22 research outputs found

    Resource Allocation in Computer Vision

    Get PDF
    We broadly examine resource allocation in several computer vision problems. We consider human resource or computational resource constraints. Human resources, such as human operators monitoring a camera network, provide reliable information, but are typically limited by the huge amount of data to be processed. Computational resources refer to the resources used by machines, such as running time, to execute the programs. It is important to develop algorithms to make effective use of these resources in computer vision applications. We approach human resource constraints with a frame retrieval problem in a camera network. This work addresses the problem of using active inference to direct human attention in searching a camera network for people that match a query image. We find that by representing the camera network using a graphical model, we can more accurately determine which video frames match the query, and improve our ability to direct human attention. We experiment with different methods to determine from which frames to sample expert information from humans, and discover that a method that learns to predict which frame is misclassified gives the best performance. We approach the problem of allocating computational resource in a video processing task. We consider a video processing application in which we combine the outputs from two algorithms so that the budget-limited computationally more expensive algorithm is run in the most useful video frames to maximize processing performance. We model the video frames as a chain graphical model and extend a dynamic programming algorithm to determine on which frames to run the more expensive algorithm. We perform experiments on moving object detection and face detection to demonstrate the effectiveness of our approaches. Finally, we consider an idea for saving computational resources and maintaining program performance. We work on a problem of learning model complexity in latent variable models. Specifically, we learn the latent variable state space complexity in latent support vector machines using group norm regularization. We apply our method to handwritten digit recognition and object detection with deformable part models. Our approach reduces latent variable state size and performs faster inference with similar or better performance

    Image Understanding by Socializing the Semantic Gap

    Get PDF
    Several technological developments like the Internet, mobile devices and Social Networks have spurred the sharing of images in unprecedented volumes, making tagging and commenting a common habit. Despite the recent progress in image analysis, the problem of Semantic Gap still hinders machines in fully understand the rich semantic of a shared photo. In this book, we tackle this problem by exploiting social network contributions. A comprehensive treatise of three linked problems on image annotation is presented, with a novel experimental protocol used to test eleven state-of-the-art methods. Three novel approaches to annotate, under stand the sentiment and predict the popularity of an image are presented. We conclude with the many challenges and opportunities ahead for the multimedia community

    Big Data Analytics and Information Science for Business and Biomedical Applications

    Get PDF
    The analysis of Big Data in biomedical as well as business and financial research has drawn much attention from researchers worldwide. This book provides a platform for the deep discussion of state-of-the-art statistical methods developed for the analysis of Big Data in these areas. Both applied and theoretical contributions are showcased

    Artificial Intelligence Tools for Facial Expression Analysis.

    Get PDF
    Inner emotions show visibly upon the human face and are understood as a basic guide to an individual’s inner world. It is, therefore, possible to determine a person’s attitudes and the effects of others’ behaviour on their deeper feelings through examining facial expressions. In real world applications, machines that interact with people need strong facial expression recognition. This recognition is seen to hold advantages for varied applications in affective computing, advanced human-computer interaction, security, stress and depression analysis, robotic systems, and machine learning. This thesis starts by proposing a benchmark of dynamic versus static methods for facial Action Unit (AU) detection. AU activation is a set of local individual facial muscle parts that occur in unison constituting a natural facial expression event. Detecting AUs automatically can provide explicit benefits since it considers both static and dynamic facial features. For this research, AU occurrence activation detection was conducted by extracting features (static and dynamic) of both nominal hand-crafted and deep learning representation from each static image of a video. This confirmed the superior ability of a pretrained model that leaps in performance. Next, temporal modelling was investigated to detect the underlying temporal variation phases using supervised and unsupervised methods from dynamic sequences. During these processes, the importance of stacking dynamic on top of static was discovered in encoding deep features for learning temporal information when combining the spatial and temporal schemes simultaneously. Also, this study found that fusing both temporal and temporal features will give more long term temporal pattern information. Moreover, we hypothesised that using an unsupervised method would enable the leaching of invariant information from dynamic textures. Recently, fresh cutting-edge developments have been created by approaches based on Generative Adversarial Networks (GANs). In the second section of this thesis, we propose a model based on the adoption of an unsupervised DCGAN for the facial features’ extraction and classification to achieve the following: the creation of facial expression images under different arbitrary poses (frontal, multi-view, and in the wild), and the recognition of emotion categories and AUs, in an attempt to resolve the problem of recognising the static seven classes of emotion in the wild. Thorough experimentation with the proposed cross-database performance demonstrates that this approach can improve the generalization results. Additionally, we showed that the features learnt by the DCGAN process are poorly suited to encoding facial expressions when observed under multiple views, or when trained from a limited number of positive examples. Finally, this research focuses on disentangling identity from expression for facial expression recognition. A novel technique was implemented for emotion recognition from a single monocular image. A large-scale dataset (Face vid) was created from facial image videos which were rich in variations and distribution of facial dynamics, appearance, identities, expressions, and 3D poses. This dataset was used to train a DCNN (ResNet) to regress the expression parameters from a 3D Morphable Model jointly with a back-end classifier

    Sparse machine learning methods with applications in multivariate signal processing

    Get PDF
    This thesis details theoretical and empirical work that draws from two main subject areas: Machine Learning (ML) and Digital Signal Processing (DSP). A unified general framework is given for the application of sparse machine learning methods to multivariate signal processing. In particular, methods that enforce sparsity will be employed for reasons of computational efficiency, regularisation, and compressibility. The methods presented can be seen as modular building blocks that can be applied to a variety of applications. Application specific prior knowledge can be used in various ways, resulting in a flexible and powerful set of tools. The motivation for the methods is to be able to learn and generalise from a set of multivariate signals. In addition to testing on benchmark datasets, a series of empirical evaluations on real world datasets were carried out. These included: the classification of musical genre from polyphonic audio files; a study of how the sampling rate in a digital radar can be reduced through the use of Compressed Sensing (CS); analysis of human perception of different modulations of musical key from Electroencephalography (EEG) recordings; classification of genre of musical pieces to which a listener is attending from Magnetoencephalography (MEG) brain recordings. These applications demonstrate the efficacy of the framework and highlight interesting directions of future research

    Theory and Algorithms for Hypothesis Transfer Learning

    Get PDF
    The design and analysis of machine learning algorithms typically considers the problem of learning on a single task, and the nature of learning in such scenario is well explored. On the other hand, very often tasks faced by machine learning systems arrive sequentially, and therefore it is reasonable to ask whether a better approach can be taken than retraining such systems from scratch given newly available data. Indeed, by drawing analogy from human learning, a novel skill could be acquired more easily whenever the learner shares a relevant past experience. In response to this observation, the machine learning community has drawn its attention towards a form of learning known as transfer learning - learning a novel task by leveraging upon auxiliary information extracted from previous tasks. Tangible progress has been made in both theory and practice of transfer learning; however, many questions are still to be addressed. In this thesis we will focus on an efficient type of transfer learning, known as the Hypothesis Transfer Learning (HTL), where auxiliary information is retained in a form of previously induced hypotheses. This is in contrast to the large body of work where one transfers from the data associated with previously encountered tasks. In particular, we theoretically investigate conditions when HTL guarantees improved generalization on a novel task subject to the relevant auxiliary (source) hypotheses. We investigate HTL theoretically by considering three scenarios: HTL through regularized least squares with biased regularization, through convex empirical risk minimization, and through stochastic optimization, which also touches the theory of non-convex transfer learning problems. In addition, we demonstrate the benefits of HTL empirically, by proposing two algorithms tailored for real-life situations with application to visual learning problems - learning a new class in a multi-class classification setting by transferring from known classes, and an efficient greedy HTL algorithm for learning with large number of source hypotheses. From theoretical point of view this thesis consistently identifies the key quantitative characteristics of relatedness between novel and previous tasks, and explicitates them in generalization bounds. These findings corroborate many previous works in the transfer learning literature and provide a theoretical basis for design and analysis of new HTL algorithms
    corecore