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Abstract: Genetic algorithms are efficient stochastic search techniques for approximating optimal
solutions within complex search spaces andsused widely to solve NP hard problems. This algorithm
includes a number of parameters Wwhose different levels affect the performance of the algorithm
strictly. The general approach“to determine the appropriate parameter combination of genetic
algorithm depends on too many:trials of different combinations and the best one of the combinations
that produces good results is'selected for the program that would be used for problem solving. A few
researchers studied on' parameter, optimisation of genetic algorithm. In this paper, response surface
depended parameter optimisation is proposed to determine the optimal parameters of genetic
algorithm. Results“are tested for benchmark problems that is most common in mixed-model
assemblyaline balancing problems of type-1 (MMALBP-1).
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Using response surface design to determine the optimal parameters of

genetic algorithm and a case study

Genetic algorithms are efficient stochastic search techniques for approximating
optimal solutions within complex search spaces and used widely to solve NP hard
problems. This algorithm includes a number of parameters whose different levels
affect the performance of the algorithm strictly. The general approach to

determine the appropriate parameter combination of genetic algorithm depends

Keywords: Genetic algorithm (GA);

Assembly line balancing, Param

1. Introduction

and they“do not need to have any information about the search space, just needing a
fitness function that assigns a value to each solution (Costa et al., 2005; Fernandez-

Prieto et al., 2011).

The running principle of GA depends on setting up a relatively large number of
parameters and requires performing lots of runs for different combinations of them to

obtain the most appropriate structure that gives nearly optimal solution. There are few
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researches about parameter optimisation of GAs. Lobo and Goldberg (2004) presented
the parameter-less genetic algorithm to simplify genetic algorithm operation by
incorporating knowledge of parameter selection and population sizing theory in the
genetic algorithm and applied it to a network expansion problem. Siriwardene and
Perera (2006) used proportionate and linear ranking selection methods to determine

model parameter convergence and recommended the proportionate selection method for

(GANN)With the goal of reducing the estimation error. Also Factorial design, which is

one of the widely used design of experiment techniques, is used to model the non-
quadratic relations between the factors and the response. The third and the widely used
well-known design of experiment technique is the response surface methodology
(RSM) which is based on statistical considerations that brings the most meaningful

information about the influences of parameters on a specific problem; and process
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optimisation using RSM is usually achieved by simultaneous testing of numerous
factors in a limited number of experiments. Therefore, RSM consumes less time and
effort (Bayhan and Onel, 2010; Costa et al., 2005). Remarkable studies in the literature
on this subject begin with Pongcharoen et al. (2002). In this study, the authors
performed a factorial experiment to identify appropriate values of GA parameters that

produce the best results within a given execution time and developed a genetic

batch cooling crystallisation optimisation. The brief liter summarised in

Table 1.

(Table 1. An overview of approaches in the lite meter optimisation of GAs.)

) §
we reviewed the literature, we observed that RSM is not used for this purpose. The

originality of this work is that applying RSM to the parameter optimisation of GA for

MMALBP-I problems.

The rest of the paper is organised as follows. The concept and formulations of GA,

RSM and MMALBP-I are presented in section 2. An illustrative example is solved in
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section 3. Discussions are given with the obtained results of test problems in section 4

and conclusion are given in section 5 with future research directions.

2. Proposed genetic algorithm

Genetic algorithms (GAs) are powerful and broadly applicable random search and

optimisation techniques based on principles of evolution theory. In recent years, GAS

A

unsuitable chromosomes, which interrupt precedence relationships.

GA used in this research employs the objective function given in Equation (1) as
the fitness function to evaluate each individual’s performance (fitness) in the search

space.
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. S (C-W.)?
Fitness Value = Z% (1)
k=1

where C, W, and S denote the cycle time of the assembly line, workload of the

station k and the number of workstations required to meet the demand in the assembly

line, respectively.

Individuals are selected randomly for mating. Thus, diversity is to be protected and

probable better solutions can be occurred with the mating of worse i

and paired with the other individuals.

The mutation operator exchanges ra

mutation rate (M) in a chrom

mutation operators, FVs of the pring are compared with the individuals® and

ion is formed by selecting the best individuals according to their FVs
among the current population, offspring produced by crossover, and individuals who
underwent mutation. Population size is kept constant by replacing the worse individuals

with new ones by taking into account the FVs.
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Repairing operator is not used in this algorithm since unsuitable chromosomes are
not allowed to be produced during the initialisation, crossover and mutation processes.

Figure 1 shows the flow chart of GA used in this research.

(Figure 1. Flow chart of proposed genetic algorithm.)

2.1. Assembly line balancing problem

“Assembly Line Balancing Problem (ALBP) was firstly formulated by Salv (1955)

and, since then, has received a great deal of attention over the years” ( and
L N

literature and these a

MMALBP are (S

e MMALBP-II: The cycle time is to be minimised for a given number of

workstations.

e MMALBP-E: The cycle time and the number of workstations are to be

minimised simultaneously.
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The objective function used as fitness function of genetic algorithm (Equation 1) was
taken from Leu et al. (1994). This function minimises not only total number of

workstations but also workload smoothing between the workstations at the same time.

The decision variables X, and r, check whether task i is assigned to workstation k

and if workstation k is replicated or not, respectively.

o = {1, if taskiis assigned to workstation k,
tk 0, otherwise

.= {1, if workstation k is replicated,
k 0, otherwise

Assumptions of the model are (Akpinar and Bayha arinho and Simaria,

2002):
e the planning horizon has a fix

e aset of similar M mode

multaneously assembled,

e the forecast de e planning horizon, for model m is D, , requiring

the line to with a cycle time;

c=p/Y" D, (2)

| proportion of the number of units of model m being assembled is

4, =D, /Y. D, ©)

(where D, describes amount of total production for all models),
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e each model has its own set of precedence relationships, but there is a subset of
tasks common to all models. Hence, the precedence diagrams for all the models

can be combined and the resulting one has N tasks,

e N tasks are performed in a set of S workstations,

e the time required to perform task i on model m, t., may vary among models (

m?

t,, =0 means that model m does not require task i to be assemb

tion can be duplicated up to a maximum of MAXP replicas, but only if
the task time of one of the tasks assigned to it exceeds a predefined value (a.%

of the cycle time) for at least one of the models (for our model MAXP = 2),
e S, symbolises the idle time of workstation k for model m .

Constraints considered in the model are (Vilarinho and Simaria, 2002):
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S
D% =1 i=1..,N (4)
k=1
S S
D Xy =D Xy <0 aeN,beF, (5)
k=1 k=1
S S
D Xy =D %y =0 (a,b)ezP (6)
k=1 k=1
X + %o =1 (a,b)e 2N, k=1...,S (7

N
Dt Xy + S =C[1+ 1 (MAXP-1) k=1..S, m=1,.. (8a)
i=1

s Y % k=1..S, 0<a<100% (8b)

i:3,>aC; m=1,..,M

Mr, > > X (8¢)
i3ty >aC; m=L,...M
S, =0 (9a)
X, €[0,1] (9b)
r. €[0,1] (9¢)
The objective function (1) minimi %fhe squares of the idle times for each

workstation, thus it minimises

unbalanced workload b

be assig%’%d to same workstation. Constraint (7) describes negative zoning constraints
(incompatibility zoning constraint). For example if it is dangerous or impossible to
perform any two tasks at same workstation, they must be assigned to different
workstations. Constraint (8a) ensures that capacity is not exceeded for any workstation,
constraint (8b) ensures the maximum number of replicas of a workstation is not

exceeded and constraint (8c) ensures only workstations where the processing time of the
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tasks assigned to it, for at least one model, exceeds a certain proportion (a.% ) of the
cycle time can be duplicated (where M is a very large positive integer). Constraint (9a)
describes the idle time of workstations equal or more than zero. Additionally,
constraints (9b) and (9¢) define domain of the decision variables (Akpinar and Bayhan

2011; Vilarinho and Simaria, 2002).

2.2. Response surface methodology

RSM is a union of statistical and mathematical techniques used for

for developing, improving, and optimising processes. RSM

the engineering problems to examine and characterise pﬁg&p@, hich input variables

influence some performance aspects of the pro cess. This performance

measure is called as response. Product o isation using RSM is usually

achieved by simultaneously testing of Factors (controllable input variables) in

a limited number of experimen erefore, RSM consumes less time and effort.

X

Furthermore, RSM provi measurements of possible interactions between

&
$

factors, difficult info tain using other optimisation techniques (especially

by using heuristi on and quantification of the interactions between various

problems, the form of the relationship between independent variables and the response

is unknown, and approximated (Dhupal et al., 2007). Equation (10) shows the general
second-order polynomial response surface mathematical model (full quadratic model)

for the experimental design (Yalcinkaya and Bayhan, 2009, Dhupal et al., 2007).
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n n n
Y, =B, +iz:l:ﬂixiu +§ﬂiixii +;ﬂijxiuxju +€, (10)
where Y,, is the corresponding response, X;,, and X;,, are coded values of the i th and j th
input parameters (i < j) respectively, terms B, B;, B;; and B;; are the regression

coefficients, and e, is the residual experimental error of the u th observation.

The model in terms of the observations may be written in matri

(Montgomery, 2001):

Y=BX+¢ (11)

where Y is the output matrix and X is the input matrixea matrix of residuals

(error term). The least square estimator of # matrix‘th es of coefficients of the

regression equation calculated by the give quation (12):

(12)

The fitted regression mog

population size (P,), crossover rate (C;) and mutation rate (M) are listed in Table 2.

The levels of these parameters are determined randomly by considering the levels from
similar studies presented previously in the literature based on GA and MMALBP-I.
Table 3 shows the experimental design, detailing the experiment run order of each

experiment and coded values of the process parameters (namely factors). For each
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experiment 100 runs are performed. Minitab-16 statistical software was used to
establish mathematical models for optimisation of the GA parameters. The software

uses the mathematical substructure given in Section 2.2,
(Table 2. Levels and values of genetic algorithm parameters G, P, C;,and My.)

(Table 3. Design of experiments matrix showing coded values and observed responses for 100

runs.)

FV =10.0788-0.23994G,, —0.43357P, —0.123
+0.116204C.% +0.010491M,.* 0.
—0.03798 P,C,, —0.02787 P,Mg,— 0.0

(13)

Optimisation procedure med to achieve the target value of fitness function

(FV) that is give (1). Optimum parameter settings obtained are presented

in Figure 2.

tion results for G, P, C;,and M)

The curr%ht coded optimal process parameter settings for achieving the targeted fitness
value of FV =9 are calculated as G,, =1.9596, P, =1.6364, C, =0.2222,and M, =2
After the normalisation, the wuncoded values are calculated as

G, =1039.9,P, =92.728,C; =0.5444 and M, =0.25 respectively (Table 4). The
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response is optimised at the above parametric combination with desirability (d) of

0.9912 (99.12%) and optimised response value of FV is calculated as 9.0264.

(Table 4. Results of parameter optimisation.)

The experimental results for the given case under this study are presented in the next

section.

3.2. Experimental results for MMALBP-I

assembly line (C) are given in th

(Table 5. Test problems

2002).)

M480 2.67 GHz system with 3 GB RAM and 64 Bit operating system.

(Figure 3. Precedence diagram of test problem 8 (Simaria, 2006).)

The computational results for the given test problem are presented in Table 6. LBymix
column shows the lower bound on the total number of workstations for relevant

problem (Vilarinho and Simaria, 2002). The columns Kilbridge & Wester, Moodie &
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Young, RPWT, Pure GA (Akpinar and Bayhan, 2011) show the best solutions in the
relevant literature found by different solution approaches. V&S (SA) and A&B (hGA)
columns represent the best solutions found by Vilarinho and Simaria (2002) by using
simulated annealing (SA) algorithm, and Akpinar and Bayhan (2011) by using hybrid
genetic algorithm (hGA), respectively. RSM-GA column represents the best station
number found by using optimised parameters of GA obtained from RSM. The task

sequences discovered by RSM-GA procedure are given in appendices.

Design.

As is well kno

) §
in Table 4. In other words it is possible to obtain more sensitive parameter levels with

RSM when it is compared with the solutions of Taguchi Method. The same sensitivity
may also be obtained by 2* factorial design but this technique depends on the first order
(linear) relations between the independent factors. The parameter optimisation case
presented in this study shows nonlinear relations because of the nature of the problem.

So 2% factorial design does not seem a good alternative to the RSM. The factor levels for
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Taguchi Method and 2% Factorial Design are presented in Tables 7 and 10, and the
simulation results for the given experimental designs are presented in Tables 8 and 11

respectively.
(Table 7. Factor levels and values of genetic algorithm parameters for Taguchi design.)

By using the five level design of Taguchi for four factors the design composed of 25

experiments is obtained and displayed in Table 8 and the average FV<walues are

calculated for each parameter combination.
(Table 8. Taguchi design and simulation results for average FV.)

For the optimisation, smaller-is-best criterion of nethod is used. For

minimising average FV; Signal to Noise (S/N each experimental runs are

calculated from Minitab. Minitab uses t ven below in Equation (14) to

(14)
Calculated signal to tios for smaller is better criteria are listed in Table 9.
The factor levels he maximum S/N ratio for each factor is selected as the

According to the S/N ratios optimum coded parameter combination is found as G (2),
Ps(5),Cr(1), and Mz(2). The uncoded levels are calculated as G,(300), Ps(100),
Cz(0.1), and Mz(0.1). Another well-known design of experiment technique is the 2
factorial design as mentioned previously. The factor levels for 2 design are determined

as given in Table 10.
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(Table 10. Factor levels and values of genetic algorithm parameters for 2 factorial design.)

By using the two level factorial design for four factors the design composed of 16
experiments is obtained and displayed in Table 11 and the average FV values are

calculated for each parameter combination.

(Table 11. 2 factorial design and simulation results for average FV.)

Mathematical model based on 2* factorial design for correlating response

Equation (15).

FV = 11.3563 — 0.1021 Gy — 1.0813 P; + 0.2 ; 59 My + 0.5088 Gy Ps
+ 0.3500G,Cr — 0.0088Gy My sCr — 0.0084 PsMp,
+ 0.2810 Gy CrMp
(15)
Optimisation analysis w achieve the target value of fitness function (FV)
that is given in Eq timum parameter settings obtained are presented in

Figure 4.

ion results for the Gy, Pg, Cr and M, for 2% factorial design.)

The current coded optimal process parameter settings for achieving the targeted fitness
value of FV =9 are Gy(—1), Ps(1), Cx(—1), and Mr(1). The uncoded values are
calculated as G, (50), Ps(100),Cx(0.1) and M;(0.25) respectively. The response is

optimised at the above parametric combination with desirability (d) of

0.5508 (55.08%) and optimised response value of FV is calculated as 9.4492,
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The computational results (station numbers) for test problem 8 with the optimum
parameter levels are calculated as 15 stations for both Taguchi Method and 2* factorial
design. Results indicate that RSM is more efficient with 14 stations as mentioned before

in Table 6.

4. Discussion

As can be seen from Table 6, GA with proposed parameters calculated b

has found 14 work stations for test problem 8 and this result is

h are given in Table 4 may be used as the best parameters

researches.

problems, in Table 5 using proposed procedures with optimised parameters. The
obtained total number of required station numbers for each test problem are given in the

RSM-GA column in Table 12.

(Table 12. Comparison of obtained results (station numbers) for test problems.)
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Based on the results demonstrated in Table 12, it is clearly seen that proposed
method outperforms three traditional heuristics (Kilbridge & Wester, Moodie & Young
- Phase I, RPWT), and Pure GA. The proposed method produces better solutions than
Pure GA for five test problems P8, P9, P16, P18, and P19. Moreover, equal solutions
are observed for remaining test problems (P1-P7, P10-P15, P17, and P20). Hence, it can

be said that GA may have a potential capacity to generate better solutions than Pure GA

by only optimising its parameters without using any hybridisation.

solutions are equal to hGA (Akpinar and Bayh 18 test problems while

worse than hGA only for P15 and P20.

To conclude, the present paper demonstrates that by using only RSM, it is possible to

h

obtain better results. The ad sing RSM in the present study is obtaining the

acceptable results with 19 31 experiments with 100 runs (preferable number
of runs may be lo if the CPU time is quite high) for the given case without

using any hyb

pears to be quite useful for analysing many simulation problems, it
has not ‘teceived much attention from practitioners, despite efforts to encourage its
application (Safizadeh and Thornton, 1984). The results of this study showed one more
time that the RSM is an efficient statistical technique necessary for developing,
improving, and optimising processes. The application of RSM is quite easy when
compared with the other hybridisations mentioned in the literature. This may provide

convenience to the researchers.
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5. Conclusion and future research

The aim of this paper is to search the effect of parameter optimisation on GASs’
performance. For this purpose, response surface methodology is applied to average
fitness values of 100 replicates of different parameter combinations for the test problem
of Vilarinho and Simaria (2002) (Problem 8, 25 Tasks, 3 Models, Medium-sized

problem of MMALBP-I) and best parameter combination is tried to find. By using the

optimal parameters of GA calculated by response optimiser, it

mentioned problem several times and 14 workstations with altern

results in the releva he results presented in this study obviously show that

the proposed app! on RSM can successfully be used for the fast and easy
ime Iparameter levels of GA for MMALBP-I. Also according to the

rly observed that the solution quality of the traditional GA was

improved:
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Appendices

Obtained alternative solutions/task sequences (or chromosomes) for. tes (25

tasks - 3 models) are given in following tables.
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Table 1. An overview of approaches in the literature on parameter optimisation of GAs.

Publications Method Problem
Pongcharoen et al. (2002)  Factorial experiment, Regression  Scheduling of complex products with
analysis multiple resource constraints

Lobo and Goldberg (2004)  Parameter-less genetic algorithm  Network expansion problem

Costa et al. (2005) 2! fractional factorial design Batch cooling crystallization optimization

Siriwardene and Perera Proportionate selection, linear Urban drainage model parameter

(2006) ranking selection optimization

Yang et al. (2005) Taguchi Flight control design

Chang (2011) Taguchi Obtaining the steady state output voltage of
proton exchange membrane fuel cell
(PEMFC)

Fernandez-Prieto et al. Fuzzy adaptive genetic algorithms  Computer networks under traffic loads

(2011) — FAGAs

Subbaraj et al. (2011) Taguchi self-adaptive real-coded  Economic dispatch problem

genetic algorithm (TSARGA)

Parameter Symbol o 1 0 1 ’
Generation number Gy 50 300 550 800 1050
Population size Ps 20 40 60 80 100
Crossover rate Cr 0.1 0.3 0.5 0.7 0.9
Mutation rate Mg 0.05 0.1 0.15 0.2 0.25

Table 3. Design of experiments ma g coded values and observed responses for 100 runs.

Experiment  Run Coded Value Response
Number  Order Gy r cp Mg Average FV
1 1 101 -1 A 11.6584
2 2 1 -1 -1 -1 10.7626
3 3 -1 1 -1 -1 10.4247
4 4 1 1 -1 -1 9.9721
5 5 101 1 A 10.7962
6 6 1 -1 1 -1 11.2854
7 7 -1 1 1 - 10.0964
8 8 1 1 1 - 10.4255
9 9 101 - 1 10.8994
10 10 1 -1 - 1 11.2969
11 11 -1 1 -1 1 11.0452
12 12 1 1 -1 1 9.6723
13 13 101 1 1 11.5418
14 14 1 -1 1 1 10.9198
15 15 -1 1 1 1 10.4896
16 16 1 1 1 1 9.4210
17 17 -2 0 O 0 11.2915
18 18 2 0 O 0 10.0103
19 19 0 -2 0 0 11.5502
20 20 0 2 0 0 10.1542
21 21 0 0 -2 0 10.9685
22 22 0 0 2 0 9.8641
23 23 0 0 ©0 -2 10.5057
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24 24 0 0 O 2 9.4812
25 25 0 0 O 0 10.0597
26 26 0 0 O 0 10.0849
27 27 0 0 O 0 10.1023
28 28 0 0 O 0 10.1178
29 29 0 0 O 0 10.0195
30 30 0 0 O 0 10.0634
31 31 0 0 O 0 10.1041

Table 4. Results of parameter optimisation.

Symbol  Coded value  Uncoded value ~ Rounded value

GN 1.9596 1039.9 1040
Ps 1.6364 92.73 93

Cp 0.2222 0.54 0.50
Mg 2 0.25 0.25

P

Table 5. Test problems (Akpinar and Bayhan, 2011; Scholl, 19 and Simaria, 2002).

Problem N M C  Precedence relations M C  Precedence relations
no
Small- 1 8 2 10 Bowman Medium- 11 30 2 10  Sawyer
size 2 8 3 10 Bowman Size 12 30 3 10 Sawyer
3 11 2 10 Gokcenand Erel (1998) 13 32 2 10 Lutz1l
4 11 3 10 Gokcenand Erel (1998) 14 32 3 10 Lutzl
Medium- 5 21 2 10 Mitchel Large 15 35 2 10 Gunther
Size 6 21 3 10 Mitchel Size 16 35 3 10 Gunther
7 25 2 10 Vilarinho and Simaria 17 45 2 10 Kilbridge & Wester
8 25 3 10 Vilarinho and Simaria 18 45 3 10 Kilbridge & Wester
9 28 2 10 Heskiakof 19 70 2 10 Tonge
10 28 3 10 Heskiakof 20 70 3 10 Tonge
J
Table 6 al results (station numbers) for test problem 8.
A Moodie &
Kilbridge Pure V&S A&B
LBy o
# Problem Pmix o \Nester Young RPWT GA (SA) (hGA) RSM-GA
(Phase I)
8 Vilarinho and Simaria 14 15 15 15 15 15 14 14

(2002)

‘%

Table 7. Factor levels and values of genetic algorithm parameters for Taguchi design.

Level
Parameter Symbol 1 2 3 4 5
Generation number ~ Sn 50 300 550 800 1050
Population size P 20 40 60 80 100
Crossover rate Cr 01 03 05 07 09
Mutation rate My 005 01 015 02 0.25
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Table 8. Taguchi design and simulation results for average FV.

Experiment  Run

Coded Value Response

Number  Order Gy

Ps

M,  Average FV

1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 2
7 7 2
8 8 2
9 9 2
10 10 2
11 11 3
12 12 3
13 13 3
14 14 3
15 15 3
16 16 4
17 17 4
18 18 4
19 19 4
20 20 4
21 21 5
22 22 5
23 23 5
24 24 5
25 25 5

OB WNPFPORRWONPFPOPRRONPFPORRONEFPORODNDE
PONMNRPRPOOOWOWNMNRPORANPRPOOROROORLONOOPRWOWN RPN
=}

12.8754
10.2845
10.3232
10.0746
10.0551
12.5041
11.6579
9.7338
10.0792
9.2989
12.4054
10.9296
10.2612

12.5572
10.496
9.6257

10.9025

10.1299

12.4396

10.1224

10.9064

10.8023

10.1464

WNNPFRPOBRRPFPODRWONPEPWONPFPONEFPORROCOORWODNE

i0s for smaller is better criteria.

Ps Cr Mg

1 -20.57 -21.98 -20.46 -20.78
-20.5 -20.57 -20.69 -20.5

-20.71 -20.14 -20.85 -20.74

-20.59 -20.5 -20.54 -20.54

-20.71 -19.88 -20.53 -20.51

or levels and values of genetic algorithm parameters for 2* factorial design.

Level
Parameter Symbol 1 1
Generation number G 50 1050
Population size P 20 100
Crossover rate Cr 0.1 0.9
M 0.05 0.25

Mutation rate
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Table 11. 2" factorial design and simulation results for average FV.

Experiment  Run Coded Value Response
Number  Order Gy P, Cp Mg Average FV
1 1 101 -1 -1 13.9733
2 2 1 -1 -1 -4 12.3377
3 3 (11 -1 A 9.9266
4 4 1 1 -1 -4 10.9129
5 5 -10-1 1 -1 13.4973
6 6 1 -1 1 -1 11.2922
7 7 101 1 -1 9.7846
8 8 1 1 1 -1 11.8925
9 9 101 -1 1 12.9618
10 10 1 -1 -1 1 9.7963
11 11 11 -1 1 9.4492
12 12 1 1 -1 1 9.6476
13 13 -10-1 1 1 11.7615
14 14 1 -1 1 1 13.8808
15 15 101 1 1 10.3125
16 25 1 1 1 1 10.2736

Table 12. Comparison of obtained results (station num problems.

A Moodie &
Kilbridge Pure V&S A&B
# Problem e West% ; Young  RPWT oF N hoa) RSM-GA
(Phase I)
P1 Bowman 4 4 4 4 4 4 4 4
P2 Bowman 6 9 9 9 8 8 8 8
P3  Gokcen and Erel (1998) 7 8 7 8 7 7 7 7
P4 Gokcen and Erel (1998) 6 7 7 7 7 7 7 7
P5  Mitchel 14 17 16 16 16 16 16 16
P6  Mitchel 13 16 15 17 15 15 15 15
P7  Vilarinho and Simaria (2002) 14 17 17 18 16 16 16 16
P8 Vilarinho and Simaria (2002) 14 15 15 15 15 15 14 14
P9  Heskiakof 19 21 21 21 21 21 20 20
P10 Heskiakof 18 21 21 21 20 20 20 20
P11 Sawyer 15 18 18 19 16 16 16 16
P12 Sawyer 17 21 21 20 19 19 19 19
P13 Lutz1l 16 19 19 19 19 19 19 19
P14 Lutz1l 17 21 20 20 19 19 19 19
P15 Gunther 20 25 25 24 24 24 23 24
P16 Gunther 21 26 26 25 25 24 24 24
P17 Kilbridge & Wester 23 27 27 28 25 25 25 25
P18 Kilbridge & Wester 24 31 29 29 28 28 27 27
P19 Tonge 41 50 48 48 45 44 44 44
P20 Tonge 39 48 47 48 45 44 44 45
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Table A.1 Alternative solution-1.

Task 1 3 7 2 4 6 5 8 9 14 11 10 13
Station 1-2 12 1-2 3 3 3 4-5 45 45 6 6 7 7
ta 41 46 113 27 41 0 20 7.8 0 51 39 3.5 2.5
tg 41 46 113 27 41 20 20 78 100 51 42 3.5 2.3
tc 41 46 113 27 41 20 20 78 100 51 39 3.3 2.5
taverage 41 46 113 27 41 1.3 20 7.8

Task 16 18 19 12 17 20 21 22
Station 7 8 9 10 10 11 12 12
ta 3.5 8.5 9.9 10 638 72 48 38
s 3.5 8.5 9.9 10 6.8 72 48 38
tc 34 96 9.9 10 638 72 48 39

taerae 35 87 99 10 68 72 48 38

Table A.2 Alternative solution-2.

Task 1 3 7 5 2 4 8 6
Station 1-2 12 1-2 3 3 3 4-5 45
ta 41 46 113 20 27 4.1 7.8

s 41 46 113 20 27 4.1 7.8

tc 41 46 113 20 27
taverage 41 46 113 20 27
Task 16 18 17 20 21
Station 7 8 9 10 «
ta 35 8.5 6.8 7.2

ts 35 8.5 7.2

tc 34 96
tAverage 3.5 8.7

Table A.3 Alternative solution-3.

2 4 5 6 8 10 11 13 9 14
3 3 3 4 4 56 56 56 7 7
27 41 2.0 0 78 35 39 2.5 0 5.1
27 41 20 20 78 35 42 23 100 51
27 41 20 20 78 33 39 25 100 51
27 41 2.0 1.3 78 35 41 2.4 6.7 5.1

21 22 18 19 20 15 23 24 25
Station 7 7 8 9 9 10 11 12 13 13 13 14

ta 1.0 35 6.8 48 38 8.5 9.9 72 35 29 35 7.8
ts 1.0 35 6.8 48 38 8.5 9.9 72 35 28 35 7.8
tc 10 34 68 48 39 9.6 9.9 72 35 26 35 7.8

taverage 1.0 35 6.8 4.8 3.8 8.7 9.9 7.2 3.5 2.8 3.5 7.8
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Table A.4 Alternative solution-4.

Task 1 3 7 2 4 5 9 8 6 12 14 10 11
Station 1-2 12 12 34 34 34 34 5 5 6 6 6 7
ta 41 46 113 27 41 2.0 0 7.8 0

ts 41 46 113 27 41 20 100 78 2.0

tc 41 46 113 27 41 20 100 78 2.0

taverage 41 46 113 27 41 20 6.7 7.8 1.3

Task 13 16 18 20 17 21 22 19 15

Station 7 7 8 9 10 11 11 12 13

ta 25 35 8.5 7.2 6.8 48 3.8 99 35

ts 23 35 8.5 7.2 6.8 48 3.8 99 35

tc 25 34 96 7.2 6.8 48 3.9 99 35

taverage 24 35 8.7 7.2 6.8 48 3.8 99 35

Table A.5 Alternative solution-5.

Task 1 3 7 2 4 5 8 6 10

Station 1-2  1-2 12 3 3 3 4 4 56 56 5-6 7 7
ta 41 46 113 27 441 20 78 3.9 2.5 0 35
s 41 46 113 27 441 7.8 4.2 23 100 35
tc 41 46 113 27 441 3.9 25 100 34
taverage 41 46 113 27 441 4.1 2.4 6.7 35
Task 14 17 18 19 20 23 24 25
Station 7 8 9 10 11 13 13 14

ta 5.1 6.8 8.5 9.9 29 35 7.8

ts 5.1 6.8 9.9 28 35 7.8

tc 5.1 8 39 1.0 35 26 35 7.8
taverage 5.1 3.8 1.0 35 28 35 7.8

. Table A.6 Alternative solution-6.

Task 1 3 7 2 5 4 9 8 6 10 14 11 13
Station 1-2 12 12 34 34 34 34 5 5 6 6 7 7
ta 11.3 27 20 41 0 7.8 0 35 5.1 3.9 2.5
tg 11.3 27 20 41 100 738 20 35 5.1 4.2 2.3
tc 11.3 27 20 41 100 738 20 33 5.1 3.9 2.5
taverage 11.3 27 20 41 6.7 7.8 1.3 35 5.1 4.1 2.4
Task 17 18 20 19 12 21 22 15 23 24 25
Station 7 8 9 10 11 12 12 12 13 13 13 14

ta 35 6.8 8.5 7.2 9.9 10 48 38 35 29 35 7.8

ts 35 6.8 8.5 7.2 9.9 10 48 38 35 28 35 7.8

tc 34 6.8 9.6 7.2 9.9 10 48 39 35 26 35 7.8
taverage 35 6.8 8.7 7.2 9.9 10 48 38 35 28 35 7.8
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Figure 2. Optimization results for Gy, Ps, Cr and Mp.
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