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Using response surface design to determine the optimal parameters of 

genetic algorithm and a case study 

Genetic algorithms are efficient stochastic search techniques for approximating 

optimal solutions within complex search spaces and used widely to solve NP hard 

problems. This algorithm includes a number of parameters whose different levels 

affect the performance of the algorithm strictly. The general approach to 

determine the appropriate parameter combination of genetic algorithm depends 

on too many trials of different combinations and the best one of the combinations 

that produces good results is selected for the program that would be used for 

problem solving. A few researchers studied on parameter optimisation of genetic 

algorithm. In this paper, response surface depended parameter optimisation is 

proposed to determine the optimal parameters of genetic algorithm. Results are 

tested for benchmark problems that is most common in mixed-model assembly 

line balancing problems of type-I (MMALBP-I). 

Keywords: Genetic algorithm (GA), Response surface methodology (RSM), 

Assembly line balancing, Parameter optimisation, Design of experiment. 

1. Introduction 

Genetic algorithms (GAs) are part of the so-called evolutionary algorithms based on 

natural genetics that provide robust search capabilities in complex spaces, and they 

thereby offer a valid approach to problems requiring efficient and effective search 

processes. The basic idea is to maintain a population of individuals those representing 

candidate solutions to the problem that evolves over time through a process competition 

and they do not need to have any information about the search space, just needing a 

fitness function that assigns a value to each solution (Costa et al., 2005; Fernandez-

Prieto et al., 2011).   

The running principle of GA depends on setting up a relatively large number of 

parameters and requires performing lots of runs for different combinations of them to 

obtain the most appropriate structure that gives nearly optimal solution. There are few 
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researches about parameter optimisation of GAs. Lobo and Goldberg (2004) presented 

the parameter-less genetic algorithm to simplify genetic algorithm operation by 

incorporating knowledge of parameter selection and population sizing theory in the 

genetic algorithm and applied it to a network expansion problem. Siriwardene and 

Perera (2006) used proportionate and linear ranking selection methods to determine 

model parameter convergence and recommended the proportionate selection method for 

urban drainage model parameter optimisation. Fernandez-Prieto et al. (2011) used fuzzy 

logic to determine GA control parameters (fuzzy adaptive genetic algorithms – 

FAGAs). 

Taguchi experimental design is one of the well-known and effective design of 

experiment techniques that requires less experiment and used to find the best 

combination of parameters. Yang et al. (2005) combined the Taguchi experimental 

method with the GA to find the best combination of the GA parameters. One 

disadvantage of Taguchi method is that it does not give the mathematical model of the 

relations between parameters so predicting the intermediate values is impossible. 

Subbaraj et al. (2011) proposed a new optimisation algorithm, namely Taguchi self-

adaptive real-coded genetic algorithm (TSARGA) and implemented to solve economic 

dispatch (ED) problem with valve-point loading. Chang (2011) used Taguchi method, in 

order to determine the important parameters in genetic algorithm neural networks 

(GANN) with the goal of reducing the estimation error. Also Factorial design, which is 

one of the widely used design of experiment techniques, is used to model the non-

quadratic relations between the factors and the response. The third and the widely used 

well-known design of experiment technique is the response surface methodology 

(RSM) which is based on statistical considerations that brings the most meaningful 

information about the influences of parameters on a specific problem; and process 
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optimisation using RSM is usually achieved by simultaneous testing of numerous 

factors in a limited number of experiments. Therefore, RSM consumes less time and 

effort (Bayhan and Onel, 2010; Costa et al., 2005). Remarkable studies in the literature 

on this subject begin with Pongcharoen et al. (2002). In this study, the authors 

performed a factorial experiment to identify appropriate values of GA parameters that 

produce the best results within a given execution time and developed a genetic 

algorithm-based scheduling tool (GAST) for scheduling of complex products with 

multiple resource constraints and deep product structure. Costa et al. (2005) applied 

fractional factorial design for the selection of the parameters of GA and applied GA to a 

batch cooling crystallisation optimisation. The brief literature review is summarised in 

Table 1. 

(Table 1. An overview of approaches in the literature on parameter optimisation of GAs.) 

According to the Table 1, it is clearly observed that the studies on determining 

optimal parameter combination of GAs are limited and response surface optimisation is 

not used for determining optimal GA parameters. In the present study mixed-model 

assembly line balancing problem of type-I is handled for a benchmark problem (test 

problem-8) taken from Simaria (2006) and the regression equation and optimum 

parameters calculated by response surface optimiser of Minitab-16 package is 

presented. Then the experimental study is extended for the benchmark problems. When 

we reviewed the literature, we observed that RSM is not used for this purpose. The 

originality of this work is that applying RSM to the parameter optimisation of GA for 

MMALBP-I problems.  

The rest of the paper is organised as follows. The concept and formulations of GA, 

RSM and MMALBP-I are presented in section 2. An illustrative example is solved in 
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section 3. Discussions are given with the obtained results of test problems in section 4 

and conclusion are given in section 5 with future research directions.  

2. Proposed genetic algorithm 

Genetic algorithms (GAs) are powerful and broadly applicable random search and 

optimisation techniques based on principles of evolution theory. In recent years, GAs 

have been known to be extremely efficient technique for solving NP Hard problems 

(Zaman et al., 2012). The following subsections describe in detail the features of the 

GA which is used in this research. 

In the algorithm, we used task based representation which was used by Leu et al. 

(1994), Sabuncuoglu and Tanyer (2000), Akpinar and Bayhan (2011) that is the most 

appropriate chromosome type for line balancing problems. The length of the 

chromosome is defined by adding two genes to the number of tasks. These two genes 

represent the station number and fitness value (FV) at the end of each chromosome. In 

task based sequences, the chromosomes need to fit the precedence relationship diagram 

because of the technological precedence restrictions. Therefore, permutation coding 

method was used to sequence the tasks on the chromosomes without any repetition. 

Random initialisation method that initialises each chromosome randomly was used 

to produce starting population. Initialisation method was specified in order to prevent 

unsuitable chromosomes, which interrupt precedence relationships. 

GA used in this research employs the objective function given in Equation (1) as 

the fitness function to evaluate each individual’s performance (fitness) in the search 

space. 
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Fitness Value =
2

1

( )S
k

k

C W
S

                                                    (1) 

where C , kW  and S  denote the cycle time of the assembly line, workload of the 

station k  and the number of workstations required to meet the demand in the assembly 

line, respectively. 

Individuals are selected randomly for mating. Thus, diversity is to be protected and 

probable better solutions can be occurred with the mating of worse individuals. 

Two-point crossover method was used to perform the crossover operator according 

to the predefined crossover rate ( RC ). For mating, the individuals are selected randomly 

and paired with the other individuals.  

The mutation operator exchanges randomly selected two genes according to the 

mutation rate ( RM ) in a chromosome that is selected randomly. After the crossover and 

mutation operators, FVs of the new offspring are compared with the individuals’ and 

the ones that have better FVs are transferred to next generation. 

Elitism operator is applied indirectly by ensuring that none of the best individuals 

are missed during the iterations.  

New generation is formed by selecting the best individuals according to their FVs 

among the current population, offspring produced by crossover, and individuals who 

underwent mutation. Population size is kept constant by replacing the worse individuals 

with new ones by taking into account the FVs. 
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Repairing operator is not used in this algorithm since unsuitable chromosomes are 

not allowed to be produced during the initialisation, crossover and mutation processes. 

Figure 1 shows the flow chart of GA used in this research.  

(Figure 1. Flow chart of proposed genetic algorithm.) 

2.1. Assembly line balancing problem 

“Assembly Line Balancing Problem (ALBP) was firstly formulated by Salveson (1955) 

and, since then, has received a great deal of attention over the years” (Hamzadayi and 

Yildiz, 2012). An assembly line consists of a number of workstations, linked together 

with a material handling system such as conveyor or moving belt (Azzi et al., 2012). 

Most common and difficult problem is to determine how these tasks can be assigned to 

the stations fulfilling certain restrictions since the manufacturing process is divided into 

a set of tasks. So, the main objective is to determine optimal assignment of the tasks to 

the workstations (Chica et al., 2011).  

There are three types of mixed-model assembly line balancing problems in the 

literature and these are classified according to their objective functions. The types of the 

MMALBP are (Scholl, 1995): 

 MMALBP-I: The number of workstations is to be minimised for a given cycle 

time. 

 MMALBP-II: The cycle time is to be minimised for a given number of 

workstations. 

 MMALBP-E: The cycle time and the number of workstations are to be 

minimised simultaneously. 
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The objective function used as fitness function of genetic algorithm (Equation 1) was 

taken from Leu et al. (1994). This function minimises not only total number of 

workstations but also workload smoothing between the workstations at the same time.  

The decision variables ikx  and kr  check whether task i  is assigned to workstation ݇ 

and if workstation k  is replicated or not, respectively. 

௜௞ݔ = ൜1, ,݇	݊݋݅ݐܽݐݏ݇ݎ݋ݓ	݋ݐ	݀݁݊݃݅ݏݏܽ	ݏ݅	݅	݇ݏܽݐ	݂݅
0, ݁ݏ݅ݓݎℎ݁ݐ݋  

௞ݎ = ൜1, ,݀݁ݐ݈ܽܿ݅݌݁ݎ	ݏ݅	݇	݊݋݅ݐܽݐݏ݇ݎ݋ݓ	݂݅
0, ݁ݏ݅ݓݎℎ݁ݐ݋  

Assumptions of the model are (Akpinar and Bayhan, 2011; Vilarinho and Simaria, 

2002): 

 the planning horizon has a fixed length P , 

 a set of similar M  models can be simultaneously assembled, 

 the forecast demand, over the planning horizon, for model m  is mD , requiring 

the line to be operated with a cycle time;  

1
/ M

mm
C P D


                                                      (2) 

 the overall proportion of the number of units of model ݉ being assembled is 

then;  

1
/ M

m m pp
q D D


                                                    (3) 

(where pD  describes amount of total production for all models), 
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 each model has its own set of precedence relationships, but there is a subset of 

tasks common to all models. Hence, the precedence diagrams for all the models 

can be combined and the resulting one has N  tasks,  

 N  tasks are performed in a set of S  workstations, 

 the time required to perform task i  on model m , imt , may vary among models (

0imt   means that model m  does not require task i  to be assembled),  

 a task can be assigned to only one workstation and, consequently, the tasks that 

are common to several models need to be performed on the same workstation, 

 the set of tasks that cannot be performed before task i  is completed, iF  

(successors of task i ), is given by the precedence constraints derived from the 

combined precedence diagram, 

 the zoning constraints are defined in the assembly process, ZP  is the set of task 

pairs that must be assigned to the same workstation (compatible tasks) and ZN  

is the set of task pairs that cannot be performed at the same workstation 

(incompatible tasks), 

 a workstation can be duplicated up to a maximum of MAXP  replicas, but only if 

the task time of one of the tasks assigned to it exceeds a predefined value (  

of the cycle time) for at least one of the models (for our model 2MAXP  ), 

 kmS  symbolises the idle time of workstation k  for model m . 

Constraints considered in the model are (Vilarinho and Simaria, 2002): 
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1

1          1,...,
S
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x i N


                                                         (4) 

1 1

0          ,  
S S

ak bk a
k k

x x a N b F
 

                                                  (5) 

1 1

0          ( , )
S S

ak bk
k k

x x a b ZP
 

                                                   (6) 

1          ( , ) ,  1,...,ak bkx x a b ZN k S                                               (7) 

 
1

1 1           1,..., ,  1,...,
N

im ik km k
i

t x S C r MAXP k S m M


                          (8a) 

: ; 1,...,

          1,..., ,  0 100%
im

k ik
i t C m M

r x k S
  

                                 (8b) 

: ; 1,...,

          1,..., ,  0 100%
im

k ik
i t C m M

Mr x k S
  

                                (8c) 

S 0          1,..., ,  1,...,km k S m M                                             (9a) 

[0,1]          1,..., ,  i 1,...,ikx k S N                                             (9b) 

[0,1]          1,...,kr k S                                                       (9c) 

The objective function (1) minimises the sum of the squares of the idle times for each 

workstation, thus it minimises not only total number of the workstations but also 

unbalanced workload between the workstations. Constraint (4) ensures that each task is 

assigned to exactly one workstation. Constraint (5) ensures none of the successors of a 

task is assigned to an earlier station than that task. Constraint (6) describes positive 

zoning constraints (compatibility zoning constraint). For instance, if any two tasks need 

to be performed at same workstation because of the technological restrictions, they must 

be assigned to same workstation. Constraint (7) describes negative zoning constraints 

(incompatibility zoning constraint). For example if it is dangerous or impossible to 

perform any two tasks at same workstation, they must be assigned to different 

workstations. Constraint (8a) ensures that capacity is not exceeded for any workstation, 

constraint (8b) ensures the maximum number of replicas of a workstation is not 

exceeded and constraint (8c) ensures only workstations where the processing time of the 
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tasks assigned to it, for at least one model, exceeds a certain proportion ( % ) of the 

cycle time can be duplicated (where M  is a very large positive integer). Constraint (9a) 

describes the idle time of workstations equal or more than zero. Additionally, 

constraints (9b) and (9c) define domain of the decision variables (Akpinar and Bayhan 

2011; Vilarinho and Simaria, 2002). 

2.2. Response surface methodology 

RSM is a union of statistical and mathematical techniques used for modelling the 

mathematical relations between the inputs and outputs of a process which is necessary 

for developing, improving, and optimising processes. RSM has been used extensively in 

the engineering problems to examine and characterise problems in which input variables 

influence some performance aspects of the product or process. This performance 

measure is called as response. Product or process optimisation using RSM is usually 

achieved by simultaneously testing of numerous factors (controllable input variables) in 

a limited number of experiments. Therefore, RSM consumes less time and effort. 

Furthermore, RSM provides quantitative measurements of possible interactions between 

factors, difficult information to obtain using other optimisation techniques (especially 

by using heuristics). Detection and quantification of the interactions between various 

factors are important at the optimisation stage in engineering problems (Bayhan and 

Onel, 2010). RSM was proposed by Box and Wilson (1951) for finding the input 

combination that minimises the output of a real non-simulated system. In most RSM 

problems, the form of the relationship between independent variables and the response 

is unknown, and approximated (Dhupal et al., 2007). Equation (10) shows the general 

second-order polynomial response surface mathematical model (full quadratic model) 

for the experimental design (Yalcinkaya and Bayhan, 2009, Dhupal et al., 2007). 
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2
0

1 1

n n n

u i iu ii iu ij iu ju u
i i i j

Y X X X X e   
  

                      (10) 

where ௨ܻ is the corresponding response, ௜ܺ௨ and X୨୳ are coded values of the i th and j th 

input parameters (i < j) respectively, terms ߚ଴, ௜ߚ	 ,  ௜௝ are the regressionߚ ௜௜ andߚ	

coefficients, and ݁௨ is the residual experimental error of the u th observation.  

The model in terms of the observations may be written in matrix notation as 

(Montgomery, 2001):  

Y = β X + ε                                     (11) 

where Y is the output matrix and X is the input matrix, and ε is the matrix of residuals 

(error term). The least square estimator of β matrix that composes of coefficients of the 

regression equation calculated by the given formula in Equation (12): 

β = (X 'X)-1X 'Y                                      (12) 

The fitted regression models, with the coefficients for FV are given in the next section. 

3. Results 

3.1. Parameter optimisation of GA 

Randomised experimental runs were carried out to minimise the error. The factor levels 

of genetic algorithm parameters for the experiments are generation number ( NG ), 

population size ( SP ), crossover rate ( RC ) and mutation rate ( RM ) are listed in Table 2. 

The levels of these parameters are determined randomly by considering the levels from 

similar studies presented previously in the literature based on GA and MMALBP-I. 

Table 3 shows the experimental design, detailing the experiment run order of each 

experiment and coded values of the process parameters (namely factors). For each 
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experiment 100 runs are performed. Minitab-16 statistical software was used to 

establish mathematical models for optimisation of the GA parameters. The software 

uses the mathematical substructure given in Section 2.2. 

(Table 2. Levels and values of genetic algorithm parameters ,  ,  N S RG P C , and RM .) 

(Table 3. Design of experiments matrix showing coded values and observed responses for 100 

runs.) 

Mathematical model based on RSM for correlating responses such as the parameters 

,  ,  N S RG P C  and RM  with various settings of the process parameters as considered in the 

experimental design have been established, and is represented in the Equation (13). 

2 2

2 2

1  0.0788 0.23994  0.43357  0.12353  0.09101  0.174854  0.225179

        0.116204 0.010491 0.12087 0.090719  0.13349 
0.03798  0.02787  0.02       046  

N S R R N S

R R N S N R N R

S R S R R

FV G P C M G P

C M G P G C G M
P C P M C M

      

    

    R

  

(13) 

Optimisation procedure was performed to achieve the target value of fitness function 

(FV) that is given in Equation (1). Optimum parameter settings obtained are presented 

in Figure 2.  

(Figure 2. Optimisation results for ,  ,  N S RG P C , and RM .) 

The current coded optimal process parameter settings for achieving the targeted fitness 

value of 9FV   are calculated as 1.9596,   1.6364,   0.2222N S RG P C   , and 2RM 

. After the normalisation, the uncoded values are calculated as 

1039.9,  92.728,  0.5444N S RG P C    and 0.25RM   respectively (Table 4). The 
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response is optimised at the above parametric combination with desirability (d) of 

 0.9912 99.12%  and optimised response value of FV is calculated as 9.0264.  

(Table 4. Results of parameter optimisation.) 

The experimental results for the given case under this study are presented in the next 

section. 

3.2. Experimental results for MMALBP-I  

The GA was tested on a benchmark problem (test problem 8) given in Table 5 with the 

parameters found by response surface methodology. The main characteristics of the 

most common test problems in the relevant literature are presented in Table 5 and the 

compared results with the previous results demonstrated in the literature for test 

problem 8 are shown in Table 6. To describe the problems, the number of tasks of the 

combined precedence diagram (N), the number of models (M) and the cycle time of the 

assembly line (C) are given in the columns three to five and nine to eleven in Table 5.  

(Table 5. Test problems (Akpinar and Bayhan, 2011; Scholl, 1995; Vilarinho and Simaria, 

2002).) 

The precedence diagram (Figure 3) and task processing times used for the test problem 

8 (with 25 Tasks, 3 models) was taken from Simaria (2006). The coding of the genetic 

algorithm was developed in Matlab R2008a and implemented on Intel Core i5 CPU 

M480 2.67 GHz system with 3 GB RAM and 64 Bit operating system. 

(Figure 3. Precedence diagram of test problem 8 (Simaria, 2006).) 

The computational results for the given test problem are presented in Table 6. LBpmix 

column shows the lower bound on the total number of workstations for relevant 

problem (Vilarinho and Simaria, 2002). The columns Kilbridge & Wester, Moodie & 
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Young, RPWT, Pure GA (Akpinar and Bayhan, 2011) show the best solutions in the 

relevant literature found by different solution approaches. V&S (SA) and A&B (hGA) 

columns represent the best solutions found by Vilarinho and Simaria (2002) by using 

simulated annealing (SA) algorithm, and Akpinar and Bayhan (2011) by using hybrid 

genetic algorithm (hGA), respectively. RSM-GA column represents the best station 

number found by using optimised parameters of GA obtained from RSM. The task 

sequences discovered by RSM-GA procedure are given in appendices.   

(Table 6. Computational results (station numbers) for test problem 8.) 

 

3.3. Comparisons for well-known design of experiment techniques 

In this section a comprehensive experimental design is performed to clearly show the 

advantage of using RSM instead of using other well-known design of experiment 

techniques. For this purpose experimental designs are performed for the two well-

known design of experiment technique namely Taguchi Method and 2k Factorial 

Design.  

As is well known in the literature that Taguchi method requires less experiment when 

compared with RSM but this method provides only the optimum combination of factor 

levels. So RSM is more appropriate method for this type of problems because it is 

possible with RSM to calculate the optimum factor levels with decimals as can be seen 

in Table 4. In other words it is possible to obtain more sensitive parameter levels with 

RSM when it is compared with the solutions of Taguchi Method. The same sensitivity 

may also be obtained by 2k factorial design but this technique depends on the first order 

(linear) relations between the independent factors. The parameter optimisation case 

presented in this study shows nonlinear relations because of the nature of the problem. 

So 2k factorial design does not seem a good alternative to the RSM. The factor levels for 
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Taguchi Method and 2k Factorial Design are presented in Tables 7 and 10, and the 

simulation results for the given experimental designs are presented in Tables 8 and 11 

respectively.    

(Table 7. Factor levels and values of genetic algorithm parameters for Taguchi design.) 

By using the five level design of Taguchi for four factors the design composed of 25 

experiments is obtained and displayed in Table 8 and the average FV values are 

calculated for each parameter combination. 

(Table 8. Taguchi design and simulation results for average FV.) 

For the optimisation, smaller-is-best criterion of Taguchi method is used. For 

minimising average FV; Signal to Noise (S/N) ratios for each experimental runs are 

calculated from Minitab. Minitab uses the formula given below in Equation (14) to 

calculate S/N ratios for “smaller is better” criteria: 

S/N = −10(log	(∑Yଶ/n))        (14) 

Calculated signal to noise (S/N) ratios for smaller is better criteria are listed in Table 9. 

The factor levels that have the maximum S/N ratio for each factor is selected as the 

optimum factor level for the factors and given in bold. 

(Table 9. Signal to noise (S/N) ratios for smaller is better criteria.) 

According to the S/N ratios optimum coded parameter combination is found as ܩே(2), 

ௌܲ(5),ܥோ(1), and ܯோ(2). The uncoded levels are calculated as ܩே(300), ௌܲ(100), 

 ோ(0.1). Another well-known design of experiment technique is the 2kܯ ோ(0.1), andܥ

factorial design as mentioned previously. The factor levels for 2k design are determined 

as given in Table 10.  
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(Table 10. Factor levels and values of genetic algorithm parameters for 2k factorial design.) 

By using the two level factorial design for four factors the design composed of 16 

experiments is obtained and displayed in Table 11 and the average FV values are 

calculated for each parameter combination. 

(Table 11. 2k factorial design and simulation results for average FV.) 

Mathematical model based on 2k factorial design for correlating responses such as the 

parameters ܩே, ௌܲ,ܥோ  and ܯோ with various settings of the process parameters as 

considered in the experimental design have been established, and is represented in the 

Equation (15). 

ܸܨ = 	11.3563− ேܩ	0.1021 − 1.0813	 ௌܲ + ோܥ	0.2306 − ோܯ	0.3459 + ேܩ	0.5088 ௌܲ
+ ோܥேܩ0.3500 − ோܯேܩ0.0088 + 0.0603	 ௌܲܥோ − 0.0084	 ௌܲܯோ
+ ோܯோܥ0.3161 − ேܩ	0.2394 ௌܲܥோ − ேܩ	0.3581 ௌܲܯோ
+ ோܯோܥேܩ	0.2810 	− 0.235 ௌܲܥோܯோ
− ேܩ	0.4508 ௌܲܥோܯோ																																																 

(15) 

Optimisation analysis was performed to achieve the target value of fitness function (FV) 

that is given in Equation (1). Optimum parameter settings obtained are presented in 

Figure 4. 

(Figure 4. Optimisation results for the ܩே , ௌܲ,ܥோ  and ܯோ for 2k factorial design.) 

The current coded optimal process parameter settings for achieving the targeted fitness 

value of ܸܨ = 9 are ܩே(−1), ௌܲ(1),  ோ(1). The uncoded values areܯ ோ(−1), andܥ	

calculated as ܩே(50), ௌܲ(100),ܥோ(0.1) and ܯோ(0.25) respectively. The response is 

optimised at the above parametric combination with desirability (݀) of 

0.5508	(55.08%) and optimised response value of FV is calculated as 9.4492.  
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The computational results (station numbers) for test problem 8 with the optimum 

parameter levels are calculated as 15 stations for both Taguchi Method and 2k factorial 

design. Results indicate that RSM is more efficient with 14 stations as mentioned before 

in Table 6.    

4. Discussion 

As can be seen from Table 6, GA with proposed parameters calculated by using RSM 

has found 14 work stations for test problem 8 and this result is equal or better than 

previous works for medium sized benchmark problem of Vilarinho and Simaria (2002). 

Furthermore, for the mentioned test problem, obtained solutions by proposed method in 

this paper are equal to the theoretical lower bound of total workstations (LBpmix). 

Results demonstrate that without using any hybridisation, obtained solution by only 

optimising the parameters of pure GA with RSM, is better than the solutions of 

Kilbridge & Wester, Moodie  & Young (Phase I), RPWT, Pure GA, and simulated 

annealing results (SA) of Vilarinho and Simaria (2002). Additionally, obtained result 

equals to the result that obtained from hybrid GA of Akpinar and Bayhan (2011). The 

proposed GA parameters which are given in Table 4 may be used as the best parameters 

set for problem 8 for the future researches.  

Similarly, further experiments are carried out to solve other MMALBP-I test 

problems in Table 5 using proposed procedures with optimised parameters. The 

obtained total number of required station numbers for each test problem are given in the 

RSM-GA column in Table 12.  

(Table 12. Comparison of obtained results (station numbers) for test problems.) 
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Based on the results demonstrated in Table 12, it is clearly seen that proposed 

method outperforms three traditional heuristics (Kilbridge & Wester, Moodie & Young 

- Phase I, RPWT), and Pure GA. The proposed method produces better solutions than 

Pure GA for five test problems P8, P9, P16, P18, and P19. Moreover, equal solutions 

are observed for remaining test problems (P1-P7, P10-P15, P17, and P20). Hence, it can 

be said that GA may have a potential capacity to generate better solutions than Pure GA 

by only optimising its parameters without using any hybridisation.  

In terms of comparison between simulated annealing algorithm (Vilarinho and 

Simaria, 2002) and RSM-GA, better solutions are obtained for three test problems (P8, 

P9, and P18) while in tie for remaining problems except P20. Furthermore, found 

solutions are equal to hGA (Akpinar and Bayhan, 2011) for 18 test problems while 

worse than hGA only for P15 and P20. 

To conclude, the present paper demonstrates that by using only RSM, it is possible to 

obtain better results. The advantage of using RSM in the present study is obtaining the 

acceptable results with only running 31 experiments with 100 runs (preferable number 

of runs may be lower than 100 if the CPU time is quite high) for the given case without 

using any hybridisation.  

While RSM appears to be quite useful for analysing many simulation problems, it 

has not received much attention from practitioners, despite efforts to encourage its 

application (Safizadeh and Thornton, 1984). The results of this study showed one more 

time that the RSM is an efficient statistical technique necessary for developing, 

improving, and optimising processes. The application of RSM is quite easy when 

compared with the other hybridisations mentioned in the literature. This may provide 

convenience to the researchers.   
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5. Conclusion and future research 

The aim of this paper is to search the effect of parameter optimisation on GAs’ 

performance. For this purpose, response surface methodology is applied to average 

fitness values of 100 replicates of different parameter combinations for the test problem 

of Vilarinho and Simaria (2002) (Problem 8, 25 Tasks, 3 Models, Medium-sized 

problem of MMALBP-I) and best parameter combination is tried to find. By using the 

optimal parameters of GA calculated by response optimiser, it was tested for the 

mentioned problem several times and 14 workstations with alternative task sequences 

are obtained. The objective was minimisation of number of workstations. By the 

proposed method, the probability of finding good solutions was increased by 

  6.67% 15 14 /15 0.067   for the 8th test problem. Furthermore, a comprehensive 

experimental design is performed to see the advantages of RSM by comparing the 

results obtained from RSM with the Taguchi and 2k factorial design methods. Then to 

demonstrate the performance of the RSM-GA, 20 test problems from the literature 

(given in Table 5) are solved by using RSM-GA and results are compared with existing 

results in the relevant literature.  The results presented in this study obviously show that 

the proposed approach based on RSM can successfully be used for the fast and easy 

design of the optimal parameter levels of GA for MMALBP-I. Also according to the 

results it is clearly observed that the solution quality of the traditional GA was 

improved.  
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Obtained alternative solutions/task sequences (or chromosomes) for test problem 8 (25 

tasks - 3 models) are given in following tables. 
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Table 1. An overview of approaches in the literature on parameter optimisation of GAs. 
 

Publications Method Problem 
Pongcharoen et al. (2002)  Factorial experiment, Regression 

analysis  
Scheduling of complex products with 
multiple resource constraints 

Lobo and Goldberg (2004) Parameter-less genetic algorithm Network expansion problem 
Costa et al. (2005) 2k-1 fractional factorial design Batch cooling crystallization optimization 
Siriwardene and Perera 
(2006) 

Proportionate selection, linear 
ranking selection 

Urban drainage model parameter 
optimization 

Yang et al. (2005) Taguchi  Flight control design 
Chang (2011) Taguchi Obtaining the steady state output voltage of 

proton exchange membrane fuel cell 
(PEMFC)  

Fernandez-Prieto et al. 
(2011)  

Fuzzy adaptive genetic algorithms 
– FAGAs 

Computer networks under traffic loads 

Subbaraj et al. (2011) Taguchi self-adaptive real-coded 
genetic algorithm (TSARGA) 

Economic dispatch problem 

 

Table 2. Levels and values of genetic algorithm parameters ܩே , ௌܲ,ܥோ and ܯோ . 
 

 
Symbol 

Level 
Parameter 

 -2 -1 0 1 2 

Generation number GN  

PS  

CR  

M R  

50 300 550 800 1050 

Population size 20 40 60 80 100 

Crossover rate 0.1 0.3 0.5 0.7 0.9 

Mutation rate 0.05 0.1 0.15 0.2 0.25 

 

Table 3. Design of experiments matrix showing coded values and observed responses for 100 runs. 
 

Experiment 
Number 

Run 
Order 

Coded Value Response 
GN  PS  CR  M R  Average FV 

1 1 -1 -1 -1 -1 11.6584  
2 2  1 -1 -1 -1 10.7626  
3 3 -1  1 -1 -1 10.4247  
4 4  1  1 -1 -1 9.9721  
5 5 -1 -1  1 -1 10.7962  
6 6  1 -1  1 -1 11.2854  
7 7 -1  1  1 -1 10.0964  
8 8  1  1  1 -1 10.4255  
9 9 -1 -1 -1  1 10.8994  

10 10  1 -1 -1  1 11.2969  
11 11 -1  1 -1  1 11.0452  
12 12  1  1 -1  1 9.6723  
13 13 -1 -1  1  1 11.5418  
14 14  1 -1  1  1 10.9198  
15 15 -1  1  1  1 10.4896  
16 16  1  1  1  1 9.4210  
17 17 -2  0  0  0 11.2915  
18 18  2  0  0  0 10.0103  
19 19  0 -2  0  0 11.5502  
20 20  0  2  0  0 10.1542  
21 21  0  0 -2  0 10.9685  
22 22 0 0 2  0 9.8641  
23 23 0 0 0 -2 10.5057  
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24 24 0 0 0  2 9.4812  
25 25 0 0 0  0 10.0597  
26 26 0 0 0  0 10.0849  
27 27 0 0 0  0 10.1023  
28 28 0 0 0  0 10.1178  
29 29 0 0 0  0 10.0195  
30 30 0 0 0  0 10.0634  
31 31 0 0 0  0 10.1041  

 

Table 4. Results of parameter optimisation. 
 

Symbol Coded value Uncoded value Rounded value 
GN  1.9596 1039.9 1040 

PS  1.6364 92.73 93 

CR  0.2222 0.54 0.50 

M R  2 0.25 0.25 

 

Table 5. Test problems (Akpinar and Bayhan, 2011; Scholl, 1995; Vilarinho and Simaria, 2002). 
 
 Problem 

no 
N M  C Precedence relations  Problem 

no 
N M  C Precedence relations 

Small-
size 

1 8 2 10 Bowman Medium-
Size 

11 30 2 10 Sawyer 
2 8 3 10 Bowman 12 30 3 10 Sawyer 
3 11 2 10 Gokcen and Erel (1998) 13 32 2 10 Lutz 1 
4 11 3 10 Gokcen and Erel (1998) 14 32 3 10 Lutz 1 

Medium-
Size 

5 21 2 10 Mitchel Large 
Size 

15 35 2 10 Gunther 
6 21 3 10 Mitchel 16 35 3 10 Gunther 
7 25 2 10 Vilarinho and Simaria 17 45 2 10 Kilbridge & Wester 
8 25 3 10 Vilarinho and Simaria 18 45 3 10 Kilbridge & Wester 
9 28 2 10 Heskiakof 19 70 2 10 Tonge 
10 28 3 10 Heskiakof 20 70 3 10 Tonge 

 

Table 6. Computational results (station numbers) for test problem 8. 

# Problem ܤܮ୮୫୧୶ 
Kilbridge 
& Wester 

Moodie & 
Young 

(Phase I) 
RPWT Pure 

GA 
V&S 
(SA) 

A&B 
(hGA) RSM-GA 

8 Vilarinho and Simaria 
(2002) 14 15 15 15 15 15 14 14 

 

Table 7. Factor levels and values of genetic algorithm parameters for Taguchi design. 

    Level 
Parameter Symbol 1 2 3 4 5 

Generation number GN  50 300 550 800 1050 

Population size PS  20 40 60 80 100 

Crossover rate CR  0.1 0.3 0.5 0.7 0.9 

Mutation rate M R  0.05 0.1 0.15 0.2 0.25 
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Table 8. Taguchi design and simulation results for average FV. 

Experiment 
Number 

Run 
Order 

Coded Value Response 
 ோ Average FVܯ ோܥ ே ௌܲܩ

1 1 1 1 1 1 12.8754 
2 2 1 2 2 2 10.2845 
3 3 1 3 3 3 10.3232 
4 4 1 4 4 4 10.0746 
5 5 1 5 5 5 10.0551 
6 6 2 1 2 3 12.5041 
7 7 2 2 3 4 11.6579 
8 8 2 3 4 5 9.7338 
9 9 2 4 5 1 10.0792 

10 10 2 5 1 2 9.2989 
11 11 3 1 3 5 12.4054 
12 12 3 2 4 1 10.9296 
13 13 3 3 5 2 10.2612 
14 14 3 4 1 3 11.1595 
15 15 3 5 2 4 9.7173 
16 16 4 1 4 2 12.5572 
17 17 4 2 5 3 10.496 
18 18 4 3 1 4 9.6257 
19 19 4 4 2 5 10.9025 
20 20 4 5 3 1 10.1299 
21 21 5 1 5 4 12.4396 
22 22 5 2 1 5 10.1224 
23 23 5 3 2 1 10.9064 
24 24 5 4 3 2 10.8023 
25 25 5 5 4 3 10.1464 

 

Table 9. Signal to noise (S/N) ratios for smaller is better criteria. 

Level ܩே ௌܲ ܥோ ܯோ 
1 -20.57 -21.98 -20.46 -20.78 
2 -20.5 -20.57 -20.69 -20.5 
3 -20.71 -20.14 -20.85 -20.74 
4 -20.59 -20.5 -20.54 -20.54 
5 -20.71 -19.88 -20.53 -20.51 

 

Table 10. Factor levels and values of genetic algorithm parameters for 2k factorial design. 

    Level 
Parameter Symbol -1 1 
Generation number GN  50 1050 

Population size PS  20 100 

Crossover rate CR  0.1 0.9 

Mutation rate M R  0.05 0.25 
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Table 11. 2k factorial design and simulation results for average FV. 

Experiment 
Number 

Run 
Order 

Coded Value Response 
 ோ Average FVܯ ோܥ ே ௌܲܩ

1 1 -1 -1 -1 -1 13.9733 
2 2 1 -1 -1 -1 12.3377 
3 3 -1 1 -1 -1 9.9266 
4 4 1 1 -1 -1 10.9129 
5 5 -1 -1 1 -1 13.4973 
6 6 1 -1 1 -1 11.2922 
7 7 -1 1 1 -1 9.7846 
8 8 1 1 1 -1 11.8925 
9 9 -1 -1 -1 1 12.9618 

10 10 1 -1 -1 1 9.7963 
11 11 -1 1 -1 1 9.4492 
12 12 1 1 -1 1 9.6476 
13 13 -1 -1 1 1 11.7615 
14 14 1 -1 1 1 13.8808 
15 15 -1 1 1 1 10.3125 
16 25 1 1 1 1 10.2736 

 

Table 12. Comparison of obtained results (station numbers) for test problems. 

# Problem ܤܮ୮୫୧୶ 
Kilbridge 
& Wester 

Moodie & 
Young 

(Phase I) 
RPWT Pure 

GA 
V&S 
(SA) 

A&B 
(hGA) RSM-GA 

P1 Bowman 4 4 4 4 4 4 4 4 
P2 Bowman 6 9 9 9 8 8 8 8 
P3 Gokcen and Erel (1998) 7 8 7 8 7 7 7 7 
P4 Gokcen and Erel (1998) 6 7 7 7 7 7 7 7 
P5 Mitchel 14 17 16 16 16 16 16 16 
P6 Mitchel 13 16 15 17 15 15 15 15 
P7 Vilarinho and Simaria (2002) 14 17 17 18 16 16 16 16 
P8 Vilarinho and Simaria (2002) 14 15 15 15 15 15 14 14 
P9 Heskiakof 19 21 21 21 21 21 20 20 
P10 Heskiakof 18 21 21 21 20 20 20 20 
P11 Sawyer 15 18 18 19 16 16 16 16 
P12 Sawyer 17 21 21 20 19 19 19 19 
P13 Lutz 1 16 19 19 19 19 19 19 19 
P14 Lutz 1 17 21 20 20 19 19 19 19 
P15 Gunther 20 25 25 24 24 24 23 24 
P16 Gunther 21 26 26 25 25 24 24 24 
P17 Kilbridge & Wester 23 27 27 28 25 25 25 25 
P18 Kilbridge & Wester 24 31 29 29 28 28 27 27 
P19 Tonge 41 50 48 48 45 44 44 44 
P20 Tonge 39 48 47 48 45 44 44 45 
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Table A.1 Alternative solution-1. 

Task 1 3 7 2 4 6 5 8 9 14 11 10 13 
Station 1-2 1-2 1-2 3 3 3 4-5 4-5 4-5 6 6 7 7 
tA 4.1 4.6 11.3 2.7 4.1 0 2.0 7.8 0 5.1 3.9 3.5 2.5 
tB 4.1 4.6 11.3 2.7 4.1 2.0 2.0 7.8 10.0 5.1 4.2 3.5 2.3 
tC 4.1 4.6 11.3 2.7 4.1 2.0 2.0 7.8 10.0 5.1 3.9 3.3 2.5 
tAverage 4.1 4.6 11.3 2.7 4.1 1.3 2.0 7.8 6.7 5.1 4.1 3.5 2.4 
Task 16 18 19 12 17 20 21 22 15 23 24 25   
Station 7 8 9 10 10 11 12 12 13 13 13 14  
tA 3.5 8.5 9.9 1.0 6.8 7.2 4.8 3.8 3.5 2.9 3.5 7.8  
tB 3.5 8.5 9.9 1.0 6.8 7.2 4.8 3.8 3.5 2.8 3.5 7.8  
tC 3.4 9.6 9.9 1.0 6.8 7.2 4.8 3.9 3.5 2.6 3.5 7.8  
tAverage 3.5 8.7 9.9 1.0 6.8 7.2 4.8 3.8 3.5 2.8 3.5 7.8   

 
 

Table A.2 Alternative solution-2. 
Task 1 3 7 5 2 4 8 6 9 10 11 13 14 
Station 1-2 1-2 1-2 3 3 3 4-5 4-5 4-5 6 6 6 7 
tA 4.1 4.6 11.3 2.0 2.7 4.1 7.8 0 0 3.5 3.9 2.5 5.1 
tB 4.1 4.6 11.3 2.0 2.7 4.1 7.8 2.0 10.0 3.5 4.2 2.3 5.1 
tC 4.1 4.6 11.3 2.0 2.7 4.1 7.8 2.0 10.0 3.3 3.9 2.5 5.1 
tAverage 4.1 4.6 11.3 2.0 2.7 4.1 7.8 1.3 6.7 3.5 4.1 2.4 5.1 
Task 16 18 17 20 21 22 12 19 15 23 24 25   
Station 7 8 9 10 11 11 11 12 13 13 13 14  
tA 3.5 8.5 6.8 7.2 4.8 3.8 1.0 9.9 3.5 2.9 3.5 7.8  
tB 3.5 8.5 6.8 7.2 4.8 3.8 1.0 9.9 3.5 2.8 3.5 7.8  
tC 3.4 9.6 6.8 7.2 4.8 3.9 1.0 9.9 3.5 2.6 3.5 7.8  
tAverage 3.5 8.7 6.8 7.2 4.8 3.8 1.0 9.9 3.5 2.8 3.5 7.8   

 
 

Table A.3 Alternative solution-3. 
Task 1 3 7 2 4 5 6 8 10 11 13 9 14 
Station 1-2 1-2 1-2 3 3 3 4 4 5-6 5-6 5-6 7 7 
tA 4.1 4.6 11.3 2.7 4.1 2.0 0 7.8 3.5 3.9 2.5 0 5.1 
tB 4.1 4.6 11.3 2.7 4.1 2.0 2.0 7.8 3.5 4.2 2.3 10.0 5.1 
tC 4.1 4.6 11.3 2.7 4.1 2.0 2.0 7.8 3.3 3.9 2.5 10.0 5.1 
tAverage 4.1 4.6 11.3 2.7 4.1 2.0 1.3 7.8 3.5 4.1 2.4 6.7 5.1 
Task 12 16 17 21 22 18 19 20 15 23 24 25   
Station 7 7 8 9 9 10 11 12 13 13 13 14  
tA 1.0 3.5 6.8 4.8 3.8 8.5 9.9 7.2 3.5 2.9 3.5 7.8  
tB 1.0 3.5 6.8 4.8 3.8 8.5 9.9 7.2 3.5 2.8 3.5 7.8  
tC 1.0 3.4 6.8 4.8 3.9 9.6 9.9 7.2 3.5 2.6 3.5 7.8  
tAverage 1.0 3.5 6.8 4.8 3.8 8.7 9.9 7.2 3.5 2.8 3.5 7.8   
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Table A.4 Alternative solution-4. 
Task 1 3 7 2 4 5 9 8 6 12 14 10 11 
Station 1-2 1-2 1-2 3-4 3-4 3-4 3-4 5 5 6 6 6 7 
tA 4.1 4.6 11.3 2.7 4.1 2.0 0 7.8 0 1.0 5.1 3.5 3.9 
tB 4.1 4.6 11.3 2.7 4.1 2.0 10.0 7.8 2.0 1.0 5.1 3.5 4.2 
tC 4.1 4.6 11.3 2.7 4.1 2.0 10.0 7.8 2.0 1.0 5.1 3.3 3.9 
tAverage 4.1 4.6 11.3 2.7 4.1 2.0 6.7 7.8 1.3 1.0 5.1 3.5 4.1 
Task 13 16 18 20 17 21 22 19 15 23 24 25   
Station 7 7 8 9 10 11 11 12 13 13 13 14  
tA 2.5 3.5 8.5 7.2 6.8 4.8 3.8 9.9 3.5 2.9 3.5 7.8  
tB 2.3 3.5 8.5 7.2 6.8 4.8 3.8 9.9 3.5 2.8 3.5 7.8  
tC 2.5 3.4 9.6 7.2 6.8 4.8 3.9 9.9 3.5 2.6 3.5 7.8  
tAverage 2.4 3.5 8.7 7.2 6.8 4.8 3.8 9.9 3.5 2.8 3.5 7.8   

 
 

Table A.5 Alternative solution-5. 
Task 1 3 7 2 4 5 8 6 10 11 13 9 16 
Station 1-2 1-2 1-2 3 3 3 4 4 5-6 5-6 5-6 7 7 
tA 4.1 4.6 11.3 2.7 4.1 2.0 7.8 0 3.5 3.9 2.5 0 3.5 
tB 4.1 4.6 11.3 2.7 4.1 2.0 7.8 2.0 3.5 4.2 2.3 10.0 3.5 
tC 4.1 4.6 11.3 2.7 4.1 2.0 7.8 2.0 3.3 3.9 2.5 10.0 3.4 
tAverage 4.1 4.6 11.3 2.7 4.1 2.0 7.8 1.3 3.5 4.1 2.4 6.7 3.5 
Task 14 17 18 19 20 21 22 12 15 23 24 25   
Station 7 8 9 10 11 12 12 12 13 13 13 14  
tA 5.1 6.8 8.5 9.9 7.2 4.8 3.8 1.0 3.5 2.9 3.5 7.8  
tB 5.1 6.8 8.5 9.9 7.2 4.8 3.8 1.0 3.5 2.8 3.5 7.8  
tC 5.1 6.8 9.6 9.9 7.2 4.8 3.9 1.0 3.5 2.6 3.5 7.8  
tAverage 5.1 6.8 8.7 9.9 7.2 4.8 3.8 1.0 3.5 2.8 3.5 7.8   

 
 

Table A.6 Alternative solution-6. 
Task 1 3 7 2 5 4 9 8 6 10 14 11 13 
Station 1-2 1-2 1-2 3-4 3-4 3-4 3-4 5 5 6 6 7 7 
tA 4.1 4.6 11.3 2.7 2.0 4.1 0 7.8 0 3.5 5.1 3.9 2.5 
tB 4.1 4.6 11.3 2.7 2.0 4.1 10.0 7.8 2.0 3.5 5.1 4.2 2.3 
tC 4.1 4.6 11.3 2.7 2.0 4.1 10.0 7.8 2.0 3.3 5.1 3.9 2.5 
tAverage 4.1 4.6 11.3 2.7 2.0 4.1 6.7 7.8 1.3 3.5 5.1 4.1 2.4 
Task 16 17 18 20 19 12 21 22 15 23 24 25   
Station 7 8 9 10 11 12 12 12 13 13 13 14  
tA 3.5 6.8 8.5 7.2 9.9 1.0 4.8 3.8 3.5 2.9 3.5 7.8  
tB 3.5 6.8 8.5 7.2 9.9 1.0 4.8 3.8 3.5 2.8 3.5 7.8  
tC 3.4 6.8 9.6 7.2 9.9 1.0 4.8 3.9 3.5 2.6 3.5 7.8  
tAverage 3.5 6.8 8.7 7.2 9.9 1.0 4.8 3.8 3.5 2.8 3.5 7.8   

 

 

 



International Journal of Production Research 

Final version available online at: http://www.tandfonline.com/doi/full/10.1080/00207543.2013.784411 

 

Figure 1. Flow chart of proposed genetic algorithm. 
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Figure 2. Optimization results for ܩே , ௌܲ,ܥோ and ܯோ . 
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Figure 3. Precedence diagram of test problem 8 (Simaria, 2006). 

 

 

Figure 4. Optimization results for the ܩே , ௌܲ,ܥோ  and ܯோ for 2k factorial design. 
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