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Abstract

The design and analysis of machine learning algorithms typically considers the problem of learning

on a single task, and the nature of learning in such scenario is well explored. On the other hand, very

often tasks faced by machine learning systems arrive sequentially, and therefore it is reasonable to

ask whether a better approach can be taken than retraining such systems from scratch given newly

available data. Indeed, by drawing analogy from human learning, a novel skill could be acquired more

easily whenever the learner shares a relevant past experience. In response to this observation, the

machine learning community has drawn its attention towards a form of learning known as transfer

learning – learning a novel task by leveraging upon auxiliary information extracted from previous tasks.

Tangible progress has been made in both theory and practice of transfer learning; however, many

questions are still to be addressed.

In this thesis we will focus on an efficient type of transfer learning, known as the Hypothesis Transfer

Learning (HTL), where auxiliary information is retained in a form of previously induced hypotheses.

This is in contrast to the large body of work where one transfers from the data associated with previ-

ously encountered tasks. In particular, we theoretically investigate conditions when HTL guarantees

improved generalization on a novel task subject to the relevant auxiliary (source) hypotheses. We

investigate HTL theoretically by considering three scenarios – HTL through regularized least squares

with biased regularization, through convex empirical risk minimization, and through stochastic opti-

mization, which also touches the theory of non-convex transfer learning problems. In addition, we

demonstrate the benefits of HTL empirically, by proposing two algorithms tailored for real-life situa-

tions with application to visual learning problems – learning a new class in a multi-class classification

setting by transferring from known classes, and an efficient greedy HTL algorithm for learning with

large number of source hypotheses.

From theoretical point of view this thesis consistently identifies the key quantitative characteristics of

relatedness between novel and previous tasks, and explicitates them in generalization bounds. These

findings corroborate many previous works in the transfer learning literature and provide a theoretical

basis for design and analysis of new HTL algorithms.

Key words: transfer learning, domain adaptation, statistical learning theory, stochastic optimization,

visual recognition
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Résumé

La conception et l’analyse des algorithmes d’apprentissage machine considèrent généralement le

problème de l’apprentissage sur une seule tâche et la nature de l’apprentissage dans un tel scénario est

bien explorée. D’autre part, très souvent, les tâches auxquelles sont confrontées par les systèmes d’ap-

prentissage par machine arrivent séquentiellement et, par conséquent, il est raisonnable de demander

si une meilleure (approche) methode peut être (prise) effectue que de recycler ces systèmes à partir de

zéro, a grace des nouvelles données disponibles. En effet, en tirant l’analogie de l’apprentissage hu-

main, une nouvelle habileté pourrait être acquise plus facilement chaque fois que l’apprenant partage

une expérience passée pertinente. En réponse à cette observation, la communauté de l’apprentissage

par machine a attiré son attention vers une forme d’apprentissage connue sous le nom d’apprentissage

par transfert, en apprenant une nouvelle tâche en tirant parti des informations auxiliaires extraites des

tâches précédentes. Des progrès tangibles ont été réalisés à la fois dans la théorie et dans la pratique

de l’apprentissage par transfert ; Cependant, de nombreuses questions doivent encore être traitées.

Dans cette thèse, nous nous concentrerons sur un type efficace d’apprentissage par transfert, connu

sous le nom de Hypothesis Transfer Learning (HTL), où l’information auxiliaire est retenue sous

forme d’hypothèses précédemment induites. Cela contraste avec le grand nombre de travaux où l’on

transfère des données associées aux tâches précédemment rencontrées. En particulier, nous étudions

théoriquement les conditions lorsque HTL garantit une généralisation améliorée sur une nouvelle

tâche soumise aux hypothèses auxiliaires (sources) pertinentes. Nous étudions HTL théoriquement

en considérant trois scénarios - HTL à travers des moindres carrés réguliers avec une régularisation

biaisée, grâce à une réduction convexe du risque empirique et à une optimisation stochastique, qui

touche également la théorie des problèmes d’apprentissage sans transfert convexe. En outre, nous

proposons deux algorithmes adaptés aux situations de la vie réelle avec une application aux problèmes

d’apprentissage visuel : apprendre une nouvelle classe dans un classement multi-classe en transférant

des classes connues et un algorithme HTL gourmand efficace Pour apprendre avec un grand nombre

d’hypothèses sources.

Du point de vue théorique, cette thèse identifie systématiquement les principales caractéristiques

quantitatives de la relation entre la tâche nouvelle et la précédente, et les explicite dans les limites de

généralisation. Ces résultats corroborent de nombreux travaux antérieurs dans la littérature d’appren-

tissage par transfert et fournissent une base théorique pour la conception et l’analyse de nouveaux

algorithmes HTL.

Mots clefs : transfert d’apprentissage, adaptation de domaine, théorie de l’apprentissage statistique,

optimisation stochastique, reconnaissance visuelle
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1 Introduction

The field of machine learning has undergone remarkable advancements in recent years, getting better

at addressing rich and highly structured problems, in domains such as computer vision [72, 60], speech

recognition [119], machine translation [143], and reinforcement learning [98]. From the algorithmic

point of view this is largely a consequence of our increasing capacity to train effective models of high

complexity, such as in deep learning. Yet, these qualitative gains usually come at the high price of a

tremendous amount of annotated data required to obtain a model of high effectiveness.

This raises a question attractive from both theoretical and practical point of view: how to reduce the

sample complexity of an algorithm by exploiting some form of a non-trivial prior knowledge? In the

machine learning literature this direction is collectively known as transfer learning. Of course one could

argue that it is always possible to simply add more data while increasing the capacity of the model,

so why should we bother? There are few counter-arguments to this criticism. First, some problems

might come with a small amount of annotated data, thus impeding the use of data-hungry learning,

such as deep learning. Indeed, in many applied areas, such as in visual detection, transfer learning is

already used in the form of fine-tuning [51] and extraction of feature representations from intermediate

layers of neural networks [64]. Second, transfer learning can facilitate training of models with even

higher accuracy than those without, at the matching or lower computational cost. Obviously, in such

a scenario one can only expect improvements from additional training data. An example is class-

incremental transfer learning, where new classes are incorporated into the recognition system, yet

every new class could be learned with fewer examples due to some shared similarities with previously

observed ones. Finally, it is also conceivable that sample complexity of some learning problems is so

high, that practically (w.r.t. available computational resources) we can achieve an acceptable degree

of accuracy only through transfer learning. An example of such problem appears in reinforcement

learning, where exploration of the vast state-action spaces is intractable, yet due to prior knowledge

a successful agent can still be trained. For example, one of the few crucial components in a famous

AlphaGo program [126] was based on a neural network pre-trained on a large dataset of human-played

games, a form of transfer learning.

In this thesis we focus on the Hypothesis Transfer Learning (HTL), a type of efficient transfer learning

where information about previously encountered tasks is retained in the form of pre-trained models, or

source hypotheses [76, 77, 80]. This is in contrast to many previous approaches in transfer learning that

assume access to the data from another tasks. The critical advantage of HTL is in the computational

1



Chapter 1. Introduction

scalability, which from the transfer learning point of view is constrained only by the amount of source

hypotheses and by their computational complexity.

1.1 Contributions and Organization

A large part of this thesis concerns the development of an intuitive and practical explanation for

established transfer learning algorithms. The first part of this thesis lays out the theoretical foundations

of Hypothesis Transfer Learning (HTL) in two learning settings – through Empirical Risk Minimization

(ERM) and through stochastic optimization. In Chapter 3 we consider a generalization of a basic

yet powerful approach to HTL known as the biased regularization, related to the Bayesian transfer

learning. In particular, we analyze the Regularized Least Squares (RLS) as a hypothesis transfer

learning algorithm, and show that its generalization ability critically depends on the quality of the

source hypothesis, that is a form of prior knowledge. In this chapter we identify the key quantitative

characteristic of relatedness between novel and previous tasks – the expected loss of the source

hypothesis on the novel task, and develop generalization bounds explicitating this quantity. This

supports theoretically many previous works in the transfer learning literature. In Chapter 4 we further

generalize arguments of Chapter 3 and show that the same message holds for ERM approach with

respect to any strongly-convex and smooth loss function, with high probability. This chapter also goes

beyond generalization analysis and shows that the quality of the source knowledge can accelerate the

convergence of the solution to the optimal one within the given set of predictors. Next, in Chapter 5

we consider a different approach to HTL, namely by learning through stochastic optimization. We

prove novel data-dependent generalization bounds for Stochastic Gradient Descent (SGD), a popular

optimization algorithm used to train deep neural networks and in large-scale learning in general.

These bounds allow us to study the generalization ability of HTL through SGD on both convex and

non-convex smooth problems. Importantly, this analysis extends the arguments and messages of

Chapters 3 and 4 to non-convex problems, such as deep learning. On non-convex problems, in addition

to previously established measures of source quality, this analysis identifies the expected curvature at

the initialization point as another characteristic that governs success of the transfer learning.

On a more practical side, backed up by theoretical results, the second part of the thesis presents HTL

algorithms for binary classification with applications in computer vision. First, in Chapter 6 we present

algorithms that address transfer learning with a large number of source hypotheses where the goal is to

pick a subset that improves performance on the novel task. Concretely, we propose greedy algorithms

for picking such a subset, and in particular a randomized variant with computational complexity

independent from the number of source hypotheses. We also show the potential of these algorithms

theoretically and experimentally. Generalization bounds corroborate these results, demonstrating that

under reasonable assumptions on the source hypotheses these algorithms are able to learn effectively

with very limited data. We also investigate HTL beyond the binary classification setting. In Chapter 7

we propose a multiclass classification scenario, where a novel class is learned from few examples by

transferring from previously observed classes. This is particularly relevant in lifelong learning, where

tasks, e.g. visual categories, faced by the system arrive sequentially. Here, the main algorithmic idea is

based upon the biased regularization investigated theoretically in Chapter 3. Again, we demonstrate

the transfer learning potential of an algorithm on a visual recognition dataset. Finally, we conclude

and present future directions in Chapter 8.
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2 Definitions and Background

The primary goal of this thesis is to provide theoretical foundations for the Hypothesis Transfer

Learning (HTL), a successful framework that enables machine learning algorithms to learn from fewer

examples on a novel task by leveraging upon auxiliary hypotheses. To accomplish this goal we use

tools from statistical learning theory and compare our results to existing theories of learning in a

standard non-transfer setting. This chapter introduces necessary definitions, notions, and tools to

comprehend the following material. Next, we introduce the learning setting and standard bounds

on the performance of learning algorithms. In this thesis we largely follow a constructive theoretical

analysis, that is we analyze concrete algorithms and formulations, which is in contrast to the usual

uniform convergence argument [141] prevalent in the statistical learning literature. We finalize this

chapter by introducing required concepts necessary for this type of analysis.

2.1 Basic notions

Suppose that we have been tasked to design a visual recognition module for a self-driving car that

given an image from the camera could tell whether there is a pedestrian in sight. One could try to

manually write down the set of all possible visual features characterizing an object in question and try

to recognize an object by detecting them. However, due to high natural visual variation this approach

would be brittle to unanticipated conditions and most likely would fail. Alternatively one could try

to design an algorithm which given a large collection of images under a variety of conditions, with

an object and without one, could learn these discriminative characteristics. Thus, the goal of such a

supervised machine learning algorithm is, given a set of examples, to come up with a hypothesis (a

function) able to give correct predictions on yet unseen instances. This is of course only possible by

making appropriate assumptions on the environment generating these examples and on the algorithm

itself. In this thesis we follow the framework of a statistical learning formalizing such problems, and

next we briefly summarize its notions.

In the following we will indicate the space of examples by Z and its member by z P Z . For instance,

in a supervised setting Z “ X ˆY , such that X is the input and Y is the output space of a learning

problem. In our object recognition case, X would stand for the set of all possible images of a certain

size and Y would describe all possible annotations, e.g. Y “ tpedestrian,no pedestrianu. In what

follows, without loss of generality we assume that the input space X is a unit-radius L2 ball. In addition

3
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we introduce a hypothesis class H , a set of all admissible hypotheses that the algorithm is allowed to

generate. Thus, formally we define a learning algorithm as a map

A :

8ď

m“1

Z
m ÞÑ H (2.1)

and for brevity we will use the notation AS “ ApSq, where S is a training set. To measure the accuracy

of a learning algorithm, we have a non-negative loss function ℓ : H ˆZ ÞÑR`, which measures the

cost incurred by predicting with some hypothesis from H on an example from Z . We will make use of

the following properties of the loss function as necessary.

Definition 1 (L-Lipschitz ℓ). A loss function ℓ is L-Lipschitz if }∇ℓpw , zq} ď L, @w P H and @z P Z .

Note that this also implies that

|ℓpw , zq´ℓpv , zq| ď L}w ´ v} .

Definition 2 (β-smooth ℓ). A loss function is β-smooth if @w , v P H and @z P Z ,

}∇ℓpw , zq´∇ℓpv , zq} ďβ}w ´ v} ,

which also implies

ℓpw , zq´ℓpv , zq ď∇ℓpv , zqJpw ´ vq` β

2
}w ´ v}2 .

Definition 3 (ρ-Lipschitz Hessian of ℓ). A loss function f has a ρ-Lipschitz Hessian if @w , v P H and

@z P Z ,

}∇2ℓpw , zq´∇
2ℓpv , zq}2 ď ρ}w ´ v} .

The last condition is occasionally used in analysis of optimization algorithms and holds whenever ℓ

has a bounded third derivative [48].

Intuitively, the prediction should only be possible whenever examples used for training and yet unseen

ones share some regularities. The framework of statistical learning captures these regularities by

assuming that both training and unseen, or testing data are drawn independently from the same

unknown distribution D over the example space Z . Then, formally we will denote the training set as

S “ tzi um
i“1

iid„D
m . The distribution D plays a central role in the statistical learning theory, and in some

contexts it is also referred to as the task. Ultimately we are interested in the performance of a learning

algorithm on the testing data sampled from the same task as the training data. This performance is

captured by the expected loss or the risk of hypothesis h, with respect to D,

RDphq “ E
z„D

rℓph, zqs ,

and typically we will simply indicate Rphq “ RDphq whenever D is clear from the context. Naturally,

under realistic conditions we cannot observe the risk, and instead we can compute its empirical
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counterpart measured on the training set, or the empirical risk defined as

R̂Sphq “ 1

m

mÿ

i“1

ℓph, zi q .

2.2 PAC learning

The risk of an algorithm, RpASq, is a random variable with randomness arising due to the stochastic

origin of the training set (assuming that A is deterministic). Therefore, risk cannot be computed

directly from data, but rather can be estimated using probabilistic bounds. One of the major topics of

study in the statistical learning theory is stating such bounds on the generalization error, defined as

the difference between the risk and the empirical risk of a hypothesis generated by an algorithm A

given a training set S, that is

RDpASq´ R̂SpASq . (2.2)

On an intuitive level, if we can describe generalization error in terms of quantities controlled by the

algorithm and supplied by the user, such as the training set S and the hypothesis class H , then we

can characterize how close the empirical risk will be to the actual performance on unseen data. Thus,

whenever generalization error is small or decreases with the size of the training set, we say that the

learning algorithm generalizes. This is typically sufficient for design of learning algorithms because

these bounds point out the ingredients that control generalization. In this thesis we will primarily

focus on the generalization bounds.

However, from a theoretical point of view, we sometimes desire to know how optimal the algorithm is,

where by optimality we mean the ability of an algorithm to recover the best hypothesis in a given class

of functions. To capture this particular notion of optimality 1 we define the risk of the best-in-the-class

as

R‹
D

pH q “ inf
hPH

RDphq ,

and the optimality of an algorithm is then represented by an estimation error

RDpASq´ R‹
D

pH q . (2.3)

An estimation error is one of the central notions in statistical learning theory since it formally charac-

terizes learnability in a Probably Approximately Correct (PAC) model of learning proposed by Valiant.

Here we present its slight extension due to [59].

Definition 4 (Agnostic PAC learnability with General Loss Functions). A hypothesis class H is agnostic

PAC learnable w.r.t. example space Z and a loss function ℓ : H ˆZ ÞÑ R` if there exists a function

mH : p0,1q2 ÞÑN and a learning algorithm A such that for every ǫ,δ P p0,1q and for every distribution D

over Z and every m ě mH pǫ,δq, with probability at least 1 ´δ over a training set S
iid„ D

m ,

RDpASq´ R‹
D

pH q ď ǫ .

1In this thesis we do not cover Bayes optimality and approximation error.
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In other words, agnostic PAC learnability formally captures the computational feasibility to address

any statistical learning problem by a given class of functions up to certain precision and probability.

Another important concept of statistical learning theory, related to PAC learnability, is the uniform

convergence.

Definition 5 (Uniform Convergence). A hypothesis class H has a uniform convergence property w.r.t.

example space Z and a loss function ℓ : H ˆZ ÞÑR` if there exists a function mUC
H

: p0,1q2 ÞÑN such

that for every ǫ,δ P p0,1q and for every distribution D over Z , and every m ě mH pǫ,δq, with probability

at least 1 ´δ over a training set S
iid„ D

m ,

sup
hPH

ˇ̌
RDphq´ R̂Sphq

ˇ̌
ď ǫ .

Uniform Convergence (UC) goes beyond claims about generalization ability of concrete algorithms and

enables analysis of a generalization error for the entire hypothesis class H (that is for any hypothesis

in H ). An important property of UC is that it is known to imply PAC learnability, see e.g. [123, Corollary

4.4]. Thus, if one could state a generalization bound for a class H following a UC argument, and

then design an algorithm that outputs hypotheses in restriction to that class, then this would imply

generalization bound for the algorithm.

Proving the generalization bound for a single fixed hypothesis is straightforward through the standard

concentration argument, e.g. using Chernoff bound or a similar one. If we consider more than one

hypothesis, forming a finite class, then we could extend this argument by applying union bound, and

now our generalization bound would depend on the cardinality of the class. However, since in UC

setting we are interested in generalization w.r.t. all hypotheses in a potentially infinitely uncountable

class, this approach needs extension towards a more sophisticated way of capturing the capacity of the

class.

One popular way to prove UC bounds is through Rademacher complexity analysis, which can be used

to prove bounds for both parametric and non-parametric hypothesis classes, e.g. when the class is a

subset of a Reproducing kernel Hilbert space (RKHS). This makes its applicability more general than

classical combinatorial class capacity measures such as VC-dimension.

Definition 6 (Rademacher complexity). Let H be a class of functions mapping from X to Y and

S
iid„ D

m . Then Rademacher complexity is defined as

RmpH q “ E
S,σ

«
sup
hPH

1

m

mÿ

i“1

σi hpx i q
ff

, (2.4)

where σ“ rσ1, . . . ,σmsJ, with σi „Upt´1,`1uq.

Then one can show [70, 6] the following basic probabilistic UC bound on the generalization error.

Theorem 1. Assume that the loss function is L-Lipschitz and satisfies }ℓ}8 ď 1, and that }h}8 ă 8.

Then with probability at least 1 ´ e´2η over a training set S
iid„ D

m , for every h P H we have

Rphq´ R̂Sphq ď 2LRmpH q`
c

η

m
. (2.5)
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Then stating a generalization bound boils down to actually analyzing the Rademacher complexity of

that class. The following lemma states the bound on the Rademacher complexity when H is an L2

ball.

Lemma 1 (Lemma 22 in [6], Theorem 1 in [66]). Let X be a unit L2 ball, and let the hypothesis class be

Hτ “ tx ÞÑ xw , xy : }w}2 ď τu .

Then Rademacher complexity obeys

RmpHτq ď τ?
m

.

Theorem 1 in combination with Lemma 1 can be used to state a generalization bound for an algorithm

AS “ argmin
}w}2

2ďτ2

R̂Spwq , (2.6)

which is a special case of the regularized ERM. For example, a particular instance of this algorithm is a

well-known Support Vector Machine (SVM).

The bound of Theorem 1 can further be improved to the optimistic one, which exhibits fast Op1{mq rate

of convergence rather than typical Op1{?
mq subject to some conditions. One example of such bound

presented next guarantees faster generalization subject to the vanishing empirical risk. Practically

speaking, whenever a learning algorithm is initialized close to a minimizer of an empirical risk or

approached it sufficiently close, the learning switches to the fast rate of convergence.

Theorem 2 (Theorem 1 in [129]). Let the non-negative loss function be β-smooth and let }ℓ}8 ď 1.

Then with high probability over a training set S
iid„ D

m , for every h P H we have

Rphq´ R̂Sphq “ Õ

¨
˝τ

d
βR̂Sphq

m
` 1 `βτ

m

˛
‚ . (2.7)

2.3 Learning and algorithmic stability

As discussed in the previous section, statistical learning theory usually studies probabilistic bounds on

the generalization error that hold for all hypotheses in a given class, that is for any distribution D with

probability at least 1 ´δ for δ P p0,1q,

sup
hPH

|Rphq´ R̂Spg q| ď F p1{δ,m, sizepH qq , (2.8)

where F is a polynomial function of 1{δ, the number of training examples m, and some notion of “size”

of a class, such as VC-dimension or Rademacher complexity. These bounds are independent from the

choice of a learning algorithm.

However, very often we design a concrete learning algorithm and only then analyze its generalization

ability. It is also possible that the class H is so large that our algorithm explores only a small subset

of it, and therefore UC type of analysis can be too general and would not necessarily lead to good

7
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estimates. Therefore in many situations it would be sufficient to claim that for any distribution D with

probability at least 1 ´δ,

|RpASq´ R̂SpASq| ď F p1{δ,m, Aq , (2.9)

where F is a function polynomial in 1{δ, m, and some property of A. Sometimes it is even sufficient to

state a deterministic generalization bound

E
S

“
RpASq´ R̂SpASq

‰
ď F pm,D, Aq . (2.10)

In contrast to the PAC learnability, this type of constructive analysis is captured by the General Learning

Setting (GLS) due to Vapnik, and the following notion of learnability [124].

Definition 7 (Learnability in General Learning Setting). A hypothesis class H is learnable w.r.t. example

space Z and a loss function ℓ : H ˆZ ÞÑ R` if there exists a learning rule A and a monotonically

decreasing sequence ǫcons
m , such that ǫcons

m Ñ 0 as m Ñ 8, and

@D, E
S„Dm

rRpASq´ R‹
D

pH qs ď ǫcons
m . (2.11)

Shalev-Shwartz et al. [124] argued that GLS includes most of statistical learning problems, however

for some of them UC actually does not hold. Instead they identified a different well-known property

of learning algorithms known as the uniform stability [17] as necessary and sufficient condition for

learnability in GLS. Algorithmic stability will be instrumental in constructive analysis of algorithms in

this thesis and next we introduce the necessary background.

On an intuitive level, a learning algorithm is said to be stable whenever a small perturbation in the

training set does not affect its outcome too much. Of course, there is a number of ways to formalize

the perturbation and the extent of the change in the outcome, and we will discuss some of them below.

The most important consequence of a stable algorithm is that it generalizes from the training set to

the unseen data sampled from the same distribution. In other words, the generalization error of an

algorithm is controlled by the quantity that captures how stable the algorithm is. So, to observe good

performance, or a decreasing risk, we must have a stable algorithm and decreasing empirical risk

(training error), which usually comes by design of the algorithm.

First we consider the following (weak) notion of stability which is known to imply generalization in

expectation whenever an algorithm is insensitive to re-sampling of one point in the training set.

Definition 8 (On-average stability). Let i
iid„Uprmsq. Then, a deterministic algorithm A is ǫm-on-average

stable if it is true that

E
S,z,i

rℓpASpiq , zi q´ℓpAS , zi qs ď ǫm . (2.12)

where S
iid„ D

m and Spiq is its copy with i -th example replaced by z
iid„ D.

Theorem 3 (Theorem 13.2 in [123]). Let algorithm A be ǫm-on-average stable. Then,

E
S

“
RpASq´ R̂SpASq

‰
ď ǫm . (2.13)

8
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Proof.

E
S

“
RpASq´ R̂SpASq

‰
“ E

S,z,i
rℓpAS , zq´ℓpAS , zi qs (2.14)

“ E
S,z,i

rℓpASpiq , zi q´ℓpAS , zi qs (Swap z and zi since z, zi
iid„ D.)

ď ǫm . (2.15)

As an instructive example consider again a regularized ERM problem (note that this is equivalent

to (2.6) whenever H ĎR
d , for some mapping between λ and τ)

Aλ
S “ argmin

wPRd

�
R̂Spwq`λ}w}2

(
. (2.16)

Then Aλ
S can be shown to be ǫm-on-average stable by appealing to the strong convexity and smoothness

of the objective function.

Theorem 4 (Corollary 13.7 in [123]). Assume that the loss function is β-smooth and non-negative. Then

algorithm Aλ
S , assuming that λě 2β

m
, satisfies

ǫm “ 48β

mλ
E
S

“
R̂SpASq

‰
. (2.17)

This immediately implies a generalization bound in expectation due to Theorem 3. Despite that this

bound holds in expectation, other forms of generalization bounds, such as high-probability ones,

can be derived from the above [124]. The theorem above can also be used to state a bound on the

estimation error and thus prove learnability in GLS.

Corollary 1. Let ℓ be β-smooth and convex w.r.t. hypothesis class H and example space Z with

}ℓ}8 ď 1. Then setting λ“
b

150β
9m

, we have that for every distribution D,

E
S

rRpASqs´ min
wPH

Rpwq ď
c

150β

m
. (2.18)

On-average stability discussed above captures sensitivity of an algorithm with respect to a concrete

distribution D. Therefore we can say that this on-average stability is data-dependent. The following

notion of stability is much more restrictive because it holds uniformly for the choice of any data and

characterizes stability as a property of a learning algorithm.

Definition 9 (Uniform stability). A deterministic algorithm A is ǫuni
m -uniformly stable if for all datasets

S,Spiq P Z
m such that S and Spiq differ in the i -th example, we have

sup
zPZ ,iPrms

tℓpASpiq , zq´ℓpAS , zqu ď ǫuni
m . (2.19)

Although more restrictive than on-average stability, uniform stability is usually easier to work with,

because one can completely rely on a geometrical argument and tools from optimization leaving out
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probabilistic details. The following theorem implies that uniform stability implies generalization with

high probability.

Theorem 5 (Theorem 12 in [17]). Assume that the loss function satisfies }ℓ}8 ď M. Then with proba-

bility at least 1 ´ e´2η over a training set S
iid„ D

m , for algorithm A we have that

RpASq´ R̂SpASq ď 2ǫuni
m `p2mǫuni

m ` Mq
c

η

m
. (2.20)

Naturally ǫm ď ǫuni
m , and by Theorem 4 we get that

ǫuni
m ď 48Mβ

mλ
. (2.21)
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3 Hypothesis Transfer Learning through

Regularized Least Squares

The material of this chapter is based on the publication:

I. Kuzborskij and F. Orabona. Stability and Hypothesis Transfer Learning.

In Proceedings of the International Conference on Machine Learning (ICML), 2013.

The doctoral candidate formalized the problem, proved the results, and wrote most of the publica-

tion.

3.1 Overview

The standard assumption made during design of supervised machine learning algorithms is to have

models trained and tested on samples drawn from the same probability distribution, or domains.

However, this assumption is often violated in practical applications.

A more general setting is the one in which the marginal distributions associated with training and

testing domains are different but related. This is the problem of Domain Adaptation (DA), where a

successful scheme typically utilizes large unlabeled samples from both domains to adapt a source

hypothesis to the target domain. Previous work has addressed in detail the theory of DA and proposed

algorithms that critically depend on optimal weighting parameters given by the theoretical analysis [8,

9, 93, 27]. However, in practice, the learner needs access to sufficient unlabeled samples from both

domains to estimate these parameters. Even if unlabeled data are abundant, the estimation of these

parameters can be computationally prohibitive in some scenarios. A hypothetical example is a large

number of domains involved or, for instance, when one acquires new domains incrementally. Here,

keeping unlabeled data from all the domains and re-estimating parameters is a necessity.

To overcome this practical limitation, a new framework has been analyzed by a number of works [45,

145, 103, 94, 136, 78]. In this framework, that we will call Hypothesis Transfer Learning (HTL), unlike

DA, only source hypotheses are retained from the source domain, but not the source data. The attractive

quality of HTL is the fact that it assumes no explicit access to the source domain, nor any knowledge

13
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about the relatedness of the source and target distributions. Although, this setting has been explored

empirically with success, a formal theory of HTL is mostly missing. Hence it is unclear how to recover

optimal transfer parameters and what properties of the source hypothesis affect generalization.

In this chapter, we take a step towards a theory of HTL. In particular, we analyze the generalization

ability of an HTL algorithm stemming from the Regularized Least Squares (RLS) with biased regular-

ization. We assume access to a given number of source hypotheses and a small set of training samples

from the target domain. Rather than relying on oracle inequalities for tuning the optimal parameters,

we use the Leave-One-Out (LOO) risk. The LOO risk is known to have low bias compared to empirical

risk or cross-validation [43], thus making it preferable in a small sample regime.

In this chapter we will show that the generalization error of the considered HTL algorithm decreases

with the increasing quality of the source hypothesis over the target domain. We do so by employing the

notion of hypothesis stability [17], a form of on-average stability, and upper bounding the second-order

moment of the difference between the expected risk and the LOO risk. In addition, we propose a

hypothetical algorithm that can avoid negative transfer in the case of unrelated domains, while in worst

case scenario recovering the generalization guarantees of RLS. Finally, from the stability theory point

of view, this chapter also touches upon a question raised by [43]: “Is there a way to incorporate prior

knowledge via stability?”, thus exposing a connection between stability and the Hypothesis Transfer

Learning.

The rest of the chapter is organized as follows. We formally state the HTL problem in Section 3.2 and

introduce analyzed algorithms in Section 3.4. The main result comes in Section 3.5, particularly in

Theorem 7, with implications discussed in Section 3.5.1. The proof of the main result can be found

in Appendix A, while related work on DA and HTL is covered in Section 3.3. Finally we draw some

conclusions and discuss future work in Section 3.6.

3.2 Hypothesis Transfer Learning Problem

First we formally describe the transfer learning problem we consider in this chapter. Assume that in

addition to the training set S we also receive a source hypothesis hsrc P H
src Ď Y

X . Then, the aim of

an HTL algorithm is to use the source hypothesis hsrc to improve the performance compared to the

supervised learning algorithm that has access only to S. More formally, we define the HTL algorithm

as follows

Definition 10 (HTL algorithm). An HTL algorithm is a map

Ahtl :

˜ 8ď

m“1

Z
m

¸
ˆH

src ÞÑ H . (3.1)

The following definition captures the goal of an HTL algorithm Ahtl more formally.

Definition 11 (Usefulness and Collaboration). We say that hypothesis hsrc P H
src is useful [76] for Ahtl

with respect to distribution D and training set size m, if

E
S

“
RDpAhtlpS,hsrcqq

‰
ă E

S

“
RDpAhtlpS,0qq

‰
. (3.2)
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In addition, we will say that hsrc P H
src and a distribution D collaborate [11] for Ahtl, w.r.t. training set

size m, if

E
S

“
RDpAhtlpS,hsrcqq

‰
ă min

!
RDpAhtlp∅,hsrcqq,E

S

“
RDpAhtlpS,0qq

‰)
.

The first notion (usefulness) is satisfied whenever algorithm Ahtl
S can achieve lower risk by using the

source hypothesis. The second one (collaboration) [11] is satisfied whenever simultaneous access

to hsrc and S improves the performance compared to when they are used separately. The failure to

satisfy any of these two conditions is usually called the negative transfer. Thus, we are only interested

in the observable improvement of the generalization error on the target domain. From now on we

will indicate Ahtl
S “ AhtlpS,hsrcq as for the most part of this chapter we will consider the use of a single

source hypothesis hsrc.

3.3 Related Work

We start by introducing related work from Domain Adaptation (DA), closely related to the HTL problem.

Most DA algorithms assume access to the labeled msrc-sized training set sampled from the source

domain D
src, a sample of munlab unlabeled examples from both domains (marginal distributions), and

occasionally an m-sized training set sampled from the target domain. Typically it is assumed that

m ! msrc, m ! munlab.

A milestone work on theoretical analysis of DA is due to Ben-David et al. [8], where they considered

unsupervised setting. The main result of [8] is a UC-type bound on the difference between risks on the

target and source domains. This bound is controlled by two critical terms: the “divergence” term and

the minimal-joint-error, defined with respect to some hypothesis class. The divergence term quantifies

how different distributions (domains) are, while the second term quantitatively captures the existence

of a hypothesis with low error on both domains. The theoretical nature of the divergence term was later

futher investigated by [9]: the additive divergence term is inevitable unless an algorithm has access

to labeled training data from the target domain. A similar theoretical setting was also studied by [93].

Once again, an additive divergence term appears in the bounds. Although related, the HTL problem

is not covered by the DA theory because it depends on the properties of the learning algorithm that

generates the source hypothesis. More importantly, the source domain is inaccessible. These facts

render the mentioned DA bounds unapplicable for analysis of the Hypothesis Transfer Learning.

HTL has been also investigated from Bayesian perspective. Li and Bilmes [86] proposed a PAC-Bayes-

type of analysis and derived bounds capturing the relationship between domains by an additive

KL-divergence term. They showed that for logistic regression, the divergence term is upper bounded

by }h ´ hsrc}2, motivating the biased regularization term in logistic regression. Indeed, Bayesian linear

regression with hsrc-mean Gaussian prior over h leads to exact recovery of }h ´ hsrc}2 in optimization

problem [13]. Results of [86] hint that generative methods like the one in [45] could also be related to

biased regularization.

The majority of algorithmic works on DA focus on recovery of transformations that approximately

minimize the divergence term. Many of these works have further investigated the use of more powerful

transformations by lifting computations into the RKHS [55, 104, 4, 148], thus paving the way for DA
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in non-linear learning problems. The found transformations are then used to map the hypothesis

generated on the source domain in hope that it would perform well on the target one. At the same time

the transformation is typically found on the basis of large unlabeled samples drawn from marginal

distrubutions. Unfortunately many of these works are known to scale badly in munlab and msrc,

therefore evaluations are rarely done beyond the proof-of-concept benchmarks. At the same time HTL

is only limited by computational complexity of the source hypothesis.

Motivated from this point of view, a number of empirical attempts have tried to justify HTL. An

SVM-like algorithm with regularizer }h ´ hsrc}2 was proposed by [145] for video concept detection.

Orabona et al. [103] suggested a parametrized variant, }h ´βhsrc}2-regularized Least-Squares Support

Vector Machine (LSSVM), then extended to weight and combine multiple source hypotheses in [136].

Leveraging on this idea, an HTL multiclass formulation explored a class-incremental transfer set-

ting [78]. While some of these methods demonstrated impressive practical potential, their theoretical

nature remains unclear.

3.4 Hypothesis Transfer Learning through Regularized Least Squares

First we introduce additional definitions used only throughout this chapter. Without loss of generality,

in the following we will assume that Y ,Y 1 “ r´B ;Bs, where B P R and }x} ď 1, x P X “ R
d . In

addition to the training set S we also defined the LOO training set as Szi “ tpx1, y1q,px i´1, yi´1q, . . . ,

px i`1, yi`1q,pxm , ymqu and hypothesis hSzi is produced by an algorithm A given training set Szi . Then,

we also define the LOO risk as

R̂ loopA,Sq “ 1

m

mÿ

i“1

ℓpASzi ,px i , yi qq.

We will consider linear algorithms, extended to non-linear ones through the use of kernels. Hence

hypothesis hpxq will be expressed as the inner product of a vector w , learned from the training data,

and the sample x .

We assume, that only the target training set S and source hypothesis hsrc are given, so that the source

training set is not required. The main objective of this analysis is to identify the effect of hsrc on the

generalization properties of Ahtl. For this reason, we would like to bound the expected risk of Ahtl

with terms depending on the characteristics of hsrc. In particular, we expect that a smaller risk Rphsrcq
should improve the generalization of Ahtl, compared to the case when hsrc ” 0.

As said above, we proceed by specializing Ahtl to a particular class of algorithms, the RLS with biased

regularization. This will allow us to arrive at a generalization bound where all the relevant quantities

are computable in a closed form.
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3.4.1 Biased Regularized Least Squares

The RLS algorithm consists in solving the following optimization problem

min
wPRd

#
1

m

mÿ

i“1

pw Jx i ´ yi q2 `λ}w}2

+
. (3.3)

The interest of RLS lies in its strong theoretical guarantees and in the fact that the solution can be

expressed in a closed form [116]. As a useful consequence, its LOO prediction function is expressed

in closed form as well, allowing a very efficient model selection [21]. It is also possible to arrive

at (3.3) from a Bayesian perspective by putting a 0-mean Gaussian prior over the parameters of a

linear regression model [13]. Note that the same formulation can be used for both classification and

regression problems [116, 132].

Assuming that the source hypothesis hsrcpxq is expressed as xJw 0, and w 0 belongs to the same space

of w , [103] proposed the use of a biased regularization to solve hypothesis transfer learning problems

efficiently. More formally they defined the following algorithm.

Algorithm 1. The Hypothesis Transfer Learning Algorithm based on Regularized Least Squares generates

a hypothesis Ahtl´bias
S

pxq “ xJw S , where

w S “ argmin
wPRd

#
1

m

mÿ

i“1

pw Jx i ´ yi q2 `λ}w ´ w 0}2

+
. (3.4)

Analogously, one can see the formulation of Algorithm 1 as a Bayesian linear regression with w 0-mean

Gaussian prior distribution. The solution of Algorithm 1 can be expressed in closed form, in fact from

the first order optimality condition we get

w S “ argmin
wPRd

! 1

m
}X Jw ´ y}2 `λ}w ´ w 0}2

)

ñ X pX Jw S ´ yq` mλpw S ´ w 0q “ 0 (3.5)

ñ X pX Jŵ S ` X Jw 0 ´ yq` mλŵ S “ 0

ñ pX X J ` mλI qŵ S “ X y ´ X X Jw 0

ñ ŵ S “ pX X J ` mλI q´1X py ´ X Jw 0q
ñ ŵ S “ X pX JX ` mλI q´1py ´ X Jw 0q

where in (3.5) we used ŵ S “ w S ´ w 0 and in the last step we used the identity pX X J ` mλI q´1X “
X pX JX ` mλI q´1 to express the solution in dual variables. So, the solution to the problem is given by

w S “ X pX JX ` mλI q´1py ´ X Jw 0q` w 0, due the definition of ŵ S .

Using the fact that the LOO risk of Algorithm 1 can be written in closed form, [103] proposed to weight

the source hypothesis w 0 by a scalar β, optimized in order to minimize the LOO risk.

In the following we show how to generalize this approach to the generic source hypotheses hsrc and

how to obtain a generalization guarantee for it.
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3.5 Analysis by Hypothesis Stability

We now propose a more general version of Algorithm 1.

Algorithm 2. RLS transfer algorithm by altering training set as tpx i , yi ´hsrcpx i qq : 1 ď i ď mu produces

a hypothesis

Ahtl
S pxq “ TC pxJŵ Sq` hsrcpxq,

where

ŵ S :“ argmin
wPRd

#
1

m

mÿ

i“1

pw Jx i ´ yi ` hsrcpx i qq2 `λ}w}2

+
,

and the truncation function TC pŷq is defined as TC pŷq “ mintmaxtŷ ,´Cu ,Cu.

If hsrcpxq is equal to xJw 0, where w 0 belongs to the same space as w S , and C “ 8, Algorithms 1 and 2

are completely equivalent, because they have exactly the same solution. However, Algorithm 2 is more

general because it allows hsrc to belong to a another hypothesis class. Hence it captures the notion

of biased regularization, and generalizes it to any type of source hypothesis hsrc. This algorithm also

captures and generalizes many of the ideas present in the previous works on HTL [45, 145, 103, 94, 136].

Still the use of a specific loss, the square loss, will allow us to have an efficient computation as well.

Also, this formulation allows us to truncate the prediction within the range r´C ;C s, which improves

the theoretical guarantees and the practical performance. In fact it is easy to see that if C ě B `}hsrc}8,

then pTC pxJŵ Sq` hsrcpxq´ yq2 ď pxJŵ S ` hsrcpxq´ yq2.

Our goal is to upper bound the expected risk of Algorithm 2, keeping in mind the effect of hsrc. To this

end, we propose to employ the stability framework of [17]. Our choice is motivated by the fact that

bounds arising from the stability analysis are free from complexity measures. Hence, the generalization

bound of interest will be composed mostly from computable quantities, thus making it more practical,

e.g. for finding the optimal transfer parameters.

In particular, we can upper bound the moments of the random variable RpASq ´ R̂ loopA,Sq with a

quantity that captures the stability of the learning algorithm. The second order moment can then be

used to obtain polynomial bounds, through Chebyshev’s inequality [17].

There are various definitions of algorithmic stability [17], but the one we will use is the hypothesis

stability.

Definition 12 (Hypothesis Stability [17]). An algorithm A has a hypothesis stability γ with respect to

the loss function ℓ if for all i P t1, . . . ,mu the following holds

E
S,px ,yq

r|ℓpAS ,px , yqq´ℓpASzi ,px , yqq|s ď γ .

We will use a slight variation of the polynomial bound of [17]. The reason is that Theorem 11 in [17]

has the term M 2

2
, that is not affected by Rphsrcq. Instead, we exchange M 2

2
for the term ESrℓphSzi , zi qs.
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Theorem 6. For a supervised learning algorithm A with hypothesis stability γ, and M such that

ℓpASzi ,px , yqq ď M, for any i P t1, . . . ,mu, we have

E
S
rpRpASq´ R̂ loopA,Sqq2s ď M

m
E
S

rℓpASzi ,px i , yi qqs` 3Mγ . (3.6)

Note that our bound in the worst case loses only a constant multiplicative factor with respect to the

one of [17]. We use this theorem to prove our main result, Theorem 7.

Theorem 7. Set λ ě 1
m

. If C ě B ` }hsrc}8, then for Algorithm 2 with probability at least 1 ´δ over

S
iid„ D

m we have

RpAhtl
S q´ R̂ loopAhtl,Sq “ O

¨
˚̊
˝C ¨

4

c
RphsrcqTC 2

´
Rphsrcq

λ

¯
` Rphsrcq2

?
mδλ3{4

˛
‹‹‚ . (3.7)

If C “ 8, then for Algorithm 2 we have

RpAhtl
S q´ R̂ loopAhtl,Sq “ O

˜a
Rphsrcqp}hsrc}8 ` Bq?

mδλ

¸
. (3.8)

Proofs of both theorems can be found in Appendix A, while in the next section we discuss the implica-

tions of this theorem.

3.5.1 Implications

First consider the case of hsrc ” 0. This case corresponds to learning without any source hypothesis,

without transfer learning. If we set C “ 8, we have that the generalization error is bounded by

O

´
B?
mλ

¯
, which is exactly the bound that can be obtained using the results in [17] for RLS, [34, p17,

footnote 2].

However, if we know the range r´B ;Bs, we can set C accordingly and obtain that the generalization

error is bounded by O

´
B?

mλ3{4

¯
. Thanks to the truncation, the bound is improved compared the

polynomial bound with square loss in [17].

We now turn our attention to the case where hsrc ı 0. In this case, the key quantity is Rphsrcq, an

indirect measure of how the source and target domains are related. This term takes the role of the

divergence between source and target distribution [8, 9, 93], however, this is a more intuitive measure

which is directly linked to the loss: how the source hypothesis is going to perform on the target domain,

the new task? In addition, it is multiplicative to all bound terms, while the mentioned divergence

terms are additive, even if the bounds are generally incomparable. Based on its value, we have various

regimes of interest. If
Rphsrcq

λ Ñ 0, we have the surprising result that RpAhtl
S q´ R̂ loopAhtl,Sq Ñ 0. This

implies that the risk approaches the LOO risk, with probability 1. In other words, the transfer learning

decreases the variance of the LOO in case when the source and target domains are related. This also

implies that we can expect the tuning of any parameter of the algorithm (e.g. the type of kernel)

through the minimization of the LOO risk, to have optimal performance, even with a small training set.
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This is the first theoretical explanation of why the algorithms of [103, 136] showed reliable performance

despite a small training set. Note that Rphsrcq has to be small with respect to λ. In other words, the

better the source hypothesis on the target domain, the more stable an HTL algorithm must be. Looking

at Algorithm 1, this makes sense, since a very stable algorithm will generate a hypothesis that does not

deviate much from the source w 0.

So far we have outlined the benefits of Rphsrcq, but it is reasonable to ask what happens when this

quantity is high, that is when the two domains are unrelated. From the bound, we see that Algorithm 2

is also robust against a mispecified source hypothesis hsrc. In fact, due to truncation, the rate is

exactly the same as obtained in the non-transfer case. If we supply the algorithm with a “bad” source

hypothesis, in the limit it will have the performance of an algorithm that learns just using the training

set. Again, this robustness is achieved also thanks to the truncation, which avoids excessive growth

of the loss. In other words, Algorithm 2 is resistant to negative transfer. We actually suspect that the

truncation is necessary only for the proof, and in fact, [136] already noticed this robust behaviour of

Algorithm 1.

We now consider the case when the source hypothesis hsrc is a weighted combination of n source

hypotheses hsrc
i

, that is hsrc “
řn

i“1βi hsrc
i

for some βi P R. This weighting strategy is equivalent to

the ones used in the works on DA, but with the important difference that now these weights can be

efficiently estimated from the target training set. In particular, one interpretation of Theorem 7 yields

min
βPRn

RpAhtl
S q ď min

βPRn

"
R̂ loopAhtl,Sq`O

ˆ }β}?
mλ3{4

˙*
.

Hence the bound suggests an efficient and principled way to find β “ rβ1, . . . ,βnsJ. In other words,

it is enough to minimize the LOO risk with respect to β, taking into account the regularization term,

thus turning β into a parameter of an optimization problem. Note that [103, 136] already realized

the empirical need to constrain β, but here we demonstrate a principled form of the regularization.

Note that the Op¨q notation used in the bound above hides the confidence variable δ, which should be

tuned. Yet, here we are mainly interested in the correct form of the objective function for finding the

transfer parameters, as a way of using theory to guide practice. Moreover, regardless of the specific

procedure used to estimate the optimal value of β, as noted above we expect the algorithm to be robust

to negative transfer, at least in the asymptotic limit.

3.6 Conclusion

In this chapter we have formally introduced the HTL problem and analyzed a class of RLS algorithms

with biased regularization that can be used to solve this problem. Our main result is a generalization

bound in terms of the Leave-One-Out (LOO) risk, obtained through the notion of hypothesis stability.

We point out the key quantity Rphsrcq and expose its theoretical and practical advantages over ana-

logues in the theory of DA. In particular, we showed that if source and target domains are related,

hence Rphsrcq is small, the LOO risk converges faster to the expected risk and the HTL decreases the

variance of the LOO. In the case of unrelated domains, we still match the theoretical guarantees of

Regularized Least Squares trained solely on the target domain. As a side effect of our analysis, thanks
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3.6. Conclusion

to the truncation we have improved the polynomial generalization bounds of [17] for RLS1.

In the next chapter we will focus on the extension of our theory to a more general family of algorithms.

In particular, we will prove bounds on generalization and estimation error for the regularized Empirical

Risk Minimization for smooth convex loss functions. We will also improve our results in another

direction by obtaining bounds that hold with high probability.

1The suboptimality of bounds in [17] for RLS is also discussed by [149].
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4 Hypothesis Transfer Learning through

Empirical Risk Minimization

The material of this chapter is based on the publication:

I. Kuzborskij and F. Orabona. Fast rates by transferring from auxiliary hypotheses.

In Machine Learning 106.2 (2017): 171-195.

The theoretical results presented in this chapter slightly differ from the ones presented in the

publication.

The doctoral candidate formalized the problem, proved the results, and wrote most of the publica-

tion.

4.1 Overview

In the standard supervised machine learning setting the learner receives a set of labeled examples,

known as the training set. However, very often we have additional information at hand that could

be beneficial to the learning process. One such example is the use of unlabeled data drawn from the

marginal distributions, that gives rise to the semi-supervised learning setting [22]. Another example

is when the training data is coming from a related problem, as in multi-task learning [19], domain

adaptation [8, 93], and transfer learning [105, 133]. Among others, there is the use of structural

information, such as taxonomy, different views on the same data [15], or even a sort of privileged

information [140, 125]. In the recent years all these directions have received a considerable empirical

and theoretical attention.

In this chapter we focus on a less theoretically studied direction in the use of supplementary informa-

tion – learning with auxiliary hypotheses, that is classifiers or regressors originating from another task.

In particular, in addition to the training set we assume that the learner is supplied with a collection

of hypotheses and their predictions on the training set itself. The goal of the learner is to figure out

which hypotheses are helpful and use them to improve the prediction performance of the trained

classifier. We will call these auxiliary hypotheses the source hypotheses and we will say that helpful
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4.1. Overview

ones accelerate the learning on the target task. We focus on the linear setting, that is, we train a linear1

classifier and the source hypotheses are used additively in the prediction process, weighted by some

weights. In particular, this captures the setting in which the outputs of the source hypotheses are

concatenated with the feature vector, a widely used heuristic [12, 85, 137].

The scenario described above is related to the Transfer Learning (TL) and DA ones, or learning effec-

tively from possibly small amounts of data by reusing prior knowledge [134, 105, 133, 8]. However,

transferring from hypotheses offers an advantage compared to the TL and DA frameworks, where one

requires access to the data of the source domain. For example, in DA [8], one employs large unlabeled

samples to estimate the relatedness of the source and target domains to perform the adaptation. Even

if unlabeled data are abundant, the estimation of adaptation parameters can be computationally

prohibitive. This is the case, for example, when a large number of domains is involved or when one

acquires new domains incrementally.

A recently proposed setting, closer to the one we consider, is the HTL [76, 11], where the practical

limitations of TL and DA are alleviated through indirect access to the source domain by means of a

source hypothesis. Also, in the HTL setting there are no restrictions on how the source hypotheses can

be used to boost the performance on the target task.

Albeit empirically the setting considered in this chapter has already been extensively exploited in the

past [145, 103, 136, 65, 78], a first theoretical treatment of this setting was given in Chapter 3 and [76],

where we analyzed the linear HTL algorithm that solves a regularized least-squares problem with

a single fixed, unweighted, source hypothesis. We proved a polynomial generalization bound that

depends on the performance of the fixed source hypothesis on the target task.

Contributions of this chapter. We extend the formulation of Chapter 3 and [76], with a general

regularized Empirical Risk Minimization (ERM) problem with respect to any non-negative smooth

loss function, and any strongly convex regularizer. We prove high-probability generalization bounds

that exhibit fast rate, i.e. Op1{mq, of convergence whenever a weighted combination of multiple source

hypotheses, with weights found by the same ERM procedure, performs well on the target task. In

addition, we show that, if the combination is perfect, the error on the training set becomes equal

to the generalization error with probability 1. Furthermore, we analyze an estimation error of our

formulation, and conclude that a good source hypothesis also speeds up the convergence to the

performance of the best hypothesis in the entire class. To prove this result we derive a simple and

powerful exponential on-average stability bound.

The rest of the chapter is organized as follows. In the next section we make a brief review of the previous

work. Next, we formally state our formulation in Section 4.3 and present one main results right after, in

Section 4.4. In Section 4.4.3 we discuss the implications and compare them to the body of literature

in learning with fast rates and transfer learning. Finally, in Appendix B, we present the proofs of our

results. Section 4.5 concludes the chapter.

1Non-linear classifiers can be easily produced with the use of kernels.
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4.2 Related Work

Chapter 3 showed that the generalization ability of the regularized least-squares HTL algorithm im-

proves if the supplied source hypothesis performs well on the target task. More specifically, we proposed

a key criterion, the risk of the source hypothesis on the target domain, that captures the relatedness of

the source and target domains. Later, [11] showed a similar bound, but with a different quantity captur-

ing the relatedness between source and target. Instead of considering a general source hypothesis, they

have confined their analysis to the linear hypothesis class. This allowed them to show that the target

hypothesis generalizes better when it is close to the good source hypothesis. From this perspective it

is easy to interpret the source hypothesis as an initialization point in the hypothesis class. Naturally,

given a starting position that is close to the best in the class, one generalizes well.

Prior to these works there were few studies trying to understand learning with auxiliary hypotheses

subject to different conditions. [86] have analyzed a Bayesian approach to HTL. Employing a PAC-

Bayes analysis they showed that given a prior on the hypothesis class, the generalization ability of

logistic regression improves if the prior is informative on the target task. [92] analyzed a setting of

multiple source hypotheses combination. There, in addition to the source hypotheses, the learner

receives unlabeled samples drawn from the source distributions, that are used to weigh and combine

these source hypotheses. They have studied the possibility of learning in such a scenario, however,

they did not address the generalization properties of any particular algorithm.

Unlike these works, we focus on the generalization ability of a large family of HTL algorithms, that

generate the target predictor given a set of multiple source hypotheses. In particular, we analyze

Regularized Empirical Risk Minimization with the choice of any non-negative smooth loss and any

strongly convex regularizer. Thus our analysis covers a wide range of algorithms, explaining their

empirical success. One category of those, prevalent in computer vision [69, 145, 136, 2, 78, 137],

employs the principle of biased regularization [121]. For example, instead of penalizing large weights

by introducing the term }w}2 into the objective function, one enforces them to be close to some “prior”

model, that is }w ´ w prior}2. This principle also found its applications in other fields, such as NLP [32,

33], and electromyography classification [103, 138]. Many empirical works have also investigated

the use of the source hypotheses in a “black box” sense, sometimes not even posing the problem as

transfer learning [39, 85, 65, 12], and recently in conjunction with deep neural networks [101].

In the literature there are several other machine learning directions conceptually similar to the one we

consider in this chapter. Arguably, the most well known one is the Domain Adaptation (DA) problem.

The standard machine learning assumption is that the training and the testing sets are sampled from

the same probability distribution. In such case, we expect that a hypothesis generated by the learner

from that training set will lead to sensible predictions on the testing set. The difficulty arises when

training and testing distributions differ, that is we have a training set sampled from the source domain

and a testing set from the target domain. Clearly, the hypothesis generated from the source domain

can perform arbitrarily badly on the target one. A paradigm of DA, addressing this issue has received

a lot of attention in recent years [8, 93]. Although this framework is different from the one we study

in this chapter, we identify similarities and compare our findings with the theory of learning from

different domains in Section 4.4.4.
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4.3. Transferring from Auxiliary Hypotheses

4.3 Transferring from Auxiliary Hypotheses

In the following we will capture and generalize many transfer learning formulations that employ a

collection of given source hypotheses thsrc
i

: X ÞÑ Y un
i“1

within the framework of Regularized Empirical

Risk Minimization (ERM). These problems typically involve a criterion for source hypothesis selection

and combination with the goal to increase performance on the target task [145, 137, 79]. Indeed, some

source hypotheses might come from tasks similar to the target task and the goal of an algorithm is to

select only relevant ones. In this chapter we will consider source combination

hsrc
β pxq “

nÿ

i“1

βi hsrc
i pxq,

and target hypothesis of a form

hw ,βpxq “ xw , xy` hsrc
β pxq, (4.1)

with the relevance of the sources characterized by the parameter β PR
n . We will focus on the Regular-

ized ERM formulations with the choice of any non-negative smooth loss function and any strongly-

convex regularizer. This puts our problem into the class of the ones that can be solved efficiently, yet

endowed with interesting properties.

Regularized ERM for Transferring from Auxiliary Hypotheses (R-ERM-HTL). Let φ : Y ˆ Y ÞÑ R`
be a L-Lipschitz, convex, and H-smooth loss function and let Ω : H ÞÑ R` be a 2-strongly convex

function w.r.t. a norm } ¨ }, such that Ωp0q “ 0. Given the target training set S “ tpx i , yi qum
i“1, λ ě 0,

source hypotheses thsrc
i

un
i“1

, the algorithm generates the target hypothesis

Ahtl
S pxq “ xŵ S , xy` hsrc

β̂S

pxq ,

such that

pŵ S , β̂Sq “ argmin
pw ,βqPR2d

#
1

m

mÿ

i“1

φ
`

hw ,βpx i q, yi

˘
`λΩpwq`λΩpβq

+
. (4.2)

In the following we will pay special attention to a quantity that captures the performance of the source

hypothesis combination hsrc

β̂S

pxq on the target domain

Rsrc “ E
S

”
Rphsrc

β̂S

q
ı

.

Our analysis will focus on the generalization properties of Ahtl
S . In particular, our main goal will be

to understand the impact of the source hypothesis combination on the performance of the target

hypothesis. In our analysis we will discuss various regimes of interest, for example considering

the perfect and arbitrarily bad source hypothesis. Our discussion will touch scenarios where the

auxiliary hypotheses accelerate the learning and the conditions when we can provably expect perfect

generalization. Finally, we will consider the consistency of the formulation and pinpoint conditions

when we achieve faster convergence to the performance of the best-in-the-class.

One special example covered by our analysis, commonly applied in transfer learning, is the biased

25



Chapter 4. Hypothesis Transfer Learning through Empirical Risk Minimization

regularization [121]. Consider the following least-squares based formulation.

Least-Squares with Biased Regularization. Given the target training set S, source hypotheses tw src
i

un
i“1

Ă
H , parameters β PR

n and λě 0, the algorithm generates the target hypothesis Ahtl´bias
S

pxq “ xŵ S , xy,

where

ŵ S “ argmin
wPH

#
1

m

mÿ

i“1

pxw , x i y´ yi q2 `λ

›››››w ´
nÿ

j “1

β j w src
j

›››››

2

2

+
. (4.3)

This problem has a simple intuitive interpretation: minimize the training error on the target training

set while keeping the solution close to the linear combination of the source hypotheses. One can

naturally arrive at (4.3) from a probabilistic perspective: The solution ŵ is a maximum a posteriori

estimate when the conditional distribution is Gaussian and the prior is a W srcβ-mean, 1
λ I -covariance

Gaussian distribution. Even though biased regularization is a simple idea, it found success in a plethora

of transfer learning applications, ranging from computer vision [69, 145, 136, 2, 78, 137] to NLP [32], to

electromyography classification [103, 138].

Claim 1. Least-Squares with Biased Regularization is a special case of R-ERM-HTL.

Proof. Introduce w 1, such that w 1 “ w ´W srcβ. Then we have that problem (4.3) is equivalent to

min
wPH

#
1

m

mÿ

i“1

pxw 1 `W srcβ, x i y´ yi q2 `λ}w 1}2
2

+
,

that in turn is a special version of (4.2) when hsrc
i

pxq “
@

w src
i

, x
D

, we use the square loss, and } ¨ }2
2 as

regularizer.

Albeit practically appealing, the formulation (4.3) is limited in the fact that the source hypothesis must

be a linear predictor living in the same space of the target predictor. Instead, R-ERM-HTL naturally

generalizes the biased regularization formulation, allowing to treat the source hypothesis as “black

box” predictors.

4.4 Main Results

To prove the bound on the generalization error of R-ERM-HTL, we will first prove a novel general

algorithmic stability result.

4.4.1 Exponential Generalization Bounds for On-average Stable Algorithms

In particular, we prove that if an algorithm is stable in a data-dependent sense, it generalizes with high

probability. To do this, we consider the following two notions of stability.

Definition 13 (On-Average Stability). Let i
iid„Uprmsq.
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1) An algorithm A is ǫm-on-average stable if it is true that

sup
z1

E
S,z,i

rℓpASpiq , z 1q´ℓpAS , z 1qs ď ǫm .

2) An algorithm A is ǫ
p2q
m -second-order-on-average stable if it is true that

sup
z1

E
S,z,i

”
pℓpAS , z 1q´ℓpASpiq , z 1qq2

ı
ď ǫ

p2q
m .

The first notion of stability is a slightly stronger version of “On-Average-Replace-One-Stability” pre-

sented in Section 2.3, studied by [123, Definition 13.3] and [124], and is closely related to the “pointwise

hypothesis stability” from [17]. The second one is intimately related to the variance of the hypothesis

generated by the algorithm and is not common in the stability literature. It is partially inspired by a

recent work of Maurer [95] on generalized (second-order) McDiarmid’s inequality. It is also not hard to

see that whenever the loss function is Lipschitz or smooth, both notions of stability can be analyzed in

a similar way. The following theorem characterizes the generalization error of an algorithm A given

that it satisfies simultaneously both notions of stability.

Theorem 8. Let algorithm A be ǫm-on-average-stable and ǫ
p2q
m -second-order-on-average stable. Then

for a hypothesis AS we have with probability at least 1 ´ e´η that

RpASq´ R̂SpASq ď ǫm ` 1.5Mη

m log

˜
1 ` 2Mη

m

b
2ǫ

p2q
m

¸ ď ǫm `
b

4ηǫ
p2q
m ` 1.5Mη

m
. (4.4)

The first inequality is useful whenever an algorithm is completely stable, that is ǫm “ 0 and ǫ
p2q
m “ 0. In

such case the bound backs up an intuition that generalization error equals to zero. The idea of the

proof is to relate the second-order-on-average stability to the variance in Bennett’s and Bernstein’s

inequalities through Steele’s inequality.

4.4.2 Bounds for Hypothesis Transfer Learning through Regularized ERM

In this section, we present the main results of this chapter: generalization and estimation error bounds

for R-ERM-HTL. In the next section we discuss in detail the implications of these results, while we

defer the proofs to Appendix.

The first bound demonstrates the utility of the perfect combination of source hypotheses, while the

second lets us observe the dependency on the arbitrary combination. In particular, the first bound

explicitates the intuition that given the perfect source hypothesis learning is not required. In other

words, when Rsrc “ 0 we have that the empirical risk becomes equal to the risk with probability one.

Theorem 9. Assume that }hsrc
i

}8 ď 1, @i P rns, that }ℓ}8 ď M, and finally that H ď mλ
2

. Then for
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R-ERM-HTL with probability at least 1 ´ e´η, @ηą 0,

RpAhtl
S q´ R̂SpAhtl

S q ď 4L
?

HRsrc

mλ
` 1.5Mη

m log
´

1 ` Mη

2L
?

2H
¨ λ?

Rsrc

¯ (4.5)

ď 4L p1 `?
4ηq

?
HRsrc

mλ
` 1.5Mη

m
. (4.6)

Now we focus on the consistency of the HTL. Specifically, we show an upper bound on the excess risk

of the Regularized ERM, which depends on Rsrc, that is the risk of the combined source hypothesis hsrc
β

on the target domain. We observe that for a small Rsrc, the excess risk shrinks at a fast rate of Op1{mq.

In other words, a good prior knowledge guarantees not only good generalization, but also the fast

recovery of the performance of the best hypothesis in the class.

This bound is similar in spirit to the results of localized complexities, as in works of [5, 130], however

we focus on the linear HTL scenario rather than a generic learning setting. Later, in Section 4.4.3, we

compare our bounds to these works and show that our analysis achieves superior results.

Theorem 10. Assume that }ℓ}8 ď M, and finally that H ď mλ
2

, and let

w ‹ “ arginf
wPH

Rpwq .

Then setting

λ“

d
4L

?
Hp1 `?

4ηq
m

¨
?

Rsrc

Ωpw ‹q .

in R-ERM-HTL, we have with probability at least 1 ´ e´η, @ηą 0, that

RpAhtl
S q´ R‹pH q ď 4

d
L

?
Hp1 `?

4ηq ¨Ωpw ‹q
?

Rsrc

m
`

c
2Rsrcη

m
` 3Mη

m
. (4.7)

4.4.3 Implications

We start by discussing the effect on the generalization ability of the source hypothesis combination.

Intuitively, a good source hypothesis combination should facilitate transfer learning, while a reasonable

algorithm must not fail if we provide it with bad one. That said, a natural question to ask here is, what

makes a good or bad source hypothesis? As in previous works in transfer learning and domain

adaptation, we capture this notion via a quantity that has two-fold interpretation: (1) the performance

of the source hypothesis combination on the target domain; (2) relatedness of the source and target

domains. In the theorems presented in the previous sections we denoted it by Rsrc, that is the risk

of the source hypothesis combination on the target domain. In this section we will consider various

regimes of interest with respect to Rsrc.

When the source is a bad fit. First consider the case when the source hypothesis combination hsrc
β

is useless for the purpose of transfer learning, for example, hsrc
β

pxq “ 0 for all x . This corresponds to

learning with no auxiliary information. Then we can assume that Rsrc ď M , and from Theorem 9 we
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obtain RpAhtl
S q´R̂pAhtl

S q ď O p1{pmλqq. This rate matches the one in the analysis of [123, Corollary 13.7]

(their bound in expectation can be extended to the high probability one, e.g. by using the technique

of [124]).

When the source is a good fit. Here we would like to consider the behavior of the algorithm in the

finite-sample and asymptotic scenarios. We first look at the regime when λ‹ is minimizing the bound

on RpAhtl
S q in Theorem 9. Suppose that such λ‹ obeys λ‹ “ Op

?
Rsrcq. In this case, the fast rate

independent from λ will dominate the bound, and we obtain the convergence rate of Op1{mq. In

other words, we can expect a much faster convergence when λ‹ provided by the oracle inequality

obeys λ‹ ! 1, and Rsrc, the quality of the combined source hypotheses, is of matching order. Now

consider the asymptotic behavior of the algorithm, particularly when m goes to infinity. In such case,

the algorithm exhibits a rate of O
`?

Rsrc{pmλq` 1{m
˘

, so Rsrc controls the constant factor of the rate.

Hence, the quantity Rsrc governs the transient regime for small λ‹ and the asymptotic behavior of the

algorithm, predicting a faster convergence in both regimes.

When source is a perfect fit. It is conceivable that the source hypothesis exploited is the perfect one,

that is Rsrc “ 0. In other words, the source hypothesis combination is a perfect predictor for the

target domain. Theorem 9 implies that RpAhtl
S q “ R̂pAhtl

S q with probability one. We note that for many

practically used smooth losses, such as the square loss, this setting is only realistic if the source and

target domains match and the problem is noise-free. However, we can observe Rsrc “ 0, for example,

when the squared hinge loss, ℓpz, yq “ maxt0,1 ´ z yu2, is used and all target domain examples are

classified correctly by the source hypothesis combination, case that is not unthinkable for related

domains.

Fast rates. There is a number of works in the literature on Uniform Convergence (UC) bounds inves-

tigating rates of convergence faster than 1{?
m subject to different conditions. The PAC literature

approached such bounds through relative VC bounds [141], local Rademacher complexity [5], and

Rademacher bounds for smooth loss classes [130].

In this chapter we follow a constructive analysis, which is in the spirit of the optimization literature

and derive bounds of order Op1{pmλq ` 1{mq, that is, free from 1{?
m terms. Bounds of similar

order, albeit in expectation, appear in [123], and also with high probability, albeit w.r.t. the uniform

stability [88]. Theorem 8 is in the spirit of these works, albeit with a few differences. The r.h.s. of the

first inequality in Theorem 8 vanishes when the algorithm is perfectly stable. Though intuitively trivial,

this allows to prove a considerable result in the theory of transfer learning as it quantifies the intuition

that no learning is necessary if the source hypothesis has perfect performance on the target task. A

bound similar to (4.6) can be achieved through the results of [123], however, in expectation rather than

with high probability. The results of [88] cannot be employed to achieve a similar bound because of

the stronger, distribution-free notion of stability.

Fast rates for ERM with a smooth loss have been thoroughly analyzed by [130] through the UC ar-

gument. Yet, the analysis of our HTL algorithm within their framework would yield a bound that is

inferior to ours in two respects. The first concerns the scenario when the combined source hypothesis

is perfect, that is Rsrc “ 0. The generalization bound of [130] does not offer a way to show that the

empirical risk converges to the risk with probability one – instead one can only hope to get a fast rate

of convergence. The second problem is in the fact that such bound would depend on the empirical
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performance of the combined source hypothesis. As we have noted before, the quantity Rsrc is essential

because it captures the degree of relatedness between two domains. In their bounds, one cannot

obtain this relationship through the Rademacher complexity term. The reason for this is the strong

notion of Rademacher complexity that is employed by that framework, involving a supremum over the

sample instead of an expectation.

4.4.4 Comparison to Theories of Domain Adaptation and Transfer Learning

The setting in DA is different from the one we study, however, we will briefly discuss the theoretical

relationship between the two. Typically in DA, one trains a hypothesis from an weighted source

training set, striving to achieve good performance on the target domain. The key question here is how

to alter, or to adapt, the source training set. To answer this question, the DA literature introduces the

notion of domain relatedness, which quantifies the dissimilarities between the marginal distributions

of corresponding domains. Practically, in some cases the domain relatedness can be estimated

through a large set of unlabeled samples drawn from both source and target domains. Theories

of DA [8, 93, 10, 92, 26] have proposed a number of such domain relatedness criteria. Perhaps the

most well known are the dH ∆H -divergence [8] and its more general counterpart, the Discrepancy

Distance [93]. Typically, this divergence is explicitated in the generalization bound along with other

terms controlling the generalization on the target domain. Let RDtrg phq and RDsrc phq denote the risks of

the hypothesis h, measured w.r.t. the target and source distributions. Then a well-known result of [8]

suggests that for all h P H

RDtrg phq ď RDsrc phq` 1

2
dH ∆H pDsrc,Dtrgq`ε‹

H
, (4.8)

where ε‹
H

“ minhPH tRDtrg phq` RDsrc phqu. This result implies that adaptation is possible given that

dH ∆H pDsrc,Dtrgq and ε‹ are small. One can try to reduce those by controlling the complexity of

the class H and by minimizing the divergence dH ∆H pDsrc,Dtrgq. In practice, the latter can be

manipulated through an empirical counterpart on the basis of unlabeled samples. Increasing the

complexity of H indeed reduces ε‹, but inflates dH ∆H pDsrc,Dtrgq. On the other hand, minimizing

dH ∆H pDsrc,Dtrgq alone puts us under the risk of increasing ε‹, since the empirical divergence is

reduced without taking the labeling into account.

Clearly, this bound cannot be directly compared to our result, Theorem 9. However, we note the

term Rsrc appearing in our results, which plays a role very similar to dH ∆H in (4.8). Observe that by

using (4.8) we can write

Rsrc “ RDtrg phsrc

β̂S

q ď RDsrc phsrc

β̂S

q` dH ∆H pDsrc,Dtrgq`ε‹
H

.

Plugging this into the generalization bound (4.6) we have

RpASq´ R̂SpASq “ O

¨
˝

b
RDsrc phsrc

β̂S

q` dH ∆H pDsrc,Dtrgq`ε‹
H

mλ
` 1

m

˛
‚ . (4.9)

Albeit this inequality shows the generalization ability of the transfer learning algorithm, comparing

to (4.8), we observe that DA and our result agree on the fact that the divergence between the domains
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has to be small to generalize well. In fact, in the formulation we consider, the divergence is controlled

in two ways: implicitly, by the choice of source hypotheses and through the size of class H , that is by

choosing λ. Second, in DA we expect that a hypothesis performs well on the target only if it performs

well on the source. In our results, this requirement is relaxed. As a side note, we observe that (4.9)

captures an intuitive notion that a good source hypothesis has to perform well on its own domain.

Finally, in the theory of DA ε‹
H

is assumed to be small. Indeed, if ε‹
H

is large, there is no hypothesis

that is able to perform well on both domains simultaneously, and therefore adaptation is hopeless. In

our case, the algorithm can still generalize even with large ε‹
H

, however this is due to the supervised

nature of HTL.

We now turn our attention to the previous theoretical works studying HTL-related settings. Few papers

have addressed the theory of transfer learning, where the only information passed from the source

domain is the classifier or regressor. [92] have addressed the problem of multiple source hypotheses

combination, however, in a different setting. Specifically, in addition to the source hypotheses, the

learner receives the unlabeled samples drawn from the source distributions, that are used to weigh

and combine these source hypotheses. The authors have presented a general theory of such a scenario

and did not study the generalization properties of any particular algorithm. The first analysis of the

generalization ability of HTL in the similar context we consider here was done in Chapter 3 and in [76].

The work focused on the L2-regularized least squares and the generalization bound involving the

leave-one-out risk instead of the empirical one. The following result, obtained through an algorithmic

stability argument [17], holds with probability at least 1 ´δ

Rphtrgq ď R̂ loophtrgq`O

ˆ
4
?

Rsrc

?
mδλ0.75

˙
, (4.10)

where Rsrc is the risk of a single fixed source hypothesis and htrg is the solution of a Regularized Least

Square problem. We first observe that the shape of the bound is similar to the one obtained in this

chapter, although with a number of differences. First, contrary to our presented bounds, their bound

assumes the use of a fixed source hypothesis, that is not even weighted by any coefficient. In practice,

this is a very strong assumption, as one can receive an arbitrarily bad source and have no way to

exclude it. Second, the bound (4.10) seems to have a vanishing behavior whenever the risk of the

source Rsrc is equal to zero. This comes at the cost of the use of a weaker concentration inequality.

In Theorem 9 we manage to obtain the same behavior with high probability. Finally, we get a better

dependency on Rsrc.

4.5 Conclusion

In this chapter we have formally captured and theoretically analyzed a general family of learning

algorithms transferring information from multiple supplied source hypotheses. In particular, our

formulation stems from the regularized Empirical Risk Minimization principle with the choice of any

non-negative smooth loss function and any strongly convex regularizer. Theoretically we have analyzed

the generalization ability and excess risk of this family of HTL algorithms. Our analysis showed that a

good source hypothesis combination facilitates faster generalization, specifically in Op1{mq instead of

the usual Op1{
?

mλq of UC argument or Op1{pmλqq of algorithmic stability one. Furthermore, given a

perfect source hypothesis combination, our analysis is consistent with the intuition that learning is
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not required.

Our conclusions suggest the key importance of a source hypothesis selection procedure. Indeed, when

an algorithm is provided with enormous pool of source hypotheses, how to select relevant ones on the

basis of only few labeled examples? This might sound similar to the feature selection problem under

the condition that n " m, however, earlier empirical studies by [137] with hundreds of sources did not

find much corroboration for this hypothesis when applying L1 regularization. In Chapter 6 we will

present a greedy algorithm that learns well from few examples given hundreds of source hypotheses.

Despite its generality, the analysis presented in this section is limited to smooth, convex, and regu-

larized learning problems. In the next chapter we will approach HTL from a different angle – from a

point of view of stochastic optimization, which will allow us to prove generalization bounds also for

non-convex objective functions, such as in deep learning.
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5 Hypothesis Transfer Learning through

Stochastic Optimization

The material of this chapter is based on the publication:

I. Kuzborskij and C. H. Lampert. Data-Dependent Stability of Stochastic Gradient Descent.

(Under submission) In arXiv preprint arXiv:1703.01678, 2017

The doctoral candidate formalized the problem, proved the results, and wrote most of the publica-

tion.

5.1 Overview

Stochastic Gradient Descent (SGD) has become one of the workhorses of modern machine learning. In

particular, it is the optimization method of choice for training highly complex and non-convex models,

such as neural networks. When it was observed that these models generalize better (suffer less from

overfitting) than classical machine learning theory suggests, a large theoretical interest emerged to

explain this phenomenon. Given that SGD at best finds a local minimum of the non-convex objective

function, it has been argued that all such minima might be equally good. However, at the same time, a

large body of empirical work and tricks of trade, such as early stopping, suggests that in practice one

might not even reach a minimum, yet nevertheless observes excellent performance.

In this chapter we follow an alternative route that aims to directly analyze the generalization ability

of SGD by studying how sensitive it is to small perturbations in the training set. This is known as the

algorithmic stability approach [17] and was used recently [57] to establish generalization bounds for

both convex and non-convex learning settings. To do so they employed a rather restrictive notion of

stability that does not depend on the data, but captures only intrinsic characteristics of the learning

algorithm and global properties of the objective function. Consequently, their analysis results in

worst-case guarantees that in some cases tend to be too pessimistic. As recently pointed out in [147],

deep learning might indeed be such a case, as this notion of stability is insufficient to give deeper

theoretical insights, and a less restrictive one is desirable.
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As our main contribution in this chapter we establish that a data-dependent notion of algorithmic

stability, very similar to the On-Average Stability [124], holds for SGD when applied to convex as well as

non-convex learning problems. As a consequence we obtain new generalization bounds that depend

on the data-generating distribution and the initialization point of an algorithm. For convex loss

functions, the bound on the generalization error is multiplicative in the risk at the initialization point.

For non-convex loss functions, besides the risk, it is also critically controlled by the expected second-

order information about the objective function at the initialization point. We further corroborate

our findings empirically and show that, indeed, the data-dependent generalization bound is tighter

than the worst-case counterpart on non-convex objective functions. Finally, the nature of the data-

dependent bounds allows us to state optimistic bounds that switch to the faster rate of convergence

subject to the vanishing empirical risk.

In particular, our findings justify the intuition that SGD is more stable in less curved areas of the

objective function and link it to the generalization ability. This also backs up numerous empirical

findings in the deep learning literature that solutions with low generalization error occur in less curved

regions. At the same time, in pessimistic scenarios, our bounds are no worse than those of [57].

Finally, we exemplify an application of our bounds, and propose a simple yet principled hypothesis

transfer learning scheme for the convex and non-convex case, which is guaranteed to transfer from the

best source of information. In addition, this approach can also be used to select a good initialization

given a number of random starting positions. This is a theoretically sound alternative to the purely

random commonly used in non-convex learning.

The rest of the chapter is organized as follows. We revisit the connection between stability and

generalization of SGD in Section 5.3 and introduce a data-dependent notion of stability in Section 5.4.

We state the main results in Section 5.5, in particular, Theorem 13 for the convex case, and Theorem 15

for the non-convex one. Next we demonstrate empirically that the bound shown in Theorem 15 is

tighter than the worst-case one in Section 5.5.2. Finally, we suggest application of these bounds by

showcasing principled transfer learning approaches in Section 5.5.3, and we conclude in Section 5.6.

5.2 Related Work

Algorithmic stability has been a topic of interest in learning theory for a long time, however, the modern

approach on the relationship between stability and generalization goes back to the milestone work

of [17]. They analyzed several notions of stability, which fall into two categories: distribution-free

and distribution-dependent ones. The first category is usually called uniform stability and focuses on

the intrinsic stability properties of an algorithm without regard to the data-generating distribution.

Uniform stability was used to analyze many algorithms, including regularized ERM [17], randomized

aggregation schemes [42], and recently SGD by [57, 89], and [112]. Despite the fact that uniform

stability has been shown to be sufficient to guarantee learnability, it can be too pessimistic, resulting in

worst-case rates.

In this chapter we are interested in the data-dependent behavior of SGD, thus the emphasis will fall on

the distribution-dependent notion of stability, known as on-average stability, explored thoroughly

in [124]. The attractive quality of this less restrictive stability type is that the resulting bounds are
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controlled by how stable the algorithm is under the data-generating distribution. For instance, in [17]

and [36], the on-average stability is related to the variance of an estimator. In [123, Sec. 13], the authors

show risk bounds that depend on the expected empirical risk of a solution to the regularized ERM. In

turn, one can exploit this fact to state improved optimistic risk bounds, for instance, ones that exhibit

fast-rate regimes [71, 52], or even to design enhanced algorithms that minimize these bounds in a

data-driven way, e.g. by exploiting side information as in transfer [76, 11] and metric learning [110].

Here, we mainly focus on the latter direction in the context of SGD: how stable is SGD under the

data-generating distribution given an initialization point? We also touch the former direction by taking

advantage of our data-driven analysis and show optimistic bounds as a corollary.

We will study the on-average stability of SGD for both convex and non-convex loss functions. In the

convex setting, we will relate stability to the risk at the initialization point, while previous data-driven

stability arguments usually consider minimizers of convex ERM rather than a stochastic approxi-

mation [123, 71]. Beside convex problems, our work also covers the generalization ability of SGD

on non-convex problems. Here, we borrow techniques of [57] and extend them to the distribution-

dependent setting. That said, while the bounds of [57] are stated in terms of worst-case quantities,

ours reveal new connections to the data-dependent second-order information. These new insights

also partially justify empirical observations in deep learning about the link between the curvature and

the generalization error [61, 68, 23]. At the same time, our work is an alternative to the theoretical

studies of neural network objective functions [25, 67], as we focus on the direct connection between

the generalization and the curvature.

In this light, our work is also related to non-convex optimization by SGD. The literature on this subject

typically studies rates of convergence to the stationary points [50, 1, 114], and ways to avoid saddles [48,

84]. However, unlike these works, and similarly to [57], we are interested in the generalization ability

of SGD, and thanks to the stability approach, involvement of stationary points in our analysis is not

necessary.

Finally, we propose an example application of our findings in TL. For instance, by controlling the

stability bound in a data-driven way, one can choose an initialization that leads to improved general-

ization. This is related to TL where one transfers from pre-trained models [77, 137, 109, 11], especially

popular in deep learning due to its data-demanding nature [46]. The theoretical literature on this topic

is mostly focused on the ERM setting and PAC-bounds, while our analysis of SGD yields guarantees as

a corollary.

5.3 Stability of Stochastic Gradient Descent

First, we briefly revisit the link between stability and generalization focusing on stability of stochastic

learning algorithms.

5.3.1 Uniform Stability and Generalization

On an intuitive level, a learning algorithm is said to be stable whenever a small perturbation in the

training set does not affect its outcome too much. Of course, there is a number of ways to formalize

the perturbation and the extent of the change in the outcome, and we will discuss some of them
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below. The most important consequence of a stable algorithm is that it generalizes from the training

set to the unseen data sampled from the same distribution. In other words, the difference between

the risk RpASq and the empirical risk R̂SpASq of the algorithm’s output is controlled by the quantity

that captures how stable the algorithm is. So, to observe good performance, or a decreasing true

risk, we must have a stable algorithm and decreasing empirical risk (training error), which usually

comes by design of the algorithm. In this chapter we focus on the stability of the Stochastic Gradient

Descent (SGD) algorithm, and thus, as a consequence, we study its generalization ability.

Recently, [57] used a stability argument to prove generalization bounds for learning with SGD. Specifi-

cally, the authors extended the notion of the uniform stability originally proposed by [17], to accom-

modate randomized algorithms.

Definition 14 (Uniform stability). A randomized algorithm A is ǫ-uniformly stable if for all datasets

S,Spiq P Z
m such that S and Spiq differ in the i -th example, we have

sup
zPZ ,iPrms

!
E
A

rℓpAS , zq´ℓpASpiq , zqs
)

ď ǫ .

Since SGD is a randomized algorithm, we have to cope with two sources of randomness: the data-

generating process and the randomization of the algorithm A itself, hence we have statements in

expectation. The following theorem of [57] shows that the uniform stability implies generalization in

expectation.

Theorem 11. Let A be ǫ-uniformly stable. Then,

ˇ̌
ˇ̌ E
S,A

“
R̂SpASq´ RpASq

‰ˇ̌
ˇ̌ ď ǫ .

Thus it suffices to characterize the uniform stability of an algorithm to state a generalization bound.

In particular, [57] showed generalization bounds for SGD under different assumptions on the loss

function ℓ. Despite that these results hold in expectation, other forms of generalization bounds, such

as high-probability ones, can be derived from the above [124].

Apart from SGD, uniform stability has been used before to prove generalization bounds for many

learning algorithms [17]. However, these bounds typically suggest worst-case generalization rates,

and rather reflect intrinsic stability properties of an algorithm. In other words, uniform stability is

oblivious to the data-generating process and any other side information, which might reveal scenarios

where generalization occurs at a faster rate. In turn, these insights could motivate the design of

improved learning algorithms. In the following we address some limitations of the analysis through

uniform stability by using a less restrictive notion of stability. We extend the setting of [57] by proving

data-dependent stability bounds for convex and non-convex loss functions. In addition, we also take

into account the initialization point of an algorithm as a form of supplementary information, and we

dedicate special attention to its interplay with the data-generating distribution. Finally, we discuss

situations where one can explicitly control the stability of SGD in a data-dependent way.
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5.4 Data-dependent Stability Bounds for SGD

In this section we describe a notion of data-dependent algorithmic stability, that allows us to state

generalization bounds which depend not only on the properties of the learning algorithm, but also on

the additional parameters of the algorithm. We indicate such additional parameters by θ, and therefore

we denote stability as a function ǫpθq. In particular, in the following we will be interested in scenarios

where θ describes the data-generating distribution and the initialization point of SGD.

Definition 15 (On-Average stability). A randomized algorithm A is ǫpθq-on-average stable if it is true

that

sup
iPrms

"
E
A
E

S,z
rℓpAS , zq´ℓpASpiq , zqs

*
ď ǫpθq ,

where S
iid„ D

m and Spiq is its copy with i -th example replaced by z
iid„ D.

Our definition of on-average stability resembles the notion introduced by [124]. The difference lies

in the fact that we take supremum over index of replaced example. A similar notion was also used

by [17] and later by [42] for analysis of a randomized aggregation scheme, however their definition

involves absolute difference of losses. The dependence on θ also bears similarity to the recent work

of [89], however, there, it is used in the context of uniform stability. The following theorem shows that

an on-average - stable random algorithm is guaranteed to generalize in expectation.

Theorem 12. Let an algorithm A be ǫpθq-on-average stable. Then,

E
S
E
A

“
RpASq´ R̂SpASq

‰
ď ǫpθq .

Proof (sketch). For any S “ tzi um
i“1

iid„ D
m , let Spiq be its copy with i -th example replaced by z

iid„ D. We

relate expected empirical risk and expected risk by

E
S
E
A

rRpASqs “ E
S
E
A
rR̂SpASqs`δ , where δ“ 1

m

mÿ

i“1

E
S,z

E
A

rℓpAS , zq´ℓpASpiq , zqs .

We further get that

δď sup
iPrms

"
E

S,z
E
A

rℓpAS , zq´ℓpASpiq , zqs
*

ď ǫpθq .

The theorem follows as by definition, the r.h.s. is bounded by ǫpθq.

5.5 Main Results

Before presenting our main results in this section, we discuss algorithmic details and assumptions.

In the following we assume that the hypothesis space (parameter space) H ĎR
d . We will study the

following variant of SGD: given a training set S “ tzi um
i“1

iid„ D
m , step sizes tαt uT

t“1, random indices
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I “ t jt uT
t“1, and an initialization point w 1, perform updates

w t`1 “ w t ´αt∇ℓpw t , z jt
q

for T ď m steps. We assume that the indices in I are sampled from the uniform distribution over rms
without replacement, and that this is the only source of randomness for SGD. In practice this corre-

sponds to permuting the training set before making a pass through it, as it is commonly done in practi-

cal applications. All presented theorems assume that the loss function used by SGD is non-negative,

Lipschitz, and β-smooth. Examples of such commonly used loss functions are the logistic/softmax

losses and neural networks with sigmoid activations. Convexity of loss functions or Lipschitzness of

Hessians will only be required for some results, and we will denote it explicitly when necessary. Proofs

for all the statements in this section are given in Appendix C.

5.5.1 Convex Losses

First, we present a new and data-dependent stability result for convex losses.

Theorem 13. Assume that ℓ is convex, and that the SGD step sizes satisfy αt ď 2
β , @t P rT s. Then SGD is

ǫpD, w 1q-on-average stable with

ǫpD, w 1q ď 2L
a

2βRpw 1q
m

Tÿ

t“1

αt .

Under the same assumptions, [57] showed a uniform stability bound ǫ ď 2L2

m

řT
t“1αt . Our bound

differs since it involves a multiplicative risk at the initialization point, that is
a

Rpw 1q, in place of

a Lipschitz constant. Thus, our bound corroborates the intuition that whenever we start at a good

location of the objective function, the algorithm is more stable and thus generalizes better. In the

extreme case of Rpw 1q “ 0, the theorem confirms that SGD, in expectation, does not need to make any

updates and is therefore perfectly stable. Note that a result of this type cannot be obtained through the

more restrictive uniform stability, precisely because such bounds on the stability must hold even for a

worst-case choice of data distribution and initialization. In contrast, the notion of stability we employ

depends on the data-generating distribution, which allowed us to introduce dependency on the risk.

Furthermore, consider that we start at arbitrary location w 1: assuming that the loss function is

bounded for a concrete H and Z , the rate of our bound up to a constant is no worse than that of [57].

Finally, one can always tighten this result by taking the minimum of two stability bounds.

A data-dependent argument, very similar to the one used in the proof of Theorem 13 can be also

applied to prove the following optimistic bound for learning on convex problems with SGD.

Theorem 14. Assume that ℓ is convex, and that the SGD step sizes satisfy αt “ c
t

ď 2
β , @t P rT s. Then

the output of SGD obeys

E
S,A

“
RpASq´ R̂SpASq

‰
ď 4 4

a
βRpw 1q

?
cT

m

c
E

S,A

“
R̂SpASq

‰
` 16

a
βRpw 1qcT

m2
. (5.1)
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The bound of Theorem 14 is usually called optimistic because for a vanishing expected empirical

risk, it manifests the fast decay of the generalization error. In particular, in our case, the fast rate is

Op
a

Rpw 1qT {m2q. For the common choice of m “ OpT q, this expression reduces to the more familiar

looking Op
a

Rpw 1q{mq. Optimistic bounds for convex learning were extensively studied in recent

years in PAC and stochastic optimization settings. PAC literature approached such bounds through

relative VC bounds [141], local Rademacher complexity [5], and Rademacher bounds for smooth loss

classes [130]. The stochastic optimization literature usually studied optimistic bounds constructively,

e.g. for stochastic mirror descent [130] when learning with smooth losses, and stochastic online Newton

step [91] for exp-concave loss functions. Here we focus on the comparison to [130], since their results

assume only smoothness of the loss function, while others impose stronger assumptions. In particular,

we consider Corollary 3 of [130], showing the bound on the estimation error ESrRpASqss´ R‹pH q for

stochastic optimization. In other words, their bound characterizes the estimation error, and therefore

it is not directly comparable to ours. However, their proof technique also allows to obtain the bound

on the generalization error of a shape similar to the consistency one (similarly as in [130, Theorem 1]).

The main difference of our bound (5.1) from [130] is a novel multiplicative dependency on the risk at

the initialization point Rpw 1q, and thus our bound suggests improvement over the previous one in

warm-start scenarios, especially where the initialization point is close to the optimal one.

5.5.2 Non-convex Losses

Now we state a new stability result for non-convex losses.

Theorem 15. Assume that ℓp¨, zq P r0,1s and has a ρ-Lipschitz Hessian, and that step sizes of a form

αt “ c
t

satisfy c ď min
!

1
β , 1

4p2β lnpT qq2

)
. Then SGD is ǫpD, w 1q-on-average stable with

ǫpD, w 1q ď
1 ` 1

cγ

m

`
2cL2

˘ 1
1`cγ

ˆ
E

S,A
rRpASqs ¨ T

˙ cγ

1`cγ

, where (5.2)

γ :“ min
!
β, E

z

“››∇2ℓpw 1, zq
››

2

‰
` cρp1 ` lnpT qq

b
2βRpw 1q

)
. (5.3)

In particular, γ characterizes how the curvature at the initialization point affects stability, and hence

the generalization error of SGD. Since γ heavily affects the rate of convergence in (5.2), and in most

situations a smaller γ yields higher stability, we now look at a few cases of its behavior. Consider a

regime such that γ is of the order Θ̃
`
Er}∇2ℓpw 1, zq}2s`

a
Rpw 1q

˘
, or in other words, that stability is

controlled by the curvature and the risk of the initialization point w 1. This suggests that starting from

a point in a less curved region with low risk should yield higher stability, and therefore as predicted by

our theory, allow for faster generalization. In addition, we observe that the considered stability regime

offers a principled way to pre-screen a good initialization point in practice, by choosing the one that

minimizes the spectral norm of the Hessian and the risk.

Next, we focus on a more specific case. Suppose that we choose a step size αt “ c
t

such that γ ď
Θ̃pEr}∇2ℓpw 1, zq}2sq, yet not too small, so that the empirical risk can still be decreased. Then, stability

is dominated by the curvature around w 1. Indeed, lower generalization errors on non-convex problems,

such as training deep neural networks, have been observed empirically when SGD is actively guided [61,

54, 23] or converges to solutions with low curvature [68]. However, to the best of our knowledge,
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Theorem 15 is the first to establish a theoretical link between the curvature of the loss function and the

generalization ability of SGD in a data-dependent sense.

Theorem 15 allows us to show the following statement that further reinforces the effect of the initializa-

tion point on the generalization error.

Corollary 2. Under the conditions of Theorem 15 we have that SGD is ǫpD, w 1q-on-average stable with

ǫpD, w 1q ď O

˜
1 ` 1

cγ

m
pRpw 1q ¨ T q

cγ

1`cγ

¸
. (5.4)

We take a moment to discuss the role of the risk term in pRpw 1q ¨ T q
cγ

1`cγ . Observe that ǫpD, w 1q Ñ 0 as

Rpw 1q Ñ 0, in other words, the generalization error approaches zero as the risk of the initialization

point vanishes. This is an intuitive behavior, however, uniform stability does not capture this due to

its distribution-free nature. Finally, we note that [57, Theorem 3.8] showed a bound similar to (5.2),

however, in place of γ their bound has a Lipschitz constant of the gradient. The crucial difference lies

in the term γ which is now not merely a Lipschitz constant, but rather depends on the data-generating

distribution and initialization point of SGD. We compare to their bound by considering the worst case

scenario, namely, that SGD is initialized in a point with high curvature, or altogether, that the objective

function is highly curved everywhere. Then, at least our bound is no worse than the one of [57], since

γďβ.

Theorem 15 also allows us to prove an optimistic generalization bound for learning with SGD on

non-convex objectives.

Corollary 3. Under the conditions of Theorem 15 we have that the output of SGD obeys

E
S,A

“
RpASq´ R̂SpASq

‰
ď O

˜
1 ` 1

cγ

m
¨ max

#ˆ
E

S,A

“
R̂SpASq

‰
¨ T

˙ cγ

1`cγ

,

ˆ
T

m

˙cγ
+¸

.

An important consequence of Corollary 3 is that for a vanishing expected empirical risk, in particular

for ES,ArR̂SpASqs “ O
`

T cγ

m1`cγ

˘
, the generalization error behaves as O

`
T cγ

m1`cγ

˘
. Considering the full pass,

that is m “ OpT q, we have an optimistic generalization error of order O p1{mq instead of Opm
´ 1

1`cγ q.

We note that PAC bounds with a similar optimistic message (although not directly comparable), but

without curvature information can also be obtained through empirical Bernstein bounds as in [96].

However, a PAC bound does not suggest a way to minimize non-convex empirical risk in general,

where, on the other hand, SGD is known to work reasonably well.

Tightness of Non-convex Bounds

Next we empirically assess the tightness of our non-convex generalization bounds on real data. In the

following experiment we train a neural network with three convolutional layers interlaced with max-

pooling, followed by a fully connected layer with 16 units, on the MNIST dataset. This totals in a model

with 18K parameters. Figure 5.1 compares our data-dependent bound (5.2) to the distribution-free one

of [57, Theorem 3.8]. As as a reference we also include an empirical estimate of the generalization error
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taken as an absolute difference of the validation and training average losses. Since our bound also

depends on the initialization point, we plot (5.2) for multiple “warm-starts”, with SGD initialized from

a pre-trained position. We consider 7 such warm-starts at every 200 steps, and report data-dependent

quantities used to compute (5.2) just beneath the graph. Our first observation is that, clearly, the data-

dependent bound gives tighter estimate, by roughly one order of magnitude. Second, simulating start

from a pre-trained position suggests even tighter estimates: we suspect that this is due to decreasing

validation error which is used as an empirical estimate for Rpw 1q which effects heavily bound (5.2).

Figure 5.1 – Empirical tightness of data-

dependent and uniform generalization

bounds evaluated by training a convolu-

tional neural network.

We compute an empirical estimate of the expected Hes-

sian spectral norm by the power iteration method using

an efficient Hessian-vector multiplication method [108].

Since the bounds depend on constants L, β, and ρ,

we estimate them heuristically by tracking maximal

values of the gradient and Hessian norms through-

out optimization. We compute bounds with estimates

L̂ “ 78.72, β̂“ 1692.28, ρ̂ “ 3823.73, and c “ 10´3. Note

that actual constants can only be larger than estimated

ones, and thus, discrepancy between the worst-case

and the data-dependent bound can be even larger.

5.5.3 Application to Transfer Learning

One example application of the data-dependent

bounds presented before lies in Transfer Learning (TL),

where we are interested in achieving faster generaliza-

tion on a target task by exploiting side information that

originates from different but related source tasks. The

literature on TL explored many ways to do so, and here

we will focus on the one that is most compatible with

our bounds. More formally, suppose that the target task

at hand is characterized by a joint probability distribution D, and as before we have a training set

S
iid„D

m . Some TL approaches also assume access to the data sampled from the distributions associated

with the source tasks. Here we follow a conservative approach – instead of the source data, we receive a

set of source hypotheses
�

w src
k

(K

k“1
Ă H , trained on the source tasks. The goal of a learner is to come

up with a target hypothesis, which in the optimistic scenario generalizes better by relying on source

hypotheses. In the TL literature this is known as HTL [77], that is, we transfer from the source hypothe-

ses which act as a proxy to the source tasks and the risk Rpw src
k

q quantifies how much the source and

target tasks are related. In the following we will consider SGD for HTL, where the source hypotheses

act as initialization points. First, consider learning with convex losses: Theorem 13 depends on Rpw 1q,

thus it immediately quantifies the relatedness of the source and target tasks. So it is enough to pick the

point that minimizes the stability bound to transfer from the most related source. Then, bounding

Rpw src
k

q by R̂Spw src
k

q through Hoeffding bound along with union bound gives with high probability
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that

min
kPrK s

ǫpD, w src
k q ď min

kPrK s
O

˜
R̂Spw src

k q`
c

logpK q
m

¸
.

Hence, the most related source is the one that simply minimizes empirical risk. Similar conclusions

drawn in the HTL literature, albeit in the context of ERM. Matters are slightly more complicated in

the non-convex case. We take a similar approach, however, now we minimize stability bound (5.4),

and for the sake of simplicity assume that we make a full pass over the data, so T “ m. Minimizing the

following empirical upper bound selects the best source.

Proposition 1. Let γ̂˘
k

“ 1
m

řm
i“1 }∇2ℓpw src

k
, zi q}2 `λ

b
R̂Spw src

k
q˘O

`
4
a

logpK q{m
˘

, where λ“ cρp1`
lnpT qq

a
2β. Then with high probability we have that

min
kPrK s

ǫpD, w src
k q ď min

kPrK s
O

¨
˝

˜
1 ` 1

cγ̂´
k

¸
R̂Spw src

k q
cγ̂

`
k

1`cγ̂
`
k ¨

a
logpK q

m

1

1`cγ̂
`
k

˛
‚ .

We also note that there is no restriction on the origin of the source hypotheses w src
k

. In general, these

can even be random guesses, in which case we would be pre-screening a good starting position. Finally,

γ̂k involves estimation of the spectral norm of the Hessian, which is computationally cheaper to

evaluate compared to the complete Hessian matrix [108]. This is particularly relevant for deep learning,

where computation of the Hessian matrix can be prohibitively expensive.

5.6 Conclusion

In this chapter we proved data-dependent stability bounds for SGD and revisited its generalization

ability. We presented novel bounds for convex and non-convex smooth loss functions, partially

controlled by data-dependent quantities, while previous stability bounds for SGD were derived through

the worst-case analysis. In particular, for non-convex learning, we demonstrated theoretically that

generalization of SGD is heavily affected by the expected curvature around the initialization point. We

demonstrated empirically that our bound is indeed tighter compared to the uniform one. In addition,

our data-dependent analysis also allowed us to show optimistic bounds on the generalization error of

SGD, which exhibit fast rates subject to the vanishing empirical risk of the algorithm’s output. Finally,

we exploited this fact, presenting a simple and data-driven hypothesis transfer learning approach

which directly minimizes the bound.
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6 Greedy Algorithms for Hypothesis Trans-

fer Learning

The material of this chapter is based on the publication:

I. Kuzborskij, F. Orabona, and B. Caputo. Scalable Greedy Algorithms for Transfer Learning.

In Computer Vision and Image Understanding 156 (2017): 174-185.

The doctoral candidate formalized the problem, designed the algorithms, evaluated the algo-

rithms, proved the theoretical results, and wrote most of the publication.

6.1 Overview

Over the last few years, the visual recognition research landscape has been heavily dominated by Con-

volutional Neural Networks, thanks to their ability to leverage effectively massive amounts of training

data [38]. This trend dramatically confirms the widely accepted truth that any learning algorithm

performs better when trained on a lot of data. This is even more true when facing noisy or “hard”

problems such as large-scale recognition [35]. However, when tackling large scale recognition prob-

lems, gathering substantial training data for all classes considered might be challenging, if not almost

impossible. The occurrence of real-world objects follows a long tail distribution, with few objects

occurring very often, and many with few instances. Hence, for the vast majority of visual categories

known to human beings, it is extremely challenging to collect training data of the order of 104 ´ 105

instances. The “long tail” distribution problem was noted and studied by Salakhutdinov et al. [120],

who proposed to address it by leveraging on the prior knowledge available to the learner. Indeed,

learning systems are often not trained from scratch: usually they can be build on previous knowledge

acquired over time on related tasks [105]. The scenario of learning from few examples by transferring

from what is already known to the learner is collectively known as Transfer Learning. The target domain

usually indicates the task at hand and the source domain the prior knowledge of the learner.

Most of the transfer learning algorithms proposed in the recent years focus on the object detection

task (binary transfer learning), assuming access to the training data coming from both source and

target domains [105]. While featuring good practical performance [53], they often demonstrate poor
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scalability w.r.t. the number of sources. An alternative direction, known as a HTL [76, 11], consists

in transferring from the source hypotheses, that is classifiers trained from them. This framework is

practically very attractive [2, 137, 78], as it treats source hypotheses as black boxes without any regard

of their inner workings.

The goal of this chapter is to develop an HTL algorithm able to deal effectively and efficiently with

a large number of sources, where our working definition of large is at least 103. Note that this order

of magnitude is also the current frontier in visual classification [35]. To this end, we cast Hypothesis

Transfer Learning as a problem of efficient selection and combination of source hypotheses from a large

pool. We pose it as a subset selection problem building on results from the literature [30, 150]. We

present1 a greedy algorithm, ●�❡❡❞②❚▲, which attains state of the art performance even with a very

limited amount of data from the target domain. Morever, we also present a randomized approximate

variant of ●�❡❡❞②❚▲, called ●�❡❡❞②❚▲✲✺✾, that has a complexity independent from the number of

sources, with no loss in performance. Our key contribution is an L2-regularized variant of the Forward

Regression algorithm [58]. Since our algorithm can be viewed as a feature selection algorithm as well as

an hypothesis transfer learning approach, we extensively evaluate it against popular feature selection

and transfer learning baselines. We empirically demonstrate that ●�❡❡❞②❚▲ dominates all the baselines

in most small-sample transfer learning scenarios, thus proving the critical role of regularization in our

formulation. Experiments over three datasets show the power of our approach: we obtain state of the

art results in tasks with up to 1000 classes, totalling 1.2 million examples, with only 11 to 20 training

examples from the target domain. We back our experimental results by proving generalization bounds

showing that, under reasonable assumptions on the source hypotheses, our algorithm is able to learn

effectively with very limited data.

The rest of the chapter is organised as follows: after a review of the relevant literature in the field

(section 6.2), we cast the transfer learning problem in the subset selection framework (section 6.3).

We then define our ●�❡❡❞②❚▲, in section 6.4, deriving its formulation, analysing its computational

complexity and its theoretical properties. Section 6.5 describes our experimental evaluation and

discuss the related findings. We conclude with an overall discussion and presenting possible future

research avenues.

6.2 Related Work

The problem of how to exploit prior knowledge when attempting to solve a new task with limited,

if any, annotated samples is vastly researched. Previous work spans from transfer learning [105] to

domain adaptation [118, 8], and dataset bias [139]. Here we focus on the first. In the literature there

are several transfer learning settings [8, 118, 53]. The oldest and most popular is the one assuming

access to the data originating from both the source and the target domains [8, 53, 118, 40, 122, 135, 73].

There, one typically assumes that plenty of source data are available, but access to the target data is

limited: for instance, we can have many unlabeled examples and only few labeled ones [106]. Here we

focus on the Hypothesis Transfer Learning framework (HTL, [76, 11]). It requires to have access only

to source hypotheses, that is classifiers or regressors trained on the source domains. No assumptions

are made on how these source hypotheses are trained, or about their inner workings: they are treated

1We build upon preliminary results presented in [79].
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as “black boxes”, in spirit similar to classifier-generated visual descriptors such as Classemes [12]

or Object-Bank [85]. Several works proposed HTL for visual learning [2, 137, 101], some exploiting

more explicitly the connection with classemes-like approaches [65, 107], demonstrating an intriguing

potential. Although offering scalability, HTL-based approaches proposed so far have been tested on

problems with less than a few hundred of sources [137], already showing some difficulties in selecting

informative sources.

Recently, the growing need to deal with large data collections [35, 24] has started to change the focus

and challenges of research in transfer learning. Scalability with respect to the amount of data and

the ability to identify and separate informative sources from those carrying noise for the task at hand

have become critical issues. Some attempts have been made in this direction. For example, [87, 142]

used taxonomies to leverage learning from few examples on the SUN09 dataset. In [87], the authors

attacked the transfer learning problem on the SUN09 dataset by using additional data from another

dataset. Zero-shot approaches were investigated by [117] on a subset of the Imagenet dataset. Large-

scale visual detection has been explored by [142]. However, all these approaches assume access to all

source training data. A slightly different approach to transfer learning that aimed to cirumvent this

limitation is the reuse of a large convolutional neural network pre-trained on a large visual recognition

dataset. The simplest approach is to use the outputs of intermediate layers of such a network, such as

DeCAF [38] or Caffe [64]. A more sophisticated way of reuse is fine-tuning, a kind of warm-start, that

has been successfully exploited in visual detection [51] and domain adaptation [47, 90].

In many of these works the use of richer sources of information has been supported by an increase in

the information available in the target domain as well. From an intuitive point of view, this corresponds

to having more data points than dimensions. Of course, this makes the learning and selection process

easier, but in many applications it is not a reasonable hypothesis. Also, none of the proposed algorithms

has a theoretical backing.

While not explicitly mentioned before, the problem outlined above can also be viewed as a learning

scenario where the number of features is by far larger than the number of training examples. Indeed,

learning with classeme-like features [12, 85] when only few training examples are available can be seen

as a Hypothesis Transfer Learning problem. Clearly, a pure empirical risk minimization would fail due

to severe overfitting. In machine learning and statistics this is known as a feature selection problem,

and is usually addressed by constraining or penalizing the solution with sparsity-inducing norms.

One important sparsity constraint is a non-convex L0 pseudo-norm constraint }w}0 ď k, that simply

corresponds to choosing up to k non-zero components of a vector w . One usually resorts to the subset

selection methods, and greedy algorithms for obtaining solutions under this constraint [30, 31, 150, 151].

However, in some problems introducing an L0 constraint might be computationally difficult. There, a

computationally easier alternative is a convex relaxation of L0, the L1 regularization. Empirical error

minimization with L1 penalty with various loss functions (for square loss, this is known as Lasso) has

many favorable properties and is well studied theoretically [18]. Yet, the L1 penalty is known to suffer

from several limitations, one of which is poor empirical performance when there are many correlated

features. Perhaps the most famous way to resolve this issue is an elastic net regularization which is a

weighted mixture of L1 and squared L2 penalties [58]. Since our work partially falls into the category of

feature selection, we have extensively evaluated the aforementioned baselines in our task. As it will be

shown below, none of them achieves competitive performances compared to our approach.
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6.3 Transfer Learning through Subset Selection

Additional definitions. We introduce in this section additional definitions we will use in the rest of the

chapter. For x PR
d , the support of x is supppxq “ ti P t1, . . . ,du : xi ‰ 0u. Then, }x}0 “ |supppxq|. To

measure the accuracy of a learning algorithm, we have a non-negative loss function ℓphpxq, yq, which

measures the cost incurred in predicting hpxq instead of y . In particular, we will focus on the square

loss, ℓphpxq, yq “ phpxq´ yq2, for its appealing computational properties.

Source Selection. Assume that we are given a finite source hypothesis set thsrc
i

un
i“1

and the training set

tpx i , yi qum
i“1

. As in previous works [94, 137, 65], we consider the target hypothesis to be of the form

h
trg

w ,β
pxq “ w Jx `

nÿ

i“1

βi hsrc
i pxq, (6.1)

where w and β are found by the learning procedure. The essential parameter here is β, that is the one

controlling the influence of each source hypothesis. Previous works in transfer learning have focused

on finding β such that it minimizes the error on the training set, subject to some condition on β. In

particular, [137] proposed to minimize the leave-one-out error w.r.t. β, subject to }β}2 ď τ, which

is known to improve generalization for the right choice of τ [76]. A slightly different approach is to

use }β}1 ď τ regularization for this purpose [137], that induces solutions with most of the coefficients

equal to 0, thus assuming that the optimal β is sparse.

In this chapter we embrace a weaker assumption, namely, there exist up to k sources that collectively

improve the generalization on the target domain. Thus, we pose the problem of the Source Selection

as a minimization of the regularized empirical risk on the target training set, while constraining the

number of selected source hypotheses.

k-Source Selection. Given the training set
�`

rxJ
i

,hsrc
1 px i q, . . . ,hsrc

n px i qsJ, yi

˘(m

i“1
we have the optimal

target hypothesis h
trg

w ‹,β‹ by solving,

pw ‹,β‹q “ argmin
w ,β

!
R̂ph

trg

w ,β
q`λ}w}2

2 `λ}β}2
2

)
,

s.t }w}0 `}β}0 ď k. (6.2)

Notably, the problem (6.2) is a special case of the Subset Selection problem [30]: choose a subset of

size k from the n observation variables, which collectively give the best prediction on the variable of

interest. However, the Subset Selection problem is NP-hard [30]. In practice we can resort to algorithms

generating approximate solutions, for many of which we have approximation guarantees. Hence, due

to the extensive practical and theoretical results, we will treat the k-Source Selection as a Subset

Selection problem, building atop of existing guarantees.

We note that our formulation, (6.2), differs from the classical subset selection for the fact that it is

L2-regularized. This technical modification makes an essential practical and theoretical difference and

it is the crucial part of our algorithm. First, L2 regularization is known to improve the generalization

ability of empirical risk minimization. Second, we show that regularization also improves the quality
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6.4. Greedy Algorithm for k-Source Selection

of the approximate solution in situations when the sources, or features, are correlated. At the same

time, the experimental evaluation corroborates our theoretical findings: Our formulation substantially

outperforms standard subset selection, feature selection algorithms, and transfer learning baselines.

6.4 Greedy Algorithm for k-Source Selection

In this section we state the algorithm proposed in this chapter, ●�❡❡❞②❚▲2. In the following we will

denote by U “ t1, . . . ,n ` du the index set of all available source hypotheses and features, and by S, the

index set of selected ones.

GreedyTL. Let X P R
mˆd and y P t`1,´1um be the zero-mean unit-variance training set, thsrc

i
un

i“1
,

source hypothesis set, and k and λ, regularization parameters. Then, denote C “ Z JZ and b “ Z J y ,

where Z “
„

X
hsrc

1
px1q ¨¨¨ hsrc

n px1q

¨¨¨ ¨¨¨ ¨¨¨

hsrc
1

pxm q ¨¨¨ hsrc
n pxm q


, and select set S of size k as follows: (I) Initialize S Ð ∅ and

U Ð t1, . . . ,n ` du. (II) Keep populating S with i P U , that maximize bJ
S ppC `λI q´1

S
qJbS , as long as

|S| ď k and U is non-empty.

In this basic formulation, the algorithm requires to invert a pd ` nq-by-pd ` nq matrix at each iteration

of a greedy search. Clearly, this naive approach gets prohibitive with the growth of the number of

source hypotheses, feature dimensions, and desired subset size, since its computational complexity

would be in Opkpd ` nq4q. However, we note that in transfer learning one typically assumes that

the training set is much smaller than the number of sources and feature dimension. For this reason

we apply rank-one updates w.r.t. the dual solution of regularized subset selection, so that the size

of the inverted matrix does not change. A similar approach for feature selection with LSSVM was

proposed by [100]. The computational complexity then improves to Opkpd ` nqm2q. We present the

pseudocode of such a variant of our algorithm, GreedyTL with Rank-One Updates in Algorithm 1. The

computational complexity of the operations is shown at the end of each line.

Derivation of the Algorithm. We derive ●�❡❡❞②❚▲ by extending the well known Forward Regression

(FR) algorithm [30], which gives an approximation to the subset selection problem, one problem of

interest. FR is known to find a good approximation as far as features are uncorrelated [30]. In the

following, we build upon FR by introducing a Tikhonov (L2) regularization into the formulation. The

purpose of regularization is twofold: first, it improves the generalization ability of the empirical risk

minimization, and second, it makes the algorithm more robust to the feature correlations, thus opting

to find a better approximate solution.

First, we briefly formalize the subset selection problem. In a subset selection problem one tries to

achieve a good prediction accuracy on the predictor random variable Y , given a linear combination of

a subset of the observation random variables tXi un
i“1

. The least squares subset selection then reads as

min
|S|“k,wPRk

E

«˜
Y ´

ÿ

iPS

wi Xi

¸2ff
.

Now denote the covariance matrix of zero-mean unit-variance observation random variables by C

2Source code is available at https://iljaku.github.io
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Algorithm 1 GreedyTL with Rank-One Updates

Input: Z PR
mˆpd`nq – m examples formed from features and source predictions,

1: y P t´1,`1um – labels,

2: k P t1, . . . ,d ` nu,λ PR` – hyperparameters.

Output: w – target predictor.

3: U Ð t1, . . . ,d ` nu Ź All candidates

4: S Ð∅ Ź Selected sources and features

5: K Ð r0, . . . ,0s PR
mˆm

6: G Ðλ´1I PR
mˆm

7: while U ‰∅ and |S| ď k do

8:

i ‹ Ð argmax
iPU

#
yJpK ` z i zJ

i qG 1 y

ˇ̌
ˇ̌
ˇ G 1 Ð G ´

G z i zJ
i

G

1 ` zJ
i

G z i

+

Ź Oppd ` nqpm2 ` mqq
9:

10: Computing G 1: Ź Opm2 ` mq
11: Computing score of i : Ź Opm2 ` mq
12: S Ð S Yti ‹u
13: U Ð Uzti ‹u
14: K Ð K ` z i ‹ zJ

i ‹ Ź Opm2q
15: G Ð G ´ G z i‹ zJ

i‹G

1`zJ
i‹G z i‹

Ź Opm2 ` mq
16:

17: end while Ź Opkpd ` nqm2q
18: w Ð 0 PR

d`n

19: wi Ð zJ
i

G y , @i P S
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6.4. Greedy Algorithm for k-Source Selection

(a correlation matrix), and the correlations between Y and tXi um
i“1

as b. Note that the zero-mean

unit-variance assumption will be necessary to prove the theoretical guarantees of our algorithm. By

virtue of the analytic solution to least-squares and using the introduced notation, we can also state

the equivalent Subset Selection problem: max|S|“k bJ
S pC ´1

S
qJbS . However, our goal is to obtain the

solution to (6.2), or an L2-regularized subset selection. Similarly to the unregularized subset selection,

it is easy to see that (6.2) is equivalent to max|S|“k bJ
S ppC S `λI q´1qJbS . As said above, the Subset

Selection problem is NP-hard, however, there are several ways to approximate it in practice [31].

We choose FR for this task for its simplicity, appealing computational properties and provably good

approximation guarantees. Now, to apply FR to our problem, all we have to do is to provide it with

normalized matrix pC `λI q´1 instead of C ´1.

Approximated Randomized Greedy Algorithm. As mentioned above, the complexity of GreedyTL is

linear in d ` n, the number of features and the size of the source hypothesis set. In particular, the

search in U for the index to add to S is responsible for the dependency on d ` n. Here we show how to

approximate this search with a randomized strategy. We will use the following theorem.

Theorem 16 ([127](Theorem 6.33)). Denote by M :“ tx1, . . . , xmu Ă R a set of cardinality m, and by

M̃ Ă M a random subset of size m̃. Then the probability that max M̃ is greater or equal than n elements

of M is at least 1 ´p n
m

qm̃ .

The surprising consequence is that, in order to approximate the maximum over a set, we can use a

random subset of size Op1q. In particular, if we want to obtain results in the n
m

percentile range with

1´η confidence, we use3 m̃ “ logpηq
log n

m

. Practically, if we desire values that are better than 95% of all other

estimates with 1 ´ 0.05 probability, then 59 samples are sufficient. This rule is commonly called the

59-trick and it has been widely used to speed-up a wide range of algorithms with negligible loss of

accuracy, e.g. [37, 128]. Indeed, as we will show in Section 6.5.4, we virtually don’t lose any accuracy

using this strategy.

With the 59-trick, the search in U becomes a search for the maximum over a random set of size 59.

So, the overall complexity is reduced to Opkm2q, that is independent from all the quantities that are

expected to be big.

Theoretical Guarantees. We now focus on the analysis of the generalization properties of ●�❡❡❞②❚▲

for solving k-Source Selection problem (6.2). Throughout this paragraph we will consider a truncated

target predictor h
trg

w ,β
pxq :“ T

`
w Jx `

řn
i“1βi hsrc

i
pxq

˘
, with Tpaq :“ mintmaxta,´1u,1u. We will also

use big-O notation Õ to indicate the supression of a logarithmic factor, in other words, f pxq P Õpg pxqq
is a short notation for Dn : f pxq P Õpg pxq logn g pnqq. First we state the bound on the risk of an

approximate solution returned by ●�❡❡❞②❚▲. 4

Theorem 17. Let ●�❡❡❞②❚▲ generate the solution pŵ , β̂q, given the training set pX , yq, source hypotheses

thsrc
i

un
i“1

with τsrc
8 :“ maxi t}hsrc

i
}2

8u, hyperparameters λ and k. Then with high probability,

R
´

h
trg

ŵ ,β̂

¯
´ R̂

´
h

trg

ŵ ,β̂

¯
ď Õ

˜
1 ` kτsrc

8
λm

`
c

R̂src
1 ` kτsrc

8
λm

¸
,

3Note that the formula for m̃ in [127] contains an error, the correct one is the one we report.
4Proofs for theorems can be found in the appendix.
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where

R̂src :“ 1

m

mÿ

i“1

ℓ

¨
˝yi , T

¨
˝ ÿ

j Psupppβ̂q
β̂i hsrc

j px i q

˛
‚

˛
‚.

This results in a generalization bound which tells us how close the performance of the algorithm on the

test set will be to the one on the training set. The key quantity here is R̂src, which captures the quality

of the sources selected by the algorithm. To understand its impact, assume that λ“ Op1q. The bound

has two terms, a fast one of the order of Õ pk{mq and a slow one of the order Õ

´b
R̂srck{m

¯
. When m

goes to infinity and R̂src ‰ 0 the slow term will dominate the convergence rate, giving us a rate of the

order of Õ

´b
R̂srck{m

¯
. If R̂src “ 0 the slow term completely disappears, giving us a so called fast rate

of convergence of Õpk{mq. On the other hand, for any finite m of the order of Õpk{R̂srcq, we still have

a rate of the order of Õpk{mq. Hence, the quantity R̂src will govern the finite sample and asymptotic

behavior of the algorithm, predicting a faster convergence in both regimes when it is small. In other

words, when the source and target tasks are similar, TL facilitates a faster convergence of the empirical

risk to the risk. A similar behavior was already observed in [76, 11].

However, one might ask what happens when the selected sources are providing bad predictions. Since

R̂src ď 1, due to truncation, the empirical risk converges to the risk at the standard rate Õp
a

k{mq, the

same one we would have without any transfering from the source classifiers.

We now present another result that upper bounds the difference between the risk of solution of the

algorithm and the empirical risk of the optimal solution to the k-Source Selection problem.

Theorem 18. In addition to conditions of Theorem 17, let pw ‹,β‹q be the optimal solution to (6.2).

Given a sample correlation matrix Ĉ , assume that Ĉi , j ‰i ď γă 1`λ
6k

, and ǫ :“ 16pk`1q2γ
1`λ . Then with high

probability,

R
´

h
trg

ŵ ,β̂

¯
´ R̂

´
h

trg

w ‹,β‹

¯
ď p1 `ǫqR̂src

λ ` Õ

˜
1 ` kτsrc

8
λm

`
c

R̂src
λ

1 ` kτsrc
8

λm

¸
,

where R̂src
λ

:“ min|S|ďk

!
λ

|S| ` 1
|S|

ř
iPS R̂phsrc

i
q
)

.

To analyze the implications of Theorem 18, let us consider a few interesting cases. Similarly as done

before, the quantity R̂src
λ

captures how well the source hypotheses are aligned with the target task and

governs the asymptotic and finite sample regime. In fact, assume for any finite m that there is at least

one source hypothesis with small empirical risk, in particular, in Õp
a

k{mq, and set λ“ Õp
a

k{mq.

Then we have that Rph
trg

ŵ ,β̂
q ´ R̂ph

trg

w ‹,β‹q “ Õ
`a

k{m
˘

, that is we get the generalization bound as if

we are able to solve the original NP-hard problem in (6.2). In other words, if there are useful source

hypotheses, we expect our algorithm to perform similarly to the one that identifies the optimal subset.

This might seem surprising, but it is important to note that we do not actually care about identifying

the correct subset of source hypotheses. We only care about how well the returned solution is able to

generalize. On the other hand, if not even one source hypothesis has low risk, selecting the best subset

of k sources becomes meaningless. In this scenario, we expect the selection of any subset to perform

in the same way. Thus the approximation guarantee does not matter anymore.
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6.5. Experiments

We now state the approximation guarantees of ●�❡❡❞②❚▲ used to prove Theorem 18. In the follow-

ing Corollary we show how far the optimal solution to the regularized subset selection is from the

approximate one found by ●�❡❡❞②❚▲.

Corollary 4. Let λ PR
` and k ď n. Denote OPT :“ min}w}0“k

�
R̂pwq`λ}w}2

2

(
. Assume that Ĉ and b̂

are normalized, and Ĉi , j ‰i ď γă 1`λ
6k

. Then, the FR algorithm generates an approximate solution ŵ to

the regularized subset selection problem that satisfies R̂pŵq`λ}ŵ}2
2 ď

´
1 ` 16pk`1q2γ

1`λ

¯
OPT´ 16pk`1q2γλ

p1`λq2 .

Apart from being instrumental in the proof of Theorem 18, this statement also points to the secondary

role of the regularization parameter λ: unlike in FR, we can control the quality of the approximate

solution even if the features are correlated.

6.5 Experiments

In this section we present experiments comparing ●�❡❡❞②❚▲ to several transfer learning and feature

selection algorithms. As done previously, we considered the object detection task and, for all datasets,

we left out one class considering it as the target class, while the remaining classes were treated as

sources [137]. We repeated this procedure for every class and for every dataset at hand, and averaged

the performance scores. In the following, we refer to this procedure as leave-one-class-out. We

performed the evaluation for every class, reporting averaged class-balanced recognition scores.

We used subsets of Caltech-256 [56], Imagenet [35], SUN09 [24], SUN-397 [144]. The largest setting

considered involves 1000 classes, totaling in 1.2M examples, where the number of training examples of

the target domain varies from 11 to 20. Our experiments aimed at verifying three claims:

1. L2-regularization is important when using greedy feature selection as a transfer learning scheme.

2. In a small-sample regime ●�❡❡❞②❚▲ is more robust than alternative feature selection approaches,

such as L1-regularization.

3. The approximated randomized greedy algorithm improves the computational complexity of

●�❡❡❞②❚▲ with no significant loss in performance.

6.5.1 Datasets and Features

We used the whole Caltech-256, a public subset of Imagenet containing 103 classes, all the classes of

SUN09 that have more than 1 example, which amounts to 819 classes, and the whole SUN-397 dataset

containing 397 place categories. For Caltech-256 and Imagenet, we used as features the publicly-

available 1000-dimensional SIFT-BOW descriptors, while for SUN09 we extracted 3400-dimensional

PHOG descriptors. In addition, for Imagenet and SUN-397, we also ran experiments using convolu-

tional features extracted from DeCAF neural network [38].

We composed a negative class by merging 100 held-out classes (surrogate negative class). We did so for

each dataset, and we further split it into the source negative and the target negative class as 90% ` 10%

respectively, for training sources and the target. The source classifiers were trained for each class in

the dataset, combining all the positive examples of that class and the source negatives. On average,

53



Chapter 6. Greedy Algorithms for Hypothesis Transfer Learning

each source classifier was trained using 104 examples for Caltech-256, 105 for Imagenet and 103 for

the SUN09 dataset. The training sets for the target task were composed by t2,5,10u positive examples,

and 10 negative ones. Following [137], the testing set contained 50 positive and 50 negative examples

for Caltech-256, Imagenet, and SUN-397. For the skewed SUN09 dataset we took one positive and 10

negative training examples, with the rest left for testing. We drew each target training and testing set

randomly 10 times, averaging the results over them.

6.5.2 Baselines

We chose a linear SVM to train the source classifiers [44]. This allows us to compare fairly with relevant

baselines (like Lasso) and is in line with recent trends in large scale visual recognition and transfer

learning [38]. The models were selected by 5-fold cross-validation having regularization parameter

C P t10´4,10´3, ¨ ¨ ¨ ,104u. In addition to trained source classifiers, for Caltech-256, we also evaluated

transfer from Classemes [12] and Object Bank [85], which are very similar in spirit to source classifiers.

At the same time, for Imagenet, we evaluated transfer from the outputs of the final layers of the DeCAF

convolutional neural network [38].

We divided the baselines into two groups - the linear transfer learning baselines that do not require

access to the source data, and the feature selection baselines. We included the second group of

baselines due to ●�❡❡❞②❚▲’s resemblance to a feature selection algorithm. We focus on the linear

baselines, since we are essentially interested in the feature selection in high-dimensional spaces from

few examples. In that scope, most feature selection algorithms, such as Lasso, are linear. In particular,

amongst TL baselines we chose: No transfer: RLS algorithm trained solely on the target data; Best source:

indicates the performance of the best source classifier selected by its score on the testing set. This is a

pseudo-indicator of what an HTL can achieve; AverageKT : obtained by averaging the predictions of all

the source classifiers; RLS src+feat: RLS trained on the concatenation of feature descriptors and source

classifier predictions; MultiKT } ¨ }2: HTL algorithm by [137] selecting β in (6.1) by minimizing the

leave-one-out error subject to }β}2 ď τ; MultiKT } ¨ }1: similar to previous, but applying the constraint

}β}1 ď τ; DAM : An HTL algorithm by [39], that can handle selection from multiple source hypotheses.

It was shown to perform better than the well known and similar ASVM [145] algorithm. For the feature

selection baselines we selected well-established algorithms involving sparsity assumption: L1-Logistic:

Logistic regression with L1 penalty [58]; Elastic-Net: Logistic regression with mixture of L1 and L2

penalties [58]; Forward-Reg: Forward regression – a classical greedy feature selection algorithm. When

comparing our algorithms to the baselines on large datasets, we also consider a Domain Adaptive

Dictionary Learning baseline [113]. This baseline represents the family of dictionary learning methods

for domain adaptation and transfer learning. In particular, it learns a dictionary on the source domain

and adapts it to the target one. However, in our setup the only access to the source data is through

the source hypotheses. Therefore, the only way to construct source features is by using the source

hypotheses on the target data points.

6.5.3 Results

Figure 6.1 shows the leave-one-class-out performance. In addition, Figures 6.1b, 6.1c, 6.1f show

the performance when transferring from off-the-shelf classemes, object-bank feature descriptors,
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Figure 6.1 – Performance on Caltech-256, subsets of Imagenet (1000 classes) and SUN09 (819 classes).

Averaged class-balanced accuracies in the leave-one-class-out setting.
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(b) Caltech-256 (Classemes)
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(c) Caltech256 (Object Bank)

G
re

ed
yT

L

R
LS

sr
c+

fe
at

D
AM

M
ul
tiK

T
‖
· ‖

2

M
ul
tiK

T
‖
· ‖

1

Ave
ra

ge
KT

L1
-L

og
is
tic

Fo
rw

ar
d-

R
eg

Bes
t s

ou
rc

e

N
o

tra
ns

fe
r

50

60

70

80

90

100

B
a
la

n
c
e
d

A
c
c
u
ra

c
y

(%
)

2 positive

5 positive

10 positive

(d) SUN09
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(e) Imagenet (1000 classes)
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(f) Imagenet (sources are DeCAF outputs, 1000

classes)
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and DeCAF neural network activations. Whenever any baseline algorithm has hyperparameters to

tune, we chose the ones that minimize the leave-one-out error on the training set. In particular, we

selected the regularization parameter λ P t10´4,10´3, . . . ,104u. MultiKT and DAM have an additional

hyperparameter that we call τ with τ P t10´3, . . . ,103u. Kernelized algorithms were supplied with a

linear kernel. Model selection for involves two hyperparameters, that is k and λ. Instead of

fixing k, we let select features as long as the regularized error between two consecutive steps

is larger than δ. In particular, we set δ“ 10´4, as in preliminary experiments we have not observed any

gain in performance past that point. The λ is fixed to 1. Even better performance could be obtained
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Figure 6.2 – Baselines and number of additional noise dimensions sampled from a standard distribu-

tion. Averaged class-balanced recognition accuracies in the leave-one-class-out setting.
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(b) Imagenet
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tuning it.

We see that dominates TL and feature selection baselines throughout the benchmark, rarely

appearing on-par, especially in the small-sample regime. In addition, on two datasets out of three,

it manages to identify the source classifier subset that performs comparably or better than the Best

source, that is the single best classifier selected by its performance on the testing set. The significantly

stronger performance achieved by w.r.t. FR, on all databases and in all settings, confirms

the importance of the regularization in our formulation.

Notably, outperforms RLS src+feat, which is equivalent to selecting all the sources

and features. This observation points to the fact that successfully manages to discard

irrelevant feature dimensions and sources. To investigate this important point further, we artificially

add 10, 100 and 1000 dimensions of pure noise sampled from a standard distribution. Figure 6.2

compares feature selection methods to in robustness to noise. Clearly, in the small-sample

setting, is tolerant to large amount of noise, while L1 and L1{L2 regularization suffer a

considerable loss in performance. We also draw attention to the failure of L1-based feature selection

methods and MultiKT with L1 regularization to match the performance of .

6.5.4 Approximated GreedyTL

As was discussed in Section 6.3, the computational complexity of is linear in the number of

source hypotheses and feature dimensions. In this section we assess empirical performance of the

approximated , which is independent from the number of source hypotheses, implemented

through the approximated greedy algorithm described at the end of Section 6.3. In the following we

refer to this version of an algorithm as . Instead of considering all the transfer learning

and feature selection baselines, we restrict the performance comparison to the strongest competitors.

To show the power of highly scalable approximated , we focus on the largest datasets in the

number of source hypotheses and feature dimensions: Imagenet and SUN-397. In case of Imagenet, we

consider standard SIFT-BOW features as in previous section and also DeCAF-7 convolutional features

extracted from the seventh layer of the DeCAF neural network [38]. For SUN-397, we use convolutional

features of the Caffe network trained on the Places-205 dataset [152], which was shown to perform

particularly well in the scene recognition tasks. Figure 6.3 summarizes the new results. Surprisingly,

approximated performs on par with the version with exhaustive search over the candidate,
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6.5. Experiments

Figure 6.3 – Comparison of the approximated GreedyTL: GreedyTL-59 to GreedyTL with exhaustive

search and most competitive baselines on three largest datasets considered in our experiments.
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(b) Imagenet (DECAF-7 features, 1000 classes)

(c) SUN-397 (Caffe-7 features, 1000 classes)
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maintaining dominant performance in the small-sample regime on the Imagenet dataset. Yet, training

timings are dramatically improved as can be seen from Table 6.1. In the case of SUN-397 dataset,

however, performs on par with the top competitors.

6.5.5 Selected Source Analysis

In this section we take a look at the source hypotheses selected by . In particular, we make a

qualitative assessment with the goal to see if semantically related sources and targets are correlated,

visualizing selected sources and the magnitude of their weights. We do so by grouping sources

and targets semantically according to the WordNet [97] distance, and plotting them as matrices

with columns corresponding to targets, rows to sources, and entries to the weights of the sources.

Figure 6.4 shows such matrices for when evaluated on Imagenet with DECAF7 features and

averaged over all splits, for 2 positive and 10 positive examples accordingly. First we note that for

certain supercategories there are clearly distinctive patterns, indicating cross-transfer within the same

supercategory. We compare those matrices to the ones originating from the strongest

baseline, Figure 6.5. We notice a clear difference, as semantic patterns of are more distinctive

in a small-sample setting (2+10), while the ones of appear hazier. We argue that this

is a consequence of greedy selection procedure implemented by , where sources are selected

incrementally, thus many coefficients correspond to zeros. Due to the formulation of ,
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Table 6.1 – Training time in seconds for transferring to a single target class. Results are averaged over

10 splits.

GreedyTL

Training examples pos.+neg. 2 ` 10 5 ` 10 10 ` 10

Imagenet (SIFT-BOW) 1899 source+dim 1.541 ˘ 0.242 3.083 ˘ 0.486 5.291 ˘ 0.870

Imagenet (DECAF7) 4995 source+dim 3.481 ˘ 0.356 7.492 ˘ 0.655 13.408 ˘ 1.165

SUN-397 (Caffe-7) 4492 source+dim 3.245 ˘ 0.495 6.764 ˘ 1.051 11.282 ˘ 1.630

GreedyTL-59

Training examples pos.+neg. 2 ` 10 5 ` 10 10 ` 10

Imagenet (SIFT-BOW) 1899 source+dim 0.043 ˘ 0.005 0.088 ˘ 0.011 0.149 ˘ 0.021

Imagenet (DECAF7) 4995 source+dim 0.055 ˘ 0.006 0.114 ˘ 0.013 0.198 ˘ 0.020

SUN-397 (Caffe-7) 4492 source+dim 0.060 ˘ 0.021 0.120 ˘ 0.038 0.198 ˘ 0.055

Figure 6.4 – Semantic transferrability matrix for GreedyTL evaluated on Imagenet (DECAF7 features).

Columns correspond to targets and rows to sources. Stronger color intensity means larger source

weight. 6.4a corresponds to learning from 2 positive and 10 negative examples, while 6.4b, with 10

positive.

(a) (b)

however, even if a source is less relevant, its coefficient most likely will not be exactly equal to zero.

It is also instructive to compare exact to the approximated one. Figure 6.7 pictures semantic

matrices for the approximated version. We note that approximated version appears to be slightly

more conservative in a small-sample case (2+10), but overall, semantic patterns seem to match,

thus emphasizing the quality of the solution provided by the approximated version and empirically

corroborating the theoretical motivation behind the randomized selection.

Finally, we take a closer look at some patterns of Figure 6.4a, that is in the case of learning from only 2

positive examples. This new analysis is shown in Figure 6.6. We notice that even at the smaller scale,

there are emergent semantic patterns.

6.6 Conclusion

In this chapter we studied the transfer learning problem involving hundreds of sources. The kind of

transfer learning scenario we consider assumes no access to the source data directly, but through

the use of the source hypotheses induced by them. In particular, we focused on the efficient source
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6.6. Conclusion

Figure 6.5 – Semantic transferrability matrix for RLS (src+feat) evaluated on Imagenet (DECAF7 fea-

tures).

(a) (b)

Figure 6.6 – GreedyTL evaluated on Imagenet (DECAF7 features): a closer look at some strongly related

sources and targets.
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hypothesis selection and combination, improving the performance on the target task. We proposed a

greedy algorithm, , capable of selecting relevant sources and feature dimensions at the same
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Figure 6.7 – Semantic transferrability matrix for the approximated GreedyTL evaluated on Imagenet

(DECAF7 features).

(a) (b)

time. We verified these claims by obtaining the best results among the competing feature selection

and TL algorithms, on the Imagenet, SUN09 and Caltech-256 datasets. At the same time, comparison

against the non-regularized version of the algorithm clearly show the power of our intuition. We

support our empirical findings by showing theoretically that under reasonable assumptions on the

sources, the algorithm can learn effectively from few target examples.

In the next chapter we go beyond the binary classification setting and consider an HTL multiclass

learning scenario, where classes are introduced to the learner incrementally.
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7 Class-incremental Hypothesis Transfer

Learning

The material of this chapter is partially based on the publication:

I. Kuzborskij, F. Orabona, and B. Caputo. From N to N ` 1: Multiclass Transfer Incremental

Learning.

In Computer Vision and Pattern Recognition (CVPR), 2013.

The doctoral candidate formalized the problem, designed the algorithms, evaluated the algo-

rithms, and partially wrote the publication.

7.1 Introduction

Vision-based applications that appear in assisted ambient living, home robotics, and intelligent car

driver assistants all share the need to distinguish between several object categories. They also share

the need to update their knowledge over time, by learning new category models whenever faced with

unknown objects. Consider for instance the case of a service robot, designed for cleaning up kitchens

in public hospitals. Its manufacturers will have equipped it with visual models of objects expected

to be found in a kitchen, but inevitably the robot will encounter something not anticipated at design

time – perhaps an object out of context, such as a personal item forgotten by a patient on her food

tray, or a new type of food processor that entered the market after the robot. To learn such new object,

the robot will generally have to rely on little data and explanation from its human supervisor. Also,

it will have to preserve its current range of competences while adding the new object to its set of

known visual models. This challenge, which holds for any intelligent system equipped with a camera,

can be summarized as follows: suppose you have a system that knows K objects (source). Now you

need to extend its object knowledge to the K ` 1-th (target), using only few new annotated samples,

without having the possibility to re-train everything from scratch. Can you add effectively the new

target K ` 1-th class model to the known K source models by leveraging over them, while at the same

time preserving their classification abilities?

The problem of how to learn a new object category from few annotated samples by exploiting prior
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Chapter 7. Class-incremental Hypothesis Transfer Learning

Figure 7.1 – Binary (left) versus K ÝÑ K ` 1 transfer learning (right). In both cases, transfer learning

implies that the target class is learned close to where informative sources models are. This is likely to

affect negatively performance in the K ÝÑ K ` 1 case, where one aims for optimal accuracy on the

sources and target classes simultaneously.

knowledge has been extensively studied [146, 65, 41]. The majority of previous work focused on object

category detection (i.e. binary classification) rather than the multiclass case [2, 145, 136]. It is natural

to ask if such previous methods would work well in the scenario depicted, by just extending them to

the multiclass. We argue that to solve the K ÝÑ K ` 1 transfer learning problem one needs to address

a deeper algorithmic challenge.

In addition, learning from scratch and preserving training sets from all the source tasks might be

infeasible due to the large number of tasks or when acquiring tasks incrementally, especially for large

datasets [94]. In the object categorization case this might come as training source classifiers from large

scale visual datasets, in abundance of data.

Consider the following example: a transfer learning task of learning a dog detector, given that the

system has already learned other kind of animal detectors. This is achieved, in one form or another, by

constraining the dog model to be somehow “similar” to the horse and cat detectors learned before [65,

136]. Success in this setting is defined as optimizing the accuracy of the dog detector, with a minimal

number of annotated training samples (Figure 7.1, left).

But if we consider the multiclass case, the different tasks now “overlap”. Hence we are faced with two

opposite needs: on one side, we want to learn to recognize dogs from few samples, and for that we need

to impose that the dog model is close to the horse and cat models learned before. On the other side, we

want to optimize the overall system performance, which means that we need to avoid mispredictions

between classes at hand (Figure 7.1, right). These two seemingly contradictory requirements are true

for many K ÝÑ K ` 1 transfer learning scenarios: how to reconcile them in a principled manner is the

contribution of this paper.
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7.2. Related Work

We build on the algorithm of Tommasi et al. [136], a transfer learning method based on the multiclass

extension of RLS [132]. Thanks to the linear nature of RLS, we cast transfer learning as a constraint for

the classifier of the K `1 target class to be close to a subset of the K source classifiers. At the same time,

we impose a stability to the system, biasing the formulation towards solutions close to the hyperplanes

of the K source classes. In practice, given K source models, we require that these models would not

change much when going from K to K ` 1.

As in [136], we learn how much to transfer from each of the source classifiers, by minimizing the

LOO error, which is an unbiased estimator of the generalization error for a classifier [20]. We call our

algorithm MULTIpLE.

Experiments on various subsets of the Caltech-256 [56] and AwA datasets [81] show that our algorithm

outperforms the One-Versus-All (OVA) extension of [136], as well as other baselines [65, 146, 2]. More-

over, its performance often is comparable to what would be obtained by re-training the whole K ` 1

classifier from all data, without the need to store the source training data.

The paper is organized as follows: after a review of previous work (Section 7.2), we describe our algo-

rithm in Section 7.3. Experiments are reported in Section 7.4, followed by conclusions in Section 7.5.

7.2 Related Work

Prior work in transfer learning addresses mostly the binary classification problem (object detection).

Some approaches transfer information through samples belonging to both source and target domains

during the training process, as in [83] for reinforcement learning. Feature space approaches consider

transferring or sharing feature space representations between source and target domains. Typically, in

this setting source and target domain samples are available to the learner. In that context, Blitzer et al.

[14] proposed a heuristic for finding corresponding features, that appear frequently in both domains.

Daumé [32] showed a simple and effective way to replicate feature spaces for performing adaptation for

the case of natural language processing. Yao and Doretto [146] proposed an AdaBoost-based method

using multiple source domains for the object detection task.

Another research line favors model-transfer (or parameter-transfer) methods, where the only knowl-

edge available to the learner is “condensed” within a model trained on the source domain. Thus,

samples from the source domain are not preserved. Model-transfer is theoretically sound as was

shown by Kuzborskij and Orabona [76], since relatedness of the source and target tasks enables quick

convergence of the empirical error estimate to the true error. Within this context, Yang et al. [145]

proposed a kernelizable SVM-like classifier with a biased regularization term. There, instead of the

standard ℓ2 regularization, the goal of the algorithm is to keep the target domain classifier “close” to the

one trained on the source domain. Tommasi et al. [136] proposed a multi-source transfer model with

a similar regularizer, where each source classifier was weighed by learned coefficients. The method

obtained strong results on the visual object detection task, using only a small amount of samples from

the target domain. Aytar and Zisserman [2] proposed a similar model, with a linear formulation for

the problem of object localization. Both methods rely on weighed source classifiers, which is crucial

when attempting to avoid negative transfer. Several Multiple Kernel Learning (MKL) methods were

proposed for solving transfer learning problems. Jie et al. [65] suggested to use MKL kernel weights as
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source classifier weights, proposing one of the few truly multiclass transfer learning models. An MKL

approach was also proposed by Duan et al. [41]. There, kernel weights affect both the source classifiers

and the representation of the target domain.

7.3 Multiclass Incremental Transfer Learning

In the following we propose a multiclass classification algorithm able to quickly learn and incorporate

new classes in an incremental fashion. More specifically, suppose that we are given a predictor trained

to distinguish between the K categories, and we receive a small amount of examples belonging to a

new K ` 1-th category. To this end, our task is to generate a new K ` 1 class predictor which maintains

performance on the K source classes and yet is able to generalize quickly on a new target K `1-th class.

We address the issue of quick generalization by transferring from the K source classes and at the same

time, we constrain excessive updates of the source models to maintain their performance.

We stress that we assume no access to the examples used to train the source classifiers. Such access

would be a limiting factor, because we would be impeded by the need to re-train a classifier from scratch

every time we learn a new class. This would pose a challenge to the application of class-incremental

scheme in life-long learning scenarios.

Now we proceed with the description of the algorithm.

7.3.1 Multiclass Regularized Least Squares

In the following we will address our problem as a multi-class problem through reduction to a number of

binary ones [115]. This is well-known as a One-Versus-All (OVA) approach to a multiclass classification.

Suppose we are given a training set S “ tpx i , labeli qum
i“1

, such that x i P X and labeli P rK s. Then, to

make predictions we will use a combined multiclass predictor

f pxq “ argmax
kPrK s

�
ŵ J

k x
(

,

supplied with a set of binary ones, tŵ kuK
k“1

, where each k-th classifier is generated from a training set

with binarized labels, Sk “ tpx i , yk,i “ 2Itlabeli “ ku´ 1qum
i“1

.

We assume that we have access to a small amount of labeled examples for all classes, including the

source ones. In this setting we still build upon the OVA formulation, and to train binary classifiers

we will use a well-known RLS algorithm, very closely related to the LSSVM, which can be used both

for regression and classification [116, 132]. More formally, given a training set Sk , an RLS generates a

linear model rŵ k , b̂ks by solving

min
wPRd ,bPR

#
1

m

mÿ

i“1

pw J
k x i ` bk ´ yk,i q2 `λ}w k}2

+
. (7.1)

Thus, every resulting binary classifier is characterized by a hyperplane ŵ k and therefore is a linear

classifier. We note that it is straightforward to convert this approach into a non-linear one through the

use of kernels, and for clarity we describe the algorithm in a linear notation. In the next section we
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build our transfer learning algorithm upon multiclass OVA RLS.

7.3.2 MULTIpLE Algorithm

In the rest of this paper, we will assume that the source classifier is an OVA linear classifier, and we will

use matrix notation to denote its binary components, that is

W src “ rw src
1 , . . . , w src

K s .

Note that we assume no access to the examples used to train the source classifiers.

The aim of the approach presented here is to find a new set of hyperplanes W “ rw 1, . . . , w K , w K `1s,

such that the generalization ability of an OVA multiclass predictor

1. improves on the target K ` 1-th category by transferring from the source models W src, and,

2. does not deteriorate, or even improves on the K source categories.

We cast both objectives above into the regularized ERM framework by extending a multiclass OVA

formulation. Our extension builds upon the HTL literature [77, 76], Chapters 3 and 4. In particular we

exploit a variant of HTL known as biased regularization. Unlike usual L2-regularized ERM formulation,

such as SVM, when using biased regularization, we state an objective function as a sum of empirical

risk and regularization term λ}w ´ w 0}2 instead of λ}w}2. Thus, thanks to the model linearity, we

incorporate a metric between classifiers into the objective, which is used to find classifiers with similar

performance by enforcing the distance between them to be small. We propose to achieve both aims

above through the use of biased regularization.

We cover the first objective by introducing the regularizer λ}w K `1 ´ W
src

β}2 into (7.1). This term

enforces the target model w K `1 to be close to a linear combination of the source models. At the same

time the use of the misspecified source model, that is the negative transfer, is prevented by weighing

each source model using the vector β PR
K . This type of regularization has been used in HTL for visual

learning [78, 137, 138], and its theoretical merits are understood [77].

The second objective is again tackled by biased regularization. Simply introducing a target category

into a classifier may affect the performance of the source models and it is therefore necessary to update

the source models. However, to prevent excessive updates, which may drive updated classifiers too far

from the source ones, we enforce the new hyperplanes W to remain close to the source hyperplanes

W
src

using the term λ}w k ´ w src
k

}2
2 in (7.1). We consider a biased regularization approach to transfer

learning. Specifically, we combine RLS formulation (7.1) with biased regularization. To this end we

formulate the objective for the target K ` 1-th class model ŵ K `1 as

min
w K `1PRd ,

bPR

$
&
%

1

m

mÿ

i“1

`
w J

K `1x i ` bK `1 ´ yk,i

˘2 `λ}w K `1 ´W
src

β}2

,
.
- .
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and for every k-th updated source model ŵ k as

min
w k PRd ,bPR

#
1

m

mÿ

i“1

`
w J

k x i ` bk ´ yk,i

˘2 `λ}w k ´ w
src

k }2

+

Thus, as in the OVA formulation we predict with

f
trg pxq “ argmax

kPrK `1s

�
ŵ J

k x
(

.

The solutions to the minimization problems above are given by

ŵ k “ w
src

k ` X pak ´ asrc
k q , @k P rK s

b̂k “ bk ´ bsrc
k ,

ŵ K `1 “ W
src

β` X paK `1 ´ Asrcβq ,

b̂K `1 “ bK `1 ´ bsrc
k β .

where

„
A

bJ


“ M

„
Y

0


, (7.2)

„
Asrc

b
srcJ


“ M

„
X JW src

0


, (7.3)

M “
„

X JX `λI 1

1J 0

´1

. (7.4)

The solution of the transfer learning problem is completely defined once we set the parameters β. In

the next section we describe how to automatically tune these parameters.

7.3.3 Self-tuning of Transfer Parameters

Our goal is to tune the transfer coefficients β to improve the performance of the linear model for the

new K ` 1-class by exploiting only relevant source models while preventing negative transfer. We

optimize the coefficients β automatically using an objective based on the Leave-One-Out (LOO) error,

which is an almost unbiased estimator of the generalization error of a classifier [20]. An advantage

of RLS, used as a basis to our approach, over other methods is that it allows the LOO error to be

computed efficiently in analytic form. Specifically, we cast the optimization of β as the minimization

of a convex upper bound of the LOO error. The LOO predictions for the entire training set with respect

to hyperplane ŵ k is given by (derivation is available in the appendix).

y loo
k “ y k ´pM ˝ I q´1pak ´ asrc

k q @k P rK s , (7.5)

y loo
K `1pβq “ y K `1 ´pM ˝ I q´1paK `1 ´ Asrcβq .

We stress that (7.5) is a linear function of β. We now need a convex multiclass loss to measure the LOO

errors. A fairly standard choice would be a convex multiclass loss as in [28], which keeps samples of

different classes at the unit marginal distance. Slightly abusing notation in (7.5), such multiclass loss
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function would look like

ℓmc
i pβq “ max

r ‰yi

”
1 ` y loo

r,i pβq´ y loo
yi ,i pβq

ı
`

. (7.6)

However, from (7.5) observe that changing β will only change the score of the target K ` 1-th class.

Thus, when using this loss, almost all examples are neglected during optimization with respect to β.

We address this issue by proposing a modified version of (7.6),

ℓmc-mod
i pβq “

$
&
%

”
1 ` y loo

K `1,i
pβq´ y loo

yi ,i
pβq

ı
`

: labeli ‰ K ` 1

max
r ‰yi

”
1 ` y loo

r,i
pβq´ y loo

yi ,i
pβq

ı
`

: labeli “ K ` 1

The rationale behind this loss is to enforce a margin of 1 between the target K ` 1-th class and the

correct one, even when the K ` 1-th class does not have the highest score. This has the advantage of

forcing the use of all examples during the tuning of β. Given the analytic form of LOO predictions (7.5)

and the multiclass loss function above, we can obtain β by solving the convex regularized problem

min
βPΩ

#
1

m

mÿ

i“1

ℓmc-mod
i pβq

+
,

with Ω“ tx | }x}2 ď 1 ^ x ľ 0u .

(7.7)

Constraining β within a unit L2 ball is a form of regularization imposed on β, which prevents overfitting

as was shown in theoretical works on HTL [77, 76]. This optimization procedure can be implemented

elegantly using projected subgradient descent, which is not affected by the fact that the objective

function in (7.7) is not differentiable everywhere. The pseudocode of the optimization algorithm is

summarized in Algorithm 2.

Finally we make a few comments on the computational complexity of the entire approach. The

computational complexity for obtaining A, Asrc, and M is in Opm3 ` m2pK ` 1qq, which comes from

matrix operations (7.3)-(7.4). Algorithm 2 is in OpmK pT ` 1qq, where we assume that most terms in

(7.5) are precomputed. Each iteration of the algorithm is efficient since it depends linearly on both the

training set size and number of classes. 1

7.4 Experiments

We present here a series of experiments designed to investigate the behavior of our algorithm when

(a) the source classes and the target class are related/unrelated, and when (b) the overall number of

classes increases. All experiments were conducted on subsets of two different public datasets, and the

results were benchmarked against several baselines. In the rest of the section we first describe our

experimental setup (section 7.4.1), then we describe the chosen baselines (section 7.4.2). Section 7.4.3

reports our findings.

1The source code of MULTIpLE is available online at https://iljaku.github.io
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Algorithm 2 Projected subgradient descent to find β

Input: M , Y , A, Asrc, T

Output: β

1: y loo
k

Ð y k ´pM ˝ I q´1pak ´ asrc
k

q @k P rK s
2: β1 Ð 0

3: for t P rT s do Ź Iterations of subgradient descent.

4: y loo
K `1 “ y K `1 ´pM ˝ I q´1paK `1 ´ Asrcβt q

5: ∆Ð 0

6: for i P rms do Ź Passing through the training set.

7: if labelpyi q ‰ K ` 1 then

8: if 1 ` y loo
K `1,i

´ y loo
yi ,i

ą 0 then

9: ∆Ð∆` diagpMq´1
i

a
src

i

10: end if

11: else if maxr ‰yi
p1 ` y loo

r,i
´ y loo

yi ,i
q ą 0 then

12: ∆Ð∆´ diagpMq´1
i

a
src

i

13: end if

14: end for

15: βÐβt ´ ∆

M
?

t

16: βÐ rβs`
17: if }β}2 ą 1 then

18: β“ β

}β}2

19: end if

20: βt`1 Ðβ

21: end for
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7.4. Experiments

7.4.1 Data setup

We run all experiments on subsets of the Caltech-256 database [56] and of the Animal with Attributes

(AwA) database [81]. From the Caltech-256 database, we selected a total of 14 classes and for the

AwA dataset, 42 classes. We did not carry out any image pre-selection or pre-processing. Moreover,

for both databases we used pre-computed features available online2. Specifically, for the Caltech-

256 experiments we used the following features: oriented and unoriented PHOG shape descriptors,

SIFT appearance descriptors, region covariance and local binary patterns totalling in 14 descriptor

types [49]. For the AwA experiments the chosen features were SIFT, rgSIFT, SURF, PHOG, RGB color

histograms and local self-similarity histograms [81].

For each class considered, we randomly selected 80 image samples. These were then split in three

disjoint sets: 30 samples for the source classifier, 20 samples for training and 30 samples for test. The

samples of the source classifier were used for training the K models W src.

The performance of each method (see Section 7.4.2) was evaluated using progressively t5,10,15,20u
training samples for each of the K ` 1 classes. The experiments were repeated 10 times, using different

randomly sampled training and test sets, which we refer to as data splits. Furthermore, to get a reliable

estimate of the performance of transfer with respect to different classes, we used a leave-one-class-out

approach, considering in turn each class as the K ` 1 target class, and the other K as source classifiers.

We report results averaged over all data splits and leave-one-class-out evaluations.

7.4.2 Algorithmic setup

We compared MULTIpLE against two categories of baselines. The first, that we call no transfer baselines,

consists of a group of algorithms addressing the K ÝÑ K `1 problem without leveraging source models;

the second, that we call transfer baselines, consists of a group of methods attempting to solve the

K ÝÑ K ` 1 problem by leveraging source models. The no transfer baselines are the following:

No transfer corresponds to RLS trained only on the new training data.

Batch corresponds to a RLS trained using all available samples, i.e. assuming to have access to all the

data used to build the source models plus the new training data. The performance of this method

might be seen as an indicator of the best performance achievable on the problem, thus as an important

reference for assessing the results obtained by transfer learning methods.

Source is the RLS K -class source classifier. In this case, classification on the sample belonging to

K ` 1-th class is assigned 0 accuracy.

Source+1 corresponds to a binary RLS trained to discriminate between the target class vs the source

classes given the training data. It is evaluated on the K ` 1 problem by combining it with Source in a

OVA setting. It is arguably the simplest possible approach to address the K ÝÑ K ` 1 problem.

Source+1 (hinge) is the scheme analogous to Source+1, but utilizing the hinge loss ℓpx, zq “ |1 ´ xz|`,

thus corresponding to a classical SVM formulation.

As transfer baselines, we chose the following methods:

MKTL We compared against MKTL [65], which is one of the few existing discriminative transfer learning

algorithm in multiclass formulation.

2Caltech-256: http://www.vision.caltech.edu/Image_Datasets/Caltech256/

AwA: http://attributes.kyb.tuebingen.mpg.de/
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Figure 7.2 – Experimental results for K ` 1 “ 5, Caltech-256. From left to right, columns report results

for the unrelated, mixed and related settings. Top row: no transfer baselines, linear case. Middle row:

transfer learning baselines, linear case. Bottom row: transfer and competitive no transfer baselines,

average of RBF kernels over all features. Stars represent statistical significance of MULTIpLE over

MultiKT-OVA, p ă 0.05.
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Figure 7.3 – Results for K ` 1 “ 20, AwA, transfer and competitive no transfer baselines, average of

RBF kernels, all features. Left to right: unrelated, mixed and related settings. Stars represent statistical

significance of MULTIpLE over MultiKT-OVA.

MultiKT-OVA We implemented an OVA multiclass extension of the binary transfer learning method

by Tommasi et al. [136] as follows: as in the standard OVA formulation, we train MultiKT instance to

discriminate between one of K `1 classes and the rest K . At the same time we use Source as the source

classifier. Thus, eventually we obtain K ` 1 MultiKT instances.

PMT-SVM-OVA We also implemented an OVA multiclass extension of the binary transfer learning

method by Aytar and Zisserman [2], as done for MultiKT-OVA.

MultisourceTrAdaBoost-OVA As a final transfer learning baseline, we implemented an OVA extension

of MultisourceTrAdaBoost [146], where each source corresponds to a subset of samples designated for

the source classifier, while belonging to a specific class. We follow the authors by using a linear SVM as

weak learner.

Apart for PMT-SVM-OVA and MultisourceTrAdaBoost-OVA, which cannot be kernelized, we used all

the features available for each dataset via kernel averaging [49], computing the average of RBF kernels

over all available features from the dataset at hand and RBF hyperparameters γ P t2´5,2´6, . . . ,28u.

The trade-off hyperparameter C P t10´5,10´6, . . . ,108u was tuned by 5-fold cross-validation for the no

transfer baselines. In case of model-transfer algorithms, the source model’s C value was reused.

Since MultisourceTrAdaBoost-OVA is a non-kernel baseline, to test its performance over multiple

features we concatenated them. This approach proved computationally unfeasible for PMT-SVM-OVA

(we used the implementation made available by the authors). Thus, to compare fairly with it, we

also did run experiments using, for all methods, a linear kernel and a single feature (SIFT for the

Caltech-256 and PHOG for the AwA). We refer to this setting as linear.

7.4.3 Evaluation results

Mimicking the setting proposed in Tommasi et al. [136], we performed experiments on different groups

of related, unrelated and mixed categories for both databases.

For the Caltech-256 database, the related classes were chosen from the “quadruped animals” subset;

the unrelated classes were chosen randomly from the whole dataset, and the mixed classes were taken

from the “quadruped animals” and the “ground transportation” subsets, sampled in equal proportions.

For the AwA database, the related classes were chosen from the “quadruped animals” subset; the

unrelated classes were randomly chosen from the whole dataset, and the mixed classes were sampled
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in equal proportions from the subsets “quadruped animals” and “aquatic animals”. This setting allows

us to evaluate how MULTIpLE, and the chosen baselines, are able to exploit the source knowledge in

different situations, while considering the overall accuracy. To assess the performance of all methods

as the overall number of classes grows, we repeated all experiments increasing progressively their

number, with K ` 1 “ 5,10,20 respectively. Because of space constraint and redundancy, only a subset

of all experiments is reported here3.

Figure 7.2 shows the results obtained for K ` 1 “ 5. The left column shows the results for the unrelated

setting; the center column shows the results for the mixed setting, and the right column shows the

results for the related setting. The first row compares the results obtained by MULTIpLE with those

of the no transfer baselines (Section 7.4.2), using a single feature and a linear kernel. We see that the

performance of MULTIpLE is always better than no transfer, and in two cases out of three is better or

on par with Source and Source+1 (hinge) (unrelated and mixed), while it is always similar to Source+1.

This is not the case anymore when using multiple features through kernel averaging (Figure 7.2, bottom

row): when using the kernelized version of all algorithms, our approach always performs equal or

better than most baselines, apart for Batch and in rare cases, Source+1 (hinge). Compared to Batch, in

two cases out of three (unrelated, related) MULTIpLE performs on par with it. This is a remarkable

result, as the Batch method constitutes an important reference for the behavior of transfer learning

algorithms in this setting (Section 7.4.2).

Figure 7.2, middle row, reports results obtained for MULTIpLE and all transfer learning baselines, as

defined in Section 7.4.2, for one feature and the linear kernel. We see that our algorithm obtains a

better performance compared to all the others, especially in the small sample regime. As our method

builds on the MultiKT algorithm, we tested the statistical significance of our performance with respect

to it, using the Wilcoxon signed-rank test (p ă 0.05). In two cases out of three (related, unrelated),

MULTIpLE is significantly better than its competitor. This is the case also when using all features

via kernel averaging. We mark these cases with a star on the plots (Figure 7.2, middle and bottom

row). With respect to the transfer baselines, the related setting seems to be the one more favorable to

our approach. With respect to the no transfer baselines, MULTIpLE seems to perform better in the

unrelated case.

The performance of PMT-SVM-OVA and Multisource-TrAdaBoost-OVA is disappointing, compared

with that achieved by the other two transfer learning baselines, i.e. MultiKT and MKTL. This is true for

all settings (related, unrelated and mixed). Particularly, the performance of MultisourceTrAdaBoost-

OVA does not seem to benefit from using multiple features (Figure 7.2, middle and bottom row). On the

basis of these results, we did not consider these two baseline algorithms in the rest of our experiments.

Figure 7.3 shows results for K ` 1 “ 20 classes on the AwA dataset, for the unrelated (left), mixed

(center) and related (right) settings, all features (averaged RBF kernels). For sake of readability, we

report here only the baselines which were competitive with, or better than, MULTIpLE in the K `1 “ 5

case, in at least one setting. We see that here our algorithm consistently outperforms all transfer

learning baselines, especially with a small training set, while obtaining a performance remarkably

similar to Batch, in terms of accuracy and behavior. The Wilcoxon signed-rank test (p ă 0.05) indicates

that, in all these experiments MULTIpLE is again significantly better than MultiKT-OVA. These results

3All experimental results and the source code are available at

https://iljaku.github.io.
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suggest that, as the number of sources grows, our method gets closer to the Batch performance while

using only a considerably smaller amount of data – the ultimate goal of any effective transfer learning

method. Results obtained on the whole AwA dataset support this claim3.

7.5 Discussion and Conclusions

All results confirm our claim that the mere extension to multiclass of existing binary transfer learning

algorithms is not sufficient to address the K ÝÑ K ` 1 problem. This is well illustrated by the gap in

performance between MULTIpLE and MultiKT, which is consistent across datasets, settings and the

number of classes. The main difference between the two algorithms is the term we added into the

objective, that allows to learn the new class, while preserving the performance on the old classes. The

results we have shown demonstrate the importance of such a term in the behavior of the algorithm.

One might argue that the worse performance of the transfer learning baselines depends on how we

implemented the OVA extension for such binary methods. Still, the results obtained by MKTL, the

only transfer learning baseline with a multiclass formulation, clearly indicate that the ability to handle

multiple sources by itself is not the solution.

Figure 7.4 – Results for K ` 1 “ 20, AwA, unrelated: accuracy over the K sources (left) and over the `1

target (right).

To gain a better understanding on how MULTIpLE balances the need to preserve performance over

the sources, and the learning of the target class, we show the accuracy plots for the AWA experiments,

K ` 1 “ 20, unrelated, for the K sources and for the `1 target separately (Figure 7.4). MULTIpLE

and Batch present similar behaviors, as they both preserve the accuracy over the K sources. Both

methods do not aggressively leverage over sources for learning the target class, as done by MultiKT-

OVA and MKTL (to a lesser extent), although MULTIpLE seems to be able to do so better than Batch.

Thus, our choice of optimizing the overall accuracy has resulted in a method able to reproduce the

behavior and the performance achievable if all training data would be accessible. Note that training

with all the data might not be possible, nor desirable, in all applications. As opposed to this, the OVA

extensions of existing binary transfer learning algorithms are more biased towards a strong exploitation

of source knowledge when learning the target class, at the expenses of the overall performance. How

to combine these two aspects, namely how to design principled methods able to obtain an overall

accuracy comparable to that of the Batch method while at the same time boosting the learning of the

target class, remains the open challenge of the K ÝÑ K ` 1 transfer learning problem.

73



8 Conclusions and Future Directions

This thesis explores an efficient approach to transfer learning, known as the Hypothesis Transfer

Learning (HTL), where prior knowledge is retained in a form of hypotheses, or models, inherited from

previous tasks. The key feature of HTL is its computational advantage with respect to the alternative

transfer learning paradigms: transfer is efficient because we do not assume access to the data of

previous tasks nor any knowledge about their data-generating mechanisms. This approach to transfer

learning has shown its credibility in a wide range of applications, however theoretical justification

was largely lacking. The primary goal of this thesis was to contribute to the theoretical foundations

of the HTL through analysis of well-known and effective learning algorithms. In the first part of

the thesis we outlined such a theory in the context of the convex empirical risk minimization and

stochastic optimization with both convex and non-convex loss functions, with implications to HTL.

This theoretical analysis quantified the effectiveness of transfer learning by linking the generalization

error of the studied algorithms to the risk of the source hypothesis on the target domain, a quantity that

can be estimated empirically from a training set. In case of stochastic optimization on non-convex

objectives, the theory also identified an additional criterion that controls the quality of transfer learning,

linked to the expected curvature of the objective function at the initialization point of the optimization

procedure. This analysis clearly motivates the design and analysis of novel HTL algorithms. In the

second part of the thesis we proposed and evaluated HTL algorithms for two scenarios: efficient binary

classification with a very large number of source hypotheses, and multiclass classification where a new

class is incorporated incrementally by simultaneous transfer from previous classifiers. The theory and

practice of HTL outlined in this thesis have multiple possible directions of future research, discussed

in the following.

HTL in Deep Learning. Recent tangible advancements in machine learning are in many ways due

to the timely development of algorithms able to find effective representations directly from data and

circumventing the need for manual feature engineering, collectively known as deep learning. Deep

learning is known for its data-demanding nature and further research in transfer learning coupled with

deep learning is a very prominent direction. Indeed, many of the breakthroughs involving deep learn-

ing already use rudimentary forms of transfer learning, such as fine-tuning and forms of pre-training.

A theoretical understanding of these is generally lacking, and therefore a solid ground for design and

analysis of novel deep transfer learning algorithms is missing. The first part of this thesis has illustrated

a way of understanding theoretical properties of transfer learning largely through the analysis of the
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generalization error. Therefore, first it is imperative to contribute to understanding the generalization

ability of deep learning algorithms. Empirical evidence suggests that much of the success in training

deep learning models comes from the power of stochastic optimization algorithms, such as SGD, and

tricks of trade made during model design. That said, particularly interesting directions lie in addressing

generalization of deep learning by studying optimization algorithms and architectural choices jointly.

One such direction lies in the data-dependent theoretical analysis. Such theory is relevant, not only

because it might lead to tight bounds explaining the behavior of deep neural networks, but also because

it can suggest how to improve deep learning algorithms by exploiting data-dependent quantities arising

during analysis. For instance, Chapter 5, [75] has already identified such a data-dependent quantity, the

expected leading eigenvalue of the Hessian matrix, as critical to the generalization of SGD. The data-

dependent generalization bounds can reveal the importance of many other interesting characteristics,

such as the variance of the gradient or data-dependent impact of architectural recipes. For example,

the deep learning community took a long path to discover simple and powerful tricks such as residual

layers [60] and batch normalization [63]: can data-dependent theory suggest a systematic way to

discover similar recipes? In contrast to the Uniform Convergence arguments of the classical statistical

learning theory, a more prominent direction for this type of analysis seems to lie in constructive

analysis, such as algorithmic stability and techniques used in the optimization literature [57, 147].

Addressing this problem should allow us to design better deep learning algorithms, for example for

transfer learning, as the novel theory could reveal conditions where one could generalize faster. Despite

the large body of work on experimental deep transfer learning, gained insights might become valuable

when one faces transfer learning problems of optimal choice among a large number of pre-trained

source models, individual layers, and in lifelong learning scenarios, where the tasks are acquired

sequentially.

HTL in Nonparametric Learning Algorithms. Besides deep learning, HTL has a prominent applica-

tion in classical problems such as learning in rich nonparametric classes of functions. A few well-known

examples of such methods are the nearest-neighbor search, tree-based methods, and kernel methods.

Many scalable variants of these algorithms are also actively used in practice. An attractive property of

non-parametric algorithms is that some of them are known to achieve Bayes optimality, that is recover

the best possible hypothesis within a very large class of functions, e.g. among all smooth functions.

Unfortunately, to learn in such a setting, one has to pay a non-parametric price which manifests

through the curse of dimensionality in non-asymptotic rates of convergence.

Many works, especially in the context of nearest-neighbor classification and regression, have tried to

address this issue through dimensionality reduction and metric learning [7, 74]. Here an interesting

opportunity lies in transfer of metrics in both global and local metric learning scenarios with the goal

to achieve provable reduction of the curse of dimensionality by HTL.

HTL in Reinforcement Learning. The results presented in this thesis also have the potential to

facilitate the design of reinforcement learning algorithms with improved sample complexity. Recently

the field of reinforcement learning witnessed impressive achievements due to the introduction of more

powerful value functions and policy approximators, again modeled by means of deep learning. Despite
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the long history of work on transfer in reinforcement learning [82, 3], in many cases these agents

are trained from scratch on every new task or use a rudimentary form of transfer of approximators,

typically adapted from the deep learning literature.

The transfer of approximators clearly bears elements of the hypothesis transfer learning discussed

above, with the theory and the algorithms highly applicable. The direction to pursue here is the sample

complexity or regret analysis of the popular reinforcement algorithms, such as Q-learning, which

would quantitatively involve the notion of the generalization ability of approximators. This might

lead to the synthesis between the theory of hypothesis transfer learning and transfer in reinforcement

learning. In turn, the goal is to design and analyze reinforcement learning algorithms that are able to

transfer by taking advantage of this theory.
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A Proofs from Chapter 3

Sketch proof of Theorem 6. We trace the occurrence of M 2

2m
to the proof of Lemma 9 [17]. At the begin-

ning of the proof they suggest the following inequality

E
S

“
pRpASq´ R̂ loopA,Sqq2

‰
ď 1

m
E
S
rℓpASzi , zi qpM ´ℓpASzi , z j qqs (A.1)

` E
S,z,z1

rℓpASzi , zqℓpASzi , z 1q´ℓpASzi , zqℓpASzi , zi qs (A.2)

` E
S,z,z1

rℓpASzi , zi qℓpASzi , z j q´ℓpASzi , zqℓpASzi , zi qs . (A.3)

Here we are only interested in the first term, since it is the origin of the term M 2

2m
. Using the fact that

ℓpASzi , z j q ě 0, we have

1

m
E
S
rℓpASzi , zi qpM ´ℓpASzi , z j qqs “ 1

m
E
S
rℓpASzi , zi qpM ´ℓpASzi , z j qqs (A.4)

ď M

m
E
S
rℓpASzi , zi qs .

A.1 Proof of Theorem 7

In this section we will mostly use the notation w S ” AS and w Szi ” ASzi as a reminder that we are

working in a vector space. To prove Theorem 7 we need to upper bound the quantities M , γ, and

ESrℓpASzi , zi qs of Theorem 6. To do so, we proceed by stating and proving additional lemmas. In

particular we first start by proving general statements in subsection A.1.1, used throughout the proof.

Next we prove two perturbation bounds which are instrumental in the proof of the stability bound γ.

Next we handle terms M and ESrℓpASzi , zi qs, and corresponding bounds are shown in Lemma 8, while

γ is bounded in Theorem 19.

A.1.1 General Statements

Lemma 2. For all X PR
mˆd , m,λě 0, we have that the matrix

I ´ X
`

X JX ` mλI
˘´1

X J
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Appendix A. Proofs from Chapter 3

is PSD and its maximum eigenvalue is less than 1.

Proof.

I ´ X
`

X JX ` mλI
˘´1

X J “ I ´
`

X X J ` mλI
˘´1

X X J (A.5)

“ I ´U pΛ` mλI q´1
U JUΛU J

“ U
`

I ´pΛ` mλI q´1
Λ

˘
U J,

where we used the identity pX X J ` mλI q´1X “ X pX JX ` mλI q´1 to obtain (A.5). Subsequently we

used the eigendecomposition X X J “ UΛU J.

Lemma 3. @a,b, ŷ PR,

|pa ´ ŷq2 ´pb ´ ŷq2| ď pa ´ bq2 ` 2|pb ´ ŷqpa ´ bq| .

Proof.

|pa ´ ŷq2 ´pb ´ ŷq2| “ |a2 ´ b2 ´ 2ŷpa ´ bq| (A.6)

“ |pa ´ bq2 ´ 2b2 ` 2ab ´ 2ŷpa ´ aq| (A.7)

“ |pb ´ bq2 ` 2pb ´ ŷqpa ´ bq| (A.8)

ď pa ´ bq2 ` 2|pb ´ ŷqpa ´ bq| . (A.9)

Lemma 4. Let αě 1, and C ě |y |, then

pTC p∆q´ yq2 ď pTC py `αp∆´ yqq´ yq2

ďα2 pTC p∆q´ yq2
.

Proof. We only prove the upper bound, noting that the proof of the lower bound is similar. The proof

follows from an analysis of all the possible cases. The lemma trivially holds when |y `αp∆´yq| ď C . For

∆ą C , the bound holds because y `αp∆´yq ą C ; the same reasoning applies for ∆ă ´C . The last case

is when
C´y
α ` y ă∆ă C . We have pTC py `αp∆´ yqq´ yq2 “ pC ´ yq2. Note that C ě y implies that

C´y
α ` y ą y , so ∆ą y and this implies the stated bound. The case is analogous ´C ă∆ă ´C`y

α ` y :

we have that TC py `αp∆´ yqq “ ´C and ´C`y
α ` y ď y because C ` y ě 0, hence ∆ă y .

A.1.2 Perturbation Bounds

The first perturbation bound is given in Lemma 5 capturing the closed-form formula for calculating

the change in truncated predictions of RLS when a new sample point is added. This result is related

to the well-known closed-form formula for LOO risk for RLS, e.g. see [21]. The second one shown in

Lemma 6 bounds the absolute difference between the margins of the LOO estimate and an intact one.

Lemma 5. Let w S be the hypothesis produced by the RLS algorithm given training set S. For any i -th

example px i , yi q P S, we have that the hypothesis w Szi produced by the same RLS algorithm on a training
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set Szi satisfies

pTC pxJ
i w Sq´ yi q2 ď pTC pxJ

i w Szi q´ yi q2 (A.10)

ď
´

1 ` 1

mλ

¯2

pTC pxJ
i w Sq´ yi q2 . (A.11)

Proof. The w Szi is given by

w Szi “ argmin
wPRd

! 1

m
}X Jw ´ y}2

2 `λ}w}2
)

,

where X is a matrix d ˆ pm ´ 1q and y an m ´ 1 dimensional vector, respectively the matrix of the

training examples and vector of the training labels without the i -th example. Let M :“ X JX ` mλI ,

then

xJ
i w Szi “ xJ

i X M´1 y .

It is straightforward to see that xJ
i

w S is equal to

“
xJ

i
X }x i }2

‰„
M X Jx i

xJ
i

X }x i }2 ` mλ

´1 „
y

yi


. (A.12)

Expanding the middle term and using the block-wise matrix inversion property [111] we get

„
M X Jx i

xJ
i

X }x i }2 ` mλ

´1

“
„

M´1 0

0J 0


(A.13)

` 1

a

„
M´1X Jx i

´1

“
xJ

i
X M´1 ´1

‰
, (A.14)

where a :“ }x i }2 ` mλ´ xJ
i

X M´1X Jx i . Plugging this result into (A.12) yields

xJ
i w S “ xJ

i w Szi ´ a ´ mλ

a
pxJ

i w Szi ´ yi q .

So we have

pTC pxJ
i w Szi q´ yi q2 “

´
TC

´ a

mλ
pxJ

i w S ´ yi q` yi

¯
´ yi

¯2

. (A.15)

Observing that 0 ď xJ
i

X M´1X Jx i ď }x i }2, we have that 1 ď a
mλ ď 1 ` }x i }2

mλ , hence we use the upper

bound in Lemma 4 to derive the stated upper bound. Analogously, the lower bound follows from (A.15)

and the lower bound in Lemma 4.

Lemma 6. Let w S be the hypothesis produced by the RLS algorithm given training set S. For any sample

px , yq iid„ D and px i , yi q P S, such that }x},}x i } ď 1, we have that the hypothesis w Szi produced by the

same RLS algorithm on a training set Szi @i P t1, . . . ,mu, satisfies

|xJw S ´ xJw Szi | ď 1

mλ
|xJ

i w Szi ´ yi | .
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Proof. Define X “ rx1, . . . , x i´1, x i`1, . . . , xms, M “ X JX `mλI . It is straightforward to see that xJw S

is equal to

“
xJX xJx i

‰„
M X Jx i

xJ
i

X }x i }2 ` mλ

´1 „
y

yi


. (A.16)

Expanding the middle term and using the block-wise matrix inversion property [111] we get

„
M X Jx i

xJ
i

X }x i }2 ` mλ

´1

“
„

M´1 0

0J 0


` 1

a

„
M´1X Jx i

´1

“
xJ

i
X M´1 ´1

‰
, (A.17)

where a :“ }x i }2 ` mλ´ xJ
i

X M´1X Jx i . Plugging this result into (A.16) yields

xJw S “ xJw Szi `
xJ `

I ´ X M´1X J˘
x i

a
pyi ´ xJ

i w Szi q . (A.18)

Using the result of Lemma 2, we have that mλď a and in addition by the Cauchy-Schwarz inequality

we have that x
`

I ´ X M´1X J˘
x i ď 1, since }x},}x i } ď 1.

A.1.3 Bounding M and ESrℓpASzi , zi qs

Next we bound ESrℓpw Szi ,px i , yi qqs and M in Lemma 8, but first we also need to prove the following

helpful lemma which bounds the norm of the hypothesis.

Lemma 7. The following bounds hold for the hypothesis ŵ S produced by Algorithm 2

E
S

“
}ŵ S}2

‰
ď 1

λ
Rphsrcq ,

and

}ŵ S}2 ď 1

λ
pB `}hsrc}8q2 .

Proof. We define

Qpwq :“ 1

m

mÿ

i“1

pxJ
i w ´ yi ` hsrcpx i qq2 `λ}w}2 .

Using the definition of ŵ S in Algorithm 2, we have that

Qpŵ Sq ď Qp0q “ R̂phsrcq . (A.19)

Hence we get }ŵ S}2 ď R̂phsrcq
λ . Now

E
S

}ŵ S}2 ď 1

λ
E
S

R̂phsrcq “ 1

λ
Rphsrcq .
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A.1. Proof of Theorem 7

For the second upper bound, from (A.19) it also follows

}ŵ S}2 ď 1

mλ

mÿ

i“1

phsrcpx i q´ yi q2 ď 1

λ
pB `}hsrc}8q2 .

Lemma 8. Assume px , yq iid„ D. For Algorithm 2 the following bounds hold @i P t1, . . . ,mu

sup
x ,y

`
TC pxJŵ Szi q´ y ` hsrcpxq

˘2 ď
´

1 ` 1

mλ

¯2
ˆ

TC

ˆ
B `}hsrc}8?

λ

˙
` B `}hsrc}8

˙2

, (A.20)

and

E
S

“
pTC pxJŵ Sq´ y ` hsrcpx i qq2

‰
ď 2

ˆ
TC 2

ˆ
Rphsrcq

λ

˙
` Rphsrcq

˙
. (A.21)

Proof. We use Lemma 5, and the Cauchy-Schwarz inequality to derive

sup
x ,y

pTC pxJŵ Szi q´ y ` hsrcpxqq2 ď
´

1 ` 1

mλ

¯2

sup
x ,y

`
TC pxJŵ Sq´ y ` hsrcpxq

˘2
(A.22)

ď
´

1 ` 1

mλ

¯2

sup
x ,y

`
|TC pxJŵ Sq|` B `}hsrc}8

˘2
. (A.23)

The term |TC pxJŵ Sq| can be simultaneosly upper bounded using C and, using the Cauchy-Schwarz

inequality, by }ŵ S}. Hence using the second result of Lemma 7 we obtain the first result.

For the second upper bound, using the elementary inequality pa ` bq2 ď 2pa2 ` b2q, in an analogous

way we have

E
S

“
pTC pxJŵ Sq´ y ` hsrcpxqq2

‰
ď 2E

S

“
pTC pxJŵ Sqq2 `phsrcpxq´ yq2

‰

“ 2
´
E
S

“
pTC pxJŵ Sqq2

‰
` Rphsrcq

¯
.

Again, the first term in the left hand side of the last inequality can be simultaneosly upper bounded

using C 2 and, using the Cauchy-Schwarz inequality, by }ŵ}2. Hence the first result of Lemma 7

concludes the proof.

A.1.4 Hypothesis Stability γ and Generalization Bound

Now, we are ready to upper-bound the hypothesis stability for Algorithm 2.

Theorem 19. The hypothesis stability of Algorithm 2 is upper bounded as

γď T4C 2

ˆ
2Rphsrcq

m2λ2

´
1 ` 1

λ

¯˙
` 2T2C

˜a
2Rphsrcq

mλ

c
1 ` 1

λ

¸d
2TC 2

ˆ
Rphsrcq

λ

˙
` 2Rphsrcq .

(A.24)

Proof. From Lemma 3 with a “ TC p∆` ǫq, b “ TC p∆q, ŷ “ y ´ hsrcpxq and also using the fact that
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|TC p∆`ǫq´ TC p∆q| ď minp|ǫ|,2Cq, we have

ˇ̌
pTC p∆`ǫq´ y ` hsrcpxqq2 ´pTC p∆q´ y ` hsrcpxqq2

ˇ̌

ď minpǫ2,4C 2q` 2minp|ǫ|,2Cq|TC p∆q´ y ` hsrcpxq| .

Set ∆ :“ xJw Szi , and ∆` ǫ :“ xJw S . Taking the expectation Er¨s “ E
S,px ,yq

r¨s, and using Jensen’s and

Cauchy-Schwarz’s inequalities, we have

E

“ˇ̌
pTC p∆`ǫq´ y ` hsrcpxqq2 ´pTC p∆q´ y ` hsrcpxqq2

ˇ̌‰
(A.25)

ď min
`
E

“
ǫ2

‰
,4C 2

˘
` 2min

´b
Erǫ2s,2C

¯b
ErpTC p∆q´ y ` hsrcpxqq2s (A.26)

ď min
`
E

“
ǫ2

‰
,4C 2

˘
` 2min

´b
Erǫ2s,2C

¯b
Er2TC 2 p}ŵ S}2q` 2phsrcpxq´ yq2s (A.27)

ď min
`
E

“
ǫ2

‰
,4C 2

˘
` 2min

´b
Erǫ2s,2C

¯d
2TC 2

ˆ
Rphsrcq

λ

˙
` 2Rphsrcq . (A.28)

In (A.27) we apply the Cauchy-Schwarz inequality and the elementary inequality pa ` bq2 ď 2a2 ` 2b2,

while (A.28) comes from the first result of Lemma 7.

We now use Lemma 6 to have that

E

“
ǫ2

‰
ď 1

m2λ2
E

“
pxJŵ Szi ´ yi ` hsrcpxqq2

‰

ď 2

m2λ2
E

“
}ŵ Szi }2 `py ´ hsrcpxqq2

‰

ď 2Rphsrcq
m2λ2

´m ´ 1

m

1

λ
` 1

¯

ď 2Rphsrcq
m2λ2

´ 1

λ
` 1

¯
.

Putting all together we have

E
S,px ,yq

“ˇ̌
pTC p∆q´ y ` hsrcpxqq2 ´pTC p∆`ǫq´ y ` hsrcpxqq2

ˇ̌‰

ď T4C 2

ˆ
2Rphsrcq

m2λ2

´
1 ` 1

λ

¯˙
` 2T2C

˜a
2Rphsrcq

mλ

c
1 ` 1

λ

¸d
2TC 2

ˆ
Rphsrcq

λ

˙
` 2Rphsrcq .

With the results above we now prove Theorem 7.

Proof of Theorem 7. We apply Theorem 6. To apply this theorem, we need to upper-bound quantities

M ,ES rℓpw Szi ,px i , yi qqs, and γ. Using the upper bound in Lemma 5 and the second result in Lemma 8,

we have

E
S
rℓpASzi ,px i , yi qqs ď 2

´
1 ` 1

mλ

¯2
ˆ

TC 2

ˆ
Rphsrcq

λ

˙
` Rphsrcq

˙
, (A.29)
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A.1. Proof of Theorem 7

we use bound on γ given by Theorem 19. By assumption on the loss function

}ℓ}8 ď M .

So we have

sup
x ,y

`
TC pxJw Szi q´ ŷ ` hsrcpxq

˘2 ď
ˆ

TC

ˆ
B `}hsrc}8?

λ

˙
` B `}hsrc}8

˙2

.

We have this result, because the term TC pxJw Szi q can be simultaneously upper-bounded by C and,

using the Cauchy-Schwarz inequality, }w Szi } . Consequently, }w Szi } is bounded using the second

result of Lemma 7. Putting it all together and applying Theorem 6, we have that

E
S

“
pRpAhtlq´ R̂ loopAhtlqq2

‰
“ O

¨
˚̊
˝C 2

c
RphsrcqTC 2

´
Rphsrcq

λ

¯
` Rphsrcq2

mλ1.5

˛
‹‹‚ , (A.30)

where C ě B `}hsrc}8. Applying Chebyshev’s inequality we get the statement. The dominant rates in

Op¨q notation, in both truncated and untruncated cases, come from the bound on the component Mγ

in Theorem 6.
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B Proofs from Chapter 4

Our main result is Theorem 8, and before proving it we introduce a few instrumental theorems.

Theorem 20 (Steele’s inequality [131]). Let F : Z
m ÑR be any measurable function. Then,

E
S

„´
F pSq´ E

S1
rF pS1qs

¯2


ď 1

2

mÿ

k“1

E
S,z

”`
F pSq´ F pSpkqq

˘2
ı

.

Theorem 21 (Bennett’s and Bernstein’s inequalities [16]). Let X1, . . . , Xm be independent random vari-

ables with finite variance such that Pp|Xi ´ErXi s| ă Mq “ 1 for some M ą 0 and all i “ 1, . . . ,m. Let

Z “
mÿ

i“1

Xi and v “
mÿ

i“1

VrXi s .

Then for any t ą 0

PpZ ´ErZ s ě tq ď exp

ˆ
´ v

M 2
h

ˆ
M t

v

˙˙

ď exp

ˆ
´ t 2{2

v ` M t{3

˙
,

where hpuq “ p1 ` uq logp1 ` uq´ u for all u ą 0.

Theorem 22 (Theorem 13.2 in [124] ). Let i
iid„Upt1, . . . ,muq. Then for any learning algorithm A,

E
S

“
RpASq´ R̂SpASq

‰
“ E

S,z,i
rℓpASpiq , zi q´ℓpAS , zi qs .

Lemma 9. Let a,b ą 0 such that b “ p1 ` aq logp1 ` aq´ a. Then a ď 3b

2logp
?

b`1q .

Proof. It is easy to verify that the inverse function f ´1pbq of f paq “ p1 ` aq logp1 ` aq´ a is

f ´1pbq “ exp

„
W

ˆ
b ´ 1

e

˙
` 1


´ 1,
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where the function W : R` ÑR is the Lambert function that satisfies

x “ W pxqexppW pxqq .

Hence, to obtain an upper bound to a, we need an upper bound to the Lambert function. We use

Theorem 2.3 in [62], that says that

W pxq ď log
x `C

1 ` logpCq , @x ą ´1

e
, C ą 1

e
.

Setting C “
?

b`1
e

, we obtain

a “ f ´1pbq ď e

b´1
e

`
?

b`1
e

1 ` logp
?

b`1
e

q
´ 1 “ b `

?
b

logp
?

b ` 1q
´ 1 ď 3b

2logp
?

b ` 1q
,

where in the last inequality we used the fact that x `?
x ´ logp?

x ` 1q ď 3
2

x,@x ě 0, as it can be easily

verified by comparing the derivatives of both terms.

Proof of Theorem 8. The idea of the proof is to relate on-average stability to the variance in Bennett’s

and Bernstein’s inequalities. We will ultimately apply these inequalities with random variables

XS,i “ RpASq´ℓpAS , zi q .

Note that XS,i is random only in S (since zi P S and A is deterministic). To apply these concentration

bounds we have to upper bound two terms:

1) Expectation term
řm

i“1ESrXS,i s ,

2) Variance term v “
řm

i“1VSrXS,i s .

1) Handling the expectation term We start by looking at its expectation, that is

E
S
rXS,i s “ E

S
rRpASq´ℓpAS , zi qs . (B.1)

By Theorem 22 we have that

mÿ

i“1

E
S
rXS,i s “ mE

S

“
RpASq´ R̂SpASq

‰
(B.2)

“ m E
S,z,i

rℓpASpiq , zi q´ℓpAS , zi qs (B.3)

ď m sup
z1

E
S,z,i

rℓpASpiq , z 1q´ℓpAS , z 1qs (B.4)

ď mǫm . (B.5)
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2) Handling the variance term Consider the variance of XS,i ,

V
S

rXS,i s “ E
S

„´
RpASq´ℓpAS , zi q´ E

S1
rRpAS1q´ℓpAS1 , z 1

i qs
¯2


. (B.6)

Now we further bound the variance by using Steele’s inequality, Theorem 20, with F pSq “ RpASq ´
ℓpAS , zi q,

V
S

rXS,i s ď 1

2

mÿ

k“1

E
S,z

“
pRpASq´ RpASpkqq`ℓpASpkq , zi q´ℓpAS , zi qq2

‰
(B.7)

ď
mÿ

k“1

E
S,z

“
pRpASq´ RpASpkqqq2

‰
`

mÿ

k“1

E
S,z

“
pℓpASpkq , zi q´ℓpAS , zi qq2

‰
. (B.8)

We first handle the term involving Rp¨q,

mÿ

k“1

E
S,z

“
pRpASq´ RpASpkqqq2

‰
“ m E

S,z,k

„´
E
z1

rℓpAS , z 1q´ℓpASpkq , z 1qs
¯2


(B.9)

ď m E
S,z,z1,k

”
pℓpAS , z 1q´ℓpASpkq , z 1qq2

ı
(By Jensen’s inequality)

ď m sup
z1

E
S,z,k

”
pℓpAS , z 1q´ℓpASpkq , z 1qq2

ı
(B.10)

ď mǫ
p2q
m . (B.11)

Now for the term involving ℓp¨, ¨q we have that

mÿ

k“1

E
S,z

“
pℓpASpkq , zi q´ℓpAS , zi qq2

‰
“ m E

S,z,k

“
pℓpASpkq , zi q´ℓpAS , zi qq2

‰
(B.12)

ď m sup
z1

E
S,z,k

”
pℓpASpkq , z 1q´ℓpAS , z 1qq2

ı
(B.13)

ď mǫ
p2q
m . (B.14)

Thus we get that

V
S

rXS,i s ď 2mǫ
p2q
m ,

and

v “
mÿ

i“1

V
S

rXS,i s ď 2m2ǫ
p2q
m . (B.15)

Bennett’s bound. Using the first inequality of Theorem 21 and bounding
řm

i“1ESrXS,i s using (B.2)-

(B.5) we have that

P

`
mRpASq´ mR̂SpASq´ mǫm ě t

˘
ď exp

ˆ
´ v

M 2
h

ˆ
M t

v

˙˙
. (B.16)
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Letting

δ“ exp

ˆ
´ v

M 2
h

ˆ
M t

v

˙˙
(B.17)

ñ M 2 logp1{δq
v

“ h

ˆ
M t

v

˙
, (B.18)

where hpxq “ p1 ` xq logp1 ` xq´ x. Then

h

ˆ
M t

v

˙
“

ˆ
1 ` M t

v

˙
log

ˆ
1 ` M t

v

˙
´ M t

v

and applying Lemma 9 we get that

t ď
3vh

`
M t
v

˘

2M log
´

1 `
b

h
`

M t
v

˘¯

ď 3M logp1{δq

2log

ˆ
1 ` M

b
logp1{δq

v

˙ . (Plugging (B.18))

Thus from (B.16) and (B.15) we conclude that with probably at least 1 ´δ

mRpASq´ mR̂SpASq ď mǫm ` 3M logp1{δq

2log

ˆ
1 ` M

m

c
logp1{δq

2ǫ
p2q
m

˙ .

Dividing through by m proves the first inequality.

Bernstein’s bound. Now we consider Bernstein’s bound. Similarly as in the Bennett case we have

that

P

`
mRpASq´ mR̂SpASq´ mǫm ě t

˘
ď exp

ˆ
´ t 2{2

v ` M t{3

˙
. (B.19)

Letting

δ“ exp

ˆ
´ t 2{2

v ` M t{3

˙
(B.20)

ñ t ď 2

3
M lnp1{δq`

b
2lnp1{δqv (B.21)

t ď 2

3
M lnp1{δq`

b
4lnp1{δqm2ǫ

p2q
m . (B.22)

Thus Bernstein’s inequality gives us that with probability at least 1 ´δ,

mRpASq´ mR̂SpASq ď mǫm ` 2

3
M lnp1{δq` m

b
4lnp1{δqǫp2q

m , (B.23)

and dividing both sides by m proves the second inequality.
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Proof of Theorem 9. Denote ûS “ rŵ J
S , β̂

J
S sJ, observe that Ahtl

S pxq “ xûS , xy, and introduce a loss

function ℓ, such that

ℓpûS ,px , yqq “φpAhtl
S pxq, yq . (B.24)

Assuming that the loss function is L-Lipschitz we have that

sup
z1

E
S,z,i

rℓpûSpiq , z 1q´ℓpûS , z 1qs ď L E
S,z,i

r}ûS ´ ûSpiq}s , (B.25)

and similarly

sup
z1

E
S,z,i

”
pℓpûS , z 1q´ℓpûSpiq , z 1qq2

ı
ď L2

E
S,z,i

“
}ûS ´ ûSpiq}2

‰
, (B.26)

[123, end of page 143] showed that the minimizer ûS of ERM with a 2λ-strongly-convex and H-smooth

loss function, assuming that H ď mλ
2

, satisfies

}ûS ´ ûSpiq} ď
?

8H

mλ

´b
ℓpûS , zi q`

b
ℓpûSpiq , zq

¯
.

We take the square of both sides, apply the inequality pa ` bq2 ď a2 ` b2 for a,b ě 0, and take the

expectation w.r.t. S, z, and i to get that

E
S,z,i

“
}ûS ´ ûSpiq}2

‰
ď 8H

m2λ2

ˆ
E

S,i
rℓpûS , zi qs` E

S,z,i
rℓpûSpiq , zqs

˙
(B.27)

“
16H ES

“
R̂SpûSq

‰

m2λ2
, (B.28)

where the last identity comes by observing that ES,i rℓpûS , zi qs “ ES,z,i rℓpûSpiq , zqs “ ES

“
R̂SpûSq

‰
re-

calling that zi , z,S
iid„ D

m`2. Since Ahtl
S is a minimizer of a regularized empirical risk we also have

that

R̂SpAhtl
S q ď R̂SpAhtl

S q`λΩpŵ Sq`λΩpβ̂Sq (B.29)

ď R̂Sphsrc

β̂S

q`λΩpβ̂Sq , (B.30)

which implies that

R̂SpAhtl
S q ď R̂Sphsrc

β̂S

q .

Thus, considering the above and plugging (B.28) into (B.26) we get that

ǫ
p2q
m “

16L2H ES

”
R̂Sphsrc

β̂S

q
ı

m2λ2
“ 16L2HRsrc

m2λ2
,
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and similarly

ǫm “ 4L
?

HRsrc

mλ
.

Plugging the stability results into Theorem 8 gives the statement.

Proof of Theorem 10. By definition of Ahtl
S in R-ERM-HTL we have that

R̂SpAhtl
S q ď R̂SpAhtl

S q`λΩpŵ Sq`λΩpβ̂Sq (B.31)

ď R̂Spw ‹q`λΩpw ‹q . (B.32)

Plugging the above into (4.6) we get that

RpAhtl
S q´ R̂Spw ‹q ďλΩpw ‹q` 4L p1 `?

4ηq
?

HRsrc

mλ
` 1.5Mη

m
(B.33)

λ“

d
4Lp1 `?

4ηq
?

HRsrc

mΩpw ‹q .

Plugging this back we get

RpAhtl
S q´ R̂Spw ‹q ď 4

d
Ωpw ‹qLp1 `?

4ηq
?

HRsrc

m
` 1.5Mη

m
(B.34)

Finally concentrating R̂Spw ‹q around Rpw ‹q using Bernstein’s inequality, that is

R̂Spw ‹q ď Rpw ‹q`
c

2Rpw ‹qη
m

` 1.5Mη

m
, (B.35)

and using the fact that Rpw ‹q ď Rphsrc

β̂S

q we get that

RpAhtl
S q´ Rpw ‹q ď 4

d
Ωpw ‹qLp1 `?

4ηq
?

HRsrc

m
`

c
2Rsrcη

m
` 3Mη

m
, (B.36)

which completes the proof.
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C Proofs from Chapter 5

In this section we present proofs of all the statements.

Proof of Theorem 12. Indicate by S “ tzi um
i“1

and S1 “ tz 1
i
um

i“1
independent training sets sampled i.i.d.

from D, and let Spiq “
�

z1, . . . , zi´1, z 1
i
, zi`1, . . . , zm

(
, such that z 1

i

iid„D. We relate expected empirical risk

and expected risk by

E
S
E
A

“
R̂SpASq

‰
“E

S
E
A

«
1

m

mÿ

i“1

ℓpAS , zi q
ff

“ E
S,S1

E
A

«
1

m

mÿ

i“1

ℓpASpiq , z 1
i q

ff

“ E
S,S1

E
A

«
1

m

mÿ

i“1

ℓpAS , z 1
i q

ff
´δ

“E
S
E
A

rRpASqs´δ ,

where

δ“ E
S,S1

E
A

«
1

m

mÿ

i“1

pℓpAS , z 1
i q´ℓpASpiq , z 1

i qq
ff

“ 1

m

mÿ

i“1

E
S,z1

i

E
A

rℓpAS , z 1
i q´ℓpASpiq , z 1

i qs .

Renaming z 1
i

as z and taking sup over i we get that

δď sup
iPrms

"
E

S,z
E
A

rℓpAS , zq´ℓpASpiq , zqs
*

.

This completes the proof.

90



C.1. Preliminaries

C.1 Preliminaries

We say that the SGD gradient update rule is an operator Gt : H ÞÑ H , such that

Gt pwq :“ w ´αt∇ℓpw , zi t
q ,

and it is also a function of the training set S and a random index set I . Then, w t`1 “ Gt pw t q, through-

out t “ 1, . . . ,T . Moreover we will use the notation w S,t to indicate the output of SGD ran on a training

set S, at step t , and define

δt pS, zq :“ }w S,t ´ w Spiq,t } .

Next, we summarize a few instrumental facts about Gt and a few statements about the loss functions

used in our proofs.

Definition 16 (Expansiveness). A gradient update rule is η-expansive if for all w , v ,

}Gt pwq´Gt pvq} ď η}w ´ v} .

The following lemma characterizes expansiveness for the gradient update rule under different assump-

tions on ℓ.

Lemma 10 (Lemma 3.6 in [57]). Assume that ℓ is β-smooth. Then, we have that:

1) Gt is p1 `αtβq-expansive,

2) If ℓ in addition is convex, then, for any αt ď 2
β , the gradient update rule Gt is 1-expansive.

An important consequence of β-smoothness of ℓ is self-boundedness [123], which we will use on many

occasions.

Lemma 11 (Self-boundedness). For a β-smooth non-negative function ℓ we have that

}∇ℓpw , zq} ď
b

2βℓpw , zq .

Self-boundedness in turn implies the following boundedness of a gradient update rule.

Corollary 5. Assume that ℓ is β-smooth and non-negative. Then,

}w ´Gt pwq} “αt }∇ℓpw , z jt
q} ďαt min

!b
2βℓpw , z jt

q,L
)

.

Proof. By Lemma 11

}αt∇ℓpw , z jt
q} ďαt

b
2βℓpw , z jt

q ,

and also by Lipschitzness of ℓ, }αt∇ℓpw , z jt
q} ďαt L.
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Next we introduce a bound that relates the risk of the output at step t to the risk of the initialization

point w 1 through the variance of the gradient. Given an appropriate choice of step size, this bound

will be crucial at stating stability bounds that depend on the risk at w 1. The proof idea is similar to the

one of [50]. In particular, it does not require convexity of the loss function.

Lemma 12. Assume that the loss function ℓ is β-smooth. Then, for w S,t we have that

E
S

rℓpw S,t , z jt
q´ℓpw 1, z jt

qs ď
t´1ÿ

k“1

αk

ˆ
αkβ

2
´ 1

˙
E
S

“
}∇ℓpw S,k , z jk

q}2
‰

.

Proof. For brevity let w k “ w S,k . Since ℓ is β-smoothness we have

ℓpw k`1, z jt
q´ℓpw k , z jt

q ď∇ℓpw k , z jt
qJpw k`1 ´ w kq` β

2
}w k`1 ´ w k}2 .

Considering SGD update w k`1 “ w k ´αk∇ℓpw k , z jk
q, where z jk

iid„D, and summing both sides from 1

to t ´ 1 we get

ℓpw t , z jt
q´ℓpw 1, z jt

q ď ´
t´1ÿ

k“1

αk∇ℓpw k , z jt
qJ

∇ℓpw k , z jk
q` β

2

t´1ÿ

k“1

α2
k}∇ℓpw k , z jk

q}2 .

Taking expectation w.r.t. S and z on both sides, using the fact that w S,k does not depend on z jk
nor on

z jt
, and that z jk

, z jt

iid„ D, we have that

E
S,z

rℓpw S,t , z jt
q´ℓpw 1, z jt

qs

ď ´
t´1ÿ

k“1

αk E
S,z

“
∇ℓpw S,k , z jt

qJ
∇ℓpw S,k , z jk

q
‰

` β

2

t´1ÿ

k“1

α2
k E

S,z

“
}∇ℓpw S,k , z jk

q}2
‰

“αk

ˆ
αkβ

2
´ 1

˙ tÿ

k“1

α2
k E

S,z

“
}∇ℓpw S,k , z jk

q}2
‰

.

The following lemma is a consequence of Lemma 12 and self-boundedness.

Lemma 13. Assume that the loss function ℓ is β-smooth and non-negative, and that step sizes obey

αt ď 2
β . Then @t P rT s we have that

E
S,z

r}∇ℓpw S,t , z jt
q}s ď

b
2βRpw 1q .

Proof. By Lemma 11, }∇ℓpw S,t , z jt
q} ď

a
2βℓpw S,t , z jt

q. Now, we invoke Lemma 12 assuming that the
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step size is set such that αt ď 2
β to get that

E
S,z

r}∇ℓpw S,t , z jt
q}s ď

a
2βE

S

”b
ℓpw S,t , z jt

q
ı

ď
b

2βE
S

rℓpw S,t , z jt
qs (By Jensen’s inequality.)

ď
b

2βE
S

rℓpw 1, z jt
qs “

b
2βRpw 1q . (By Lemma 12.)

The following lemma is similar to Lemma 3.11 of [57], and is instrumental in bounding the stability of

SGD. However, we make an adjustment and state it in expectation over the data. Note that it does not

require convexity of the loss function.

Lemma 14. Assume that the loss function ℓp¨, zq P r0,1s is L-Lipschitz for all z. Then, for every t0 P
t0,1,2, . . .mu we have that

E
S,z

E
A

“
ℓpw S,T , zq´ℓpw Spiq,T , zq

‰
(C.1)

ď L E
S,z

”
E
A

rδT pS, zq | δt0
pS, zq “ 0s

ı
` E

S,A
rRpASqs t0

m
. (C.2)

Proof. We proceed with elementary decomposition, Lipschitzness of ℓ, and using the fact that ℓ is

non-negative to have that

ℓpw S,T , zq´ℓpw Spiq,T , zq (C.3)

“
`
ℓpw S,T , zq´ℓpw Spiq,T , zq

˘
Itδt0

pS, zq “ 0u
`

`
ℓpw S,T , zq´ℓpw Spiq,T , zq

˘
Itδt0

pS, zq ‰ 0u
ď LδT pS, zqItδt0

pS, zq “ 0u`ℓpw S,T , zqItδt0
pS, zq ‰ 0u . (C.4)

Taking expectation w.r.t. algorithm randomization, we get that

E
A

“
ℓpw S,T , zq´ℓpw Spiq,T , zq

‰
(C.5)

ď LE
A

rδT pS, zqItδt0
pS, zq “ 0us`E

A
rℓpw S,T , zqItδt0

pS, zq ‰ 0us . (C.6)

Recall that i P rms is the index where S and Spiq differ, and introduce a random variable τA taking on

the index of the first time step where SGD uses the example zi or a replacement z. Note also that τA

does not depend on the data. When τA ą t0, then it must be that δt0
pS, zq “ 0, because updates on

both S and Spiq are identical until t0. A consequence of this is that Itδt0
pS, zq ‰ 0u ď ItτA ď t0u. Thus

the rightmost term in (C.6) is bounded as

E
A

rℓpw S,T , zqItδt0
pS, zq ‰ 0us ď E

A
rℓpw S,T , zqItτA ď t0us .

Now, focus on the r.h.s. above. Recall that we assume randomization by sampling from the uniform

distribution over rms without replacement, and denote a realization by t ji um
i“1. Then, we can always

express our randomization as a permutation function πApSq “ tz ji
um

i“1
. In addition, introduce an algo-
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rithm GD : Z m ÞÑ H , which is identical to A, except that it passes over the training set S sequentially

without randomization. That said, we have that

E
A

rℓpw S,T , zqItτA ď t0us “ E
A

“
ℓpGDπApSq, zqItτA ď t0u

‰
,

and taking expectation over the data,

E
S,z

”
E
A

rℓpw S,T , zqItτA ď t0us
ı

“ E
A

„
E

S,z

“
ℓpGDπApSq, zq

‰
ItτA ď t0u


.

Now observe that for any realization of A, ES,z

“
ℓpGDπApSq, zq

‰
“ EA ES,z rℓpAS , zqs because expectation

w.r.t. S and z does not change under our randomization 1. Thus, we have that

E
A

„
E

S,z

“
ℓpGDπApSq, zq

‰
ItτA ď t0u


“ E

S,A
rRpASqsPpτA ď t0q .

Now assuming that τA is uniformly distributed over rms we have that

PpτA ď t0q “ t0

m
.

Putting this together with (C.3) and (C.4), we finally get that

E
S,z

E
A

“
ℓpw S,T , zq´ℓpw Spiq,T , zq

‰

ď L E
S,z

”
E
A

rδT pS, zqItδt0
pS, zq “ 0us

ı
` E

S,A
rRpASqs t0

m

ď L E
S,z

”
E
A

rδT pS, zq | δt0
pS, zq “ 0s

ı
` E

S,A
rRpASqs t0

m
.

This completes the proof.

We spend a moment to highlight the role of conditional expectation in (C.2). Observe that we could

naively bound (C.1) by the Lipschitzness of ℓ, but Lemma 14 follows a more careful argument. First

note that t0 is a free parameter. The expected distance in (C.2) between SGD outputs w S,t and w Spiq,t

is conditioned on the fact that at step t0 the outputs of SGD are still the same. This means that the

perturbed point is encountered after t0. Then, the conditional expectation should be a decreasing

function of t0: the later the perturbation occurs, the smaller deviation between w S,t and w Spiq,t we

should expect. Later we use this fact to minimize the bound (C.2) over t0.

C.2 Convex Losses

In this section we prove on-average stability for loss functions that are non-negative, β-smooth, and

convex.

Theorem 23. Assume that ℓ is convex, and that SGD is ran with step sizes tαt uT
t“1. Then, for every

1Strictly speaking we could omit EAr¨s and consider any randomization by reshuffling, but we keep expectation for the

sake of clarity.
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t0 P t0,1,2, . . .mu, SGD is ǫpD, w 1q-on-average stable with

ǫpD, w 1q ď 2

m

Tÿ

t“t0`1

αt E
S,z

r}∇ℓpw t , z jt
q}s` E

S,A
rRpASqs t0

m
.

Proof. For brevity denote ∆t pS, zq :“ EA rδt pS, zq | δt0
pS, zq “ 0s. We start by applying Lemma 14:

E
S,z

E
A

“
ℓpw S,T , zq´ℓpw Spiq,T , zq

‰
ď L E

S,z
r∆T pS, zqs` E

S,A
rRpASqs t0

m
. (C.7)

Our goal is to bound the first term on the r.h.s. as a decreasing function of t0, so that eventually we can

minimize the bound w.r.t. t0. At this point we focus on the first term, and the proof partially follows the

outline of the proof of Theorem 3.7 in [57]. The strategy will be to establish the bound on ∆T pS, zq by

using a recursive argument. In fact we will state the bound on ∆t`1pS, zq in terms of ∆t pS, zq and then

unravel the recursion. Finally, we will take the expectation w.r.t. the data after we obtain the bound by

recursion.

To do so, we distinguish two cases: 1) SGD encounters a perturbed point at step t , that is t “ i , and 2)

the current point is the same in S and Spiq, so t ‰ i . For the first case, we will use the data-dependent

boundedness of the gradient update rule, Corollary 5, that is

}Gt pw S,t q´Gt pw Spiq,t q} ď δt pS, zq` 2αt }∇ℓpw S,t , z jt
q} .

To handle the second case, we will use the expansiveness of the gradient update rule, Lemma 10, which

states that for convex loss functions, the gradient update rule is 1-expansive, so δt`1pS, zq ď δt pS, zq.

Considering both cases of example selection, and noting that SGD encounters the perturbation with

probability 1
m

, we write EA for a step t as

∆t`1pS, zq ď
´

1 ´ 1

m

¯
∆t pS, zq` 1

m
p∆t pS, zq` 2αt }∇ℓpw S,t , z jt

q}q

“∆t pS, zq`
2αt }∇ℓpw S,t , z jt

q}
m

.

Unraveling the recursion from T to t0 and plugging the above into (C.7) yields

E
A
E

S,z
rδT pS, zqs ď 2

m

Tÿ

t“t0`1

αt E
S,z

r}∇ℓpw t , z jt
q}s` E

S,A
rRpASqs t0

m
.

This completes the proof.

The next corollary is a simple consequence of Theorem 23 and Lemma 13.
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Proof of Theorem 13. Consider Theorem 23 and set t0 “ 0. Then we have that

ǫpD, w 1q ď 2

m

Tÿ

t“1

αt }∇ℓpw t , z jt
q}

ď 2
a

2βRpw 1q
m

Tÿ

t“1

αt ,

where the last inequality comes from Lemma 13 assuming that αt ď 2
β .

Proof of Theorem 14. For brevity denote r “ ES,A rRpASqs. Consider Theorem 23 and assume that the

step size obeys αt “ c
t

ď 2
β . We have

ǫpD, w 1q ď 2c

m

Tÿ

t“t0`1

ES,z r}∇ℓpw t , z jt
q}s

t
` r

t0

m

ď 2c
a

2βRpw 1q
m

ln

ˆ
T

t0

˙
` r

t0

m
(C.8)

ď 2c
a

2βRpw 1q
m

T

t0
` r

t0

m
,

where in (C.8) we used Lemma 13 to bound the expectation of the norm and bounded the sum of

the step sizes by the logarithm. Now, setting t0 “
c

2
?

2βRpw 1qcT

r
minimizes the bound above, and

plugging it back we get that

ǫpD, w 1q ď
2

b
2
a

2βRpw 1qcr T

m
.

By Theorem 12 we then have that

r ´ E
S,A

“
R̂SpASq

‰
ď 4 4

a
βRpw 1q ¨

?
cr T

m
(C.9)

Now using a simple fact that for any non-negative A,B ,C ,

A ď B `C
?

A ñ A ď B `C 2 `
?

BC ,

we get from (C.9) that

r ´ E
S,A

“
R̂SpASq

‰
ď 4 4

a
βRpw 1q

?
cT

m

c
E

S,A

“
R̂SpASq

‰
` 16

a
βRpw 1qcT

m2
.

This completes the proof.
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C.3 Non-convex Losses

Our proof of a stability bound for non-convex loss functions, Theorem 15, follows the general outline

of [57, Theorem 3.8]. Namely, the outputs of SGD run on a training set S and its perturbed version Spiq

will not differ too much, because by the time a perturbation is encountered, the step size has already

decayed enough. So, on one hand, stabilization is enforced by diminishing the step size, and on the

other hand, by how much updates expand the distance between the gradients after the perturbation.

Since [57] work with uniform stability, they capture the expansiveness of post-perturbation update

by the Lipschitzness of the gradient. In combination with a recursive argument, their bound has

exponential dependency on the Lipschitz constant of the gradient. We argue that the Lipschitz

continuity of the gradient can be too pessimistic in general. Instead, we rely on a local data-driven

argument: considering that we initialize SGD at point w 1, how much the updates expand the gradient

under the distribution of interest? The following crucial lemma characterizes such behavior in terms

of the curvature at w 1.

Lemma 15. Assume that the loss function ℓp¨, zq is β-smooth and that its Hessian is ρ-Lipschitz. Then,

››Gt pw S,t q´Gt pw Spiq,t q
›› ď p1 `αtξt pS, zqqδt pS, zq

where

ξt pS, zq :“
››∇2ℓpw 1, zt q

››
2

`ρ

c
β

2

Tÿ

k“1

αk

´b
ℓpw S,k , z jk

q`
b

ℓpw Spiq,k , z 1
jk

q
¯

.

Furthermore, for any t P rT s,

E
S,z

rξt pS, zqs ď E
z

“››∇2ℓpw 1, zq
››

2

‰
` cρp1 ` lnpT qq

b
2βRpw 1q .

Proof. Recall that the randomness of the algorithm is realized through sampling without replacement

from the uniform distribution over rms. Apart from that we will not be concerned with the randomness

of the algorithm, and given the set of random variables t ji um
i“1

, for brevity we will use indexing notation

z1, z2, . . . , zm to indicate z j1
, z j2

, . . . , z jm
. Next, let Spiq “

�
z 1

i

(m

i“1
, and introduce a shorthand notation

fkpwq “ ℓpw , zkq and fk1pwq “ ℓpw , z 1
k
q. We start by applying the triangle inequality to get

››Gt pw S,t q´Gt pw Spiq,t q
›› ď }w S,t ´ w Spiq,t }`αt

››∇ ft pw S,t q´∇ ft pw Spiq,t q
›› .

In the following we will focus on the second term of the r.h.s. above. Given SGD outputs w S,t and w Spiq,t

with t ą i , our goal here is to establish how much the gradients grow apart with every new update.

This behavior can be characterized assuming that the gradient is Lipschitz continuous, however, we

conduct a local analysis. Specifically, we observe how much the updates expand the gradients, given

that we start at some point w 1 under the data-generating distribution. So, instead of the Lipschitz

constant, expansiveness rather depends on the curvature around w 1. On the other hand, we are

dealing with outputs at an arbitrary time step t , and therefore we first have to relate them to the

initialization point w 1. We do so by using the gradient update rule and telescopic sums, and conclude

that this relationship is controlled by the sum of the gradient norms along the update path. We further

establish that this sum is controlled by the risk of w 1, through the self-bounding property of the loss
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function and Lemma 12. Thus, the proof consists of two parts: 1) Decomposition into curvature and

gradients along the update path, and 2) bounding those gradients.

1) Decomposition. Introduce δt :“ w Spiq,t ´ w S,t . By Taylor’s theorem we get that

∇ ft pw S,t q´∇ ft pw Spiq,t q “
ż 1

0

ˆ
∇

2 ft pw S,t `τδt q´∇
2 ft pw 1q

˙
dτδt `∇

2 ft pw 1qδt .

Taking the norm on both sides, applying the triangle inequality, Cauchy-Schwartz inequality, and

assuming that Hessians are ρ-Lipschitz we obtain

}∇ ft pw S,t q´∇ ft pw Spiq,t q} (C.10)

ď
ż 1

0

››∇2 ft pw S,t `τδt q´∇
2 ft pw 1q

››dτ}δt }`
››∇2 ft pw 1q

››}δt }

ď ρ

ż 1

0

}w S,t ´ w 1 `τδt }dτ}δt }`
››∇2 ft pw 1q

››}δt } . (C.11)

2) Bounding gradients. Using telescoping sums and the SGD update rule we get that

w S,t ´ w 1 `τδt

“ w S,t ´ w 1 `τ
`

w Spiq,t ´ w 1 ` w 1 ´ w S,t

˘

“
t´1ÿ

k“1

pw S,k`1 ´ w S,kq`τ

t´1ÿ

k“1

`
w Spiq,k`1 ´ w Spiq,k

˘
´τ

t´1ÿ

k“1

pw S,k`1 ´ w S,kq

“ pτ´ 1q
t´1ÿ

k“1

αk∇ fkpw S,kq´τ

t´1ÿ

k“1

αk∇ fk1pw Spiq,kq .

Plugging above into the integral of (C.11) we have

ż 1

0

›››››
t´1ÿ

k“1

αk

`
pτ´ 1q∇ fkpw S,kq´τ∇ fk1pw Spiq,kq

˘
›››››dτ

ď 1

2

›››››
t´1ÿ

k“1

αk∇ fkpw S,kq
›››››` 1

2

›››››
t´1ÿ

k“1

αk∇ fk1pw Spiq,kq
›››››

ď
c

β

2

t´1ÿ

k“1

αk

´b
fkpw S,kq`

b
fk1pw Spiq,kq

¯
,

where the last inequality comes from the self-bounding property of β-smooth functions, Lemma 11.

Plugging this result back into (C.11) completes the proof of the first statement.

98



C.3. Non-convex Losses

Bounding ES,zrξt pS, zqs. Now we briefly focus on the expectation of ξt pS, zq, and relate it to the risk

of w 1 and expectation Hessian. By definition of ξt pS, zq

E
S,z

rξt pS, zqs ď ρ

c
β

2

Tÿ

k“1

αk

ˆ
E

S,z

”b
ℓpw S,k , z jk

q
ı

` E
S,z

”b
ℓpw Spiq,k , z 1

jk
q
ı˙

` E
S,z

“››∇2ℓpw 1, zt q
››

2

‰
.

By Jensen’s inequality and applying Lemma 12 assuming that αt ď 2
β we have,

E

”b
ℓpw S,k , z jk

q
ı

ď
b

Erℓpw S,k , z jk
qs ď

b
Rpw 1q .

We arrive at the same bound for the perturbed term by renaming z 1
jk

into z jk
, using the fact that w Spiq,k

does not depend on z 1
jk

under the randomization of SGD. Finally putting things together,

E
S,z

rξt pS, zqs ď ρ

b
2βRpw 1q

Tÿ

k“1

αk `E
z

“
}∇2ℓpw 1, zq}

‰
,

and upper bounding
řT

k“1αk ď c p1 ` lnpT qq proves the second statement.

Next, we need the following statement to prove our stability bound.

Proposition 2 (Bernstein-type inequality). Let Z be a zero-mean real-valued r.v., such that |Z | ď b and

ErZ 2s ďσ2. Then for all |c| ď 1
2b

, we have that E
“
ec Z

‰
ď ec2σ2

.

Proof. The stated inequality is a consequence of a Bernstein-type inequality for moment generating

functions, Theorem 2.10 in [16]. Observe that a zero-centered r.v. Z bounded by b satisfies Bernstein’s

condition, that is

|ErpZ ´ErZ sqq s| ď q !

2
σ2bk´2 for all integers q ě 3 .

This in turn satisfies the condition for Bernstein-type inequality stating that

ErexppcpZ ´ErZ sqqs ď exp

ˆ
c2σ2{2

1 ´ b|c|

˙
.

Choosing |c| ď 1
2b

verifies the statement.

Now we are ready to prove Theorem 15, which bounds the ǫpD, w 1q-on-average stability of SGD.

Proof of Theorem 15. For brevity denote r :“ ES,A rRpASqs and

∆t pS, zq :“ E
A

rδt pS, zq | δt0
pS, zq “ 0s .

By Lemma 14, for all t0 P rms,

E
S,z

E
A

“
ℓpw S,T , zq´ℓpw Spiq,T , zq

‰
ď L E

S,z
r∆T pS, zqs` r

t0

m
. (C.12)
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Most of the proof is dedicated to bounding the first term in (C.12). We deal with this similarly as in [57].

Specifically, we state the bound on ∆T pS, zq by using a recursion. In our case, however, we also have an

expectation w.r.t. the data, and to avoid complications with dependencies, we first unroll the recursion

for the random quantities, and only then take the expectation. At this point the proof crucially relies

on the product of exponentials arising from the recursion, and all the relevant random quantities end

up inside of them. We alleviate this by Proposition 2. Finally, we conclude by minimizing (C.12) w.r.t.

t0. Thus we have three steps: 1) recursion, 2) bounding Erexpp¨ ¨ ¨qs, and 3) tuning of t0.

1) Recursion. We begin by stating the bound on ∆T pS, zq by recursion. Thus we will first state the

bound on ∆t`1pS, zq in terms of ∆t pS, zq, and other relevant quantities and then unravel the recursion.

As in the convex case, we distinguish two cases: 1) SGD encounters the perturbed point at step t ,

that is t “ i , and 2) the current point is the same in S and Spiq, so t ‰ i . For the first case, we will use

the worst-case boundedness of Gt , Corollary 5, that is, }Gt pw S,t q´Gt pw Spiq,t q} ď δt pS, zq` 2αt L . To

handle the second case we will use Lemma 15, namely,

››Gt pw S,t q´Gt pw Spiq,t q
›› ď p1 `αtξt pS, zqqδt pS, zq .

In addition, as a safety measure we will also take into account that the gradient update rule is at most

p1 `αtβq-expansive by Lemma 10. So we will work with the function ψt pS, zq :“ mintξt pS, zq,βu
instead of ξt pS, zq and decompose the expectation w.r.t. A for a step t . Noting that SGD encounters the

perturbed example with probability 1
m

,

∆t`1pS, zq ď
´

1 ´ 1

m

¯
p1 `αtψt pS, zqq∆t pS, zq` 1

m
p2αt L `∆t pS, zqq

“
´

1 `
´

1 ´ 1

m

¯
αtψt pS, zq

¯
∆t pS, zq` 2αt L

m

ď exppαtψt pS, zqq∆t pS, zq` 2αt L

m
, (C.13)

where the last inequality follows from 1 ` x ď exppxq. This inequality is not overly loose for x P r0,1s,

and, in our case it becomes instrumental in handling the recursion.

Now, observe that the relation xt`1 ď at xt `bt with xt0
“ 0 unwinds from T to t0 as xT ď

řT
t“t0`1 bt

śT
k“t`1 ak .

Consequently, having ∆t0
pS, zq “ 0, we unwind (C.13) to get

∆T pS, zq ď
Tÿ

t“t0`1

˜
Tź

k“t`1

exp

ˆ
cψkpS, zq

k

˙¸
2cL

mt

“
Tÿ

t“t0`1

exp

˜
c

Tÿ

k“t`1

ψkpS, zq
k

¸
2cL

mt
. (C.14)

2) Bounding Erexpp¨ ¨ ¨qs. We take the expectation w.r.t. S and z on both sides and focus on the

expectation of the exponential in (C.14). First, introduce µk :“ ES,zrψkpS, zqs, and proceed as

E
S,z

«
exp

˜
c

Tÿ

k“t`1

ψkpS, zq
k

¸ff
“ E

S,z

«
exp

˜
c

Tÿ

k“t`1

ψkpS, zq´µk

k

¸ff
exp

˜
c

Tÿ

k“t`1

µk

k

¸
. (C.15)
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C.3. Non-convex Losses

Observe that the zero-mean version of ψkpS, zq is bounded as

Tÿ

k“t`1

|ψkpS, zq´µk |
k

ď 2β lnpT q ,

and assume the setting of c as c ď 1
2p2β lnpT qq2 . By Proposition 2, we have

E

«
exp

˜
c

Tÿ

k“t`1

ψkpS, zq´µk

k

¸ff

ďexp

˜
c2

E

«˜
Tÿ

k“t`1

ψkpS, zq´µk

k

¸2ff¸

“exp

˜
c

2
E

«˜
1

2β lnpT q
Tÿ

k“t`1

ψkpS, zq´µk

k

¸2ff¸

ďexp

˜
c

2
E

«ˇ̌
ˇ̌
ˇ

Tÿ

k“t`1

ψkpS, zq´µk

k

ˇ̌
ˇ̌
ˇ

ff¸

ďexp

˜
c

2

Tÿ

k“t`1

Er|ψkpS, zq´µk |s
k

¸

ďexp

˜
c

Tÿ

k“t`1

µk

k

¸
.

Getting back to (C.15) we conclude that

E
S,z

«
exp

˜
c

Tÿ

k“t`1

ψkpS, zq
k

¸ff
ď exp

˜
c

Tÿ

k“t`1

2µk

k

¸
. (C.16)

Next, we give an upper-bound onµk , that isµk ď mintβ,ES,zrξkpS, zqsu. Finally, we bound ES,zrξkpS, zqs
using the second result of Lemma 15, which holds for any k P rT s, to get that µk ď γ, with γ defined

in (5.3).

3) Tuning of t0. Now we turn our attention back to (C.14). Considering that we took an expectation

w.r.t. the data, we use (C.16) and the fact that µk ď γ to get that

E
S,z

r∆T pS, zqs ď
Tÿ

t“t0`1

exp

˜
2cγ

Tÿ

k“t`1

1

k

¸
2cL

mt

ď
Tÿ

t“t0`1

exp

ˆ
2cγ ln

ˆ
T

t

˙˙
2cL

mt

“ 2cL

m

`
T 2cγ

˘ Tÿ

t“t0`1

t ´2cγ´1

ď 1

2cγ

2cL

m

ˆ
T

t0

˙2cγ

.
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Plug the above into (C.12) to get

E
S,z

E
A

“
ℓpw S,T , zq´ℓpw Spiq,T , zq

‰
ď L2

γm

ˆ
T

t0

˙2cγ

` r
t0

m
. (C.17)

Let q “ 2cγ. Then, setting

t0 “
ˆ

2cL2

r

˙ 1
1`q

T
q

1`q

minimizes (C.17). Plugging t0 back we get that (C.17) equals to

1 ` 1
q

m

`
2cL2

˘ 1
1`q pr T q

q

1`q .

This completes the proof.

This theorem implies the following result that is further controlled by the initialization point.

Proof of Corollary 2. Consider the statement of Theorem 15. Assuming that the step size αt ď 2
β ,

Lemma 12 implies that ES,A rRpASqs ď Rpw 1q, which completes the proof.

Optimistic Rates for Learning with Non-convex Loss Functions

Next we will prove an optimistic bound based on Theorem 15, in other words, the bound that demon-

strates fast convergence rate subject to the vanishing empirical risk. First we will need the following

technical statement.

Lemma 16. [29, Lemma 7.2] Let c1,c2, . . . ,cl ą 0 and s ą q1 ą q2 ą . . . ą ql´1 ą 0. Then the equation

xs ´ c1xq1 ´ c2xq2 ´¨¨¨´ cl´1xql´1 ´ cl “ 0

has a unique positive solution x‹. In addition,

x‹ ď max
!

plc1q
1

s´q1 ,plc2q
1

s´q2 , ¨ ¨ ¨ ,plcl´1q
1

s´ql´1 ,plcl q
1
s

)
.

Next we prove a useful technical lemma similarly as in [102, Lemma 7].

Lemma 17. Let a,c ą 0 and 0 ăαă 1. Then the inequality

x ´ axα ´ c ď 0

implies

x ď max
!

2
α

1´α a
1

1´α ,p2cqα a
)

` c .

Proof. Consider a function hpxq “ x ´ axα ´ c. Applying Lemma 16 with s “ 1, l “ 2, c1 “ a, c2 “ c,
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C.3. Non-convex Losses

and q1 “α we get that hpxq “ 0 has a unique positive solution x‹ and

x‹ ď max
!

p2aq 1
1´α ,2c

)
. (C.18)

Moreover, the inequality hpxq ď 0 is verified for x “ 0, and limxÑ`8 hpxq “ `8, so we have that

hpxq ď 0 implies x ď x‹. Now, using this fact and the fact that hpx‹q “ 0, we have that

x ď x‹ “ a px‹qα ` c ,

and upper-bounding x‹ by (C.18) we finally have

x ď a max
!

p2aq α
1´α ,p2cqα

)
` c ,

which completes the proof.

Proof of Corollary 3. Consider Theorem 15 and observe that it verifies the condition of Lemma 17 with

x “ ES,A rRpASqs, c “ ES,A

“
R̂SpASq

‰
, α“ cγ

1`cγ , and

a “
1 ` 1

cγ

m

`
2cL2

˘ 1
1`cγ T

cγ

1`cγ .

Note that α{p1 ´αq “ cγ and 1{p1 ´αq “ 1 ` cγ. Then, we obtain that

E
S,A

“
RpASq´ R̂SpASq

‰
ď max

$
&
%2cγ

˜
1 ` 1

cγ

m

¸1`cγ `
2cL2

˘
T cγ,

ˆ
2 E

S,A

“
R̂SpASq

‰˙ cγ

1`cγ

˜
1 ` 1

cγ

m

`
2cL2

˘ 1
1`cγ T

cγ

1`cγ

¸,
.
-

“ max

$
&
%

ˆ
2 ` 2

cγ

˙1`cγ `
cL2

˘ˆ
T cγ

m1`cγ

˙
,

1 ` 1
cγ

m

`
2cL2

˘ 1
1`cγ

ˆ
2 E

S,A

“
R̂SpASq

‰
¨ T

˙ cγ

1`cγ

,
.
- .

This completes the proof.

Proof of Proposition 1. Consider minimizing (5.4) over a discrete set of source hypotheses
�

w src
k

(K

k“1
,

min
kPrK s

ǫpD, w src
k q ď min

kPrK s
O

˜
1 ` 1

cγk

m

`
Rpw src

k q ¨ T
˘ cγk

1`cγk

¸
, (C.19)

and recall that

γk “ E
z„D

“
}∇2ℓpw src

k , zq}2

‰
`λ

b
Rpw src

k
q ,
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such that λ“ cρp1 ` lnpT qq
a

2β. Let

γ̃k “ 1

m

mÿ

i“1

}∇2ℓpw src
k , zi q}2 `λ

b
R̂Spw src

k
q .

By Hoeffding’s inequality, with high probability, we have that |γk ´ γ̃k | ď O

´
1

4
?

m

¯
. Now we further

upper bound (C.19) by upper bounding Rpw src
k

q and applying the union bound to get

min
kPrK s

ǫpD, w src
k q ď min

kPrK s
O

¨
˚̊
˝

˜
1 ` 1

c qγ´
k

¸˜
R̂Spw src

k q`
c

logpK q
m

¸ cγ̂
`
k

1`cγ̂
`
k

m
´ 1

1`cγ̂
`
k

˛
‹‹‚

ď min
kPrK s

O

¨
˝

˜
1 ` 1

c qγ´
k

¸
R̂Spw src

k q
cγ̂

`
k

1`cγ̂
`
k ¨

a
logpK q

m

1

1`cγ̂
`
k

˛
‚ ,

which concludes the proof.
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D Proofs from Chapter 6

For brevity, we define hsrcpxq :“ rhsrc
1 pxq, . . . ,hsrc

n pxqsJ, and we will consider a truncated target predic-

tor

h
trg

w ,β
pxq :“ T

`
w Jx `βJhsrcpxq

˘
,

with Tpaq :“ mintmaxta,´1u,1u. That said, we will assume that

R̂ph
trg

w ,β
q ď 1

m

mÿ

i“1

pw Jx i `βJhsrcpx i q´ yi q2 ,

in other words, the empirical risk of a truncated predictor cannot be greater, since all the labels belong

to t´1,1u.

To prove Theorem 17 we need the following supplementary lemmas.

Lemma 18. Let ●�❡❡❞②❚▲ generate solution pŵ , β̂q, given the training set pX , yq, source hypotheses

thsrc
i

un
i“1

, and hyperparameters λ and k. Then we have that,

λ}ŵ}2 `λ}β̂}2 ` R̂ph
trg

ŵ ,β̂
q ď min

|S|ďk

#
1

|S|
ÿ

j PS

R̂phsrc
j q` λ

|S|

+
,

λ}ŵ}2 `λ}β̂}2 ` R̂ph
trg

ŵ ,β̂
q ď R̂ph

trg

0,β̂
q .

and also,

λ}ŵ}2 `λ}β̂}2 ` R̂ph
trg

ŵ ,β̂
q ď 1 .
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Proof. Define Jpw ,βq :“ R̂ph
trg

w ,β
q`λ}w}2 `λ}β}2. For any α P

!
0, 1

p

)n

such that }α}0 “ p we have,

Jpŵ , β̂q ď Jp0,αq “ 1

m

mÿ

i“1

ℓ

¨
˝yi ,

1

p

ÿ

j Psupppαq
hsrc

j px i q

˛
‚` λ

p

ď 1

p

ÿ

j Psupppαq
R̂phsrc

j q` λ

p
. (D.1)

We have the last inequality due to Jensen’s inequality. The fact that (D.3) holds for any p P t1, . . . ,ku
proves the first statement.

We have the second statement from,

R̂ph
trg

ŵ ,β̂
q`λ}ŵ}2 `λ}β̂}2 ď R̂ph

trg

0,β̂
q`λ}β̂}2

ñR̂ph
trg

ŵ ,β̂
q ď R̂ph

trg

ŵ ,β̂
q`λ}ŵ}2 ď R̂ph

trg

0,β̂
q.

The last statement comes from,

λ}ŵ}2 `λ}β̂}2 ď Jp0,0q ď 1 . (D.2)

Lemma 19. Let pw ‹,β‹q be the optimal solution to (6.3), given the training set pX , yq, source hypotheses

thsrc
i

un
i“1

, and hyperparameters λ and k. Then, the following holds,

λ}w ‹}2 `λ}β‹}2 ` R̂ph
trg

w ‹,β‹q

ď min
|S|ďk

#
1

|S|
ÿ

j PS

R̂phsrc
j q` λ

|S|

+
.

Proof. Define Jpw ,βq :“ R̂ph
trg

w ,β
q`λ}w}2 `λ}β}2. For any α P

!
0, 1

p

)n

such that }α}0 “ p we have,

Jpw ‹,β‹q ď Jp0,αq “ 1

m

mÿ

i“1

ℓ

¨
˝yi ,

1

p

ÿ

j Psupppαq
hsrc

j px i q

˛
‚` λ

p

ď 1

p

ÿ

j Psupppαq
R̂phsrc

j q` λ

p
. (D.3)

We have the last inequality due to Jensen’s inequality. The fact that (D.3) holds for any p P t1, . . . ,ku
proves the statement.

Proof of Theorem 17. To prove the statement we will use the optimistic rate Rademacher complexity

bounds of [130]. In particular, we will have to do two things: upper-bound the worst-case Rademacher

complexity of the hypothesis class of ●�❡❡❞②❚▲, and upper-bound the empirical risk of members of

that hypothesis class. Before proceeding, we spend a moment to define the loss class of ●�❡❡❞②❚▲,
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assuring that it is consistent with the definition by [130],

L :“
!

px , yq ÞÑ 1

2
phpxq´ yq2

: h P pT ˝H q, R̂phq ď r
)

. (D.4)

Here, pT ˝H q is the class of truncated hypotheses, H is the hypothesis class of ●�❡❡❞②❚▲ and r is the

mentioned bound on the empirical risk. We define the hypothesis class as,

H :“
!

x ÞÑ w Jx `βJhsrcpxq : }w}2
2 `}β}2

2 ď 1

λ

)
.

In this definition we have used the fact shown in Lemma 18 that is the constraint on }w}2
2 ` }β}2

2,

which translates into a constraint on the hypothesis class. Now we are ready to analyze its complexity.

Recall that the worst case Rademacher complexity is defined as,

RpF q :“ sup
x1,...,xmPX

#
E
σ

«
sup
f PF

#
1

m

mÿ

i“1

σi f px i q
+ff+

,

where σi is r.v., such that Ppσi “ 1q “Ppσi “ ´1q “ 1
2

.

Let us focus on the analysis of the empirical Rademacher complexity R̂pT ˝H q, that is the part inside

the outer supremum. The truncation Tpq is 1-Lipschitz, therefore by Talagrand’s contraction lemma [99]

we have that R̂pT ˝H q ď R̂pH q. Hence, now we proceed with an upper-bound on R̂pH q. Define

ι P t0,1un such that ιi :“
#

1, i P supppβq
0, otherwise

. Then we have that

R̂pT ˝H q ď R̂pH q (D.5)

“ E
σ

«
sup

}w}2
2`}β}2

2ď 1
λ

1

m

mÿ

i“1

σi pw Jx i `βJhsrcpx i qq
ff

“ 1

m
?
λ
E
σ

«›››››
mÿ

i“1

σi

„
x i

ι˝ hsrcpx i q

›››››

ff
(D.6)

ď

gffe 1

m2λ

mÿ

i“1

}x i }2 `}ι˝ hsrcpx i q}2 (D.7)

ď

d
1 ` k}hsrc}2

8
λm

. (D.8)

To obtain (D.6) we have applied the Cauchy-Schwartz inequality on the inner product of rw J βJsJ

and rxJ
i

hsrcpx i qJsJ, then upper-bounding norms with constraints given by definition of a class H .

To get (D.7) we have applied Jensen’s inequality w.r.t. Er¨s, along with the fact that Erσiσ j ‰i s “ 0

and Erσiσi s “ 1. Next, we have bounded the L2 norms of features and sources, recalling that by

assumption, }x i }2 ď 1. Finally, taking supremum over (D.8) w.r.t. data, we obtain,

RpT ˝H q ď

d
1 ` k}hsrc}2

8
λm

.
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Next, we upper bound the empirical risk of the members of H by Lemma 18. By plugging the bound

on the RpH q, and the bound on the empirical risk of (D.4) into Theorem 1 in [130] we have the

statement.

Next we prove the approximation guarantee of a regularized subset selection, Corollary 4, that is

needed for the proof of Theorem 18. First we note that the solution returned by FR enjoys the following

guarantees in solving the Subset Selection.

Theorem 24 ([30]). Assume that C and b are normalized, and Ci , j ‰i ď γ ă 1
6k

for subset size k ď n.

Then, the FR algorithm generates an approximate solution ŵ to the Subset Selection such that, Rpŵq ď
p1 ` 16pk ` 1q2γqmin}w}0“k Rpwq .

This theorem is instrumental in stating our corollary.

Proof of Corollary 4. In addition to the sample coviance matrix Ĉ , define also the correlations b :“
1
m

X J y . Denote Ĉ
1 “ Ĉ `λI

1`λ . Now, suppose that ŵ S is the solution found by the forward regression

algorithm, given the input pĈ
1
, b̂,kq. So, the empirical risk that the algorithm attains is 1´b̂

J
S pĈ

1
Sq´1b̂S ,

as follows from the analytic solution to empirical risk minimization for a given S. In fact, we can

upper-bound it right away using Theorem 24. But, recall that our goal is to upper-bound the quantity

R̂pŵq`λ}ŵ}2 “ 1 ´ b̂
J
S pĈ S `λI q´1b̂S , that is the regularized empirical risk of the approximation ŵ S

to the regularized subset selection. This quantity is obtained via the unnormalized covariance matrix,

therefore we cannot analyze it directly by Theorem 24. For this reason we rewrite it as R̂pŵq`λ}ŵ}2 “
1 ´ 1

1`λ b̂
J
S

´
Ĉ

1
S

¯´1

b̂S . From Theorem 24 we then have pĈSq1
i , j ‰i

ď γ1 ď 1
6k

, denote ǫ “ 16pk ` 1q2γ1,

and let S‹ be the optimal subset of size k. Now we plug 1´ b̂
J
S pĈ

1
Sq´1b̂S into Theorem 24, and proceed

with algebraic transformations,

1 ´ b̂
J
S pĈ

1
Sq´1b̂S ď p1 `ǫqp1 ´ b̂

J
S‹pĈ

1
S‹q´1b̂S‹q

ñ 1

1 `λ
p1 ´ b̂

J
S pĈ

1
Sq´1b̂Sq ď 1 `ǫ

1 `λ
p1 ´ b̂

J
S‹pĈ

1
S‹q´1b̂S‹q

ñ 1 ´ 1

1 `λ
b̂

J
S pĈ

1
Sq´1b̂S (D.9)

ď p1 `ǫq
´ 1

1 `λ
´ 1

1 `λ
b̂

J
S‹pĈ

1
S‹q´1b̂S‹

¯
` λ

1 `λ

ñ 1 ´ 1

1 `λ
b̂

J
S pĈ

1
Sq´1b̂S (D.10)

ď p1 `ǫq
´

1 ´ 1

1 `λ
b̂

J
S‹pĈ

1
S‹q´1b̂S‹

¯
´ ǫλ

1 `λ
.

The last step is to relateγ1 toγ. The fact pĈSq1
i , j ‰i

ď γ1 ď 1
6k

is equivalent to
pĈS qi , j ‰i

1`λ ď γ1 ď 1
6k

. Therefore

we can set γ“ γ1p1 `λq and obtain pĈSqi , j ‰i ď γď 1`λ
6k

. This concludes the proof.

Proof of Theorem 18. The proof follows the composition of Theorem 17, Corollary 4 and Lemma 19.

In particular, we upper-bound the empirical risk of Theorem 17 with an approximation given by

Corollary 4, ignoring the negative term. Next, we upper-bound ǫpλ}w ‹}2 `λ}β‹}2 ` R̂ph
trg

w ‹,β‹qq `
λ}w ‹}2 `λ}β‹}2 by Lemma 19.
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The following proposition is used to derive the ●�❡❡❞②❚▲ in Section 6.4.

Proposition 3. Define the regularized accuracy as,

Âλpwq :“ 1 ´
´ 1

m
}X Jw ´ y}2

2 `λ}w}2
2

¯
.

We are given X PR
nˆm , y PR

m , S Ď t1, . . . ,nu, and λ PR
`. Furthermore, assume that

}y}2
2

m
“ 1, and let

X̂ be the submatrix of X , selecting rows indexed by S. Then we have that,

max
w ,supppwq“S

�
Âλpwq

(
“ 1

m
yJX̂

JpX̂ X̂
J ` mλI q´1X̂ y (D.11)

“ 1

m
yJpX̂

J
X̂ ` mλI q´1X̂

J
X̂ y . (D.12)

Proof. Expanding the } ¨ }2 in Âλpwq and using the fact that
}y}2

m
“ 1, gives us

Âλpwq “ 2

m
w JX̂ y ´ 1

m
w JpX̂ X̂

J ` mλI qw .

Now we have that
B Âλpwq

Bw
“ 0 ñ w “ pX̂ X̂

J ` mλI q´1X̂ y . Denote G “ pX̂ X̂
J ` mλI q´1 and set

optimal solution w ‹ “ G X̂ y . By putting w ‹ into the objective we have,

Âλpw ‹q “ 2

m
yJX̂

J
GJX̂ y ´ 1

m
yJX̂

J
GJG´1G X̂ y

“ 1

m
yJX̂

J
GJX̂ y .

This proves the first statement.

Now we turn to the second statement, that is the solution in the dual variables. By using dual variable

identity pX̂ X̂
J `mλI q´1X̂ “ X̂ pX̂

J
X̂ `mλI q´1 [99], we write the solution w.r.t. w as w ‹ “ X̂ pX̂

J
X̂ `

mλI q´1 y . Denoting G “ pX̂
J

X̂ ` mλI q´1, setting optimal solution w ‹ “ X̂ G y , and putting w ‹ into

the objective we have,

Âλpw ‹q “ 2

m
yJGJX̂

J
X̂ y

´ 1

m
yJGJX̂

JpX̂ X̂
J ` mλI qX̂ G y “ 1

m
yJG X̂

J
X̂ y .

The last fact comes from the observation that X̂ G “ pX̂ X̂
J ` mλI q´1X̂ by dual variable identity. This

concludes the proof of the second statement.
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E Appendix for Chapter 7

E.1 Closed-form LOO prediction in Multiclass RLS

We follow closely the proof given by Cawley [20] with generalization to the multiclass scenario.

Additional notation:

X – Sample matrix, where each column is a sample

Y – Encoded OVA label matrix, where each label code is a column

A – model parameter matrix, where each model parameters form a column

Apiq – i -th row of a matrix A

Ap´iq – all, but i -th row of a matrix A

b – transfer parameter vector

In the following we will assume that the solution in terms of A and b is given by solving

„
A

bJ


“ M´1

„
Y ´ X JW 1β

0


(E.1)

To derive the LOO prediction formula, we need to solve Equation E.1 when one of the elements of X is

missing. For this reason we dissect matrix M as follows (notice r.h.s.)

„
X JX ` 1

C
I 1

1J 0


“ M “

„
m11 mJ

1

m1 M 1



Consequently, we recover a closed-form solution

„
Ap´1q

bJp´1q


“ M´1

1 pY p´1q ´rX Jp´1qW 1 X Jp´1qW 1βsq
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E.1. Closed-form LOO prediction in Multiclass RLS

Using parameters

„
Ap´1q

bJp´1q


we obtain the prediction on the missing sample

Ỹ
p1q “mJ

1

„
Ap´1q

bJp´1q


`rX Jp1qW 1 X Jp1qW 1βs

“m1bJM´1
1 pY p´1q ´rX Jp´1qW 1 X Jp´1qW 1βsq

`rX Jp1qW 1 X Jp1qW 1βs

(E.2)

Noting that predictions with respect to all, but the first element are

“
m1 M 1

‰„
A

bJ



“M´1
1 pY p´1q ´rX Jp´1qW 1 X Jp´1qW 1βsq

we rewrite Equation E.2 as

Ỹ
p1q “mJ

1 M´1
1

“
m1 M 1

‰„
A

bJ



`rX Jp1qW 1 X Jp1qW 1βs

“mJ
1 M´1

1 m1 Ap1q ` mJ
1

„
Ap´1q

bJ



`rX Jp1qW 1 X Jp1qW 1βs

(E.3)

Noting that the first equation in System E.1 is

Y p1q ´rX Jp1qW 1 X Jp1qW 1βs “ m11 Ap1q ` mJ
1

„
Ap´1q

bJ



we rearrange and plug mJ
1

„
Ap´1q

bJ


into Equation E.3 to arrive at

Ỹ
p1q “mJ

1 M´1
1 m1 Ap1q ` Y p1q

´rX Jp1qW 1 X Jp1qW 1βs´ m11 Ap1q

`rX Jp1qW 1 X Jp1qW 1βs
“Y p1q `pmJ

1 M´1
1 m1 ´ m11qAp1q

Expressing M´1 by the Schur complement lemma, we observe that the inverse of the complement

µ“ m11 ´ mJ
1 M´1

1 m1 is the first matrix element.

M´1 “
„

µ´1 ´µ´1m1M´1
1

M´1
1 `µ´1M´1

1 mJ
1 m1M´1

1 ´µ´1M´1
1 mJ

1
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Appendix E. Appendix for Chapter 7

Combining this fact with insensitivity of system to row-wise permutations, for the i -th sample we have:

Ỹ
piq “ Y piq ´ Apiq

M´1
i i
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Prof. Nicolò Cesa-Bianchi
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