6 research outputs found

    Virtual sensor networks: collaboration and resource sharing

    Get PDF
    This thesis contributes to the advancement of the Sensing as a Service (SeaaS), based on cloud infrastructures, through the development of models and algorithms that make an efficient use of both sensor and cloud resources while reducing the delay associated with the data flow between cloud and client sides, which results into a better quality of experience for users. The first models and algorithms developed are suitable for the case of mashups being managed at the client side, and then models and algorithms considering mashups managed at the cloud were developed. This requires solving multiple problems: i) clustering of compatible mashup elements; ii) allocation of devices to clusters, meaning that a device will serve multiple applications/mashups; iii) reduction of the amount of data flow between workplaces, and associated delay, which depends on clustering, device allocation and placement of workplaces. The developed strategies can be adopted by cloud service providers wishing to improve the performance of their clouds. Several steps towards an efficient Se-aaS business model were performed. A mathematical model was development to assess the impact (of resource allocations) on scalability, QoE and elasticity. Regarding the clustering of mashup elements, a first mathematical model was developed for the selection of the best pre-calculated clusters of mashup elements (virtual Things), and then a second model is proposed for the best virtual Things to be built (non pre-calculated clusters). Its evaluation is done through heuristic algorithms having such model as a basis. Such models and algorithms were first developed for the case of mashups managed at the client side, and after they were extended for the case of mashups being managed at the cloud. For the improvement of these last results, a mathematical programming optimization model was developed that allows optimal clustering and resource allocation solutions to be obtained. Although this is a computationally difficult approach, the added value of this process is that the problem is rigorously outlined, and such knowledge is used as a guide in the development of better a heuristic algorithm.Esta tese contribui para o avanço tecnológico do modelo de Sensing as a Service (Se-aaS), baseado em infraestrutura cloud, através do desenvolvimento de modelos e algoritmos que resolvem o problema da alocação eficiente de recursos, melhorando os métodos e técnicas atuais e reduzindo os tempos associados `a transferência dos dados entre a cloud e os clientes, com o objetivo de melhorar a qualidade da experiência dos seus utilizadores. Os primeiros modelos e algoritmos desenvolvidos são adequados para o caso em que as mashups são geridas pela aplicação cliente, e posteriormente foram desenvolvidos modelos e algoritmos para o caso em que as mashups são geridas pela cloud. Isto implica ter de resolver múltiplos problemas: i) Construção de clusters de elementos de mashup compatíveis; ii) Atribuição de dispositivos físicos aos clusters, acabando um dispositivo físico por servir m´ múltiplas aplicações/mashups; iii) Redução da quantidade de transferência de dados entre os diversos locais da cloud, e consequentes atrasos, o que dependente dos clusters construídos, dos dispositivos atribuídos aos clusters e dos locais da cloud escolhidos para realizar o processamento necessário. As diferentes estratégias podem ser adotadas por fornecedores de serviço cloud que queiram melhorar o desempenho dos seus serviços.(…

    Fog-Driven Context-Aware Architecture for Node Discovery and Energy Saving Strategy for Internet of Things Environments

    Get PDF
    The consolidation of the Fog Computing paradigm and the ever-increasing diffusion of Internet of Things (IoT) and smart objects are paving the way toward new integrated solutions to efficiently provide services via short-mid range wireless connectivity. Being the most of the nodes mobile, the node discovery process assumes a crucial role for service seekers and providers, especially in IoT-fog environments where most of the devices run on battery. This paper proposes an original model and a fog-driven architecture for efficient node discovery in IoT environments. Our novel architecture exploits the location awareness provided by the fog paradigm to significantly reduce the power drain of the default baseline IoT discovery process. To this purpose, we propose a deterministic and competitive adaptive strategy to dynamically adjust our energy-saving techniques by deciding when to switch BLE interfaces ON/OFF based on the expected frequency of node approaching. Finally, the paper presents a thorough performance assessment that confirms the applicability of the proposed solution in several different applications scenarios. This evaluation aims also to highlight the impact of the nodes' dynamic arrival on discovery process performance

    Smart Sensor Architectures for Multimedia Sensing in IoMT

    Full text link
    [EN] Today, a wide range of developments and paradigms require the use of embedded systems characterized by restrictions on their computing capacity, consumption, cost, and network connection. The evolution of the Internet of Things (IoT) towards Industrial IoT (IIoT) or the Internet of Multimedia Things (IoMT), its impact within the 4.0 industry, the evolution of cloud computing towards edge or fog computing, also called near-sensor computing, or the increase in the use of embedded vision, are current examples of this trend. One of the most common methods of reducing energy consumption is the use of processor frequency scaling, based on a particular policy. The algorithms to define this policy are intended to obtain good responses to the workloads that occur in smarthphones. There has been no study that allows a correct definition of these algorithms for workloads such as those expected in the above scenarios. This paper presents a method to determine the operating parameters of the dynamic governor algorithm called Interactive, which offers significant improvements in power consumption, without reducing the performance of the application. These improvements depend on the load that the system has to support, so the results are evaluated against three different loads, from higher to lower, showing improvements ranging from 62% to 26%.This work has been supported by the MCyU (Spanish Ministry of Science and Universities) under the project ATLAS (PGC2018-094151-B-I00), which is partially funded by AEI, FEDER and EU.Silvestre-Blanes, J.; Sempere Paya, VM.; Albero Albero, T. (2020). Smart Sensor Architectures for Multimedia Sensing in IoMT. Sensors. 20(5):1-16. https://doi.org/10.3390/s20051400S116205Bangemann, T., Riedl, M., Thron, M., & Diedrich, C. (2016). Integration of Classical Components Into Industrial Cyber–Physical Systems. Proceedings of the IEEE, 104(5), 947-959. doi:10.1109/jproc.2015.2510981Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Industrial Electronics Magazine, 11(1), 17-27. doi:10.1109/mie.2017.2649104Salehi, M., & Ejlali, A. (2015). A Hardware Platform for Evaluating Low-Energy Multiprocessor Embedded Systems Based on COTS Devices. IEEE Transactions on Industrial Electronics, 62(2), 1262-1269. doi:10.1109/tie.2014.2352215Alvi, S. A., Afzal, B., Shah, G. A., Atzori, L., & Mahmood, W. (2015). Internet of multimedia things: Vision and challenges. Ad Hoc Networks, 33, 87-111. doi:10.1016/j.adhoc.2015.04.006Jridi, M., Chapel, T., Dorez, V., Le Bougeant, G., & Le Botlan, A. (2018). SoC-Based Edge Computing Gateway in the Context of the Internet of Multimedia Things: Experimental Platform. Journal of Low Power Electronics and Applications, 8(1), 1. doi:10.3390/jlpea8010001Memos, V. A., Psannis, K. E., Ishibashi, Y., Kim, B.-G., & Gupta, B. B. (2018). An Efficient Algorithm for Media-based Surveillance System (EAMSuS) in IoT Smart City Framework. Future Generation Computer Systems, 83, 619-628. doi:10.1016/j.future.2017.04.039Chianese, A., Piccialli, F., & Riccio, G. (2015). Designing a Smart Multisensor Framework Based on Beaglebone Black Board. Lecture Notes in Electrical Engineering, 391-397. doi:10.1007/978-3-662-45402-2_60Wang, W., Wang, Q., & Sohraby, K. (2016). Multimedia Sensing as a Service (MSaaS): Exploring Resource Saving Potentials of at Cloud-Edge IoTs and Fogs. IEEE Internet of Things Journal, 1-1. doi:10.1109/jiot.2016.2578722Munir, A., Gordon-Ross, A., & Ranka, S. (2014). Multi-Core Embedded Wireless Sensor Networks: Architecture and Applications. IEEE Transactions on Parallel and Distributed Systems, 25(6), 1553-1562. doi:10.1109/tpds.2013.219Baali, H., Djelouat, H., Amira, A., & Bensaali, F. (2018). Empowering Technology Enabled Care Using IoT and Smart Devices: A Review. IEEE Sensors Journal, 18(5), 1790-1809. doi:10.1109/jsen.2017.2786301Kim, Y. G., Kong, J., & Chung, S. W. (2018). A Survey on Recent OS-Level Energy Management Techniques for Mobile Processing Units. IEEE Transactions on Parallel and Distributed Systems, 29(10), 2388-2401. doi:10.1109/tpds.2018.2822683Chaib Draa, I., Niar, S., Tayeb, J., Grislin, E., & Desertot, M. (2016). Sensing user context and habits for run-time energy optimization. EURASIP Journal on Embedded Systems, 2017(1). doi:10.1186/s13639-016-0036-8Chen, Y.-L., Chang, M.-F., Yu, C.-W., Chen, X.-Z., & Liang, W.-Y. (2018). Learning-Directed Dynamic Voltage and Frequency Scaling Scheme with Adjustable Performance for Single-Core and Multi-Core Embedded and Mobile Systems. Sensors, 18(9), 3068. doi:10.3390/s18093068Tamilselvan, K., & Thangaraj, P. (2020). Pods – A novel intelligent energy efficient and dynamic frequency scalings for multi-core embedded architectures in an IoT environment. Microprocessors and Microsystems, 72, 102907. doi:10.1016/j.micpro.2019.10290

    Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View

    Full text link
    The next-generation wireless technologies, commonly referred to as the sixth generation (6G), are envisioned to support extreme communications capacity and in particular disruption in the network sensing capabilities. The terahertz (THz) band is one potential enabler for those due to the enormous unused frequency bands and the high spatial resolution enabled by both short wavelengths and bandwidths. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of the advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurements for THz band. The transceiver requirements, architectures, technological challenges, and approaches together with means to compensate for the high propagation losses by appropriate antenna and beamforming solutions. We survey also several system technologies required by or beneficial for THz systems. The synergistic design of sensing and communications is explored with depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the issues and challenges that are open for further research towards 6G.Comment: 55 pages, 10 figures, 8 tables, submitted to IEEE Communications Surveys & Tutorial

    Energy and Delay Efficient Computation Offloading Solutions for Edge Computing

    Get PDF
    This thesis collects a selective set of outcomes of a PhD course in Electronics, Telecommunications, and Information Technologies Engineering and it is focused on designing techniques to optimize computational resources in different wireless communication environments. Mobile Edge Computing (MEC) is a novel and distributed computational paradigm that has emerged to address the high users demand in 5G. In MEC, edge devices can share their resources to collaborate in terms of storage and computation. One of the computational sharing techniques is computation offloading, which brings a lot of advantages to the network edge, from lower communication, to lower energy consumption for computation. However, the communication among the devices should be managed such that the resources are exploited efficiently. To this aim, in this dissertation, computation offloading in different wireless environments with different number of users, network traffic, resource availability and devices' location are analyzed in order to optimize the resource allocation at the network edge. To better organize the dissertation, the studies are classified in four main sections. In the first section, an introduction on computational sharing technologies is given. Later, the problem of computation offloading is defined, and the challenges are introduced. In the second section, two partial offloading techniques are proposed. While in the first one, centralized and distributed architectures are proposed, in the second work, an Evolutionary Algorithm for task offloading is proposed. In the third section, the offloading problem is seen from a different perspective where the end users can harvest energy from either renewable sources of energy or through Wireless Power Transfer. In the fourth section, the MEC in vehicular environments is studied. In one work a heuristic is introduced in order to perform the computation offloading in Internet of Vehicles and in the other a learning-based approach based on bandit theory is proposed
    corecore