55 research outputs found

    Degradation Modeling and Remaining Useful Life Estimation: From Statistical Signal Processing to Deep Learning Models

    Get PDF
    Aging critical infrastructures and valuable machineries together with recent catastrophic incidents such as the collapse of Morandi bridge, or the Gulf of Mexico oil spill disaster, call for an urgent quest to design advanced and innovative prognostic solutions, and efficiently incorporate multi-sensor streaming data sources for industrial development. Prognostic health management (PHM) is among the most critical disciplines that employs the advancement of the great interdependency between signal processing and machine learning techniques to form a key enabling technology to cope with maintenance development tasks of complex industrial and safety-critical systems. Recent advancements in predictive analytics have empowered the PHM paradigm to move from the traditional condition-based monitoring solutions and preventive maintenance programs to predictive maintenance to provide an early warning of failure, in several domains ranging from manufacturing and industrial systems to transportation and aerospace. The focus of the PHM is centered on two core dimensions; the first is taking into account the behavior and the evolution over time of a fault once it occurs, while the second one aims at estimating/predicting the remaining useful life (RUL) during which a device can perform its intended function. The first dimension is the degradation that is usually determined by a degradation model derived from measurements of critical parameters of relevance to the system. Developing an accurate model for the degradation process is a primary objective in prognosis and health management. Extensive research has been conducted to develop new theories and methodologies for degradation modeling and to accurately capture the degradation dynamics of a system. However, a unified degradation framework has yet not been developed due to: (i) structural uncertainties in the state dynamics of the system and (ii) the complex nature of the degradation process that is often non-linear and difficult to model statistically. Thus even for a single system, there is no consensus on the best degradation model. In this regard, this thesis tries to bridge this gap by proposing a general model that able to model the true degradation path without having any prior knowledge of the true degradation model of the system. Modeling and analysis of degradation behavior lead us to RUL estimation, which is the second dimension of the PHM and the second part of the thesis. The RUL is the main pillar of preventive maintenance, which is the time a machine is expected to work before requiring repair or replacement. Effective and accurate RUL estimation can avoid catastrophic failures, maximize operational availability, and consequently reduce maintenance costs. The RUL estimation is, therefore, of paramount importance and has gained significant attention for its importance to improve systems health management in complex fields including automotive, nuclear, chemical, and aerospace industries to name but a few. A vast number of researches related to different approaches to the concept of remaining useful life have been proposed, and they can be divided into three broad categories: (i) Physics-based; (ii) Data-driven, and; (iii) Hybrid approaches (multiple-model). Each category has its own limitations and issues, such as, hardly adapt to different prognostic applications, in the first one, and accuracy degradation issues, in the second one, because of the deviation of the learned models from the real behavior of the system. In addition to hardly sustain good generalization. Our thesis belongs to the third category, as it is the most promising category, in particular, the new hybrid models, on basis of two different architectures of deep neural networks, which have great potentials to tackle complex prognostic issues associated with systems with complex and unknown degradation processes

    Artificial Intelligence Supported EV Electric Powertrain for Safety Improvement

    Get PDF
    As an environmentally friendly transport option, electric vehicles (EVs) are endowed with the characteristics of low fossil energy consumption and low pollutant emissions. In today's growing market share of EVs, the safety and reliability of the powertrain system will be directly related to the safety of human life. Reliability problems of EV powertrains may occur in any power electronic (PE) component and mechanical part, both sudden and cumulative. These faults in different locations and degrees will continuously threaten the life of drivers and pedestrians, bringing irreparable consequences. Therefore, monitoring and predicting the real-time health status of EV powertrain is a high-priority, arduous and challenging task. The purposes of this study are to develop AI-supported effective safety improvement techniques for EV powertrains. In the first place, a literature review is carried out to illustrate the up-to-date AI applications for solving condition monitoring and fault detection issues of EV powertrains, where recent case studies between conventional methods and AI-based methods in EV applications are compared and analysed. On this ground this study, then, focuses on the theories and techniques concerning this topic so as to tackle different challenges encountered in the actual applications. In detail, first, as for diagnosing the bearing system in the earlier fault period, a novel inferable deep distilled attention network is designed to detect multiple bearing faults. Second, a deep learning and simulation driven approach that combines the domain-adversarial neural network and the lumped-parameter thermal network (LPTN) is proposed for achieve IPMSM permanent magnet temperature estimation work. Finally, to ensure the use safety of the IGBT module, deep learning -based IGBT modules’ double pulse test (DPT) efficiency enhancement is proposed and achieved via multimodal fusion networks and graph convolution networks

    Anomaly detection with the Switching Kalman Filter for structural health monitoring

    Get PDF
    Detecting changes in structural behaviour, i.e. anomalies over time is an important aspect in structural safety analysis. The amount of data collected from civil structures keeps expanding over years while there is a lack of data-interpretation methodology capable of reliably detecting anomalies without being adversely affected by false alarms. This paper proposes an anomaly detection method that combines the existing Bayesian Dynamic Linear Models framework with the Switching Kalman Filter theory. The potential of the new method is illustrated on the displacement data recorded on a dam in Canada. The results show that the approach succeeded in capturing the anomalies caused by refection work without triggering any false alarms. It also provided the specific information about the dam's health and conditions. This anomaly detection method offers an effective data-analysis tool for Structural Health Monitoring

    Cooperative multi-sensor tracking of vulnerable road users in the presence of missing detections

    Get PDF
    This paper presents a vulnerable road user (VRU) tracking algorithm capable of handling noisy and missing detections from heterogeneous sensors. We propose a cooperative fusion algorithm for matching and reinforcing of radar and camera detections using their proximity and positional uncertainty. The belief in the existence and position of objects is then maximized by temporal integration of fused detections by a multi-object tracker. By switching between observation models, the tracker adapts to the detection noise characteristics making it robust to individual sensor failures. The main novelty of this paper is an improved imputation sampling function for updating the state when detections are missing. The proposed function uses a likelihood without association that is conditioned on the sensor information instead of the sensor model. The benefits of the proposed solution are two-fold: firstly, particle updates become computationally tractable and secondly, the problem of imputing samples from a state which is predicted without an associated detection is bypassed. Experimental evaluation shows a significant improvement in both detection and tracking performance over multiple control algorithms. In low light situations, the cooperative fusion outperforms intermediate fusion by as much as 30%, while increases in tracking performance are most significant in complex traffic scenes

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Lithium-ion cell modeling, state estimation, and fault detection considering state of health for battery management systems

    Get PDF
    Lithium-ion batteries (LIBs) with high energy density and longer cycle life enable a comparable driving range per charge for electric vehicles (EVs) with their gas counterparts. However, the LIBs are very sensitive to variations in operating conditions, such as overcharge/discharge, high/low temperatures, and mechanical abuse. A battery management system (BMS) is employed to orchestrate safe and reliable operation by monitoring the voltage, current, temperature, state of charge (SOC), and state of health (SOH) and optimizing the charging and discharging cycles. The SOC and SOH, which determine the performance of the LIB, are governed by several stress-inducing factors, such as operating temperature, C-rate, aging, and internal faults. So, it is important to estimate the SOC and SOH in real time, considering the factors affecting the degradation of the battery. On the other hand, an internal fault in LIB leads to thermal runaway. Early detection and diagnosis of these faults are necessary to avoid catastrophic failures of LIBs.In this dissertation, we developed health-inclusive dynamic models for simultaneous state and parameter estimations and fault detection (FD) schemes. First, we proposed a nonlinear parameter-varying equivalent circuit model (ECM) integrated with the parameter dynamics for simultaneous state and parameter estimation using nonlinear observer-based approaches. Second, the proposed model is extended to integrate the SOH and thermal behavior with ECM. The SOH-coupled nonlinear electric-thermal-aging model comprehends the interplay between the SOC and SOH and couples the ECM dynamics with capacity fade. The proposed model is further extended by integrating the ohmic resistance dynamics for simultaneous SOC, SOH, and parameter estimation using filtering algorithms. Finally, two FD schemes, based on the SOC-based and SOH-coupled models, are proposed to detect internal (thermal and side-reaction) faults by tracking the temperature and parameter residuals of the battery. Adaptive thresholds are designed to account for modeling uncertainties and the effect of degradation in the residuals and avoid false positives. In addition, a novel neural network-based observer is proposed to learn the fault dynamics and estimate the SOC, SOH, and core temperature under internal faults. Experimental and numerical validation results are presented to corroborate the designs

    Deep Learning for Decision Making and Autonomous Complex Systems

    Get PDF
    Deep learning consists of various machine learning algorithms that aim to learn multiple levels of abstraction from data in a hierarchical manner. It is a tool to construct models using the data that mimics a real world process without an exceedingly tedious modelling of the actual process. We show that deep learning is a viable solution to decision making in mechanical engineering problems and complex physical systems. In this work, we demonstrated the application of this data-driven method in the design of microfluidic devices to serve as a map between the user-defined cross-sectional shape of the flow and the corresponding arrangement of micropillars in the flow channel that contributed to the flow deformation. We also present how deep learning can be used in the early detection of combustion instability for prognostics and health monitoring of a combustion engine, such that appropriate measures can be taken to prevent detrimental effects as a result of unstable combustion. One of the applications in complex systems concerns robotic path planning via the systematic learning of policies and associated rewards. In this context, a deep architecture is implemented to infer the expected value of information gained by performing an action based on the states of the environment. We also applied deep learning-based methods to enhance natural low-light images in the context of a surveillance framework and autonomous robots. Further, we looked at how machine learning methods can be used to perform root-cause analysis in cyber-physical systems subjected to a wide variety of operation anomalies. In all studies, the proposed frameworks have been shown to demonstrate promising feasibility and provided credible results for large-scale implementation in the industry

    The blessings of explainable AI in operations & maintenance of wind turbines

    Get PDF
    Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM) has been utilised in the past to monitor operational inconsistencies in turbines by applying signal processing techniques to vibration data. The last decade has witnessed growing interest in leveraging Supervisory Control & Acquisition (SCADA) data from turbine sensors towards CBM. Machine Learning (ML) techniques have been utilised to predict incipient faults in turbines and forecast vital operational parameters with high accuracy by leveraging SCADA data and alarm logs. More recently, Deep Learning (DL) methods have outperformed conventional ML techniques, particularly for anomaly prediction. Despite demonstrating immense promise in transitioning to Artificial Intelligence (AI), such models are generally black-boxes that cannot provide rationales behind their predictions, hampering the ability of turbine operators to rely on automated decision making. We aim to help combat this challenge by providing a novel perspective on Explainable AI (XAI) for trustworthy decision support.This thesis revolves around three key strands of XAI – DL, Natural Language Generation (NLG) and Knowledge Graphs (KGs), which are investigated by utilising data from an operational turbine. We leverage DL and NLG to predict incipient faults and alarm events in the turbine in natural language as well as generate human-intelligible O&M strategies to assist engineers in fixing/averting the faults. We also propose specialised DL models which can predict causal relationships in SCADA features as well as quantify the importance of vital parameters leading to failures. The thesis finally culminates with an interactive Question- Answering (QA) system for automated reasoning that leverages multimodal domain-specific information from a KG, facilitating engineers to retrieve O&M strategies with natural language questions. By helping make turbines more reliable, we envisage wider adoption of wind energy sources towards tackling climate change
    • …
    corecore