310 research outputs found

    Intelligent wheelchair simulation

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores - Major Automação. Faculdade de Engenharia. Universidade do Porto. 200

    Semantics for virtual humans

    Get PDF
    Population of Virtual Worlds with Virtual Humans is increasing rapidly by people who want to create a virtual life parallel to the real one (i.e. Second Life). The evolution of technology is smoothly providing the necessary elements to increase realism within these virtual worlds by creating believable Virtual Humans. However, creating the amount of resources needed to succeed this believability is a difficult task, mainly because of the complexity of the creation process of Virtual Humans. Even though there are many existing available resources, their reusability is difficult because there is not enough information provided to evaluate if a model contains the desired characteristics to be reused. Additionally, the knowledge involved in the creation of Virtual Humans is not well known, nor well disseminated. There are several different creation techniques, different software components, and several processes to carry out before having a Virtual Human capable of populating a virtual environment. The creation of Virtual Humans involves: a geometrical representation with an internal control structure, the motion synthesis with different animation techniques, higher level controllers and descriptors to simulate human-like behavior such individuality, cognition, interaction capabilities, etc. All these processes require the expertise from different fields of knowledge such as mathematics, artificial intelligence, computer graphics, design, etc. Furthermore, there is neither common framework nor common understanding of how elements involved in the creation, development, and interaction of Virtual Humans features are done. Therefore, there is a need for describing (1) existing resources, (2) Virtual Human's composition and features, (3) a creation pipeline and (4) the different levels/fields of knowledge comprehended. This thesis presents an explicit representation of the Virtual Humans and their features to provide a conceptual framework that will interest to all people involved in the creation and development of these characters. This dissertation focuses in a semantic description of Virtual Humans. The creation of a semantic description involves gathering related knowledge, agreement among experts in the definition of concepts, validation of the ontology design, etc. In this dissertation all these procedures are presented, and an Ontology for Virtual Humans is described in detail together with the validations that conducted to the resulted ontology. The goal of creating such ontology is to promote reusability of existing resources; to create a shared knowledge of the creation and composition of Virtual Humans; and to support new research of the fields involved in the development of believable Virtual Humans and virtual environments. Finally, this thesis presents several developments that aim to demonstrate the ontology usability and reusability. These developments serve particularly to support the research on specialized knowledge of Virtual Humans, the population of virtual environments, and improve the believability of these characters

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    Interactive Virtual Training: Implementation for Early Career Teachers to Practice Classroom Behavior Management

    Get PDF
    Teachers that are equipped with the skills to manage and prevent disruptive behaviors increase the potential for their students to achieve academically and socially. Student success increases when prevention strategies and effective classroom behavior management (CBM) are implemented in the classroom. However, teachers with less than 5 years of experience, early career teachers (ECTs), are ill equipped to handle disruptive students. ECTs describe disruptive behaviors as a major factor for stress given their limited training in CBM. As a result, disruptive behaviors are reported by ECTs as one of the main reasons for leaving the field. Virtual training environments (VTEs) combined with advances in virtual social agents can support the training of CBM. Although VTEs for teachers already exist, requirements to guide future research and development of similar training systems have not been defined. We propose a set of six requirements for VTEs for teachers. Our requirements were established from a survey of the literature and from iterative lifecycle activities to build our own VTE for teachers. We present different evaluations of our VTE using methodologies and metrics we developed to assess whether all requirements were met. Our VTE simulates interactions with virtual animated students based on real classroom situations to help ECTs practice their CBM. We enhanced our classroom simulator to further explore two aspects of our requirements: interaction devices and emotional virtual agents. Interactions devices were explored by comparing the effect of immersive technologies on users\u27 experience (UX) such as presence, co-presence, engagement and believability. We adapted our VTE originally built for desktop computer, to be compatible with two immersive VR platforms. Results show that our VTE generates high levels of UX across all VR platforms. Furthermore, we enhanced our virtual students to display emotions using facial expressions as current studies do not address whether emotional virtual agents provide the same level of UX across different VR platforms. We assessed the effects of VR platforms and display of emotions on UX. Our analysis shows that facial expressions have greater impact when using a desktop computer. We propose future work on immersive VTEs using emotional virtual agents

    Interactions in Virtual Worlds:Proceedings Twente Workshop on Language Technology 15

    Get PDF

    StuCoSReC

    Get PDF

    The 4th Conference of PhD Students in Computer Science

    Get PDF

    The 5th Conference of PhD Students in Computer Science

    Get PDF

    Improving efficiency and resilience in large-scale computing systems through analytics and data-driven management

    Full text link
    Applications running in large-scale computing systems such as high performance computing (HPC) or cloud data centers are essential to many aspects of modern society, from weather forecasting to financial services. As the number and size of data centers increase with the growing computing demand, scalable and efficient management becomes crucial. However, data center management is a challenging task due to the complex interactions between applications, middleware, and hardware layers such as processors, network, and cooling units. This thesis claims that to improve robustness and efficiency of large-scale computing systems, significantly higher levels of automated support than what is available in today's systems are needed, and this automation should leverage the data continuously collected from various system layers. Towards this claim, we propose novel methodologies to automatically diagnose the root causes of performance and configuration problems and to improve efficiency through data-driven system management. We first propose a framework to diagnose software and hardware anomalies that cause undesired performance variations in large-scale computing systems. We show that by training machine learning models on resource usage and performance data collected from servers, our approach successfully diagnoses 98% of the injected anomalies at runtime in real-world HPC clusters with negligible computational overhead. We then introduce an analytics framework to address another major source of performance anomalies in cloud data centers: software misconfigurations. Our framework discovers and extracts configuration information from cloud instances such as containers or virtual machines. This is the first framework to provide comprehensive visibility into software configurations in multi-tenant cloud platforms, enabling systematic analysis for validating the correctness of software configurations. This thesis also contributes to the design of robust and efficient system management methods that leverage continuously monitored resource usage data. To improve performance under power constraints, we propose a workload- and cooling-aware power budgeting algorithm that distributes the available power among servers and cooling units in a data center, achieving up to 21% improvement in throughput per Watt compared to the state-of-the-art. Additionally, we design a network- and communication-aware HPC workload placement policy that reduces communication overhead by up to 30% in terms of hop-bytes compared to existing policies.2019-07-02T00:00:00
    • …
    corecore