915 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Automatic synthesis of fuzzy systems: An evolutionary overview with a genetic programming perspective

    Get PDF
    Studies in Evolutionary Fuzzy Systems (EFSs) began in the 90s and have experienced a fast development since then, with applications to areas such as pattern recognition, curve‐fitting and regression, forecasting and control. An EFS results from the combination of a Fuzzy Inference System (FIS) with an Evolutionary Algorithm (EA). This relationship can be established for multiple purposes: fine‐tuning of FIS's parameters, selection of fuzzy rules, learning a rule base or membership functions from scratch, and so forth. Each facet of this relationship creates a strand in the literature, as membership function fine‐tuning, fuzzy rule‐based learning, and so forth and the purpose here is to outline some of what has been done in each aspect. Special focus is given to Genetic Programming‐based EFSs by providing a taxonomy of the main architectures available, as well as by pointing out the gaps that still prevail in the literature. The concluding remarks address some further topics of current research and trends, such as interpretability analysis, multiobjective optimization, and synthesis of a FIS through Evolving methods

    Multiobjective optimization of classifiers by means of 3-D convex Hull based evolutionary algorithms

    Get PDF
    The receiver operating characteristic (ROC) and detection error tradeoff (DET) curves are frequently used in the machine learning community to analyze the performance of binary classifiers. Recently, the convex-hull-based multiobjective genetic programming algorithm was proposed and successfully applied to maximize the convex hull area for binary classification problems by minimizing false positive rate and maximizing true positive rate at the same time using indicator-based evolutionary algorithms. The area under the ROC curve was used for the performance assessment and to guide the search. Here we extend this research and propose two major advancements: Firstly we formulate the algorithm in detection error tradeoff space, minimizing false positives and false negatives, with the advantage that misclassification cost tradeoff can be assessed directly. Secondly, we add complexity as an objective function, which gives rise to a 3D objective space (as opposed to a 2D previous ROC space). A domain specific performance indicator for 3D Pareto front approximations, the volume above DET surface, is introduced, and used to guide the indicator -based evolutionary algorithm to find optimal approximation sets. We assess the performance of the new algorithm on designed theoretical problems with different geometries of Pareto fronts and DET surfaces, and two application-oriented benchmarks: (1) Designing spam filters with low numbers of false rejects, false accepts, and low computational cost using rule ensembles, and (2) finding sparse neural networks for binary classification of test data from the UCI machine learning benchmark. The results show a high performance of the new algorithm as compared to conventional methods for multicriteria optimization.info:eu-repo/semantics/submittedVersio

    Multiobjective Evolutionary Optimization for Prototype-Based Fuzzy Classifiers

    Get PDF
    Evolving intelligent systems (EISs), particularly, the zero-order ones have demonstrated strong performance on many real-world problems concerning data stream classification, while offering high model transparency and interpretability thanks to their prototype-based nature. Zero-order EISs typically learn prototypes by clustering streaming data online in a “one pass” manner for greater computation efficiency. However, such identified prototypes often lack optimality, resulting in less precise classification boundaries, thereby hindering the potential classification performance of the systems. To address this issue, a commonly adopted strategy is to minimise the training error of the models on historical training data or alternatively, to iteratively minimise the intra-cluster variance of the clusters obtained via online data partitioning. This recognises the fact that the ultimate classification performance of zero-order EISs is driven by the positions of prototypes in the data space. Yet, simply minimising the training error may potentially lead to overfitting, whilst minimising the intra-cluster variance does not necessarily ensure the optimised prototype-based models to attain improved classification outcomes. To achieve better classification performance whilst avoiding overfitting for zero-order EISs, this paper presents a novel multi-objective optimisation approach, enabling EISs to obtain optimal prototypes via involving these two disparate but complementary strategies simultaneously. Five decision-making schemes are introduced for selecting a suitable solution to deploy from the final non-dominated set of the resulting optimised models. Systematic experimental studies are carried out to demonstrate the effectiveness of the proposed optimisation approach in improving the classification performance of zero-order EISs

    Multi-Objective Evolutionary Optimisation for Prototype-Based Fuzzy Classifiers

    Get PDF
    Evolving intelligent systems (EISs), particularly, the zero-order ones have demonstrated strong performance on many real-world problems concerning data stream classification, while offering high model transparency and interpretability thanks to their prototype-based nature. Zero-order EISs typically learn prototypes by clustering streaming data online in a “one pass” manner for greater computation efficiency. However, such identified prototypes often lack optimality, resulting in less precise classification boundaries, thereby hindering the potential classification performance of the systems. To address this issue, a commonly adopted strategy is to minimise the training error of the models on historical training data or alternatively, to iteratively minimise the intra-cluster variance of the clusters obtained via online data partitioning. This recognises the fact that the ultimate classification performance of zero-order EISs is driven by the positions of prototypes in the data space. Yet, simply minimising the training error may potentially lead to overfitting, whilst minimising the intra-cluster variance does not necessarily ensure the optimised prototype-based models to attain improved classification outcomes. To achieve better classification performance whilst avoiding overfitting for zero-order EISs, this paper presents a novel multi-objective optimisation approach, enabling EISs to obtain optimal prototypes via involving these two disparate but complementary strategies simultaneously. Five decision-making schemes are introduced for selecting a suitable solution to deploy from the final non-dominated set of the resulting optimised models. Systematic experimental studies are carried out to demonstrate the effectiveness of the proposed optimisation approach in improving the classification performance of zero-order EISs

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    Temporal Information in Data Science: An Integrated Framework and its Applications

    Get PDF
    Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems.Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems
    corecore