324 research outputs found

    Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer's Disease using structural MR and FDG-PET images.

    Get PDF
    Alzheimer's Disease (AD) is a progressive neurodegenerative disease where biomarkers for disease based on pathophysiology may be able to provide objective measures for disease diagnosis and staging. Neuroimaging scans acquired from MRI and metabolism images obtained by FDG-PET provide in-vivo measurements of structure and function (glucose metabolism) in a living brain. It is hypothesized that combining multiple different image modalities providing complementary information could help improve early diagnosis of AD. In this paper, we propose a novel deep-learning-based framework to discriminate individuals with AD utilizing a multimodal and multiscale deep neural network. Our method delivers 82.4% accuracy in identifying the individuals with mild cognitive impairment (MCI) who will convert to AD at 3 years prior to conversion (86.4% combined accuracy for conversion within 1-3 years), a 94.23% sensitivity in classifying individuals with clinical diagnosis of probable AD, and a 86.3% specificity in classifying non-demented controls improving upon results in published literature

    Multimodal Identification of Alzheimer's Disease: A Review

    Full text link
    Alzheimer's disease is a progressive neurological disorder characterized by cognitive impairment and memory loss. With the increasing aging population, the incidence of AD is continuously rising, making early diagnosis and intervention an urgent need. In recent years, a considerable number of teams have applied computer-aided diagnostic techniques to early classification research of AD. Most studies have utilized imaging modalities such as magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalogram (EEG). However, there have also been studies that attempted to use other modalities as input features for the models, such as sound, posture, biomarkers, cognitive assessment scores, and their fusion. Experimental results have shown that the combination of multiple modalities often leads to better performance compared to a single modality. Therefore, this paper will focus on different modalities and their fusion, thoroughly elucidate the mechanisms of various modalities, explore which methods should be combined to better harness their utility, analyze and summarize the literature in the field of early classification of AD in recent years, in order to explore more possibilities of modality combinations

    Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data

    Get PDF
    Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without pre-processing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as-omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms

    Enhancing Multimodal Patterns in Neuroimaging by Siamese Neural Networks with Self-Attention Mechanism.

    Get PDF
    The combination of different sources of information is currently one of the most relevant aspects in the diagnostic process of several diseases. In the field of neurological disorders, different imaging modalities providing structural and functional information are frequently available. Those modalities are usually analyzed separately, although a joint of the features extracted from both sources can improve the classification performance of Computer-aided diagnosis (CAD) tools. Previous studies have computed independent models from each individual modality and combined then in a subsequent stage, which is not an optimum solution. In this work, we propose a method based on the principles of siamese neural networks to fuse information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). This framework quantifies the similarities between both modalities and relates them with the diagnostic label during the training process. The resulting latent space at the output of this network is then entered into an attention module in order to evaluate the relevance of each brain region and modality at different stages of the development of Alzheimer’s disease. The excellent results obtained and the high flexibility of the method proposed allows fusing more than two modalities, leading to a scalable methodology that can be used in a wide range of contexts.This work was supported by projects PGC2018- 098813-B-C32 and RTI2018-098913-B100 (Spanish “Ministerio de Ciencia, Innovación y Universidades”), UMA20-FEDERJA-086, A-TIC-080- UGR18 and P20 00525 (Consejería de economía y conocimiento, Junta de Andalucía) and by European Regional Development Funds (ERDF); and by Spanish “Ministerio de Universidades” through Margarita-Salas grant to J.E. Arco

    Transfer learning for Alzheimer’s disease through neuroimaging biomarkers: A systematic review

    Get PDF
    Producción CientíficaAlzheimer’s disease (AD) is a remarkable challenge for healthcare in the 21st century. Since 2017, deep learning models with transfer learning approaches have been gaining recognition in AD detection, and progression prediction by using neuroimaging biomarkers. This paper presents a systematic review of the current state of early AD detection by using deep learning models with transfer learning and neuroimaging biomarkers. Five databases were used and the results before screening report 215 studies published between 2010 and 2020. After screening, 13 studies met the inclusion criteria. We noted that the maximum accuracy achieved to date for AD classification is 98.20% by using the combination of 3D convolutional networks and local transfer learning, and that for the prognostic prediction of AD is 87.78% by using pre-trained 3D convolutional network-based architectures. The results show that transfer learning helps researchers in developing a more accurate system for the early diagnosis of AD. However, there is a need to consider some points in future research, such as improving the accuracy of the prognostic prediction of AD, exploring additional biomarkers such as tau-PET and amyloid-PET to understand highly discriminative feature representation to separate similar brain patterns, managing the size of the datasets due to the limited availability.Ministerio de Industria, Energía y Turismo (AAL-20125036
    corecore