best 

possible coalition that has not been rejected currently. Any coalition that has been accepted 

by all of its members must be the best coalition for all members that they can find. For each 

agent, if there are multiple coalitions with same utilities, it chooses the one with smallest 

size. Therefore, the value of the best coalition that an agent could join cannot be worse than 

the values of the coalitions composed of any subset of members in this best coalition.    

Lower Bound 

Another important attribute of the DCF-EN mechanism is how good it is in terms of 

the value of resulting coalition structure. 

If the optimal coalition structure is either all agents staying alone or all agents 

staying in the same coalition (grand coalition), the DCF-EN mechanism can find the 
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optimal solution after one proposal has been finished being negotiated. If during an entire 

coalition formation, a deadlock has not occurred, the resulting coalition structure of the 

DCF-EN mechanism is also an optimal solution.   

Definition 4.3: Singleton Coalition Structure 

The coalition structure is called a singleton coalition structure if it only includes agent 

subsets with a size of one. 

For other cases, the DCF-EN mechanism can guarantee a lower bound because an 

agent will not join any coalition that results in a utility for the agent less than the utility that 

the agent can obtain by staying alone. Therefore, the lower bound of the value of resulting 

coalition structure by the DCF-EN mechanism is equal to the value of the singleton 

coalition structure. Is there a better lower bound that the DCF-EN mechanism can provide? 

Since the utility that each agent can obtain by joining a coalition is arbitrary, there is no 

better lower bound that the current DCF-EN mechanism can provide. However, given 

randomly generated utilities for each agent, the results of my experiments will show that 

the DCF-EN mechanism can always result in a non-trivial coalition structure, which is 

better than a coalition structure in which every agent stays alone. Thus, I believe that the 

DCF-EN mechanism can provide a better lower bound if it allows agents to adjust their 

strategies when they recognize that they will end up staying alone.  

In order to guarantee that the resulting coalition structure is better than the singleton 

coalition structure, I extend the current DCF-EN mechanism to a repeated DCF-EN 

mechanism, which is called the RDCF-EN mechanism. The basic idea is to allow the 

original DCF-EN mechanism run multiple times. The first time, each agent runs the full 

original DCF-EN mechanism completely. If it ends up a coalition structure in which every 
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agent stays alone, all agents start the second run in which only coalitions of size two are 

considered. Starting from this turn, agents are no longer greedy. Each agent will accept the 

first coalition that results in better utility than the one it gets by staying alone. If some 

coalitions of size two are formed, the involved agents will stop their coalition formation 

procedure. All agents that cannot find a coalition to join at this turn will start the next turn, 

in which only possible coalitions with size three will be considered. Again, the agents who 

have found a coalition to join stop their coalition formation procedure and the agents who 

still stay alone will keep searching, and so on.  The coalition formation ends when all 

agents find a coalition to join or the nth
 run has been finished.  

 

 

 

FIGURE 4.11. Agent algorithm in the Repeated DCF-EN Mechanism 

Calculate PCF 
If the singleton coalition structure is not optimal  
Then 
      Start the DCF-EN negotiation procedure 
      If the resulted coalition structure is not a singleton coalition structure 

      Then  
          Counter = 2 
          While (Counter<=n)  
                Build a PCF with possible coalitions of size Counter 
                Start the DCF-EN negotiation procedure on new PCF  
                If there is a coalition which can be formed 
                Then  

                     Join the coalition 
                     Break 
                Else 
                     Counter++ 
Else 
      End coalition formation 
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Figure 4.11 depicts the formal description of the RDCF-EN mechanism. The 

RDCF-EN mechanism can provide a better lower bound by which the resulting coalition 

structure is always better than the one in which all agents stay alone, if such coalition 

structures exist. 

Claim 4.2:  If the singleton coalition structure is not the optimal solution of coalition 

formation, the RDCF-EN mechanism can always find a coalition structure that is better 

than singleton coalition structure in the sense that the value of the resulting coalition 

structure is larger than the value of the singleton coalition structure. 

Proof: If the singleton coalition structure is the optimal solution of coalition formation, the 

RDCF-EN mechanism can find it right after it finishes calculating the possible coalition 

proposals because there do not exist any possible coalition proposals for every agent. The 

best coalition for each agent is to stay alone. 

If the singleton coalition structure is not the optimal solution of coalition formation, there 

must exist some coalitions that result in better utilities for some agents. The size of those 

coalitions should be larger than one. If during the first turn, the DCF-EN mechanism could 

not find any of such coalitions, from the second turn, agents will accept any coalition that 

results in better utility. Since the RDCF-EN mechanism eventually enumerates all sizes of 

possible coalitions, it will form at least one coalition that results in better utilities for 

involved agents than they stays alone. Therefore, the value of the resulting coalition 

structure is always better than the singleton coalition structure.    

Besides providing better lower bound than the DCF-EN mechanism, the RDCF-EN 

mechanism does not increase the computational complexity significantly. In the worst case, 
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each agent only has 2·2k-1 negotiation deals to be processed. Also, in the worst case, the 

total number of messages for negotiation in coalition formation is 2·3k·2k-1.  

                            

SUMMARY 

 

In this chapter, I presented a coalition formation mechanism (DCF-EN) that 

achieves decentralization through explicit negotiation among self-interested agents. Each 

agent makes its own decisions about whether or not to join a possible coalition. Through a 

properly designed multiparty negotiation protocol, the negotiation mechanism allows 

automated multilateral negotiation among self-interested agents who have symmetric 

authority (i.e., no mediator exists and agents are peers) in a multiagent system. 

The resulting coalitions are stable in the core in terms of coalition rationality.  

Compared with the centralized approaches, this mechanism significantly reduces the 

complexity of coalition formation processes. In the next two chapters, I apply the DCF-EN 

mechanism to two different applications for forming coalitions through explicit negotiation. 

The DCF-EN mechanism can provide a trivial lower bound for the value of the resulting 

coalition structure that is the value of the singleton coalition structure. I extend the DCF-

EN mechanism to the RDCF-EN mechanism that can always guarantee to find a better 

coalition structure than the singleton coalition structure, if it exists. 
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CHAPTER V 

FORMING RESOURCE SHARING COALITIONS THROUGH DCF-EN 

MECHANISM 

 

In Chapter IV, I proposed a decentralized coalition formation (DCF-EN) 

mechanism to enable self-interested agents to form coalitions through explicit multiparty 

negotiation. In this chapter, I will show the experimental results of applying the DCF-EN 

mechanism to forming resource sharing coalitions in computational grids.  

In computational grids, the participating agents are organizations that own a large 

amount of computational resources. Even so, these organizations sometimes need extra 

computational capacity to satisfy their computational requirements (i.e. at peak times). 

Meanwhile, most of their resources are idle at other times. The resource sharing 

mechanisms in existing computational grids consist of agreements made through 

negotiation among human representatives belonging to these organizations. Afterwards, if 

there are internal or external changes (e.g. hardware or software upgrades), the resource 

sharing agreements have to be changed by additional negotiations. By applying the DCF-

EN mechanism, autonomous agents can execute these negotiation processes.   

                                                                           

FORMING RESOURCE SHARING COALITIONS IN COMPUTATIONAL GRIDS 

 

Applying the DCF-EN mechanism to computational grids is essential for 

automatically making resource sharing agreements among different organizations. The 

basic idea is to build resource sharing coalitions through multilateral negotiation among 
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self-interested agents. Resources owned by all members in a formed coalition are inter-

connected via a network and can be accessed by every member.  

A key step in the DCF-EN mechanism is that each agent needs to compute the 

utilities of all its possible coalitions. The utility for an agent of joining a resource sharing 

coalition should reflect the benefit obtained from the coalition by the agent. Previously, it 

was assumed that a general currency existed (denoted by grid dollars (Buyya 2002)) for 

expressing the cost of using a computational resource.  However, it is unclear how to 

consistently map the values of different type of resource usages to different amounts of grid 

dollars. Therefore, I propose a task-oriented mechanism for measuring the value of resource 

usage in computational grids. 

 

Economic Value of Computational Resource Usage 

 

Let us start from a simple observation. Suppose there are three processors P1, P2, 

and P3 that have different speeds from the highest to the lowest respectively. Here, I do not 

specify what the exact meaning of the speed of a CPU is. It could be measured by MIPs, 

clock rates, or any other kind of standard units. Given an identical job, these three 

processors would finish it in different amounts of time. Figure 5.1 shows the performance 

of each processor, assuming all other conditions are the same (e.g. same amount of RAM 

associated with each processor). The equivalent performance line depicts the fact that these 

three processors P1, P2, and P3 finish an identical job within H1, H2, and H3 CPU hours 

respectively.  
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If a resource user gives the same job to P1, P2, and P3, how should the processor 

owner charge the user for using different processors? If all processors can satisfy the 

deadline of a job, the resource user would prefer not to pay extra for using P1. But if the 

deadline of the job is tight, he may be willing to pay more for using P1. Therefore, in order 

to set proper prices for using P1, P2, and P3 to execute an identical job, the resource 

suppliers need to consider both the different capabilities of the processors and the users’ 

performance preferences.  

 

 

Modeling Resource Capabilities 

For simplicity, I consider time constraints as the only performance requirement for 

modeling the capabilities of computational resources (e.g. CPU, storage, bandwidth etc.). I 

define the capability of a group of heterogeneous resources as the following: 

Definition 5.1: Let K be a set of tasks, {k1, …, kn}, with a given duration, D (which is the 

total amount of time for accomplishing all tasks in K), and a group of resources, G =  {R1, 

…, Rm}. The capabilities of a group of resources in G for executing the tasks in K is 

 

CPU Hours 

Speed 

C(P1) 
Equivalent 

Performance 
Line 

FIGURE 5.1. Equivalent Performance by Different Processors 

C(P2) 

C(P3) 

H1 H2 H3 
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denoted by CanGroup(G, K, D). CanGroup(G, K, D) is true if and only if the resources in 

G can finish all tasks in K within duration D. 

Pragmatically, to determine if G is capable, there needs to be some scheduling 

algorithms for resources in G that can schedule the tasks in K properly so that the resources 

in G can accomplish them within duration D. The quality of the scheduling algorithm has a 

strong impact on the practical assessment of the capabilities of a group of resources (He 

and Ioerger 2003). The scheduling algorithm used for assessment should be transparent to 

resource users. This definition encapsulates the physical differentiation of resources to 

users. They allow users to ignore the different physical capabilities of resources and only 

consider their own performance preferences.  

Economic Value of Resource Usage  

From a user’s perspective, regardless of the type of resources that are provided to 

execute a task, the economic values of using these resources are equivalent if they can 

accomplish the task while satisfying the same performance requirements. The following 

claim addresses the equivalent values of the usages of two groups of resources: 

Claim 5.1: Let K a set of tasks K = {k1, …, kn} with duration D and groups, G1 and G2, with 

resources, {R11, …, Rm1} and {R11, …, Rr1}, respectively. The economic value of using G1 

to execute the tasks in K is denoted by V1(K). V1(K) = V2(K) if and only if both 

CanGroup(G1, K, D) and CanGroup(G2, K, D) are true. In other words, if CanGroup(G1, 

K, D) is true and CanGroup(G2, K, D) is not true, V1(K) > V2(K); if CanGroup(G1, K, D) is 

not true and CanGroup(G2, K, D) is true, V1(K) < V2(K). 

Note that no agent in a computational grid has the power to set the true economic 

value of using a resource. The value is determined by the interaction among the resource 
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users and suppliers. Whether the established economic value of the usage of a resource is 

stable depends on the relationship between the supply of resources and the demand (Mas-

Colell et al. 1995). The value of resource usage is not the price of using the resource, but a 

fair price should reflect the real value of using the resource.  

Based upon the above analyses, any mechanism for measuring the economic value 

of a computational resource usage should obey the following principles: 

• The economic value of using a resource is determined by the task executed by the 

resource.  

• The values of using two groups of resources relative to a given set of tasks are equal if 

they can accomplish the set of tasks with satisfying the same performance requirements.   

• The real economic value of using a resource is established through the interactions 

among agents in computational grids. 

Task-Oriented Mechanism for Measuring the Economic Value of Resource Usage 

Based upon the above capability model of computational resources, I establish a 

new mechanism for measuring the economic value of resource usage.  Note that the 

economic value of a resource usage is not the intrinsic value of a resource itself, but the 

value of using the resource.  

I use CPUs as an example to illustrate the mechanism. Referring to Figure 5.1, three 

processors with different speeds can be used to execute an identical task. The usage of each 

processor for the task is the same. Mathematically, “the usage of each processor” refers to 

the area of each rectangle in Figure 5.1.  The formal definition of the usage of a processor 

to execute a computational task is given as follows: 
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Definition 5.2: Given a task, k, and a processor, P, the speed of P is C(P). P needs H hours 

to finish k. The usage, S(k), of P for executing k is the following: 

S(k) = C(P) × H 

This definition reflects the amount of processor usage to execute a task no matter what kind 

of processors are used. The following claim is obviously true: 

Claim 5.2: Sx(k) = Sy(k) for given two processors Px and Py with different speeds.   

Based on this claim, a mechanism can be established to translate the usage of CPUs 

with different speeds to a common measurement. The idea is to establish a standard speed 

and convert real CPU usage to the usage of a virtual CPU with the standard speed. Hence 

there are two directions to convert the CPU usage of a task, one is changing the duration 

and the other is changing number of CPUs with the standard speed.  

Users in computational grids generally expect to finish their tasks as soon as 

possible. Given a task with certain duration, I can measure the usage of CPU for executing 

the task by calculating how many standard CPUs should be used to execute the task while 

satisfying the time constraints given by the user. I also define a standard time unit to 

measure the expected duration of a task. Thus, the definition of the usage of processors to 

execute a computational task is modified as follows: 

Definition 5.3: Given a task, k, with a certain expected duration, D, the standard CPU speed 

is C(Ps) and the standard time unit is Ds. D = m × Ds, where m is the number of standard 

time units that D includes. In order to finish k within D, there must be at least n processors 

with speed C(Ps) working simultaneously (assume k can be divided into n subtasks evenly) 

or a processor with speed n × C(Ps). The usage S(k) of CPUs for executing k is the 

following: 
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S(k) = n × C(Ps) × m × Ds 

This definition implies that the CPU usage of any task can be measured through a 

standard speed and a standard time unit. The standard unit of CPU usage is given by the 

following equation: 

Ss = C(Ps) × Ds 

Therefore, the CPU usage for executing a task can be measured through Ss by changing the 

number of CPUs with the standard speed or the number of the standard time units to finish 

a task. Thus, 

S(k) = n × m × Ss 

If the economic value of Ss is Vs, it is easy to calculate the corresponding economic value 

V(k) of CPU usage for executing the task.  

V(k) = n × m × Vs 

However, it does not reflect the common sense that the CPU usage for executing a task in a 

shorter duration might have higher value than the one for executing the same task with a 

longer duration. In order to account for this,  

V(k) = (1+λ1n)× (1+λ2m) × Vs 

where, n and m refer to the increasing number of CPUs with the standard speed and the 

number of the standard time units respectively. The coefficients λ1 and λ2 imply that 

changing the number of CPUs with standard speed and the number of the standard time 

units to finish the same task could result in different economic values of CPU usage. If λ1 ≠ 

λ2, then changing the number of CPUs with standard speed and the number of the standard 

time units to finish the same task causes different economic values of CPU usage.  
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Now, a task-oriented mechanism for measuring the economic value of 

computational resource usage for executing a task has been established. 

 

Forming Resource Sharing Coalitions in Computational Grids 

 

Agents in a computational grid generally have peak workloads at different times, so 

they can potentially utilize others’ resources at their idle time. Thus, I need to define the 

relationship between the workload of each agent and time (Tulga and Sheridan 1980; 

O’Donnell and Eggemeier 1986; Tsang and Wilson 1997). It is called a workload 

distribution function.  

Workload Distribution Function  

Based on the measure of resource usage in the last section, I can define the computational 

capability of an agent (representing the computational resources of an organization on the 

grid) by converting all its CPUs with different speeds to the CPUs with the standard speed. 

The entire CPU capacity of a group of CPUs is defined as follows:  

Definition 5.4: Let U be a group of processors, {P1, …, Pm}, where different Pi in U could 

have different speeds. The standard CPU speed is C(Ps). The speed C(Pi) of Pi is equal to 

ni×C(Ps). The entire CPU capacity C(U) of a group of processors in U within time interval 

[t1, t2] is: 

C(U) =  ∑ =

m

i in
1

×C(Ps)× | t1-t2| 

Hence, the workload of an agent at a certain time point is decided by how many standard 

CPU Pss are needed to run its tasks at that time.  
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Definition 5.5: The workload of an agent at certain time point t is defined as m×C(Ps), if the 

agent needs m standard CPU Pss to run its tasks at time t.  

Definition 5.6: The workload distribution function is defined as a function of time, w(t): T 

→ R, that  is the workload of the agent at time t (T is the set of time points).   

 

 

The workload at a certain moment in a workload distribution function is larger than 

the entire computational capability of an agent because the tasks require more resources 

than it has available. Figure 5.2 shows an example of workload distribution function. In this 

work, it is assumed that the workload distribution function is known (or can be estimated 
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FIGURE 5.2.  Workload Distribution Function 
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FIGURE 5.3.  Idle CPU Distribution Function 
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ahead of time). So negotiation can be done prior to execution of any tasks. (The problem 

could be more difficult if future workloads were unknown, and agents had to adapt and 

adjust cooperation dynamically.) 

To evaluate the cooperation among agents, an idle resource distribution function 

also needs to be defined because resource sharing in grids is mainly related to how much 

idle resource capacity is available for involved agents. 

Definition 5.7: Given a workload distribution function w(t) of an agent within time interval 

[t1, t2] and the entire CPU capacity of the agent is C(U). The idle CPU distribution function 

g(t) is defined as: 

g(t) =  C(U) –w(t),  t ∈ [t1, t2] 

Figure 5.3 shows an example of g(t) when w(t) is given by Figure 5.2. When g(t)>0, 

the agent has idle CPUs. When g(t)<0, the agent is overloaded. Agents are self-interested in 

computational grids. Considering only the idle resource distribution is not enough to form a 

resource-sharing coalition. Each agent needs to consider the economic value of contributing 

its idle resource to others and the cost of using others’ idle resource. 

Definition 5.8: Given the idle CPU distribution function g(t) of agent a within time interval 

[t1, t2], the amount CR of CPU capacity required for agent a is:  

∫=
1

2

t

t

-

R (t)g  g(t))(a,C  

where, g-(t) is equal to g(t) when g(t) < 0 and g-(t) is equal to 0 otherwise. The economic 

value VR of using the idle CPUs of others to finish agent a’s tasks is: 

S

s

R

R V
S

g(t))(a,C
(g(t))V ×=  
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Definition 5.9: Given the idle CPU distribution function of agent a within a time interval, 

[t1, t2], the amount CI of CPU capacity of agent a is idle:  

∫
+

=
1

2

t

t
I (t)gg(t))(a,C  

where, g+(t) is equal to g(t) when g(t) > 0 and g+(t) is equal to 0 otherwise. The economic 

value VI of agent a’s idle CPUs is: 

S

s

I

I V
S

g(t)) (a,C
(g(t))V ×=  

Based on the above analyses, the formal problem definition of forming resource-sharing 

coalitions in a computational grid is as follows: 

Definition 5.10: Resource Sharing Coalition Formation Problem 

Let A be a set of agents in a computational grid, {a1, a2,  …, ar}. Each agent ai also has its 

CPU capacity Ni×C(Ps)× | t1-t2| within time interval [t1, t2]. Each agent ai needs to run a set 

of tasks Ki = { ki1, ki2,  …, kil } which generates its idle resource distribution function gi(t) 

within [t1, t2]. The objective is to form appropriate coalitions such that each agent ai can 

have the optimal idle resource capacity exchanging with other agents in A within time 

interval [t1, t2]. 

For each agent in A, the best exchange is to contribute a minimal amount of its own 

idle resource capacity and to obtain a maximal amount of idle resource capacity from a 

resource sharing coalition while finishing as many of its own tasks as possible. To 

determine the optimal idle resource capacity exchange for each agent, the utility function of 

an agent needs to be defined. The utility is composed of two parts. One is the difference 

between the resource capacity the agent obtains from the coalition and the resource capacity 
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it contributes to the coalition. The other is the economic value of finishing tasks by using 

the resource capacity it obtains. 

Definition 5.11: Suppose that agent ai obtains idle CPU capacity Cgain(ai, CLj) by joining a 

resource coalition, CLj, and it contributes its own idle CPU capacity, Cgive(ai, CLj). By 

obtaining Cgain(ai, CLj), agent ai can finish a subset of tasks Ki’ in Ki while satisfying the 

time constraints. The utility, U(ai, CLj), that agent ai obtains by joining coalition CLj is 

given by: 

S

s

ijigivejigain

ji V
S

)'S(K )CL ,(aC - )CL ,(aC
)CL,U(a ×

+
=  

  
    Start Message Listener 
    FinishCF = false 
    AcceptCF = false 
    While true 
          If  receive a new message 
          Then process the message by calling corresponding message handler 
          If  FinishCF = false 
          Then  If  startCF=false 
                     Then  Calculate all possible resource-sharing coalitions 
                                Sort all possible coalitions in a descending order in PCF 
                                StartCF = true 
                      Else  If PCF=Ф and SCF=Ф 
                               Then There does not exist possible coalition 
                                         FinishCF = true  
                               Else If RCF=Ф  
                                       Then If SCF=Ф and PCF!=Ф 
                                                 Then Send the current best possible coalition proposal in PCF 
                                                           Assert the send-out CF into SCF  
                                                           Remove it from PCF 
                                        Else If (SCF!=Ф and SCF∈RCF) or (SCF=Ф and PCF.elementAt(0) ∈RCF) 
                                                Then Send CFAccept message to the corresponding agent 
                                                          AcceptCF = true 

 
FIGURE 5.4. Agent Algorithm for Resource Sharing Coalition Formation 
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where S(Ki’) is the amount of CPU capacity that agent ai obtaining from CLj for finishing 

tasks in Ki’. Each agent ai uses this utility function to evaluate its decision on which 

coalitions in the grid it should join by maximizing its utility.  

Agent Algorithm for Forming Resource Sharing Coalitions 

After defining the utility function of each agent, I can now apply the DCF-EN 

mechanism to solve the problem of forming resource sharing coalitions in computational 

grids. Figure 5.4 gives the agent algorithm, in which PCF, SCF and RCF denote the 

possible coalition proposal set, sent-out coalition proposal set and received coalition 

proposal set, respectively. In the following, I present the experimental results that aim to 

show how well the DCF-EN mechanism performs in this application domain. 

 

EXPERIMENTS 

 

The main goal of my experiments is to evaluate how well the DCF-EN mechanism 

performs on the resource sharing coalition formation in computational grids.   

 

Experimental Objective 

 

I mainly focus on the values of resulting coalition structures and the communication 

load caused by negotiation among agents. As for the value of resulting coalition structure, I 

will show that the average lower bound of the DCF-EN mechanism is better than the value 

of the singleton coalition structure (the lower bound was established in Chapter IV). Since 

the DCF-EN mechanism uses a time-out strategy to detect and break deadlocks, Student’s 
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t-test will be used to compare two different time-out strategies: one that waits for a constant 

amount of time, and the other where the amount of wait time is proportional to the 

difference between the utility of the current coalition proposal and that of the next proposal. 

As for the communication load, I will examine that the total number of messages that each 

agent receives during a coalition formation. In other words, I will test the following 

hypotheses: 

• If there exist better coalition structures than a singleton coalition structure, through the 

DCF-EN mechanism, the value of a resulting coalition structure will be higher than the 

value of the singleton coalition structure. 

• The communication load caused by the negotiation among agents is much lower than 

the one in the worst case. (I believe that this hypothesis is valid because agents prefer 

smaller size of coalitions if possible coalitions result in the same utility, and whenever a 

coalition is formed, all members in that coalition will exit the negotiation process.) 

• By using proportional time-out strategies, the DCF-EN mechanism will generate better 

values of resulting coalition structures. Intuitively, I believe that associating wait time 

with utilities of the corresponding coalition proposals is a better strategy, compared to 

waiting for constant amount of time for all possible coalition proposals. Here, a better 

strategy is a strategy that results in higher coalition structure value or causing less 

communication load. 

In real computational resource sharing applications, different workload distributions 

of agents will result in different strategies for resource sharing. If an agent always has a 

heavy workload or mostly has a nearly full workload, it could be hard for this agent find a 

partner to share resources, as it cannot provide much help to others. If an agent always has a 
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low workload at most time and it is only overloaded occasionally, the organization could 

easily find a partner as it can help others a lot. However, the agent might choose not to help 

if it does not see any benefit to itself. For example, a restaurant web server might be only 

busy at lunch or dinnertime and be idle at most other time in a day. If an agent always has a 

regular workload distribution in the sense that it is sometimes overloaded and has idle 

capacity at other times, then the agent may easily find partners because it is able provide 

help to others when it has idle capacity and also needs help from others when it is 

overloaded.   

Since the utilities of possible coalition proposals are determined by the workload 

distributions in resource sharing coalition formation, I need to examine whether different 

workload distributions will result in different coalition structures and different 

communication load. Hence, additional hypotheses need to be tested: 

• Agents with nearly full workload distribution are more likely to choose not to join any 

coalition than agents with the other two types of workload distributions. 

• Different workload distributions will cause different communication load. 

 

Experimental Settings 

 

I consider 10 time units for each experiment. For simplicity, instead of randomly 

generating workload distributions, I directly generate idle resource distribution for resource 

sharing coalition formation. Since I need to test how different workload distributions affect 

coalition formation, I design three types of idle resource distributions: FULL, SPIKE and 

TRIANGULAR.  
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FULL idle resource distribution represents the situation in which an agent has a 

nearly full workload at most time (i.e., has a low utilizable idle resource capacity). SPIKE 

idle resource distribution implies the situation in which an agent is overloaded for short 

durations and has idle capacity at most time. TRIANGULAR implies the situation in which 

an agent is overloaded at some time and has idle capacity at other times.  
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In order to let the values of the resulting coalition structures be comparable, the idle 

capacity is generated randomly using a uniform distribution from 0 to 10 for FULL idle 

resource distribution; from 0 to 1000 for both SPIKE and TRIANGULAR distribution, 

assuming the maximal capacity of each agent is 1000. Figures 5.5 to 5.7 illustrate the 

corresponding workload distributions of these three types of idle resource distributions. 

 

 

I chose 5 agents for each experiment. For each type of idle resource distribution and 

each type of time-out strategy, I ran 20 experiments. Hence, there are a total of 120 

experiments. Table 5.1 lists all values that I collected from each experiment. UCL is defined 

as NOPCL CCU +−=  and Ua is defined as Pa CU −= , where CP is the total amount of 

positive idle capacity that the agent owns and CNO is the total amount of idle capacity that 

the agent obtains from other agents. The basic idea is that idle capacity owned by the agent 

itself decreases its utility and idle capacity obtained from others increases its utility. 
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Values Description 

CS The resulting coalition structure 

UCL The utility that each agent obtains by joining the coalition it chooses 

Ua The utility that each agent obtains without joining any coalition 

numMsgs[] Numbers of messages that each agent receives for coalition formation 

 

  

Values Description 

VCS The value of the resulting coalition structure, which is equal to the sum of 
the utilities that all agents can obtain in the coalition structure 

Va The value of the singleton coalition, which is equal to the sum of the 
utilities that all agents obtain without joining any coalition 

VCL-a The difference between the value of the resulting coalition structure and 
the singleton coalition 

NS The number of agents who still stay alone after coalition formation 

ANM The average number of messages that an agent receives for coalition 
formation 

 

 

Based on the data that I collected from each experiment, I computed the following 

values in Table 5.2. 

 

Experimental Results 

 

In order to examine my hypotheses, VCL-a, ANM and NS are three main values that I 

am interested in. Table 5.3 lists the experimental results by time-out strategy of 

proportional wait time. PT_Full, PT_Spike and PT_Triangular refer to experiments with 

FULL, SPIKE and TRIANGULAR idle resource distribution respectively.  Table 5.4 lists 

the experimental results when the time-out strategy is to wait for constant amount of time. 

TABLE 5.2. Values Needed to be Computed 

TABLE 5.1. Values Collected from Experiments 
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CT_Full, CT_Spike and CT_Triangular refer to experiments with FULL, SPIKE and 

TRIANGULAR idle resource distribution respectively. 

 

 

PT_Full PT_Spike PT_Triangular  
ANM VCL-a NS ANM VCL-a NS ANM VCL-a NS 

Mean 17.42 28.53 2.9 25.26 3887.05 2.25 29.1 2527.64 1.65 

StdV 5.06 18.88 1.17 6.26 2371.41 0.97 3.18 1469.92 1.31 
 

 

 

CT_Full CT_Spike CT_Triangular  
ANM VCL-a NS ANM VCL-a NS ANM VCL-a NS 

Mean 20.84 31.4 2.9 23.75 3967.35 2 28.05 2439.6 1.55 

StdV 6.21 25.98 0.97 7.51 2000.88 0.97 6.24 1275.27 1.1 

 

 

I ran 120 experiments with 5 agents. Only 7 of them resulted in singleton coalition 

structures. 6 of these 7 experiments are based on FULL idle resource distribution. 

Therefore, the DCF-EN mechanism can generally result in coalition structures that are 

better than singleton coalition structure. Based on the experimental results, the following 

hypothesis is true: 

If there exist better coalition structures than a singleton coalition structure, 

through the DCF-EN mechanism, the value of a resulting coalition structure 

will be higher that the value of the singleton coalition structure. 

The second conclusion that I can draw is that the real communication load is much 

less than the theoretic worst case. For 5 agents, in the worst case, there could be around 240 

TABLE 5.3. Experimental Results for Proportional Wait Time 

TABLE 5.4. Experimental Results for Constant Wait Time 
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messages for each agent. In my 120 experiments, the highest number of messages that an 

individual agent receives is 43.  The mean of the numbers of messages that each agent 

receives during coalition formation is from 18 to 30. Therefore, the following hypothesis is 

also true: 

The resulting communication load caused by the negotiation among agents 

is much lower than the one in the worst case. 

In order to compare two different time-out strategies for detecting and breaking 

deadlocks during coalition formation, I did Student’s t-test5 to test the values of resulting 

coalition structures with the same type of idle resource distribution. In my t-test, the values 

generated by PT is group A and values generated by CT is group B. PT refers to the time-

out strategy in which the wait time is proportional to the utility difference between the 

current possible coalition and the next possible coalition. CT refers to the time-out strategy 

by which the wait time is a constant.  

 

                                                 
5 The t-test results are generated at http://www.physics.csbsju.edu/stats/t-test_bulk_form.html 

 FULL (A-PT, B-CT) 
The results of an unpaired t-test  
 
t = -0.399 
sdev = 22.7 

∆ ≅ -2.9  
degrees of freedom = 38  
The probability of this result, assuming the null hypothesis, is 0.69 
 

FIGURE 5.8. T-Test for FULL Idle Resource Distribution 
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My hypothesis is that the proportional wait time strategy should outperform the 

constant wait time strategy in the sense that the value of resulting coalition structure should 

be higher. Therefore, the hypothesis of the t-test is that the mean of group A is larger than 

the mean of group B.  

 

 

Figures 5.8 to 5.10 show the results of unpaired6 t-tests for FULL, SPIKE and 

TRIANGULAR idle resource distribution respectively. In the t-test results, for both FULL 

and SPIKE idle resource distribution, the t values are all near zero, i.e., the mean for PT is 

not larger than the one for CT. Only the t value for the TRIANGULAR idle resource 

                                                 
6 I use unpaired t-tests because we want to see the significance of the difference between the means of two 
independent groups of results. 

 SPIKE (A-PT, B-CT) 

The results of an unpaired t-test  
 
t=-0.116 
sdev= 0.219E+04 

∆ ≅ -100.3 
degrees of freedom = 38  
The probability of this result, assuming the null hypothesis, is 0.91 
 

FIGURE 5.9. T-Test for SPIKE Idle Resource Distribution 

 TRIANGULAR (A-PT, B-CT) 

The results of an unpaired t-test  
 
t= 0.202 
sdev= 0.138E+04 

∆ ≅ 88.04 
degrees of freedom = 38  
The probability of this result, assuming the null hypothesis, is 0.84 
 

FIGURE 5.10. T-Test for TRIANGULAR Idle Resource Distribution 
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distribution is positive. The t values for all idle resource distributions implies that the 

probabilities of the corresponding null hypotheses (i.e., there is no big difference between 

the mean for PT and the mean for CT.) being true is high, 0.69, 0.91 and 0.84 for FULL, 

SPIKE and TRIANGULAR respectively. 

 The results of the t-tests do not support the hypothesis by which the performance of 

PT is better than that of CT. To further evaluate the t-test results, I need to test whether the 

DCF-EN mechanism is sensitive to two important parameters, cd (the amount of time that 

an agent needs to wait to detect a deadlock) and cb (the maximal amount of time that an 

agent is willing to wait to join a coalition except the amount of time it needs to detect 

deadlocks). In the above experiments, I let n

n

d cc 2= , where cn is the amount of time 

required to process a possible coalition proposal without deadlock. In my experiments, cn is 

estimated manually through prior empirical experiments. I also let cb = cd.  

 

 

ST_Triangular PT_Triangular LT_Triangular  
ANM VCL-a NS ANM VCL-a NS ANM VCL-a NS 

Mean 27.22 2316.48 1.9 29.1 2527.64 1.65 28.78 2261.75 2.05 

StdV 4.42 1345 1.3 3.18 1469.92 1.31 2.97 1275.97 1.15 

 

 

In order to test whether the DCF-EN mechanism is sensitive to cb and cd, I 

conducted the following experiments: I ran two groups of experiments with proportional 

wait time strategy and TRIANGULAR idle resource distribution. In one group, I reduced cd 

by half and doubled it in another group. I ran 20 experiments for each group. Let ST denote 

TABLE 5.5. Experimental Results with Different cb and cd 
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the experiments with shorter cb and cd. LT denotes the experiments with longer cb and cd. 

Table 5.5 shows the experimental results. 

 

 

Figure 5.11 shows that the error bars of VCL-a by experiment ST, LT and PT which 

is the experiment with original cb and cd. Figure 5.12 shows that the error bars of ANM by 

experiment ST, LT and PT. Figure 5.13 shows the error bars of the average number (NS) of 

agents who choose not join any coalition after coalition formation. The experimental results 
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do not show a big difference among ST, LT and PT. Therefore, the previous t-test results 

are not very sensitive to parameters cb and cd. 

 

 

Another observation is that the different types of idle resource distribution cause 

different communication load. Figure 5.14 shows the error bar of average number of 

messages for each agent in experiments with different types of idle resource distribution. 
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The error bars of the average number of received messages with the same type of idle 

resource distribution fall into a similar range no matter what kind of time-out strategy used. 

FULL idle resource distribution causes the lowest communication load because agents have 

fewer chances to find partners. TRIANGULAR idle resource distribution results in the 

highest communication load as agents have more opportunities to find partners. 

 

By examining the number of agents who choose not join any coalition after 

coalition formation, I found that FULL idle resource distribution produces the maximum 

agents who choose not join any coalition after coalition formation, and TRIANGULAR idle 

resource distribution results in minimum agents who choose not join any coalition after 

coalition formation. Figure 5.15 shows the error bars of the average number (NS) of agents 

who stay alone after coalition formation with different idle resource distribution.  

Since the different types of idle resource distribution implies different types of 

workload distribution, the following two hypotheses are also valid: 

• Different workload distributions will cause different communication load. 
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• Agents with nearly full workload distribution are more likely to choose not join 

any coalition than agents with the other two types of workload distributions. 

 

SUMMARY 

 

In this chapter, I applied the DCF-EN mechanism to resource sharing coalition 

formation in computational grids. To compute the utility that an agent can obtain by joining 

a coalition, I developed a task-oriented mechanism to measure the economic value of 

computational resource usage. Based on this measurement, agents can compute the utilities 

of sharing others’ idle resource capacity as well as the utilities of contributing their own 

idle resource capacity to other agents in a grid. 

To examine how well the DCF-EN mechanism performs on resource sharing 

coalition formation, I designed experiments with three types of idle resource distribution, 

FULL, SPIKE and TRIANGULAR. The experimental results support the following 

hypotheses: 

• If there exists better coalition structures than a singleton coalition structure, through the 

DCF-EN mechanism, the value of the resulting coalition structure will be higher than 

the value of the singleton coalition structure. 

• The communication load caused by the negotiation among agents is much lower than 

the one in the theoretic worst case. Different workload distributions will cause different 

communication load. 

• Agents with nearly full workload distributions will have more chances to choose to not 

join any coalition than agents with other two types of workload distributions. 
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Before I ran the experiments, I expected that by using different time-out strategies, 

the DCF-EN mechanism would generate different values of resulting coalition structures. 

However, the t-test results showed that there was not much difference between the time-out 

strategy with proportional wait time and the time-out strategy with constant wait time. 

Overall, the experimental results show that the DCF-EN mechanism can generally generate 

better coalition structures than the singleton coalition structure (i.e., working alone). The 

communication load of the DCF-EN mechanism is also practical. 
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CHAPTER VI 

COMBINING BUNDLE SEARCH WITH BUYER COALITION FORMATION 

 

The DCF-EN mechanism is not only applicable for establishing virtual communities 

for computational resource sharing, but it is also practical for other applications such as 

buyer coalition formation in electronic markets. Small buyers without bargaining power 

(Proter 1980) individually can form a coalition as a virtual big buyer (He and Ioerger 

2004b, 2005a). As a result, sellers could be willing to give a greater discount to the whole 

group.  

Combinatorial trade in electronic markets is becoming more and more important. In 

electronic markets, buyers are able to access an incredible amount of product information 

through the Internet. This advantage allows buyers to build better purchasing strategies to 

save costs. Forming buyer coalitions among small buyers is one such purchasing strategy 

that allows small buyers with little individual bargaining power to form a virtual big buyer 

that can obtain better discounts.  

Another very interesting buyer strategy is called the “bundle search” that addresses 

the situation where a buyer needs to buy different goods as a bundle. A typical example is 

the travel package search problem (Chang et al. 2003). Because of the different retail prices 

and discount policies of different suppliers, different bundles result in different discounts. 

The problem is to find the optimal bundle that results in minimum cost. Actually, searching 

for the maximal discount of a buyer coalition can be viewed as a bundle search problem if 

the discount policies of sellers are based on the total cost to all buyers in the buyer 
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coalition. Under this kind of discount policy, it is valuable for buyers to use both bundle 

search and buyer coalition formation to obtain better discounts. 

In this Chapter, I consider both combinatorial coalition formation and bundle search 

together when the discount policies of sellers depend on the total cost of all goods sold in 

each transaction. I apply the DCF-EN mechanism to solve the following purchasing 

problem: 

Definition 6.1: A Purchasing Problem 

Let G = {g0, g1,  …, gl-1} denote a collection of goods. Let B be a group of buyers, {b0, b1,  

…, bm-1}, where each of them has a shopping list denoted by vector Qi = (qi0, qi1,  …, qi,l-1), 

where qik refers to the quantity of each item, gk, buyer bi needs to buy (i = 0, 1, .., m-1; k = 

0, 1, .., l-1). There is a set of sellers, S = {s0, s1,  …, sn-1}, who can supply some or all of the 

goods in G. Each seller, sj (j = 0, 1, .., n-1), has its own discount function δj(c): 
+

ℜ → 
+

ℜ , 

that is the discount a buyer obtains when the cost of his purchase from seller, sj, is c. Pj = 

(pj0, pj1, … pj, n-1) is a retail price (per unit) vector for each seller, sj. The cost of buyer, bi is 

denoted by ci: ∑ ∑∑ ×δ−×=
−

=

−

=j ikjk

l

kjikjk

l

ki qpqpc ))((
1

0

1

0 . If seller, sj, has no good, gk, 

available, Pjk = 0. The objective of the problem is to minimize the cost to each buyer in the 

buyer set, B, i.e. min∑
−

=

1

0

m

i ic . 

Definition 6.2: Discount Ratio 

The discount ratio is defined as the ratio of the discount to the corresponding cost: 

ccrd /)(δ= , where δ(c) is the amount of discount that a buyer can obtain by spending c 

dollars in one transaction. The discount ratio must have an upper bound in a real market, 

because sellers need to guarantee that their profit is positive. Hence, searching the 
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maximum discount could be interpreted as finding the highest discount ratio the buyers can 

obtain. 

The discount ratio function may not be monotonic increasing along with the amount 

of cost. In other words, more cost will not necessarily result in a higher discount ratio. For 

example, J.C. Penney provides $10 off for purchases over $50, $15 off for purchases over 

$75 and $35 off for purchases over $150 on certain sale days. Figure 6.1 shows the 

corresponding discount ratio function. 

 

Definition 6.3: Buyer Utility 

The utility of a buyer is defined as the difference between the discount he can obtain by 

shopping alone and the one he can get by using a purchase strategy based on buyer coalition 

formation: bCL ddu −= , where db is the discount that a buyer can obtain by shopping alone 

and dCL is the discount that the buyer can obtain by shopping with partners. Each buyer tries 

to maximize its own utility. 
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Note that dCL for each buyer depends on how the corresponding shopping group 

divides the total discount that it obtains. Assume that the discount of each buyer is 

proportional to the cost it contributes to the group, i.e., for buyer bi, c

c
cd i

j

i

CL ×δ= )(  where 

c is the total cost of the group, ci is the cost of buyer bi and δj(c) is the total amount of 

discount the group obtains from seller sj, 

 

TRADITIONAL CENTRALIZED APPROACH 

 

Traditionally, the above purchase problem can be solved by a centralized approach. 

Suppose there is a buyer leader who has all information about buyers and sellers. The buyer 

leader searches for the optimal strategies for buyers (Li and Sycara 2002). The simplest 

centralized approach is to enumerate all possible coalition structures of all goods that 

buyers need to purchase and find the optimal coalition structure that minimizes the costs of 

all buyers.  

However, the computational cost of this approach is prohibitively expensive. The 

total number of all possible coalitions is 2NQ – 1. Sandholm et al (1999) have already 

proved that the total number of all possible coalition structures is O(NQ
NQ), which is so 

huge that not all coalition structures can be enumerated unless the number of all goods is 

extremely small (below 15 or so in practice). Also, for each coalition, an optimal bundle 

search needs to be done. The time complexity of the optimal bundle search is O(NM) in the 

worst case, where M is the number of goods, and N is the number of sellers (Chang et al. 

2003).  
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Another costly computation of this centralized approach is evaluating whether the 

resulting coalitions are stable in the core (Kahan and Rapoport 1984; Li and Sycara 2002). 

The reason to do this is because buyers will refuse to join a coalition that causes higher cost 

than the cost of joining other coalitions. A buyer leader needs to calculate the total cost to 

each buyer in every coalition structure and determine whether the coalitions are stable (Li 

and Sycara 2002).  

In real electronic markets, buyers are self-interested and geographically distributed. 

They make purchase decisions based on their local information and on minimizing their 

own cost. The incentive of buyers to join a buyer coalition is to obtain a greater discount 

than they would from purchasing individually. It is more realistic to let buyers make their 

own decisions (Shehory and Kraus 1999; Lerman and Shehory 2000) and form coalitions 

through negotiation than it is to set a coalition formation leader to evaluate the coalition 

value and distribute the payoff. I propose a distributed approach based on the DCF-EN 

mechanism for solving the purchasing problem. It is much more efficient and practical than 

the centralized approach for real applications. 

 

A DISTRIBUTED APPROACH 

 

My approach to solving this purchasing problem involves two steps. First, buyers 

do their individual bundle searches to find the optimal bundle for their own shopping lists. 

If the discount ratios obtained from the sellers involved in the optimal bundle are the 

maximal discount ratios that the sellers can offer, buyers do not have incentive to form or 

join any buyer coalition, since they cannot increase the amount of discount they can gain. 
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Otherwise, buyers start the second step by either searching for coalitions proposed by other 

buyers or proposing new coalitions to related buyers.  

The reason for a buyer to do a bundle search first is that the discount resulting from 

the individual bundle search belongs to the buyer for sure. The possible discount obtained 

from joining a buyer coalition is uncertain because it depends on whether buyers can 

achieve a consensus. It is possible to miss the optimal result by separating the bundle 

search and the coalition formation into two steps, but it ensures that buyers obtain the 

discount at least as much as they can get individually. 

The objective for buyers to join a coalition is to obtain a greater discount from one 

seller. I set an independent buyer club agent for each seller in S. If buyers are interested in 

joining the coalitions related to a specific seller, they register in its buyer club and obtain 

information about other buyers who need to join coalitions from the buyer club.  Buyer club 

agents have nothing to do with the negotiation process among buyer agents except for 

providing the initial information about possible partners. 

 

BUNDLE SEARCH PROBLEM 

 

Compared with buyer coalition formation, the bundle search problem targets a 

single buyer who has a shopping list that includes a set of desired items.  

Definition 6.4: Bundle Search Problem 

let Qi be a shopping vector (qi0, qi1,  …, qi,l-1), where qij is equal to 1 or 0. Let S be a set of 

sellers {s0, s1,…, sn-1}, who can supply some or all of the goods in Qi. Each seller sj (j = 0, 

1, .., n-1) has its own discount function δj(c): R
+
 → R

+. The problem is to find an optimal 
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purchasing strategy (i.e., partitioning goods in Qi by the targeting sellers in S) in the sense 

that it takes buyer bi the minimal cost to purchase all goods with qij = 1 in Qi.   

The optimal algorithm for the bundle search problem is trivial. The idea is to 

enumerate all partitions of goods on the buyer’s shopping list based on different 

combinations of sellers. The partition that results in minimal cost is the optimal bundle. 

The time complexity of this algorithm in the worst case is O(N
M

) (Chang et al. 2003). If the 

prices of items on the shopping list are not affected by adding more items, dynamic 

programming can be used to solve this problem with time complexity O(N
2
). However, this 

is not the case for the purchasing problem here. The price of each item is changed by the 

discount ratio that the buyer obtained. The discount ratio is a function of the total cost to a 

buyer. If a dynamic programming algorithm is used, when a new item is added, the total 

cost may change and the discount ratio may also change. In this case, the price of items that 

have already been calculated may change. Hence, the dynamic programming algorithm is 

not appropriate for this problem.  

I have developed an efficient heuristic algorithm to solve this bundle search 

problem. It is called Maximal Gain Bundle Search (MGBS) algorithm. The algorithm is 

based on the following three heuristic rules: 

Rule #1 Maximal Bundle: The problem of bundle search comes from the general economic 

situation where the more one spends with a single seller, the more discount one gets from 

that seller. I call the bundle purchase from one seller that provides the maximal discount the 

“Maximal Bundle”. If the cost of a bundle with the maximal discount from every available 

seller is larger than the sum of the corresponding minimal retail prices for the goods in the 
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bundle, then it is not necessary to continue the bundle search. The buyer just needs to buy 

all goods in the bundle at the lowest retail prices. 

Rule #2 Maximal Gain Ratio: If the costs of maximal bundles from multiple sellers are less 

than the sums of the corresponding minimal prices, the seller with the best ”Maximal Gain 

Ratio” is picked as the candidate seller.  

To define this term, I need to define the gain of each bundle purchase from one 

seller. In this paper, the gain of each bundle purchase is not defined by the amount of the 

discount. If the prices provided by a seller are too high, even if it gives a large discount, the 

purchase cost could still be very high.  So, the gain of each bundle purchase is defined to be 

the difference between the final cost of this bundle purchase and the sum of the 

corresponding minimal prices. The gain ratio is defined to be the ratio of the gain of a 

bundle purchase to the sum of the corresponding minimal prices; so the maximal gain ratio 

is the ratio of the gain of the maximal bundle purchase to the sum of the corresponding 

minimal prices. 

Suppose that there is a set of sellers, Sb = (Sb0, Sb1, …, Sbk) for a bundle of goods, 

Gb = (Gb0, Gb1, …, Gbk). The gain ratio g(Gb, Sb) of the bundle of Sb is defined by the 

following equation: 

∑
∑∑∑ −−

=
G b

G b

S b

G b

S b

G b

P

DPP
S bG bg

m i n

m i n )(
),(  

∑ Gb

SbP denotes the sum of the prices of all goods in Gb of the sellers in Sb. ∑
GbPmin denotes the 

sum of the minimal prices to purchase all goods in Gb. denotes the sum of the discounts 

obtained from all of the sellers in Sb for purchasing goods in Gb as a bundle. Maximal gain 

ratio is defined as a ratio of the difference between the sum of minimal retail prices of the 
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bundle and the cost of the bundle after applying a discount to the sum of minimal retail 

prices of the bundle. 

 

 Begin MGBS (G, S, Mp, Mr)  

|PV| = |G|, | minP | = |G |, | minSV | = |G | 

( minP is the minimal price vector and minSV  is the corresponding seller Vector)  

MaxCost = ∑ i
Pmin - ∑δi(

iPmin ) 

For each seller Sj 

     MaximalBundle[j] = ∑Mpj 

     MaxDiscount[j] = δj (MaximalBundle[j]) 
     BundleCost[j] = MaximalBundle[j] - MaxDiscount[j] 
For all BundleCost[j] 
      If All of BundleCost[j]s > MaxCost[j]  

      Then  PV = minSV , PC = MaxCost 

                 Return PV, PC 
      Else  
           For each BundleCost[j] 

               MinBundleCost[j] = δj 
-1

(MaxDisicount[j]) 
               MinBundle[j] = FindMinBundle (MinBundleCost[j], j, Mp) 
               g(MinBundle[j], Sj) = (MaxSubCost[j]-BundleCost[j])/MaxSubCost[j] 
Pick MinBundle[k] of seller Sk  with argmax g(MinBundle[k], Sk)  
For each item m in MinBundle[k] 
     PVm = Sk 
PC = PC + MinBundle[k] - discountFunction(MinBundle[k], Sk) 
Set the entries of the corresponding rows of this MinBundle[k] to 0 in Mp and Mr 

       If All entries in Mr are 0  
    Return PV, PC 
Else MGBS( Mp, Mr) 

End MGBS (Mp, Mr). 
 
Begin Procedure FindMinBundle (MinBundleCost, j, Mp)  
Fetch the column j in Mp to be the good vector GVj of seller Sj 
Sort GVj according to the price increasingly 
s = |GVj| 
While (s>0)  
     Remove the last element L in GVj 
     If the sum of prices in GVj < MinBundleCost 

     then GVj ← GVj + L 

     s ← s – 1  
Return GVj       

End FindMinBundle (MinBundleCost, j, Mp)                                          

FIGURE 6.2. Maximal Gain Bundle Search Algorithm 
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Rule #3 Bundle Regression: Since the discount ratio may not be monotonic increasing, 

through the inverse function of the discount function, the minimal cost to get the same 

amount of discount of a maximal bundle can be found. Based on this minimal cost, I can 

search for the cheapest bundle purchase with the same amount of discount from this seller, 

and leave the other goods for another round of searching. Before calculating the maximal 

gain ratio, the maximal bundle for each seller should be refined to the “minimal bundle” 

from the seller with the same amount of discount as the maximal bundle. This rule provides 

a method to refine the search results already obtained from the two rules above. The 

heuristic goal here is to achieve a higher discount ratio for each partial bundle purchase. 

 

 
DonePurchase = false 
Run the MGBS algorithm to get the optimal bundle with a seller vector SV 
For each si in SV  
    If  The cost in the optimal bundle does not cause the seller to offer its highest discount ratio 
   Then Send CFRequire to the corresponding buyer club agent 
If  All sellers in SV do not need to send CFRequire 
Then DonePurchase = true 
Else While true 

            If  receive a new message 
            Then process the message by calling corresponding message handler (defined in Chapter IV) 
            If  DonePurchase = false 
            Then  If  startCF=false 
                     Then  Calculate all possible resource-sharing coalitions 
                                Sort all possible coalitions in a descending order in PCF 
                                StartCF = true 
                      Else  If PCF=Ф and SCF=Ф 
                               Then There does not exist possible coalition 
                                         DonePurchase = true  
                               Else If RCF=Ф  
                                       Then If SCF=Ф and PCF!=Ф 
                                                 Then Send the current best possible coalition proposal in PCF 
                                                           Assert the send-out CF into SCF  
                                                           Remove it from PCF 
                                        Else If (SCF!=Ф and SCF∈ RCF) or (SCF=Ф and PCF.elementAt(0)∈ RCF) 
                                                Then Send CFAccept message to the corresponding agent 
                                                          AcceptCF = true 
    

FIGURE 6.3. Buyer Agent Algorithm 
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The outputs of the bundle search for buyer bi is a seller vector SVi = (svi0, svi1,  …, 

svi,l-1), where svij = null if qij = 0, otherwise svij is equal to the corresponding seller’s ID. 

With the seller vector, buyer bi can calculate whether he has obtained the highest discount 

ratios from sellers in SVi. Figure 6.2 gives the algorithm (He and Ioerger 2003). 

 

COMBINING BUNDLE SEARCH AND BUYER COALITION FORMATION 

 

Buyers start their coalition search based on the results of their bundle search in the 

first step. Each buyer only registers with the buyer clubs involved in the individual optimal 

bundle result. When buyers’ bundle searches do not include a particular seller, or when they 

have already obtained the optimal discount ratio from a seller, they do not register with the 

corresponding buyer clubs. I apply the DCF-EN mechanism to the buyer coalition 

formation processes. The complete buyer agent algorithm is in Figure 6.3. 

 

SIMULATION RESULTS 

 

To evaluate the results of my solution to the purchase problem and the efficiency of 

the distributed coalition formation mechanism, I need to evaluate the costs of buyers using 

different purchasing strategies. The main goal of my simulation is to evaluate the average 

cost to each buyer and the total cost to all buyers with different purchasing strategies.  

I will compare the cost to each buyer and the total cost to all buyers using the 

following four purchasing strategies:  

• Purchasing each of the goods with the lowest price in the market; 
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• Combining the optimal bundle search and buyer coalition formation through the DCF-

EN mechanism; 

• Combing the MGBS bundle search and buyer coalition formation through the DCF-EN 

mechanism; 

• The optimal solution of the purchasing problem (Since the computational cost is too 

high to run an optimal algorithm for the purchasing problem, to compare the results 

with the optimal results for a certain purchase problem, I use the lower bound of the 

optimal cost for a buyer, which is the sum of the minimal retail prices of all his goods 

with obtaining the highest discount ratio in the market. In real markets, it is impossible 

for buyers to obtain this lower bound cost). 

 

 

Parameters Experimental Values 

N×M  3×3, 4×4, 5×5 

Numbers of Buyers  3, 4, 5, 6, 7, 8, 9 

 
Discount Function 

                10, if 50 ≤ c < 100; 

δ1 (c) =     20, if 100 ≤ c < 150; 

                35, if 150 ≤ c < 200; 

                c×20%, if c ≥ 200. 

 

 

Based on the purchasing problem definition, the input parameters and the discount 

function used in my simulation are given in Table 6.1, where G refers to the vector of 

goods and S refers to the vector of the corresponding sellers, N = | G | and M = | S |. Indeed, 

the discount function defined in Table 6.1 is used by JCPenny, Dillards and Foleys etc. 

department store very often. Since, in a real market, the buyers with a small amount of 

TABLE 6.1. Parameters Used for Simulation 
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purchase cost are more likely join a buyer coalition, I did not use large numbers of items 

and sellers in my simulation. 

 

 

 

In real markets, sellers adjust retail prices very often. For example, Walmart and 

HEB change food prices every week. However, JCPenny does not adjust its discount policy 

very often. Thus, I assume that sellers have the same discount policies, but the retail prices 

offered by different sellers are different (I will test different discount policies later). I 
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generated the seed price of each goods from each seller randomly using a uniform 

distribution from 0 to 50. For the same goods, based on the corresponding seed price, I 

generated the price for each seller by adding a random number, which is generated using a 

uniform distribution form 0 to 10. Therefore, for same goods, the price difference between 

two sellers is less than 10.  

 

 

Given different combinations of N×M, I ran the experiments for different number 

(3-9) of buyers. For each different number of buyers, I ran 20 experiments.  

Figure 6.4 shows the mean of the total cost to all buyers using different purchasing 

strategies when N×M is 4×4 and the total number of buyers is 5. Figure 6.5 shows the error 

bars of the average cost of each buyer. RetailMinPrice denotes the cost to a buyer using the 

 A-LBOptimal, B-RetailMinPrice 
The results of an unpaired t-test  
 
t = -3.66  
sdev = 24.0  

∆ ≅ 27.78 
degrees of freedom = 38  
The probability of this result, assuming the null hypothesis, is 0.0008 

FIGURE 6.6. T-Test for Comparing RetailMinPrice and LBOptimal 

 A-LBOptimal, B-OptimalBundleCF 
The results of an unpaired t-test  
 
t = -1.18  
sdev= 21.9  

∆ ≅ -8.15 
degrees of freedom = 38  
The probability of this result, assuming the null hypothesis, is 0.25 

FIGURE 6.7. T-Test for Comparing OptimalBundleCF and LBOptimal 
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strategy of only searching for the minimal retail price in the market for each item needed. 

OptimalBundleCF denotes the cost to a buyer of doing an optimal bundle search first and 

then trying to join buyer coalitions. MGBSBundleCF denotes the cost to a buyer of doing 

an MGBS bundle search first and then trying to join buyer coalitions. LBOptimal is the 

lower bound of the optimal cost that a buyer has to pay, which is equal to the sum of the 

minimal retail prices of all the buyer’s goods with obtaining the highest discount ratio.  

 

Based on the above experimental results, both OptimalBundleCF and 

MGBSBundleCF are very close to the lower bound of the optimal value and much better 

than using the strategy of only searching for the minimal retail price in the market. For each 

buyer, the difference between using MGBSBundleCF and LBOptimal is 8.54, and the 

difference between using OptimalBundleCF and LBOptimal is 8.15. However, the 

difference between using RetailMinPrice and LBOptimal is 27.78. Figures 6.6 to 6.8 show 

the Student t-test results7 of comparing RetailMinPrice and LBOptimal, OptimalBundleCF 

and LBOptimal, MGBSBundleCF and LBOptimal respectively. The t-tests results also 

support the above conclusion. 

                                                 
7 The null hypothesis is that the mean of group A is not less than the mean of group B. 

 A-LBOptimal, B-MGBSBundleCF 
The results of an unpaired t-test  
 
t = -1.22  
sdev = 22.0   

∆ ≅ -8.45 
degrees of freedom = 38  
The probability of this result, assuming the null hypothesis, is 0.23 

FIGURE 6.8. T-Test for Comparing MGBSBundleCF and LBOptimal 
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Figure 6.9 shows the total cost to all buyers for using different purchasing strategies 

with different number of buyers when N×M is 4×4. For different numbers of buyers, both 

OptimalBundleCF and MGBSBundleCF are also close to the lower bound of the optimal 

value and much better than using the strategy of only searching for the minimal retail price. 
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Figure 6.10 shows the average cost to each buyer. The difference between the 

average cost to each buyer does not increase or decrease significantly as the number of 

buyers increases in the market. OptimalBundle denotes the cost to a buyer of doing an 

optimal bundle search without joining any buyer club. MGBSBundle denotes the cost to a 

buyer of doing a MGBS bundle search without joining any buyer club. It also shows that 

combining bundle search strategy and buyer coalition formation strategy can reduce the 

cost more than just doing a bundle search and that the cost is very close to the optimal cost. 

Indeed, buyer coalition formation can be viewed as an extension of the bundle search 

strategy by extending the shopping list of one buyer to multiple buyers. In order to 

guarantee to obtain the discount that each buyer can obtain by himself, my current 

algorithm makes each buyer do bundle search first. Then, based on the result of bundle 

search, each buyer decides whether to participant in buyer coalition formation or not. 

Therefore, the results show that combining bundle search strategy and buyer coalition 

formation strategy can reduce the cost more than just doing a bundle search in every single 

experiment. 

In order to test how my algorithm perform under different discount policies, I 

considered the following two discount policies: δ2(c) = 10 if c ≥ 50 and δ3(c) = 35 if c ≥ 

150. It is very easy to find real examples for these two discount policy. At many online 

stores (e.g. Amazon.com), if you spend $50, they normally give you free shipping that may 

cost you $10 in one transaction. In many fashion stores, it is very normal to obtain a $35 

gift card if you spend over $150 in one transaction. Another reason to consider these two 

discount policies is that they are comparable to the previous discount policy δ1(c) (defined 

in Table 6.1). I want to test the following hypotheses: 
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• Since discount policy δ1(c) allows buyers have more choices to obtain discounts, each 

buyer will obtain more discount under discount policy δ1(c) than under the other two 

discount policies. 

• For all three discount policies, combining buyer coalition formation and bundle search 

can reduce the cost more than just doing a bundle search. 

• For discount policy δ2(c), there are few chances for buyers to form coalitions because as 

long as the total cost is larger than $50, no matter how much more a buyer spends, the 

total amount of discount is $10. For discount policy δ3(c), there are more chances (than 

δ2(c)) for buyers to form coalitions because the input price for each goods is less than 

$50. In order to obtain a discount, a buyer needs to spend $150.  

• For discount policy δ2(c), the communication load is lower than the one under another 

two discount policies because few negotiation processes were required.  

 

 

 OptimalBundle MGBSBundle MGBSBundleCF OptimalBundleCF 

δ1(c) 518.367 520.85 507.97 506.02 

δ2(c) 530.47 533.30 528.30 505.81 

δ3(c) 590.99 590.99 554.97 530.98 

 

 

Given N×M is 4×4 and the total number of buyers is 5, for each combination of 

discount policy (including δ1(c), δ2(c) and δ3(c)) and purchasing strategy (including 

MGBSBundle, OptimalBundle, MGBSBundleCF and OptimalBundleCF), I ran 20 

experiments. Table 6.2 lists the total cost for all 5 buyers using different type of purchasing 

TABLE 6.2. Total Cost to All Buyers 
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strategies under different discount policies. The results show that δ1(c) has the best 

performance in the sense that it costs the buyer the least. 

 

 

Figure 6.11 depicts the average cost to each buyer for using different purchasing 

strategies under different discount policies. Figure 6.11 also shows the costs to buyers using 

RetailMinPrice and LBOptimal. All purchasing strategies, MGBSBundle, OptimalBundle, 

MGBSBundleCF and OptimalBundleCF can reduce costs more than RetailMinPrice. 

MGBSBundleCF and OptimalBundleCF can reduce costs more than MGBSBundle and 

OptimalBundle. Thus, the experimental results support hypothesis 1 and 2. However, the 

improvement in savings for MGBSBundleCF is less pronounced under δ3(c), compared to 

δ1(c) and δ2(c). 
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 MGBSBundleCF OptimalBundleCF 

δ1(c) 2 1 

δ2(c) 15 12 

δ3(c) 4 2 

 

 

Table 6.3 lists the numbers of experiments in which no buyer coalitions were 

formed under different discount policies and different purchasing strategies (For each 

combination of a discount policy and a purchasing strategy, I ran 20 experiments). The 

results show that buyers did not form coalitions very often under discount policy δ2(c). 

Under discount policy δ1(c) and δ3(c), buyers formed coalitions very frequently. Therefore, 

hypothesis 3 is valid. 

TABLE 6.3. Numbers of Experiments without Buyer Coalitions Formed 
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 As for communication load, Figure 6.12 shows the average number of messages 

that each buyer received in each experiment and the error bars. Under discount policy δ2(c), 

each buyer received the least number of messages. Hence, hypothesis 4 is valid.  

 

SUMMARY 

 

In electronic markets, both bundle search and buyer coalition formation are 

profitable purchasing strategies for buyers who need to buy small amount of goods and 

have no individual bargaining power. It is very valuable to combine these two purchasing 

strategies for buyers to obtain greater discounts based on the different discount policies of 

multiple sellers. In this chapter, I presented a distributed mechanism that allows buyers to 

use both purchasing strategies. The mechanism includes a very efficient heuristic bundle 

search algorithm and a distributed coalition formation scheme that is based on the DCF-EN 

mechanism. The simulation results show that the cost to buyers is close to the optimal cost.  

I also tested how the DCF-EN mechanism performs under different discount policies. The 

simulation results show that combining bundle search and buyer coalition formation can 

always outperform only searching for the minimal retail price or only doing bundle search. 

Also, buyers participate in buyer coalition formation more often when the discount policy 

requires more cost. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

 

This dissertation studies the problems of distributed task and resource allocation 

among self-interested agents in virtual organizations. The developed solutions are not 

allocation mechanisms that can be imposed by a centralized designer but decentralized 

interaction mechanisms that provide incentives to self-interested agents to behave 

cooperatively in a multiagent system. Besides incentive compatibility, these mechanisms 

also take computational tractability into consideration due to the inherent complexity of 

distributed task and resource allocation problems. The virtual organizations are not 

established through centralized administrative regulations but formed through the 

interaction among self-interested agents. The developed mechanisms can easily be 

implemented in autonomous agent systems. These decentralized task and resource 

allocation mechanisms can eventually make automated resource management in virtual 

organizations a reality. 

During the last decade, researchers in distributed artificial intelligence endeavored 

to establish theoretic models that can address incentive compatibility and computational 

tractability together when evaluating interaction mechanisms among self-interested agents 

in multiagent systems. Their approaches are normally developing theoretic models that 

consider both the classic game-theoretic solution concepts for noncooperative games and 

computational complexity analysis. Typical example problems of these theoretic models 

are distributed task and resource allocation problems. However, little work has focused on 

developing practical solutions for those problems. This dissertation applies these models to 
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formalizing the distributed task and resource allocation problems that have a variety of 

applications in grid and peer-to-peer computing, electronic commerce and virtual 

organizations. The developed solutions for these problems are decentralized interaction 

mechanisms among self-interested agents that can lead to global task allocation efficiency 

in a multiagent system or stable resource sharing virtual communities based on agents’ own 

decisions on whether or not to behave cooperatively. This dissertation contributes to the 

following research areas in multiagent systems: synthetic task allocation, decentralized 

coalition formation and automated multiparty negotiation. 

 

SYNTHETIC TASK ALLOCATION 

 

This dissertation presents two incentive compatible mechanisms for synthetic task 

allocation problems in which each task needs to be accomplished by a virtual team 

composed of self-interested agents from different real organizations. Compared with 

traditional task allocation problems (Zweben and Fox 1994; Clearwater 1996), the synthetic 

task allocation needs to consider both individual efficiency and team efficiency. The 

participating agents have different owners and are designed by different designers. Agents 

who have tasks that need to be accomplished have no authority to force task-executing 

agents to disclose their true capabilities. Providing incentives to task executing agents to 

report their true capabilities is the key for developing efficient synthetic task allocation 

mechanisms.  

My approach is to formalize the synthetic task allocation problems as an 

algorithmic mechanism design optimization problem. I have developed two incentive 
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compatible mechanisms for the synthetic task allocation problem. The MinTeamwork is n-

approximation mechanism and a strongly truthful implementation for monotonic teamwork. 

Through changing the valuation function and having a more restrictive assumption, the 

MinCompletion mechanism is a truthful implementation with 2-approximation for strongly 

monotonic teamwork. It shows that designing both incentive compatible and 

computationally tractable mechanisms is feasible for synthetic task allocation problems in 

virtual organizations. 

 

DECENTRALIZED COALITION FORMATION  

 

The inherent complexity of coalition formation among self-interested agents makes 

the traditional centralized approaches for coalition formation computationally intractable. 

Another major contribution of this dissertation is developing a decentralized coalition 

formation mechanism that is based on explicit negotiation among self-interested agents. 

Compared with the centralized approaches, the developed mechanism significantly reduces 

the computational cost of the coalition formation process. The communication cost caused 

by negotiation processes is low due to the properly designed multiparty negotiation 

protocol. Each agent makes its own decisions about whether or not to join a possible 

coalition. The resulting coalitions are stable in the core in terms of coalition rationality.  

I have applied this mechanism to form resource sharing coalitions in computational 

grids and to form buyer coalitions in electronic markets. The simulation results show that 

the coalition formation process is successful in the sense that explicit negotiation processes 

can lead agents to find the appropriate coalitions and that a coalition formation process can 
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end properly. The communication load increases almost linearly with the total number of 

agents. Particularly, the simulation results reflect that self-interests can still lead to resource 

sharing in computational grids. This invalidates the need to assume that agents are 

cooperative in the existing systems.  For buyer coalition formation, my distributed coalition 

formation mechanism can result in nearly optimal cost savings. 

 

AUTOMATED MULTIPARTY NEGOTIATION 

 

The multiparty negotiation mechanism in the decentralized coalition formation 

mechanism is itself a very unique contribution of this dissertation.  

In this negotiation mechanism, the negotiation protocol is designed to allow 

multiple agents to make agreements among multiple choices. An agent’s decision about 

whether or not to accept an offer may not only depend on the decisions of other members in 

a proposed coalition but may also depend on the decisions of agents outside of the proposed 

coalition. The negotiation protocol also includes a conflict handling method that can detect 

and break deadlocks caused by parallel negotiation processes. The simulations show that 

the negotiation protocol can conduct the negotiation processes properly. 

 

FUTURE APPLICATIONS 

 

Designing both incentive compatible and computationally tractable mechanisms for 

distributed task and resource allocation among self-interested agents is one of the most 

difficult and important themes in multiagent systems. It is essential to realizing a world 
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where the aggregate power on the Internet will be optimally and dynamically allocated 

online to appropriate users. The methods we described can be applied in either of the 

following two ways toward this vision. 

 

Resource Management in Virtual Organizations 

 

Little is known about how to run a virtual organization efficiently. There does not 

exist a well-understood organizational structure that can represent a virtual organization 

(Hatch 2005). There are many open problems and new research directions. The techniques 

developed in this dissertation can be adapted to perform resource management in virtual 

organizations. The allocation of proper resources to proper tasks so that the global 

performance of a virtual organization can be maximized even if the participating agents are 

self-interested. This will require improving the current task and resource allocation 

mechanisms for more complex scenarios and embedding those mechanisms into existing 

systems such as computational grids, wireless sensor network and supply chain 

management in electronic commerce.  

 

Task and Resource Allocation in Scalable Multiagent Systems 

 

One of the major research trends in multiagent systems is to make systems open and 

scalable. Decentralized task and resource allocation in such a system is highly non-trivial 

because the system dynamically changes and the scalability invalidates effective 

communication among agents. How to get self-interested agents to behave cooperatively so 
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that a global efficiency is achieved by the local decision of each participating agents is the 

key issue for task and resource allocation in open and scalable multiagent systems.  I 

believe that the decentralized allocation mechanisms presented in this dissertation have laid 

a foundation for overcoming this challenge in the future. 
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