6 research outputs found

    Time and space multi-manned assembly line balancing problem using genetic algorithm

    Get PDF
    Purpose: Time and Space assembly line balancing problem (TSALBP) is the problem of balancing the line taking the area required by the task and to store the tools into consideration. This area is important to be considered to minimize unplanned traveling distance by the workers and consequently unplanned time waste. Although TSALBP is a realistic problem that express the real-life situation, and it became more practical to consider multi-manned assembly line to get better space utilization, few literatures addressed the problem of time and space in simple assembly line and only one in multi-manned assembly line. In this paper the problem of balancing bi-objective time and space multi-manned assembly line is proposed Design/methodology/approach: Hybrid genetic algorithm under time and space constraints besides assembly line conventional constraints is used to model this problem. The initial population is generated based on conventional assembly line heuristic added to random generations. The objective of this model is to minimize number of workers and number of stations. Findings: The results showed the effectiveness of the proposed model in solving multi-manned time and space assembly line problem. The proposed method gets better results in solving real-life Nissan problem compared to the literature. It is also found that there is a relationship between the variability of task time, maximum task time and cycle time on the solution of the problem. In some problem features it is more appropriate to solve the problem as simple assembly line than multi-manned assembly line. Originality/value: It is the first article to solve the problem of balancing multi-manned assembly line under time and area constraint using genetic algorithm. A relationship between the problem features and the solution is found according to it, the solution method (one sided or multi-manned) is definedPeer Reviewe

    Using response surface design to determine the optimal parameters of genetic algorithm and a case study

    Get PDF
    Copyright © 2013 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 09 June 2013, available online: http://www.tandfonline.com/10.1080/00207543.2013.784411Genetic algorithms are efficient stochastic search techniques for approximating optimal solutions within complex search spaces and used widely to solve NP hard problems. This algorithm includes a number of parameters whose different levels affect the performance of the algorithm strictly. The general approach to determine the appropriate parameter combination of genetic algorithm depends on too many trials of different combinations and the best one of the combinations that produces good results is selected for the program that would be used for problem solving. A few researchers studied on parameter optimisation of genetic algorithm. In this paper, response surface depended parameter optimisation is proposed to determine the optimal parameters of genetic algorithm. Results are tested for benchmark problems that is most common in mixed-model assembly line balancing problems of type-I (MMALBP-I)

    The Time and Space Assembly Line Balancing Problem: modelling two new space features

    Get PDF
    The Time and Space Assembly Line Balancing Problem (TSALBP) is a natural evolution of the well known Simple Assembly Line Balancing Problem that also takes into consideration the space required by the machinery and assembly parts of the product. The present work proposes a more realistic space allocation approach. Firstly, it allows consecutive workstations to share a reasonable amount of space without an additional time cost. And secondly, assigning tasks that need the same machinery together so that not every workstation needs be fully equipped. In addition, a mathematical programming model and an intuitive heuristic for the problem taking into account these innovative features are developed and tested on an adapted widely used set of data for the typical TSALBP.Outgoin

    Articles publicats per investigadors de l'ETSEIB indexats al Journal Citation Reports: 2012

    Get PDF
    Informe que recull els 294 treballs publicats per 220 investigadors de l'Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB) en revistes indexades al Journal Citation Reports durant l’any 2012.Preprin

    Multiobjective memetic algorithms for time and space assembly line balancing

    No full text
    This paper presents three proposals of multiobjective memetic algorithms to solve a more realistic extension of a classical industrial problem: time and space assembly line balancing. These three proposals are, respectively, based on evolutionary computation, ant colony optimisation, and greedy randomised search procedure. Different variants of these memetic algorithms have been developed and compared in order to determine the most suitable intensification–diversification trade-off for the memetic search process. Once a preliminary study on nine well-known problem instances is accomplished with a very good performance, the proposed memetic algorithms are applied considering real-world data from a Nissan plant in Barcelona (Spain). Outstanding approximations to the pseudo-optimal non-dominated solution set were achieved for this industrial case study.Peer ReviewedPostprint (published version

    Multiobjective memetic algorithms for time and space assembly line balancing

    No full text
    This paper presents three proposals of multiobjective memetic algorithms to solve a more realistic extension of a classical industrial problem: time and space assembly line balancing. These three proposals are, respectively, based on evolutionary computation, ant colony optimisation, and greedy randomised search procedure. Different variants of these memetic algorithms have been developed and compared in order to determine the most suitable intensification–diversification trade-off for the memetic search process. Once a preliminary study on nine well-known problem instances is accomplished with a very good performance, the proposed memetic algorithms are applied considering real-world data from a Nissan plant in Barcelona (Spain). Outstanding approximations to the pseudo-optimal non-dominated solution set were achieved for this industrial case study.Peer Reviewe
    corecore