2,402 research outputs found

    Distillation protocols for Fourier states in quantum computing

    Full text link
    Fourier states are multi-qubit registers that facilitate phase rotations in fault-tolerant quantum computing. We propose distillation protocols for constructing the fundamental, nn-qubit Fourier state with error O(2n)O(2^{-n}) at a cost of O(nlogn)O(n \log n) Toffoli gates and Clifford gates, or any arbitrary Fourier state using O(n2)O(n^2) gates. We analyze these protocols with methods from digital signal processing. These results suggest that phase kickback, which uses Fourier states, could be the current lowest-overhead method for generating arbitrary phase rotations.Comment: 18 pages, 4 figure

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Large-Alphabet Time-Frequency Entangled Quantum Key Distribution by means of Time-to-Frequency Conversion

    Full text link
    We introduce a novel time-frequency quantum key distribution (TFQKD) scheme based on photon pairs entangled in these two conjugate degrees of freedom. The scheme uses spectral detection and phase modulation to enable measurements in the temporal basis by means of time-to-frequency conversion. This allows large-alphabet encoding to be implemented with realistic components. A general security analysis for TFQKD with binned measurements reveals a close connection with finite-dimensional QKD protocols and enables analysis of the effects of dark counts on the secure key size.Comment: 14 pages, 3 figures, submitte

    Complex additive geometric multilevel solvers for Helmholtz equations on spacetrees

    Get PDF
    We introduce a family of implementations of low-order, additive, geometric multilevel solvers for systems of Helmholtz equations arising from Schrödinger equations. Both grid spacing and arithmetics may comprise complex numbers, and we thus can apply complex scaling to the indefinite Helmholtz operator. Our implementations are based on the notion of a spacetree and work exclusively with a finite number of precomputed local element matrices. They are globally matrix-free. Combining various relaxation factors with two grid transfer operators allows us to switch from additive multigrid over a hierarchical basis method into a Bramble-Pasciak-Xu (BPX)-type solver, with several multiscale smoothing variants within one code base. Pipelining allows us to realize full approximation storage (FAS) within the additive environment where, amortized, each grid vertex carrying degrees of freedom is read/written only once per iteration. The codes realize a single-touch policy. Among the features facilitated by matrix-free FAS is arbitrary dynamic mesh refinement (AMR) for all solver variants. AMR as an enabler for full multigrid (FMG) cycling—the grid unfolds throughout the computation—allows us to reduce the cost per unknown. The present work primary contributes toward software realization and design questions. Our experiments show that the consolidation of single-touch FAS, dynamic AMR, and vectorization-friendly, complex scaled, matrix-free FMG cycles delivers a mature implementation blueprint for solvers of Helmholtz equations in general. For this blueprint, we put particular emphasis on a strict implementation formalism as well as some implementation correctness proofs
    corecore