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We introduce a family of implementations of low order, additive, geometric multilevel solvers for systems
of Helmholtz equations arising from Schrödinger equations. Both grid spacing and arithmetics may com-
prise complex numbers and we thus can apply complex scaling to the indefinite Helmholtz operator. Our
implementations are based upon the notion of a spacetree and work exclusively with a finite number of
precomputed local element matrices. They are globally matrix-free.

Combining various relaxation factors with two grid transfer operators allows us to switch from additive
multigrid over a hierarchical basis method into a Bramble-Pasciak-Xu (BPX)-type solver, with several mul-
tiscale smoothing variants within one code base. Pipelining allows us to realise full approximation storage
(FAS) within the additive environment where, amortised, each grid vertex carrying degrees of freedom is
read/written only once per iteration. The codes realise a single-touch policy. Among the features facilitated
by matrix-free FAS is arbitrary dynamic mesh refinement (AMR) for all solver variants. AMR as enabler for
full multigrid (FMG) cycling—the grid unfolds throughout the computation—allows us to reduce the cost
per unknown per order of accuracy.

The present paper primary contributes towards software realisation and design questions. Our experi-
ments show that the consolidation of single-touch FAS, dynamic AMR and vectorisation-friendly, complex
scaled, matrix-free FMG cycles delivers a mature implementation blueprint for solvers of Helmholtz equa-
tions in general. For this blueprint, we put particular emphasis on a strict implementation formalism as
well as some implementation correctness proofs.
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1. INTRODUCTION
The present paper’s efforts are driven by an interest in the dynamics of p quan-
tum particles, originally described by the time-dependent Schrödinger wave equation
[Schrödinger 1926]. The wave equation’s operator is the sum of the kinetic energies
of the individual particles and their potential energy determined by their nature and
interaction. The Hamiltonian operator drives the complex-valued time derivative. Nu-
merical methods solving Schrödinger equations are of great interest for the simulation
and prediction of the reaction rates of fundamental processes in few-body physics and
chemistry [Faddeev and Merkuriev 1993; Plasma 2010 Committe 2007; Raizer 1991;
Smirnov 2015; Vanroose et al. 2005]. The breakup of the H2-molecule with p = 2 parti-
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A:2 B. Reps and T. Weinzierl

cles for example is solved in [Vanroose et al. 2005]. A key ingredient there is the expan-
sion of the time-dependent Schrödinger equation into a time-independent Schrödinger
equation being a d = 3p-dimensional Helmholtz problem. This ansatz allows a post-
processing step to determine the far field map (FFM) which yields the probability dis-
tribution of particles escaping. It is written down as function of the angle from the
point of interaction and is calculated by integrating over stationary Helmholtz solu-
tions (Figure 1). Since the inversion of the arising matrices becomes unfeasible for
growing p, we require robust and fast iterative solvers.

To achieve this, the present paper follows the aforementioned work [Vanroose et al.
2005]. It uses a partial wave expansion to decompose the time-independent d = 3p-
dimensional system further into a cascade of p-dimensional Helmholtz problems. In
essence, this tackles the problem with a transformed basis, measuring distances be-
tween free and stationary particles. They are referred to as channels. The base expan-
sion is truncated, i.e. we focus only on the dominant channels, and we end up with an
iterative scheme where a set of uncoupled Helmholtz problems has to be solved within
the iterative loop as preconditioner. This yields perfectly parallel (embarrassingly par-
allel [Foster 1995]) channel solves. Further, we rely on the fact that FFM integrals
can be calculated on a complex contour instead of on the original real domain [Cools
et al. 2014a]. This implies that we may solve Helmholtz equations which are rotated in
the complex domain. These equations are better posed while still yielding high quality
FFM results. A robust, fast solver thus has to perform particularly good on the lowest
level of parallelisation, i.e. exploit vector units, where the perfect parallelism does not
pay off directly.

We propose to realise a complex-valued, matrix-free, additive multilevel solver for
the present challenge where combinations of well-suited relaxation parameters and
grid transfer operators allow us to apply an additive multigrid solver, a hierarchi-
cal basis approach or a Bramble-Pasciak-Xu (BPX)-type solver [Bramble et al. 1990].
Within one code base, we may choose a stable solver depending on the equations’ char-
acteristics. It combines the idea of additive multigrid [Bastian et al. 1998] with full
approximation storage (FAS) based upon a hierarchical generating system [Griebel
1990] which resembles the MLAT idea [Brandt 1973; 1977], and it realises all data
structures within a p-dimensional spacetree traversed by a depth-first search automa-
ton [Weinzierl 2009; Weinzierl and Mehl 2011]. Our Helmholtz solver supports dy-
namically adaptive meshes resolving localised wave characteristics. Furthermore, its
in-situ meshing allows us to unfold the grid on-the-fly similar to FMG cycles in the
multiplicative context. In our preconditioning environment, multiple problem param-
eter choices finally are fused into one grid sweep as long as it increases the arithmetic
intensity.

The novel algorithmic contributions of the present paper span algorithms,
application-specific experience and a challenging application: First, we integrate var-
ious sophisticated multigrid techniques concisely into one code base such that we can
offer the additive multilevel solvers with a one-touch policy. Each vertex is, on average,
loaded into the caches only once per iteration and resides inside the caches only briefly.
All ingredients are vertically, i.e. between the grid levels, and horizontally, i.e. in the
grid, integrated. Similar techniques have been proposed for multilevel solvers [Adams
et al. 2016; Mehl et al. 2006; Ghysels et al. 2012; Ghysels and Vanroose 2015] or Krylov
solvers [Chronopoulos and Gear 1989; Hoemmen 2010; Ghysels et al. 2013; Ghysels
and Vanroose 2014], but, to the best of our knowledge, no other approach offers a solu-
tion representation on all levels plus single touch. Multilevel solution representations
simplify the handling of hanging nodes, non-linear problems and scale-dependent dis-
cretisations [Cools et al. 2014b]. Second, we show that this realisation embeds into
a depth-first traversal of a tree spanning the cascade of grids embedded into each
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other. Such trees—octrees, quadtrees and variations of those—are popular in many
application areas. They allow us to realise arbitrary dynamic refinement and coars-
ening in combination with in-situ mesh generation that seamlessly integrate into the
stream-like data processing. There is no significant setup cost for the meshing, while
the memory footprint is minimalist as we work matrix-freely and encode the underly-
ing grid structure with only few bits per cell [Weinzierl and Mehl 2011]. Simple data
flow analysis reveals that such a merger of FAS with the ideas of additive multigrid
and spacetrees is not straightforward if data is not processed multiple times. Third,
we show that the cheap dynamic adaptivity allows us to tailor the grid to the solution
characteristics. Furthermore, if the solver runs a cascade of additive cycles over finer
and finer grids, the resulting scheme mirrors FMG where coarse solves act as initial
guess for finer grids. It is able to reduce, for benchmark problems, the residual by one
order of magnitude every 1.5 traversals. This is remarkable given that we use merely
a Jacobi smoother and geometric inter-grid transfer operators. Fourth, we report on
reasonable MFlop rates and vectorisation efficiency as we fuse the solution of multiple
preconditioning problems into one adaptive grid; despite the fact that we employ a low
order scheme which is notoriously bandwidth bound and do not rely on sophisticated
smoother optimisation techniques [Kowarschik et al. 2000]. This renders the algorith-
mic mindset well-suited for upcoming machine generations that are expected to obtain
a significant part of their capability from vectorisation’s extreme concurrency in com-
bination with constrained memory [Dongarra et al. 2014]. Fifth, we demonstrate how
complex scaling and various choices of relaxation and very few operators allow a user
to obtain a set of solvers that can be tailored to many problems. Notably, we can ro-
bustly solve four-dimensional Helmholtz problems which is a significant improvement
over previous work. Finally, all algorithmic steps are presented in a compact form
and all ingredients come along with correctness proofs. While linear algebra packages
supporting complex arithmetics per se are rare, a rigorous formal description enables
reprogramming and reuse for different applications.

We identify four major limitations of the present work. First, we do not offer a strat-
egy to tackle the curse of dimensionality [Bellman 1961] spelled through p rising.
Though we show that the FMG-type cycles reduce the cost per unknown per accuracy
by magnitudes, such a reduction of cost, even in combination with the vectorisation
and memory access results, is far below what is required to tackle large p. In practice,
we are still bound to p ≤ 4 though the implementation would support arbitrary big
p. Second, we do not pick up the discussion on well-suited smoothers for the present
problems. We show that our solvers achieve robustness due to the complex rotations.
However, their efficiency deteriorates. We emphasise that the efficient nature of the
present implementation patterns makes us hope that they can be used as starting
point to realise more competitive smoothers as proposed in [Chen et al. 2012; Ernst
and Gander 2011; Ghysels et al. 2012; Ghysels and Vanroose 2015; Stolk 2015], e.g.
Yet, this is future work. Third, we do not realise problem-dependent grid transfer or
coarse grid operators. Such operators are mandatory to tackle problems with spatially
varying PDE properties as they occur for matching boundary conditions, e.g., within
the multigrid setting. For the present case studies, our solvers’ efficiency here suffers.
We refer to promising tests with BoxMG within the spacetree paradigm [Weinzierl
2013; Yavneh and Weinzierl 2012] for pathways towards future work. Finally, any
multiplicative considerations are out of scope here. All shortcomings highlight that the
present paper primary contributes towards software realisation and design questions.
We also focus on single node performance as our algorithmic framework is perfectly
parallel. This neither implies that the presented approach can not be tuned further
with respect to parallelism nor do we address related challenges such as proper load
balancing. Notably, techniques such as segmental refinement [Adams et al. 2016] that
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Fig. 1. Left: Potential field defined by two fixed (heavy) particles. A three-dimensional Helmholtz equation
(1) describes the behaviour, i.e. probability distribution, of a single free particle within this field. Applications
are interested in its far field map (FFM) which is a volume integral over Helmholtz solutions within a sphere
enclosing the setup—typically for p > 1. Right: Solution of one channel’s Helmholtz problem of type (3) for
a p = 2 setup. The bottom and left axis encode the distance from the p = 2 centers of mass. The domain
expands infinitely into the right and top direction.

spatially decompose fine grid solves could help to increase the concurrency while pre-
serving the present work’s vertical and horizontal integration as well as the fusion of
parameter spaces.

The remainder is organised as follows: We detail the physical context and solver
framework in Section 2 before we introduce our notion of spacetrees yielding the mul-
tiscale grid (Section 3). Starting from a recapitulation of standard additive multigrid,
we introduce our particular single-touch multilevel ingredients in Section 4. They are
fused into one additive scheme with different flavours in Section 5. We next give some
correctness proofs for the realisation (Section 6). Some numerical results in Section 7
precede a brief conclusion and an outlook.

2. APPLICATION CONTEXT
A time-dependent Schrödinger equation for p free particles can be solved by projecting
the initial state (t = 0) onto the Hamiltonian’s eigenstates. Each quantum eigenstate
Ψ parameterised in spherical coordinates rj around the particles is factorisable as

Ψ(r1, . . . , rp, t) ≡ e−ıEtψ3p(r1, . . . , rp),

where E is the eigenvalue, that is the eigenstate’s total energy. As the probability
distribution |Ψ(r1, . . . , rp, t)|2 = |ψ3p(r1, . . . , rp)|2 is constant in time [Cohen-Tannoudji
et al. 1977], these modes are stationary states. Substituting a stationary state into
the time-dependent Schrödinger equations yields a 3p-dimensional time-independent
Schrödinger equation, that is a Helmholtz equation, of the form

H3pψ
3p(r1, . . . , rp) ≡

[
−∆3p − φ3p(r1, . . . , rp)

]
ψ3p(r1, . . . , rp)

= χ3p(r1, . . . , rp), (1)

where φ3p and χ3p depend on the setup’s configuration comprising also the impact of
additional fixed (heavy) particles as well as the free particles’ properties. Usually solely
long-term steady state solutions of the particle quantum system can be measured, so
(1) needs only be solved once for the known total energy E of the system.

Although the time-dependence is removed from the governing equation, the dimen-
sionality still grows large with the number of particles. Following [Baertschy and Li
2001], the multi-channel approach [Vanroose et al. 2005] expresses the 3p-dimensional
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Equation (1)

(2) equations (3)

Fig. 2. Visualisation of the overall workflow from [Vanroose et al. 2005] to determine the far field map of
a quantum mechanical scattering problem. The workflow circumnavigates the Schrödinger equation where
the +1 dimension represents the time. We aim at tackling the set of c Helmholtz problems of dimension
d = p for p > 2.

solution of (1) in terms of partial waves. It rewrites ψ3p as a sum of projections onto
partial waves (channels) in decreasing order of magnitude and truncates this sum af-
ter c ∈ N0 terms. This involves a transformation of rj into a radial distance and solid
angle. It yields c coupled PDEs

H11 A12 . . . A1c

A21 H22 A2c

...
. . .

...
Ac1 Ac2 . . . Hcc



ψmc1
ψmc2

...
ψmcc

 =


χmc1
χmc2

...
χmcc

 (2)

with p-dimensional Helmholtz operators Hii : C2(R) → C2(R) on the diagonal. Off-
diagonal operators Aij : C2(R) → C2(R) contain potential terms and couple the chan-
nels. The closer to the diagonal, the stronger the coupling. We split

A ≡


H11

H22

. . .
Hcc

+


0 A12 . . . A1c

A21 0 A2c

...
. . .

...
Ac1 Ac2 . . . 0

 ,

bring the non-diagonal blocks to the right-hand side and end up with an iterative
scheme on the block level. Each block row yields a problem of the form

[−∆p − φp(ρ1, . . . , ρp)]ψ
p(ρ1, . . . , ρp) = χp(ρ1, . . . , ρp). (3)

It is solved on the unit hypercube ρ ∈ (0, 1)p as finite subregion of (0,∞)p, while the
modified right-hand side χp anticipates the coupling operators. The technical details
of this transformation are given in [bin Zubair et al. 2012]. Whenever we drop the p
superscripts from here on, the symbols are generic for any of the channel PDEs.

Each of these equations has to be solved efficiently. Each solve acts as a precondi-
tioning step within the overall algorithm. While the spectrum of ∆p per Helmholtz op-
erator on the diagonal retains large condition numbers, all system matrices are sparse.
A concurrent solve of such channels in a Jacobi-type fashion is perfectly parallel and
thus not studied further here. We note that a p = 2-dimensional Helmholtz problem is
solved successfully with direct methods for the blocks in [Vanroose et al. 2005] using a
parallel computer. For p > 2, direct solves however are not feasible anymore.
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For φp(ρ1, . . . , ρp) > 0, the Helmholtz operator can be indefinite, which disturbs the
convergence of standard iterative methods [Ernst and Gander 2011]. Among many
other publications on the subject, the field of shifted Laplacian preconditioning has
greatly inspired the solvers in the current paper. The first preconditioners of this
kind were the Laplacian and the positively shifted Laplacian introduced in [Bayliss
et al. 1983], later generalised to complex-valued shifts [Erlangga et al. 2004; Er-
langga et al. 2006]. Alternative preconditioners and solution methods are derived
from frequency shift time integration [Meerbergen and Coyette 2009], moving perfectly
matched layers [Engquist and Ying 2011], a transformation of the Helmholtz equation
to a reaction-advection-diffusion problem [Haber and MacLachlan 2011], separation
of variables [Plessix and Mulder 2003], the wave-ray approach [Brandt and Livshits
1997], Krylov subspace methods as smoother substitute [Elman et al. 2001], or alge-
braic multilevel methods [Bollhöfer et al. 2009; Tsuji and Tuminaro 2015]. This list is
not comprehensive.

We use the Complex Scaled Grid (CSG) operator [Reps et al. 2010]. It maps (3) onto
a complex scaled or rotated domain, i.e. makes ρj ∈ (0, eıθ). θ denotes this rotation in
the complex plane. We thus solve closely related Helmholtz equations that are better
conditioned and still merge into a good block diagonal preconditioner for (2). Near
to open domain boundaries, complex-valued scaling introduces absorbing boundary
layers that we use in combination with zero-Dirichlet conditions. This complex scaling
is chosen independent of parameter ω in the smoother. In fact, technically, CSG broken
down to a grid is equivalent to treating the entire domain as an absorbing boundary
layer.

Because of the complex domain rotation, the eigenvalues are rotated in the complex
plane; away from the origin. Standard multigrid methods thus can be applied, whereas
multigrid on an unmodified equation (θ 7→ 0) fails. The approach is inspired by the com-
plex shifted Laplacian (CSL) where complex damping is introduced in the Helmholtz
shift, i.e. φ → (1 + αı)φ with 0 < α < 1 [Erlangga et al. 2004; Erlangga et al. 2006].
We refer to [Magolu monga Made et al. 2000; van Gijzen et al. 2007; Osei-Kuffuor and
Saad 2010; Cools and Vanroose 2013] and the extensive literature on the CSL opera-
tors for a study of the appropriate choice for parameter θ, a discussion that is beyond
the scope of the present work. Both CSG acting as preconditioner and the channel de-
composition preserve the solution characteristics of the FFM (Figure 2) which is the
final quantity of interest, and we conclude that the channel decomposition’s reduction
of dimensionality of the subproblems starts to pay off for p ≥ 2.

3. SPACETREES

ALGORITHM 1: Textbook additive multigrid. An iteration is triggered by ADD(`max), i.e. runs
from finest to coarsest grid. See Remark 4.1 on exact `min solves.
1: function ADD(`)
2: r` ← χ` −H`u` . p-linear shape functions determine H.
3: u` ← u` + ωSS(u`, χ`) . Smoother S with damping ωS ∈ (0, 1).
4: if ` > `min then
5: u`−1 ← 0
6: χ`−1 ← Rr` . p-linear geometric restriction.
7: ADD(`− 1)
8: u` ← u` + ωcgPu`−1 . Coarse grid damping ωcg ∈ (0, 1).
9: . p-linear prolongation P .

end
10: end function
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Fig. 3. Left: The spacetree yields a cascade of regular grids. Two dimensional setting with grid levels from
top to down. While the union forms an adaptive Cartesian grid and while the grids are geometrically em-
bedded into each other, a grid on a single level might be ragged (finest level). Multiple vertices belonging to
different levels coincide spatially, all the vertices on the two coarsest levels left are refined. Right: Illustra-
tion of heavy hydrogen 2H with one free electron and a fixed proton and neutron. Direct solution of (1). The
adaptivity yields grids that range over ten levels in the simulation domain.

Our implementation of multilevel solvers such as additive multigrid (Algorithm 1)
relies on a finite element formulation where the geometric elements are hypercubes
over the complex domain. Their dimension is 3p for Helmholtz problems of type (1)
and p for Helmholtz problems of type (3) in the channel approach. Except for some
illustrations from the application domain, we focus on numerical results for the latter
and therefore use p as dimension from hereon. For p = 2, we start with the unit square
suitably scaled by eıθ ∈ C. This square is our coarsest grid Ωh,0 holding one cell and
2p vertices. It coincides with the computational domain. Let its grid entities have level
` = 0. We next split the cube equidistantly into three parts along each coordinate axis
and end up with 3p new squares. They describe a grid Ωh,1 and belong to level ` = 1.
Our choice of three-partitioning stems from the fact that we use the software Peano
[Weinzierl et al. 2012] for our realisation. All algorithmic ideas work for bi-partitioning
as well.

For each of the 3p squares of level ` = 1 we decide independently whether we refine
them further. As we continue recursively, we end up with a cascade of regular grids
that might be disconnected (Figure 3 left). The extension of this construction to any
p > 2 is straightforward (e.g. Figure 3 right). Our overall scheme describes a spacetree
[Weinzierl 2009; Weinzierl and Mehl 2011] and is an extension of the classic octree and
quadtree idea to three-partitioning in combination with arbitrary spatial dimension d.
The spacetree exhibits the following properties that are important to our solvers:

(1) It yields a set of grids where each grid of level ` is a refinement of the grid of level
`− 1, i.e. the grids are strictly embedded into each other.

Ωh,0 ⊂ Ωh,1 ⊂ . . . ⊂ Ωh,`−1 ⊂ Ωh,`. (4)
(2) The union of all grids yields an adaptive Cartesian grid

Ωh =
⋃
`

Ωh,`. (5)

(3) A vertex is unique due to its spatial position plus its level, i.e. multiple vertices
may coincide on the same position x ∈ Ω.
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(4) The individual grids are regular Cartesian grids aligned to each other. But they
can be ragged as not all cells of a level ` have to be refined to obtain the grid at
level `+ 1. Ωh comprises hanging nodes.

The equivalence of the cascade of adaptive Cartesian grids with a spacetree is well-
known ([Weinzierl 2009] or [Bader 2013] and references therein). It motivates our in-
verse use of the term level with respect to standard multigrid literature. In this con-
text, we also emphasise that we prefer the term erase as counterpart to refinement, as
coarsening has already a semantics in the multigrid context.

Let a cell a ∈ Ωh,` be a parent of b ∈ Ωh,`+1, if b is constructed from a due to one
refinement step. This parent-child relation introduces a partial order on the set of all
grid cells of all grid levels. It defines the spacetree. Given a spacetree, any tree traver-
sal is equivalent to a multiscale element-wise grid traversal. Particular advantageous
is the combination of space-filling curves (we use the Peano curve here) [Bader 2013],
adaptive Cartesian multiscale grids and a depth-first traversal, as it yields memory-
efficient codes: Basically, the tree traversal can be mapped onto a depth-first pushback
automaton where a child is never visited prior to its parent. As soon as this automaton
encounters an unrefined spacetree cell, a leaf, it backtracks the tree and continues to
descend within another subtree. Two bits per vertex then are sufficient to encode both
adjacency and dynamic adaptivity information [Weinzierl and Mehl 2011]—though we
typically use a whole byte to make programming easier—while the whole data struc-
ture is linearised on few stacks or streams. We work with a linearised octree [Sundar
et al. 2008]. All presented solver ingredients fit also to other tree traversals. Notably,
breadth-first of parallel traversals [Weinzierl 2015] do work. We solely require two
properties to hold: Parents have to be traversed prior to their children, and any solver
has to have the opportunity to plug into both the steps from level ` to level ` + 1 and
the other way round. The former requirement allows us to realise arbitrary dynamic
adaptivity; the tree may unfold throughout the steps down. The latter requirement al-
lows us to distribute algorithmic ingredients both among the unfolding of the traversal
and its backtracking. The depth of the backtracking is limited by the maximum tree
depth. It is small.

We close our spacetree discussion with a few technical terms. A hanging vertex is a
vertex with less than 2p adjacent spacetree cells on the same level. A refined vertex is
a vertex where all 2p adjacent spacetree cells on the same level have children (Figure
3). A non-hanging vertex is a fine grid vertex if no other non-hanging vertex at the
same spatial position with higher level does exist. Let V be the set of non-hanging
vertices in the grid. A fine grid cell is an unrefined spacetree cell. The finest level of
the spacetree from here on shall be `max. As adaptive multigrid solves often do not
coarsen the problem completely, we rely formally on a coarsest compute level `min ≥ 1,
as all vertices on level 0 coincide with the domain boundary and, for Dirichlet boundary
conditions, do not carry unknowns.

4. MULTIGRID REALISATION
Our work is based on a Ritz-Galerkin finite element formulation of (3) with p-linear
shape functions and a nodal unknown association. Better-suited, problem-tailored dis-
cretisations such as dispersion minimising schemes [Chen et al. 2012; Stolk 2015] are
beyond scope here but can be realised within our computational framework. All shape
functions are centred around vertices, and we make each shape functions cover exactly
the 2p cells of the vertex’s level. As the spacetree yields multiple vertices at one space
coordinate and as each level ` of the grid spans one function space U`, the whole space-
tree induces a hierarchical generating system [Griebel 1994]. Let each v ∈ V hold a
three-tuple (u, φ, χ)(v) ∈ C3. u is the weight of the shape function associated to the
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vertex, i.e. for shape functions ψ(v) the solution of the discretised problem is given by
ψ =

∑
v∈V u(v)ψ(v). According to (3), φ holds a weight of the identity discretised by

shape and test function space. For a fine grid vertex, χ accordingly holds the weight
of the discretised right-hand side. For a refined vertex, χ holds the right-hand side of
the multigrid scheme. To reduce notation, we reuse the function symbols u, φ and χ
from the continuous formulation for the vectors of nodal weights, as the semantics of
the symbols is disambiguous, and we omit the v-parameterisation. For all quantities,
let the subscript ` select levels.
H` in Algorithm 1 has a two-fold meaning. In unrefined vertices, it is a generic sym-

bol for one Helmholtz operator from (2). It comprises a complex rotation factor and is
subject to a smoother S that, in our case, denotes one Jacobi smoothing step

S`(u`, χ`) = diag(H`)
−1(χ` −H`u`).

In refined vertices, it encodes a correction equation. On one level `, regions may exist
where H` has either of these two functions, i.e. where fine cells align the edge of a
coarser cell.

A generating system in combination with the fact that each multigrid sweep starts
from a coarse grid correction being zero renders the realisation of an additive multigrid
for a regular grid straightforward: We set u(v) = 0 for all refined vertices, and initialise
two temporary variables r(v) = 0 and diag(H`)(v) = 0 everywhere. Once we run into a
cell, we evaluate the local system matrix in that cell and accumulate the result within
the residual r of the 2p adjacent vertices. Further, it is convenient to assemble the
diagonal element. For plain Dirichlet boundary conditions and rediscretisation, an ac-
cumulation of diag(H`)(v) = 0 is unnecessary. The value is known explicitly from φ.
For complex scaling of cells near to the boundary as required for absorbing boundary
layers or spatially varying φ, such an explicit accumulation of diag is mandatory. Once
all adjacent cells of a vertex on one level have been visited, we may add the right-hand
side to the residual and update the nodal value accordingly. The right-hand side is not
required earlier throughout the solve process. The overall process is detailed in [Mehl
et al. 2006] and reiterated in Appendix B. It is completely matrix-free. It never sets up
any global matrix. This property also holds for restriction and prolongation which are
done throughout the grid/tree traversal process as well.

We use geometric grid transfer operators. P is a p-linear interpolation and R = PT .
Since we rely on finite element rediscretisation and a uniform complex rotation on all
grid levels, H` on each level is a linear combination of a Laplace operator and a mass
operator. The weighting of the two operators is, besides suitable h-scaling, invariant. It
is straightforward to validate that both operator component rediscretisations equal a
Galerkin coarse grid operator [Trottenberg et al. 2001] if the complex scaling and φ are
invariant. We obtain H` = RH`+1P . As we rely on rediscretisation, diag(H`)

−1 further
can be determined on-the-fly on all levels as we accumulate the residual. For varying φ
or along boundaries with complex scaling, our rediscretised operator slightly deviates
from the Galerkin coarse grid operator. However, it still yields reasonable coarse grid
corrections. Hanging vertices are interpolated from the next coarser grid through p-
linear interpolation, i.e. their value results from P . We note that we do not impose any
balancing condition [Sundar et al. 2008] on the spacetree. With these ingredients, we
can interpret the fine grid solve as a domain decomposition approach: each fine grid
region of a given resolution is assigned Dirichlet values through its hanging nodes as
well as real boundary vertices and computes a local solve. The next multigrid iteration,
these Dirichlet values are changed to the most recent, i.e. updated solution on the
coarser grids.

Our algorithmic sketch so far tackles the treatment of hanging nodes but omits two
major challenges: How do fine grid solutions from a level ` interact with fine grid so-
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lutions of coarser resolutions, and how do we handle, on any fixed level, the transition
of the operator semantics from PDE discretisation into multigrid operator along reso-
lution boundaries? We propose to rely on the concept of MLAT [Brandt 1973; 1977] for
hierarchical generating systems which leads into the idea of Griebel’s HTMG [Griebel
1990]. To make a function representation unique within the generating system, we
enforce

u`−1 = Iu` (6)

where I is the injection, i.e. plain copying of u weights within our spacetree. This way,
vertices that coincide with non-hanging vertices on finer levels act as Dirichlet points
for coarser fine grid problems. Constraint (6) formalises a full approximation storage
scheme (FAS) on our hierarchical generating system. Homogeneous Dirichlet bound-
ary conditions imply u0 ≡ 0. Though no equation systems are to be solved on ` < `min,
we nevertheless define u` on the coarser levels. This does simplify our formulae and
arithmetics, as we rely on the notion of hierarchical surpluses [Griebel 1994] defined
by the image of the operator id− PI with id being the identity. We stick to Hu = χ on
the fine grid, but formally split the unknown scaling on refined vertices into current
solution plus correction. Following [Griebel 1990], this yields

H`(u` + e`) = χ` +H`u`

= Rr`+1 +RH`+1PIu`+1 = R(χ`+1 −H`+1u`+1 +H`+1PIu`+1)

= R(χ`+1 −H`+1û`+1) =: Rr̂`+1 with û` := (id− PI)u`. (7)

The hierarchical surplus û is easy to compute if the coarse grid already holds the
injected solution. Computing r̂ parallel to the nodal residual for the smoother is easy
as well as it requires the same operations as the original fine grid equation system.
The prolongation of the coarse grid correction finally simplifies if we add an updated
value on level ` to the hierarchical surplus û`+1 to obtain a new nodal solution u`+1 on
level `+ 1:

u` ← u` + Pe`−1 = û` + Pu`−1.

Such a scheme is agnostic whether original equation (in unrefined vertices) or multi-
grid correction (in refined vertices) is solved on a level `. All unknowns are of the same
scaling and the u weights have the same semantics everywhere. However, it misfits
top-down tree traversals.

Remark 4.1. Textbook multigrid classically relies on an exact solve on the coars-
est grid. We replace this solve by a sole smoothing step. On the one hand, our ex-
periments demonstrate empirically that this yields sufficiently accurate coarse grid
solutions here. On the other hand, our solver acts as preconditioner. Convergence to
machine precision is not required.

This remark requires three addenda: First, our additive multigrid solvers damp coarse
grid contributions for stability reasons. The impact of the coarsest correction then is
small anyway and an exact solve would not pay off. Second, in Poisson-like experi-
ments we coarsen into very small grids (with only 2p unknowns, e.g.). The small grid
problems then are that small that one smoothing step already reduces the residual sig-
nificantly. Finally, our complex rotations rotate the solution into a Poisson-like regime.
Otherwise, the problem could not be represented reasonably on very coarse grids and
would require an exact solve.
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Fig. 4. Data flow diagram for the additive multigrid from Algorithm 1 (left) and data flow diagram for the
injection of FAS (right).

5. SINGLE-SWEEP ADDITIVE FAS WITHIN TREE TRAVERSALS
THEOREM 5.1. Classic additive multigrid in combination with full approximation

storage (FAS) can not be implemented with one tree traversal per cycle if we do not use
additional variables as well as algorithmic reformulations.

PROOF. A proof relies on a data flow analysis (Figure 4). The additive multigrid’s
prolongation prolongs corrections from coarser to finer grids where these are merged
with the smoother’s impact into an unknown update. Each update requires a data flow
to coarser grids due to the injection in (6). The resulting graph has cycles.

One might argue that a temporary violation of (6) on coarse grids is acceptable. Yet,

(1) our notions of hierarchical surplus and hierarchical residual require (6) to hold.
(2) our element-wise operator evaluation relies on the fact that all vertices adjacent

to this cell hold valid values. If some of them hold values that are not injected yet
from a finer grid, the residual evaluation yields wrong results.

(3) our algorithm shall be allowed to refine and erase without restrictions. If (6) holds,
the deletion of whole subtrees is allowed. Otherwise, valid values first have to be
injected prior to a grid update.

Additional tree traversals reconstructing (6) on-demand require multiple unknown
reads and writes. Notably, reconstruction schemes might run into a rippling effect
[Sundar et al. 2008] where an update implies follow-up updates. All techniques intro-
duced from hereon avoid additional data access and advocate for the minimisation of
multiscale grid sweeps. This makes them future-proof regarding a widening memory
gap, i.e. growing latency and shrinking bandwidth per core [Kowarschik et al. 2000].

They rely on two ingredients. On the one hand, we shift the additive algorithm’s
unknown updates by half an iteration, i.e. grid sweep. We run through the spacetree
and determine unknown corrections to the current approximate solution. However,
we do not feed them back into the solution immediately. Instead, we postpone the
update and apply them in the beginning of the next solver cycle. On the other hand,
we introduce two helper variables keeping track of updates w.r.t. the solution and,
hence, also the injection. We preserve (6) due to an exchange of updates. We never
compute the injection directly.

All ideas materialise in Algorithm 2 and realise the following invariant:

sc` ≡ 0 ∀` < `min, and
sf` = sc` = 0 at startup.

Different to Algorithm 1 our realisation relies on a top-down tree traversal: We start
at the coarsest level rather than on the bottom of the tree. Dynamic refinement thus
remains simple. Whenever a spacetree cell is traversed that has to be refined, one
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ALGORITHM 2: Additive multigrid with FAS that integrates into a tree traversal, i.e. a coarse-
to-fine sweep through the grid hierarchies. A call to TDADD(`min) starts one multigrid cycle.
sc and sf are helper variables introduced by pipelining that facilitate a single-touched policy.
The transition from a correction scheme into FAS through the temporary helper variables r̂
(hierarchical residual) and û (hierarchical surplus) is illustrated in Algorithm 4 in the appendix.
1: function TDADD(`)
2: sc` ← sc` + Psc`−1 . Add coarse grid correction to sc` which
3: . so far, holds update resulting from a Jacobi smoothing step.
4: u` ← u` + sc` + sf` . Update u with update from
5: . previous line plus all updates done on finer grids.
6: û← u` − Pu`−1 . Determine new hierarchical surplus.
7: if ` < `max then
8: TDADD(`+ 1)

end
. Go to next finer level.

9: r` ← b` −H`u` . Determine residual and
10: r̂` ← b` −H`û` . hierarchical residual.
11: sc` ← ω`S(u`, b`) . Bookmark update due to a Jacobi
12: . smoothing step for next traversal. Usually
13: . uses r, otherwise there is no need to compute r.
14: if ` > `min then
15: b`−1 ← Rr̂` . Determine right-hand side
16: . for multigrid correction.
17: sf`−1 ← I (sf` + sc`) . Inform coarser grid about update
18: . due to smoothing that will happen in next traversal.

end
19: end function

adds an arbitrary number of levels, initialises all hierarchical surpluses with zero and
immediately descends into the new grid entities. Higher order prolongation can be
constructed starting from this p-linear scheme.

Remark 5.2. The single sweep FAS facilitates arbitrary on-the-fly refinement.
Such a dynamic refinement plays two roles. On the one hand, it allows the algorithm
to resolve local solution characteristics. On the other hand, it yields a full multigrid
(FMG)-like algorithm. We start from a coarse grid tackled by a series of additive V-
cycles. Throughout these solves, we dynamically and locally add additional grid levels
and thus unfold a coarse start grid into an adaptively refined accurate grid. Coarse
solution approximations act as initial guesses for refined grids.

We note that our pipelined implementation requires us to store an additional two
values sc and sf per vertex. They hold smoothing contributions (therefore the symbol
s) from the coarser grids (symbol c) plus the current grid or smoothing contributions
from the finer grids (symbol f ). Besides these two values, also r̂ and û have to be
held. However, we may discard those in-between two iterations, and so they do not
permanently increase the memory footprint.

While the present approach picks up ideas of pipelining—rather than multiple data
consistency sweeps, we need only one amortised traversal per update; an achievement
made possible due to additional helper variables (cmp. [Ghysels et al. 2013; Ghysels
and Vanroose 2014; 2015])—the exchange of updates might induce stability problems,
i.e. values on different levels that should hold the same values might diverge. We anal-
ysed this effect and studied the impact of a resync after a few iterations, but for none
of the present experiments this resync has proven to be necessary.
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5.1. ω choices
Algorithms 1 and 2 rely on relaxation parameters which have severe impact on the
efficiency and stability of the resulting multigrid solver. Proper choices deliver several
well-established multigrid flavours. While the semantics of the Jacobi relaxation ωS in
Algorithm 1 is well-understood and can be studied in terms of local Fourier analysis,
Algorithm 1 also introduces ωcg-scaling of the coarse grid contribution. Multiple valid
choices for this parameter do exist with different properties [Bastian et al. 1998]. In
Algorithm 2, we refrain from distinguishing ωS and ωcg in the formula but instead
introduce a vertex-dependent relaxation ω`, i.e. each vertex may have its individual
relaxation factor. As a vertex is unique due to its spatial position plus its level, this
facilitates level-dependent ω choices.

Let succ(v) ∈ {0, . . . , `max − `min} be an integer variable per vertex v with

succ(v) =

{
0 if v is an unrefined vertex, or
mini(succ(vi)) + 1 for all children vi of v otherwise.

A child vertex of a parent vertex is a vertex with at least one adjacent cell whose
parent in turn is adjacent to the parent vertex. This property deduces from the parent-
child relation on the tree. Furthermore, we define the predicate cPoint that holds for
any vertex whose spatial position coincides with a vertex position on the next coarser
levels. The predicate distinguishes c-points from f-points in the multigrid terminology.
We obtain various smoother variants:

Relaxation parameter Description

ω`(v) =

{
ωS < 1 if succ(v) = 0 and
0 otherwise. Relaxed Jacobi on the dynamically adap-

tive grid as the coarse relaxation parameter
equals zero.

ω`(v) = ωS < 1 Undamped coarse grid correction.

ω`(v) =

{
ωS < 1 if succ(v) ≤ L and
0 otherwise Undamped L-grid scheme on adaptive

grids

ω`(v) = (ωS)
succ(v)+1

ωS < 1 Classic additive multigrid from [Bastian
et al. 1998] where coarse grid updates con-
tribute to the fine grid solution with an ex-
ponential damping.

ω`(v) = (ωS)
(1−1/n)·(succ(v)+1) Transition relaxation. n is the iteration

counter.

Schemes that use the same ω on each and every level (undamped coarse grid correc-
tion) become unstable [Bastian et al. 1998] for setups with many levels. They tend to
overshoot. If only one or two grids are used for the multigrid scheme (L ∈ {2, 3}), this
overshooting is not that significant and solvers are more robust. However, we loose
multigrid efficiency. Exponential damping is thus used by most codes. The coarser
the grid the smaller its influence on the actual solution. This renders an exact coarse
grid solve unnecessary. With the relaxation factors from above all the schemes ap-
ply straightforwardly to dynamically adaptive grids. Empirically, we observe that un-
damped schemes outperform their stable counterparts in the first few iterations. The
overshooting is not dominant yet. We therefore propose a hybrid smoother choice that
transitions from an undamped coarse grid correction into exponential damping.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 B. Reps and T. Weinzierl

5.2. Hierarchical basis and BPX-type solvers

Fig. 5. Snapshot of the solution of −∆u + 1000 u = χ with the transition scheme of the plain additive
multigrid (left) and the hierarchical basis approach (right) after 5, 8 and 18 iterations. χ is a load of one
within a circle around the domain’s centre, i.e. a characteristic function which can be modelled via a Heavy-
side operator. For −φ ≈ 4000, the plain additive scheme left becomes unstable due to overshooting already
visible here. The hb-scheme updates per level only additional fine grid points compared to the coarser grids
and thus is less sensitive to overshooting. Both visualisations set hanging nodes to value zero. The rough
components in the pictures thus are visualisation artefacts; no real high frequency contributions.

While additive multigrid with exponential damping or transition is robust for the
Poisson equation, it runs into instabilities if we encounter a non-zero φ < 0 term in (3);
despite the fact that the problem remains well-posed positive-definite on all levels due
to the additional minus sign in front of φ. The solver is sensitive to the reaction term.
Robustness with respect to a reaction term however is mandatory prior to tackling any
ill-definiteness.

We find the shift φ < 0 make the additive multigrid overshoot on coarser levels, pol-
lute the approximation and introduce a non-local oscillation in the follow-up iteration.
The overshooting/oscillation typically grows per iteration if the diffusive operator is
not dominating (Figure 5). A straightforward fix to this instability is the switch from
a hierarchical generating system into a hierarchical basis [Griebel 1990; 1994]. It is
identified by an hb- prefix from here on. Following [Bastian et al. 1998], such a switch
results from a modification of the generic relaxation parameter into

ω`(v)←
{

0 if cPoint(v) and
ω`(v) otherwise. . (8)

We mask out c-points. Such a modification unfolds a variety of reasonable and unrea-
sonable smoothing schemes due to the various choices of ω`(v) on the right-hand side.
Our numerical results detail this.
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While (8) with its localised updates—vertices coinciding spatially are updated solely
on the coarsest level—prevents the additive scheme from overshooting too significantly
for φ < 0, it comes at the price of a deteriorating convergence speed. It continues to
assume a uniform smooth geometric multiscale behaviour of the solution, as any un-
known update is determined by the update in the point plus the c-point updates of
surrounding vertices. Increasing absolute values of φ in combination with non-smooth
right-hand sides however decreases the smoothness of the solution along jumps of the
latter. This becomes apparent immediately at hands of a gedankenexperiment with
a Heavyside χ. A hb-solver locally overshoots where χ changes and the overall ap-
proximation starts to creep towards the correct solution due to local oscillations while
non-local oscillations are eliminated.

One fix to this challenge adds an additional −PIω`S(u`, b`) term to all smoothing
updates. This is known as BPX [Bastian et al. 1998; Bramble et al. 1990]. Reiterating
through our data dependency analysis, we find that the BPX operator can not be imple-
mented straightforwardly within Algorithm 2—even with the pipelining variables in
place—as c-point impacts spread to their surrounding through the coarser grids while
they are not altered themselves.

These considerations lead to a BPX FAS in Algorithm 3. The key idea is to keep
sf and sc and to introduce another helper variable si holding the injected value of
a smoother update without any c-point distinction. It is set as soon as we determine
the smoother impact. This impact is discarded for c-points due to (8). Finally, the one-
sweep realisation modifies the prolongation by adding an additional −Psi term. (8) in
combination with this term ensures the BPX inter-level correlation as we have (id −
PI) = 0 on vertices for which cPoint holds.

ALGORITHM 3: Single-sweep BPX variant realisation incorporating FAS. Invoked by
TDBPX(`min). We do not rely on (8) here, i.e. ω is cPoint-agnostic, as we realise the case dis-
tinction within the multilevel code.
1: function TDBPX(`)
2: sc` ← sc` + Psc`−1

3: if not cPoint(v) then
4: sc` ← sc` − Psi`−1 . BPX-type modification of fine grid correction

end
5: u` ← u` + sc` + sf`
6: û← u` − Pu`−1

7: if ` < `max then
8: TDBPX(`+ 1)

end
9: r` ← b` −H`u`
10: r̂` ← b` −H`û`
11: if cPoint(v) then
12: sc`(v)← 0 . Realise (8), i.e. cancel out update

else
13: sc` ← ω`S(u`, b`) . Anticipate coarse correction

end
14: if ` > `min then
15: si`−1 ← Iω`S(u`, b`) . Memorise dropped fine grid update
16: b`−1 ← Rr̂`
17: sf`−1 ← I (sf` + sc`)

end
18: end function
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We emphasise that (8) follows the same pipelining idea we introduced for the ad-
ditive scheme and at the same time renders the storage of a fine grid correction sf
unnecessary. We could add any fine smoothing impact directly onto sc and at the same
time skip the injection of sf`+sc`. Such a BPX realisation uses the same data layout as
the additive multigrid. No sf is to be held, but we need an additional si. This preserves
the number of variables. The reason for this possibility results from the fact that the
coarsest vertex in Ωh holds the valid nodal representation of the solution in Algorithm
3. All finer vertices at the same location are copies. We preserve sf in the presented
code to emphasise the closeness to the additive scheme. While this wastes one entry per
vertex, it might make sense to preserve the fine grid injection and thus to allow BPX’s
fine grid update to change cPoints as well: in applications with non-trivial boundary
conditions, those sometimes are simpler to evaluate in a nodal setting rather than a
hierarchical basis. The injection then automatically reconstructs the data consistency
on all levels.

5.3. Feature-based dynamic adaptivity
All algorithmic ingredients introduced are well-suited for any arbitrary adaptivity.
Throughout the top down steps, we may add any number of vertices as long as we
initialise their hierarchical surplus with 0 and prolong the solution p-linearly. They
then seamlessly integrate into the solver’s workflow. For faster convergence, higher
order interpolation might be advantageous. Discarding vertices is permitted through-
out the backtracking, i.e. the steps up in the grid hierarchy. The FAS ensures that
all solution information is already available on the coarsened mesh. Multilevel meta
information such as cPoint or succ(v) can be computed on-the-fly throughout the tree
traversal’s backtracking. It then automatically adopts to updated refinement patterns.

In the present paper, we stick to simple feature-based refinement and specify both
regular grids and adaptive grids through a maximal and minimal mesh size hmax and
hmin. We start from a grid satisfying hmax and, in parallel to the smoothing steps,
measure the value s = maxd∈{1,...,p} |∆du| per vertex on each grid level. Per step, we
refine the 10% of the vertices with the highest s value, while we erase the 2% vertices
with the smallest s value. These values are shots from the hip but empirically show
reasonable grid refinement structures. They yield a grid that adopts itself to solution
characteristics. We realise feature-based adaptivity. More sophisticated schemes with
proper error estimators are out of scope.

To avoid global sorting, we split up the whole span of s values into 20 subranges and
bin vertices into these ranges. All vertices fitting into a fixed number of bins holding
the largest s values are refined. This fixed number is selected such that the 10% goal
is met as close as possible. Erasing works analogously with the bins with the smallest
s values. Refining and erasing are vetoed in two cases: if maximal or minimal mesh
constraints would be violated; or if residual divided by diagonal element exceeds 10−2.
In the latter case, the vertex is still subject to major updates, i.e. has not ‘converged’,
and we postpone a refinement or coarsening.

The interplay of the feature-based refinement with the creation of a FMG cycle is
detailed in Remark 5.2. We note that our criterion yields different grid refinement
patterns for different solvers as we integrate refinement into the solve (Figure 5). This
advocates for better criteria and renders the present experiments feasibility studies.

6. SOLVER PROPERTIES
In the following, we validate fundamental properties of the algorithm. We prove its
correctness. Let the iterates of an unknown x be x(n), x(n+1), . . . As sc is updated twice
per iteration we distinguish sc(n), sc(n+0.5) and sc(n+1).
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LEMMA 6.1. Whenever we evaluate r(n+1)
` = b` −H`u

(n)
` , we have

∀n : u
(n)
`−1 = Iu

(n)
` ∀`min < ` ≤ `max.

PROOF.
At construction, u(0)

` = Iu
(0)
`+1. The proof then relies on a simple induction over n:

u
(n+1)
`−1 = u

(n)
`−1 + sf

(n+1)
`−1 + sc

(n+1)
`−1

= Iu
(n)
` + I

(
sf

(n+1)
` + sc

(n+1/2)
`

)
+ sc

(n+1)
`−1

= Iu
(n)
` + Isf

(n+1)
` + I

(
sc

(n+1)
` − Psc(n+1)

`−1

)
+ sc

(n+1)
`−1

= Iu
(n)
` + Isf

(n+1)
` + Isc

(n+1)
` + (id− IP )sc

(n+1)
`−1

= Iu
(n)
`

where we apply the induction hypothesis on u
(n−1)
` , the algorithm’s update operations

on the remaining operators, and exploit IP = id for c-points. Dynamic adaptivity has
to preserve the construction constraint.

The smoother here is a black-box and we do not make any assumption about the cor-
rectness of the solved equation systems. Our notation of I, P and R further is generic,
i.e. Ik indicates that I is applied multiplicatively k times in a row with an I fitting to
the preimage.

The lemma implies that transitions between grid resolutions require no special
treatment: As each vertex on each grid level holds a valid representation of the so-
lution, we can apply the same stencils irrespective whether they overlap a refined
region or are fine grid stencils. Only hanging nodes have to be interpolated p-linearly
from the coarser grid.

LEMMA 6.2. The operators from Algorithm 2 realise a FAS.

PROOF. Each level’s smoother tackles a correction equation of the form

H` (u` + Iu`+1) = Rr`+1 +H`Iu`+1.

The left-hand side has been studied before. So we follow [Griebel 1994] and write

Rr̂`+1 = R (b`+1 −H`+1û`+1)

= R (b`+1 −H`+1(u`+1 − Pu`))
= Rr`+1 +RH`+1Pu` = Rr`+1 +RH`+1PIu`+1 (cmp. Lemma 1)
= Rr`+1 +H`Iu`+1.

The proof holds for space-independent Helmholtz shifts φ and Dirichlet and Neumann
boundary conditions. As mentioned before, absorbing boundary layers with varying
complex scaling or jumping material coefficients violate the equivalence of a Galerkin
multigrid operator and plain rediscretisation. We have to assume that these are the
regions many adaptivity criteria refine towards to. For these, the equations above com-
prise an additional error term if we do not apply operator-dependent grid transfer oper-
ators. The multigrid equations are perturbed. Based on empirical evidence, we assume
this perturbation to be small. However, we have to expect a small deterioration of the
multigrid performance. Without pollution, the prolongation of

u
(n+1)
` − u(n)

` = ω`−1S(u
(n)
` , b`) = cs

(n+1)
`
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to level `+ 1 equals the correction term in multigrid.

Remark 6.3. The lemma extends naturally to Algorithm 3, i.e. the BPX variant.

THEOREM 6.4. The additive top-down FAS from Algorithm 2 realises an additive
multigrid algorithm.

PROOF. We compare the algorithm to additive blueprint in Algorithm 1 and study
one iteration of the scheme.

— We first study the one-grid problem with `min = `max. We further focus on u
(n+1)
` ,

i.e. work backwards from the update of this unknown.

u
(n+1)
` = u

(n)
` + Psc

(n+1)
`−1 + sc

(n+1)
` + sf

(n+1)
`

= u
(n)
` + sc

(n+1)
` + sf

(n+1)
` as sc`−1 ≡ 0

= u
(n)
` + ω`S(u

(n)
` , b`) + sf

(n+1)
`

sf` is never modified which closes this step.
— We next switch to a two-grid problem with ` ≡ `max and `− 1 ≡ `min.

u
(n+1)
` = u

(n)
` + Psc

(n+1)
`−1 + sc

(n+1)
` + sf

(n+1)
`

= u
(n)
` + Psc

(n+1)
`−1 + sc

(n+1)
` induction

= u
(n)
` + Psc

(n+1)
`−1 + ω`S(u

(n)
` , b`)

= u
(n)
` + P

(
ω`−1S(u

(n)
` , b`)

)
+ ω`S(u

(n)
` , b`)

The proof follows from induction on the grid levels if we choose ω` = ωS on the finest
level and ω` = ωS ·ωlcg with l being the difference of the current level to the finest level.
The latter is an attribute that can be computed on-the-fly throughout the bottom-up
steps of the algorithm within the spacetree.

Remark 6.5. We assume that a theorem for the BPX solver from Algorithm 3 is
proven analogously.

7. RESULTS
Our results split into five parts. First, we study the convergence behaviour of the ad-
ditive multigrid variants for a simple Poisson equation. This validates the algorithmic
building blocks at hands of a well-posed setup and yields insight into the convergence
efficiency. Second, we switch to Helmholtz problems with φ < 0 in (3). This reveals the
shortcomings of the additive scheme compared to a hierarchical basis approach that
arises naturally from our chosen data structures. Third, we study Helmholtz problems
with φ > 0, i.e. the difficult case of ill-conditioned problems. This quantifies the ef-
ficiency and robustness of the proposed solution with complex grid rotation. Fourth,
we apply our toolset on the motivating scattering example. This validates that the ap-
proach is well-suited to tackle varying material parameters φ. Finally, we study the
efficiency of the proposed solver regarding hardware characteristics. For the present
perfectly parallel setup, this notably has to focus on vectorisation and memory ac-
cess efficiency. The latter case studies are conducted either on a local workstation with
Sandy Bridge-EP Xeon E5-2650 processors running at 2.0 GHz or on a Xeon Phi 5110P
accelerator running at 1,053 GHz. The latter is a pioneer of future manycore architec-
tures delivering performance to a significant extent through vectorisation. At the same
time, it is well-known to be sensitive to proper memory layout and access [Reinders and
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Jeffers 2015]. Statements on this machine thus facilitate an extrapolation to upcom-
ing hardware generations. Our codes were translated with the Intel compiler 15.0.1,
while we used the Likwid tools [Treibig et al. 2010] to obtain statements on hardware
counters.

Global quantities are specified over all fine grid vertices, i.e. a subset of V; either in
the maximum norm, the standard Euclidean norm or

|x|2h =
∑
i

|hi|d|xi|2,

where each entry of the input vector is scaled by the volume of one spacetree cell of
the corresponding mesh level. While the h-norm is an Euclidean inner product norm
(cmp. (1.3.6) from [Trottenberg et al. 2001]) anticipating nonuniform mesh elements
and thus allows us to compare adaptive grids with each other, we emphasise that
it is not an exact equivalent of the continuous L2 norm as small slices of the do-
main along adaptivity boundaries are integrated several times due to our hierarchical
ansatz space. For regular grids, it is exact. The norm allows us to compare grids of
different resolution [Trottenberg et al. 2001] or adaptivity patterns with each other.
We thus have to expect minor peaks in the residual whenever the grid is dynamically
refined.

χ(x) = dπ2 ·
∏

i=0,...,d

sin(πxi) and (9)

χ(x) =

{
1, if

∑p
j=1(xj − 1

2 )2 < 0.12,

0, elsewhere.
(10)

act as artificial benchmark problems before we switch to realistic setups in Section 7.4.
Homogeneous Dirichlet boundary conditions are supplemented for the benchmarks.

7.1. Poisson problems
We start from (9) and φ ≡ 0. The complex rotation is θ = 0. An analytical solu-
tion to this problem has no imaginary parts, and we have validated for all choices of
ω`(v) the convergence towards the analytic solution. A convergence study on uniform
grids exhibits a convergence speed that is almost mesh-independent for the different
multigrid variants (Figure 6). We observe that the speed slightly decreases for de-
creasing mesh width if we use exponential or transition coarse grid damping. While
these two schemes are the robust multiscale variants, they downscale the impact of
coarse grid corrections per additional coarse grid level. We can not expect perfect mesh-
independent convergence. In general, the transition scheme slightly outperforms the
exponential coarse grid damping after a few additive cycles. Undamped additive multi-
grid converges only for the coarser mesh widths—it would still work if we reduced ω
with each additional grid level; which decreases the convergence speed—while the
three grid and Jacobi solver exhibit the well-known mesh-dependent convergence be-
haviour.

The aforementioned convergence statements reveal to be too pessimistic if we switch
to an adaptive, FMG-type setting. We then observe that we obtain two orders of accu-
racy at the cost of around three fine grid cycles (Figure 7). This holds for both the
exponential coarse grid damping (not shown) and the transition scheme while the lat-
ter performs slightly better again. We are close to multiplicative multigrid efficiency.

We finally observe that optimal, i.e. mesh-independent, convergence is obtained for
different dimensions if ω = 0.8. While larger values make the solver diverge, stronger
damping such as ω = 0.6, e.g., does not deliver comparable performance robustly
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Fig. 6. Residual development on regular grids (left: p = 2; right: p = 3) for the additive multigrid and the
right-hand side (9).
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Fig. 7. Adaptive grid with additive multigrid that is successively refined from a prescribed maximum mesh
size hmax to the minimum mesh size hmin for p = 2 (left) and p = 3 (right) where it pays off. Each thick
vertical line denotes the cost of three additive cycles on a regular grid with hmin. Transition is used for
ω`(v). The right-hand side is (9).

though some mesh choices benefit from reduced factors (Figure 8). Again, exponen-
tial damping and transition are the only schemes that are stable for all p ∈ {2, 3, 4}
and all mesh size configurations. Transition usually is faster than exponential damp-
ing. However, the convergence speed of both approaches continues to deteriorate with
increasing p. Reasons for this might be found in the poor smoother and the rather
aggressive coarsening by a factor of 3p.
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Fig. 8. Comparisons of the solver efficiency for different dimensions for one adaptive mesh configuration
choice. Note the dimension-dependent scaling of the x-axis.

Table I. Cost to reduce the initial residual by 10−6. The first entry is the number of grid
sweeps required by the adaptive solvers, the second entry normalises the required un-
known updates: It shows how many regular grid sweeps yield the same cost. ucg denotes
undamped coarse grid correction, exp exponential coarse grid damping and t transition.
p = 2. The upper part shows results for (9), the lower for (10). ⊥ denotes divergence, ∗

setups where the adaptivity criterion had not created stationary grid setups yet.

additive multigrid hb bpx
φ hmin ucg exp t ucg exp ucg exp t
-400 0.05 32/27.6 38/32.8 35/30.2 183/157.8 197/169.9 31/26.7 35/30.2 32/27.6

0.005 ⊥ 67/7.7 70/10.6 370/44.5 517/55.9 49/8.9 74/11.3 69/10.5
0.0005 ⊥ 95/8.0 97/7.2 ⊥ ⊥ 65/∗ 93/6.3 95/6.7

-4000 0.05 32/27.6 38/32.8 35/30.2 183/157.8 197/169.9 31/26.7 35/30.2 32/27.6
0.005 ⊥ 67/7.7 70/10.6 370/44.5 517/55.9 49/8.9 74/11.3 69/10.5

0.0005 ⊥ 95/8.0 97/7.2 ⊥ ⊥ 65/∗ 93/6.3 95/6.7
-200 0.05 46/39.7 29/25.0 28/24.1 254/219.0 332/286.3 29/25.0 29/25.0 28/24.1

0.005 ⊥ 64/3.7 60/3.4 544/4.3 ≥ 1000 61/3.5 63/3.4 62/0.4
0.0005 ⊥ 196/∗ ⊥ ⊥ ⊥ 107/∗ 71/0.9 ⊥

-1000 0.05 ⊥ ⊥ ⊥ ⊥ 651/561.3 18/15.5 18/15.5 17/14.7
0.005 ⊥ 46/2.6 61/3.5 ⊥ ≥ 1000 50/2.3 73/0.4 61/2.9

0.0005 ⊥ ⊥ 115/∗ ⊥ ≥ 1000 58/0.1 ⊥ 101/0.2
-4000 0.05 ⊥ ⊥ ⊥ ⊥ ⊥ 26/22.4 33/28.5 31/26.7

0.005 ⊥ ⊥ ⊥ ⊥ ≥ 1000 36/1.3 46/1.7 76/2.7
0.0005 ⊥ 148/∗ 181/∗ ⊥ ≥ 1000 97/∗ 188/∗ 243/∗

We summarise that our approach works for p ≥ 2, but remains not practical for
p ≥ 5 due to the curse of dimensions. To the best of our knowledge, even results for
a numerical solution with p ≥ 3 in our application area are rare. The aforementioned
[Baertschy and Li 2001; Vanroose et al. 2005; Horner et al. 2007; bin Zubair et al.
2012; Cools et al. 2014a] for example all restrict to p ∈ {2, 3}, i.e. two-dimensional or
three-dimensional grids. To the best of our knowledge, very few spacetree codes offer
four-dimensional or even higher-dimensional dynamically adaptive grids.

7.2. Case φ < 0: positive definite Helmholtz problems
Negative φ in (3) with the right-hand side from (9) have a negligible impact on the con-
vergence behaviour of the solvers (Table I; upper part). Here, additive multigrid and
BPX yield comparable results. BPX seems to become superior for sufficiently fine grids.
The hierarchical basis approach is slower. For BPX, undamped coarse grid damping is
the method of choice. As we stop the study for rather big residuals being in the order
of 10−6 relative to the start residual, the multigrid’s transition scheme has not yet
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overtaken the exponential coarse grid damping. We observe for all setups that finer
mesh resolutions require more sweeps. The grid has to unfold completely due to these
sweeps. The cost (in terms of unknown updates) normalised by the cost per sweep on a
regular grid of the finest mesh size however decreases with additional levels. Inaccu-
racies occur for BPX that stopped right after the refinement criterion had inserted an
additional grid level. It thus does not make sense to compare the number of updates to
a regular grid—the new level that just had been inserted makes the adaptive scheme
seem to be too good. Longer simulation runs/a lower termination threshold would put
these values into perspective.

The convergence characteristics change for (10) acting as right-hand side (Table I;
lower part). Additive multigrid starts to diverge for coarser mesh sizes already as φ < 0
becomes smaller. For fine meshes, it always diverges. The ill-behaviour stems from
the fact that our coarse grid updates mimic a long-range diffusive behaviour of the
solution. The smaller φ < 0 the less significant this diffusion component in (3). Instead,
we face steep gradients at the transition of the right-hand. They can not be resolved
on coarse grids. Even worse, any coarse grid change pollutes a fine grid approximation
due to unnatural diffusion introduced by our p-linear P . It thus excites oscillations
around the χ transition.

The hierarchical basis is more robust w.r.t. these non-diffusive oscillations if we use
exponential damping. However, its convergence speed deteriorates. Exponential damp-
ing in combination with the hb-filtering of c-points on the fine grids yields a scheme
where unknowns within the computational domain that are induced by coarse lev-
els are not updated significantly anymore once finer grids are introduced; or once
restricted residuals average out on coarse levels. Any combination of hb without full
coarse grid addition of the correction thus makes only limited sense and is not followed-
up further. Results for hb with transition are not even shown. hb seems to be a problem-
atic solver variant here. It is due to the additive framework and might be completely
different for multiplicative settings.

Our BPX-type variant finally yields the best results. BPX starts to reduce the cost
per accuracy for shrinking φs unless its hits convergence (at a cost of around 0.1 reg-
ular fine grid sweeps). Hereby, an undamped coarse grid addition is superior to the
other variants; as it materialises in the number of sweeps. As the PDE deteriorates to
an explicit equation −φψ = χ with a relatively small diffusive addendum on the left-
hand side, fine grid unknowns introduced by coarse grid levels are updated almost to
the right solution immediately due to the dominance of the diagonal in the system ma-
trix. The residual for other unknowns is (almost) correct on the finest grid resolution,
too. Where the multigrid and hierarchical basis update the latter points plus add a
prolonged correction from the c-points—the latter update component over-relaxes the
unknowns—BPX explicitly removes the coarse grid contribution, as the coarse grid
contribution equals exactly the fine grid update.

7.3. Case φ > 0: indefinite Helmholtz problems on complex rotated grids
Depending on the grid resolution and topology, (3) can become indefinite or yield a non-
trivial null space for φ > 0. Outgoing waves mimicked by absorbing boundary layers
add natural damping to most of the eigenmodes and therefore make the discretised
operator better conditioned. In the present section, we stick to homogeneous Dirichlet
boundary conditions only, i.e. study a worst-case scenario regarding the numerical sta-
bility. In turn, we isolate the impact of complex grid rotation from any other damping
induced by outgoing wave boundary conditions in typical applications.

In the following experiments, the mesh width is scaled according to h → heiθ in
each dimension (0 ≤ θ ≤ π

4 ). Complex rotation has a positive effect on the convergence
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Fig. 9. Residual development for the BPX-variant in Algorithm 3 with undamped coarse grid correction for
φ = 452. Different values of the complex rotation angle θ = 30◦, 35◦, 40◦ were tested on a regular grid (left)
and an adaptive grid (right).

behaviour of the multigrid solver (cmp. Figure 9 with φ = 452), while θ = 0◦ makes the
solver diverge. ω = 0.8 is used throughout all experiments. If we rotate the constant
mesh width over θ > 30◦, then the solver gets into the regime of convergence. We
observe the same behaviour on an adaptive grid that starts on a coarse regular grid
with hmin = 1

9 . During a refinement step the residual reduction might temporarily
increase. Once the grid settles into a steady state, an asymptotic convergence rate is
reached. It is better than the corresponding convergence rate on a regular grid with
the same minimal mesh size. This is due to a reduced set of eigenvalues.

A typical stress test for indefinite Helmholtz solvers is the robustness as a function
of increasing Helmholtz shift φ = k2. k is the wave number. For one-dimensional prob-
lems a common restriction on the mesh size h is given by the ten-points-per-wave-length
rule, which translates into kh < 0.625. In the following two-dimensional experiments
we keep kh = 5

9 = 0.5555 . . . and test for different values of k on regular grids. Note that
from a physical point of view a more stringent constraint on h is required in higher di-
mensions, such as k3h2 = O(1), in order to avoid pollution of the solution [Bayliss et al.
1985; Ihlenburg and Babuska 1995].

In Figure 10 the convergence behaviour of different solver variants is compared,
similar to the experiments in Figure 6 for the Poisson equation. The mesh width is
now complex rotated over θ = 35◦ ≈ 0.6109 in order to avoid divergence due to a non-
trivial null space. The top left panel (k = 5) shows a nice reduction rate. For increasing
wave numbers (k = 15, 45, 135), the term φ = k2 > 0 starts to dominate the PDE and
the solvers suffer from the overshooting effects discussed in the previous section with
φ < 0. As expected, only the BPX-variants seem to cope with the highest wave number
k = 135 in the bottom right panel.

The BPX-variants are further tested on adaptive grids in Figure 11 for values k = 45
and 135. We let the corresponding mesh sizes now determine the finest possible reso-
lution in the grid, and start each solve on a coarse regular grid with hmax = 1

9 . The
result is an FMG-type solver that adaptively refines. The same as for the Poisson ex-
periments in Figure 7, the horizontal axis indicates the number vertex updates versus
the residual normalised residual norm on the vertical axis. Again, there is a significant
benefit from coarser regions in the grid. Adaptivity is a particularly useful functional-
ity for the highly heterogeneous Helmholtz equations with space-dependent function
φ = φ(x), that arise in the quantum mechanical problems described in Section 2. A
typical L-shaped refinement [bin Zubair et al. 2010] is desirable for a good representa-
tion of extremely localised waves close to the domain boundary (cmp. Figure 1 right).
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Fig. 10. Residual development for different values of the Helmholtz shift: φ = 52 (top left), 152 (top right),
452 (bottom left) and 1352 (bottom right). Complex rotation was set to θ = 35◦. The hb- prefix marks
hierarchical basis solvers, the bpx- prefix a BPX approach.
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Fig. 11. Adaptive grid with BPX additive multigrid that is successively refined from a prescribed maximum
mesh size hmax to the minimum mesh size hmin for p = 2 (left) and p = 3 (right). Helmholtz variant of the
experiment in Figure 7, for φ = 452 and complex rotation θ = 35◦.

Nonetheless, there remain severe numerical stability issues to handle these evanes-
cent waves. We refer to the concluding Section 8 for an outlook on strategies, as this
lies beyond the scope of the current paper.

7.4. p = 2 application scenario and grid adaptivity structure
With characteristics of the solver behaviour at hand, we finally study a realistic chan-
nel matrix for p = 2 idealised from the dynamics of Hydrogen or Deuterium [bin
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Fig. 12. The distribution of φ in the computational domain (left). It is invariant of the complex rotation.
Complex rotation however does make a difference to the solution (right, θ = 45◦).

Zubair et al. 2012]. This leads in the channels’ frequency domain to two-dimensional
Helmholtz problems

χ(x, y) = e(−(125x)2−(125y)2) and

φ(x, y) = 452 + 1352 ·
(
e−(15x)2 + e−(15y)2

)
, (11)

where the x-axis and the y-axis represent the distance from the centre of mass. They
consequently carry homogeneous Dirichlet values: The probability for an electron to
coincide with a nucleus equals zero. The remaining two faces top and right are open
boundaries. They are consequently supplemented with homogeneous Dirichlet values
as well, but we rotate the cells close to these faces by 30◦ in the complex domain to
eliminate wave reflections. Close is 1

3rd of the domain. The remaining cells in the do-
main are complex rotated by an angle θ ≥ 0, independently of this absorbing layer.
As discussed in the previous section, only for θ = 0 the original Helmholtz problem is
solved. Both an inhomogeneous right-hand side as well as an inhomogeneous ‘mate-
rial’ function φ > 0 are active inside the domain. The actual system parameters are
channel dependent and are determined by the potential fields of all present particles.

For this setup h = 1/81 is a physically reasonable choice for our purposes of studying
the solution. The experiment is then sufficiently small to be solved by a direct solver.
However, we solve it with pure Jacobi (cmp. Figure 1 right) which does not require us
to change any code. For this, we use two-phase relaxation [Ernst and Gander 2011],
i.e. two different relaxation parameters ω1 and ω2 alternatingly, which follows [Hadley
2005]1 with

ω1 = 0.01 ·
(√

3− ı
)

and ω2 = −ω1.

One of the two relaxation parameters has a negative real part and both carry an imagi-
nary component. Obviously, this approach becomes unfeasible once p increases or finer
grid resolutions are required. For the additive multigrid (transition scheme) and the
BPX (undamped coarse grid correction), we use ω = 0.4 which avoids oscillations. We
also use ω = 0.4 for all Jacobi smoothers that apply complex rotations.

Though Jacobi converges for θ = 0 and reduces the residual after every two grid
sweeps, the convergence speed is unacceptably low even for this simple setup. How-

1[Hadley 2005] uses a relaxation α that is relative to a finite difference discretisation of the Laplacian. In
our case, we consequently have ω = α(1 + hφ

4
) with α =

√
3− ı.
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Table II. Reduction of residual of (11) in max norm after 50 iterations. The regular grid uses 1/81, the adaptive one
starts from hmax = 0.1 and does permit the criterion to refine until hmin = 0.001 is just underrun. ⊥ denotes
divergence. Figures in brackets show, if appropriate, the number of vertices used after 50 iterations.

regular adaptive

θ Jacobi transition BPX Jacobi transition BPX

0◦ 4.78 · 10−1 ⊥ ⊥ ⊥ ⊥ ⊥

18◦ ⊥ ⊥ 4.44 · 10−2 ⊥ ⊥ ⊥
25◦ 2.07 · 10−1 2.27 · 10−2 2.62 · 10−3 9.82 · 10−2 (1,536) 5.30 · 10−2 (1,448) 5.72 · 10−3 (1,500)

35◦ 8.46 · 10−5 2.00 · 10−4 8.35 · 10−4 9.49 · 10−2 (1,544) 3.97 · 10−2 (1,324) 1.61 · 10−3 (1,480)

45◦ 6.53 · 10−7 6.67 · 10−5 2.60 · 10−4 9.14 · 10−2 (1,524) 3.09 · 10−2 (1,308) 1.16 · 10−3 (1,460)

Fig. 13. Left: Dynamically adaptive grid with hmax = 1/3 and hmin = 0.001 for a pure Jacobi solver at
the moment of convergence without any complex rotation. Right: Dynamically adaptive grid of BPX for the
same setup with a complex rotation of θ = 45◦.

ever, the additive multigrid and BPX are not stable for θ = 0 and thus can not be
applied. BPX becomes stable for θ ≥ 18◦, while the additive transition scheme requires
θ ≥ 25◦ (Table II). With increasing θ, the convergence speed of all solvers improves.
This improvement is rendered problematic as the quality of the preconditioner suffers.
While the latter effect is not directly studied here, it is indirectly illustrated by the Ja-
cobi eventually outperforming the multigrid schemes. For large θ, all wave behaviour
is damped out and we basically resolve one peak around the coordinate system’s ori-
gin (cmp. Figure 12 right). The local solution characteristics render multilevel solvers
inappropriate.

If we start from a grid of hmax = 0.1 and allow the dynamic refinement criterion
to refine any cell coarser than hmin = 0.001, all solution processes automatically yield
an adaptive grid (Figure 13). For all rotation choices, we end up with 1,308–1,544 ver-
tices; a significant saving compared to a regular grid with 6,400 vertices. The purely
feature-based criterion here has a two-fold role: In accordance with previous results, it
rewrites the solve into an FMG-type cycle. At the same time, it allows the code to make
the solution resolve the physical problem characteristics economically. While these so-
lution characteristics depend sensitively on the choice of rotation, we observe that the
adaptivity structure is almost rotation-invariant. This is an effect that deserves fur-
ther studies but obviously results from the fact that the gradient around the Gaussian
stimulus χ exceeds by magnitudes any characteristic of the induced wave pattern. Dif-
ferent to the regular grid results, we furthermore observe that BPX remains superior
to the other approaches for all θ, while all variants outperform their regular grid coun-
terparts in terms of cost: each adaptive iteration is at most 1/4th of the cost of a regular
grid sweep.
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Table III. Performance counters on the Sandy Bridge for a dynamically adaptive FMG-type solve with
hmin = 0.001 (p = 2), hmin = 0.005 (p = 3), hmin = 0.01 (p = 4). The left value is obtained without
vectorisation, the right results from an executable translated with simd facilities. L2 misses are relative
measures (rates) compared to total number of accesses.

metric p=2 p=3 p=4
Runtime 1.16e+02/1.13e+02 2.12e+02/2.11e+02 2.07e+03/2.31e+03

Instructions 5.53e+11/5.53e+11 1.11e+12/1.09e+12 1.19e+13/1.11e+13
MFlops/s 7.27e+02/8.89e+02 1.13e+03/1.40e+03 1.66e+03/1.98e+03

L2 requests 1.77e-02/1.74e-02 1.48e-02/1.23e-02 9.55e-03/1.04e-02
L2 misses 2.75e-03/2.77e-03 3.49e-03/3.00e-03 6.66e-04/8.29e-04

Used bandwidth (MB/s) 2.53e+02/2.52e+02 1.35e+02/1.37e+02 7.80e+01/7.14e+01
Transferred memory (GB) 2.90e+01 2.86e+01 1.65e+02

7.5. Hardware efficiency
We finally study the algorithm’s hardware characteristic and compare the mem-
ory throughput to the Stream benchmark [McCalpin 1995] ran on a single core of
the Sandy Bridge. An excellent cache usage mirrors results from [Weinzierl 2009;
Weinzierl and Mehl 2011]. It results from the combination of strict element-wise
data access, stack-based data management and depth-first spacetree traversal along
a space-filling curve (Table III). Element-wise formulation and depth-first fit, i.e. lo-
calised data access even for the grid transfer operations, are characteristics of the
present multigrid algorithms. L1 and L3 cache measurements yield analogous results.
Basically all required data are always found in the L1 and L2 cache. The combination
of low cache misses with the data usage policy, i.e. one traversal per solver cycle and
one data read per unknown, highlights that the present approach is memory modest.
This statement holds independent of p. Our approach is not memory-bound though the
grid changes almost each iteration and the code is a multiscale algorithm. It however
neither exploits the available memory bandwidth which is around 8.35 · 103 MB/s for
the Stream Triad [McCalpin 1995] benchmark ran on a single core with the same set-
tings, nor does it exploit the vector registers. Its arithmetic intensity is very low. For
p > 3, vectorisation even makes the runtime increase. We observe that few floating
point operations per second face more than 1011 total instructions. The recursive code
suffers from significant integer arithmetics; from administrative overhead.

We reiterate that (3) is to be solved for up to c channels simultaneously. As such, it
is natural to make the solver tackle ĉ ≤ c problems simultaneously on the same grid.
Each and every unknown associated to a vertex then is a Cĉ tuple. Rather than relying
on c independent problem solves, we fuse ĉ problems into one setup solved on one grid.
We refer to such an approach as multichannel variant. It is studied here at hands of
five exemplary configurations (different mesh sizes, initial values, solvers) per p choice.
Results from the Xeon Phi and Sandy Bridge qualitatively resemble each other though
we have to take into account different constraints on the total memory—for p = 4,
hmin = 0.05 already does not fit into the memory anymore for ĉ > 8.

We observe that solving multiple channels on one grid decreases the cost per un-
known monotonously (Figure 14) up to ĉ = 8: the more channels fused into one grid
the better the available memory bandwidth usage. Again, maintenance overhead is
amortised. This holds despite the fact that the refinement criterion for the fusion of
ĉ channels into one grid has to be pessimistic. If one channel requires refinement,
all ĉ channels are mapped onto a finer grid. As our dynamically adaptive grid starts
from few vertices and then refines, it successively amortises the overhead among the
vertices for p = 2. The cost per vertex decreases. For p = 3 this effect is negligible.
However, both p-choices exhibit cost peaks throughout the adaptive refinement due to
additional initialisation effort. These relative cost are the smaller the more channels
are fused.
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Fig. 14. Runtime per unknown per multigrid sweep for p = 2 (left) and p = 3 (right) on the Xeon Phi with
several multichannel configurations and setups. Worst-case measurements with solid/dotted lines.

With bigger ĉ, the impact of vectorisation increases for p = 3 (as well as for p = 4
which is not shown here) while vectorisation is negligible or even counter-productive
for p = 2. Even in the best case, it is still far below the theoretical upper bound. This is
due to the fact that the multichannel approach does not change the arithmetic inten-
sity of the compute kernels. All efficiency gains stem from an improved vectorisation
as the kernels run through multiple channels per spacetree cell in a stream fashion.

We therefore propose to replace the Jacobi-like splitting of (2) by a block-structured
decomposition A ≡ Â+ (A− Â) with

Â =



H11 A12 A13 . . . A1ĉ

A21 H22 A23 . . . A2ĉ

A31 A32 H33 . . . A3ĉ

...
...

...
. . .

...
Aĉ1 Aĉ2 . . . . . . Hĉĉ

H(ĉ+1)(ĉ+1) . . . A(ĉ+1)(2ĉ)

...
. . .

...
A(2ĉ)(ĉ+1) . . . H(2ĉ)(2ĉ)

. . .


.

Though this is a stronger preconditioner and a harder system to solve, it retains the
memory access requirements of the multichannel variant. However, such a coupled
multichannel approach with its denser per-grid entity operators allows us to exploit
vector facilities more efficiently since the arithmetic intensity increases.

An illustration of hardware counter measurements and timings validates and details
these statements (Table IV). For small 1 ≤ ĉ ≤ 4, the total runtime increases with an
increase of ĉ, but the growth is sublinear. It is cheaper to compute multiple fused
problems than to deploy them to grids of their own. For 4 ≤ ĉ ≤ 16, the behaviour is
non-uniform: While the runtime for some setups grows linear w.r.t. problems solved,
it sometimes even drops. We deduce that this is the sweet region of an optimal choice
of ĉ. The channel fusion really pays off if we fix ĉ = 16 (p = 2) or ĉ = 8 (p ∈ {3, 4}).
For ĉ ≥ 16, the runtime then grows linearly in the number of problems solved, i.e. the
fusion does not pay off anymore. Furthermore, these large equation systems quickly
exceed the main memory available on the Xeon Phi. Besides this constraint, the Phi’s
figures exhibit similar behaviour. For all setups, the bandwidth requirements do not
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Table IV. Sandy Bridge performance for different coupled multichannel variants. One charac-
teristic adaptive setting per choice of p. Vectorisation through Intel pragmas. Runtime is not
normalised with problems solved simultaneously.

p = 2 ĉ = 1 ĉ = 2 ĉ = 4 ĉ = 8 ĉ = 16
Runtime 1.13e+02 1.67e+02 2.59e+02 5.20e+02 4.15e+02
MFlops/s 8.89e+02 1.91e+03 3.84e+03 6.85e+03 1.07e+04
L2 misses 2.77e-03 3.34e-03 4.33e-03 5.76e-03 7.19e-03

Used bandwidth (MB/s) 2.52e+02 3.15e+02 3.63e+02 3.51e+02 2.93e+02
p = 3

Runtime 2.11e+02 3.75e+00 4.56e+02 1.02e+03 2.78e+03
MFlops/s 1.40e+03 2.43e+03 6.02e+03 1.03e+04 1.44e+04
L2 misses 3.00e-03 3.46e-03 3.57e-03 4.42e-03 2.55e-02

Used bandwidth (MB/s) 1.37e+02 2.45e+02 1.78e+02 1.70e+02 1.32e+02
p = 4

Runtime 2.31e+03 3.39e+03 6.01e+03 3.07e+03 6.96e+03
MFlops/s 1.98e+03 3.87e+03 7.05e+03 1.08e+04 1.55e+04
L2 misses 8.29e-04 1.09e-03 3.63e-03 2.05e-02 3.01e-02

Used bandwidth (MB/s) 7.14e+01 7.78e+01 7.90e+01 1.71e+02 1.48e+02

increase significantly, and the cache misses remain negligible. While we cannot explain
the drops in the execution times, we defer from the multichannel experiments that the
runtime anomalies have to result from an advantageous usage of the floating point
facilities—without a coupling, ĉ = 8 is the sweet spot for all choices of p.

Besides the aforementioned amortisation of administrative overhead, the coupling
with its increased matrices allows us to exhibit the vector facilities. We vectorise and
reduce the relative idle times of the vector units compared to the total runtime. Both
effects in combination improve the MFlop rate up to a factor of almost ten. This is
around 20% of the theoretical peak though the measurements comprise all grid setup
and management overhead. The depth-first traversal in the spacetree with its strictly
local element operators allows us to achieve this without increased pressure on the
memory subsystem. Due to the matrix-free rediscretisation approach, we can assume
that the whole blocks of Â reside within the cache. Due to the single touch policy per
unknown and the localised traversal, we can assume that each unknown is loaded
into the cache exactly once. This insight mirrors previous reports on this algorithmic
paradigm [Mehl et al. 2006; Weinzierl 2009; Weinzierl and Mehl 2011]. We validate
this at hands of the cache miss rate explaining the low bandwidth requirements.

Though the multichannel approach reduces the total concurrency, the channel block
solves remain perfectly parallel. Due to the memory characteristics, we can expect
that these block solves can run independently on the cores of our Sandy Bridge chip
as one core does not consume more than 1

16 of the available bandwidth. Due to the
smaller main memory and the bigger core count, these multicore predictions do not
apply unaltered to the Xeon Phi.

8. CONCLUSION AND OUTLOOK
The present paper introduces software and algorithms to realise a family of dynami-
cally adaptive additive multigrid solvers for Poisson and Helmholtz problems working
on complex-valued solutions. The latter provides a straightforward way to realise com-
plex grid rotation. Supporting the approach’s elegance and clarity, we provide correct-
ness proofs, we demonstrate its robustness, and we discuss its runtime behaviour with
respect to convergence speed and single-core utilisation. As the underlying algorith-
mic framework makes the solve of multiple Helmholtz problems or sets of problems
perfectly parallel [Foster 1995], we focus on an algorithm that realises a single-touch
policy—each piece of data is used only once or twice per traversal and the time in-
between two usages is small—and strict localised operations. It does not stress the
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memory subsystem. The experimental data reveals that this objective is met, while
the solvers are reasonably robust and have a small memory footprint.

Besides an application to the underlying problems from physics and chemistry, we
notably identify three methodological extensions of the present work. The first exten-
sion area tackles two obvious shortcomings of the present code base: smoothers and
algebraic multigrid operators [Chen et al. 2012; Stolk 2015; Tsuji and Tuminaro 2015].
While work in this area is mandatory to facilitate the application of the algorithm and
software idioms to more challenging setups, no fundamental risk, to the best of our
knowledge, exists that these objectives can not be met. Several fitting building blocks
are in place and have to be integrated properly. Our second extension area sketches
open questions with respect to high-performance computing architectures. Finally, we
pick up the problem of large p again.

Compared to previous work [Cools et al. 2014b], we have used a uniform complex
grid rotation among all grid levels—well-aware that a level-dependent complex ro-
tation might pay off. The same can be explored for the complex shifted φ approach
from [Erlangga et al. 2004]. We reiterate that, for refined vertices, φ might hold both
the sampled value plus an additional shift term and that, hence, no modification of
any computation is required once φ is set—even for level-dependent complex shifts—
since we determine diag(H`)

−1 on-the-fly and do not rely on fixed diagonal values.
Level-dependent shifts or grid rotations can either be determined a priori or when-
ever a simple operator analysis yields the insight that the operator enters a prob-
lematic regime (diagonal element underruns certain threshold or switches sign, e.g.).
The latter property is particularly interesting for non-uniform φ distributions. Fur-
ther next steps in the multigrid context comprise the realisation of operator-dependent
grid transfer operators [Weinzierl 2013; Yavneh and Weinzierl 2012] and more suitable
smoothers. Problem-dependent operators also might pay off along the boundary layers
that are poorly handled by the current geometric operators. In this context, we em-
phasise that our algorithm relies on the Galerkin multigrid property in (7) while it so
far realises rediscretisation. This introduces an error on the coarse grid. To the best of
our knowledge, no analysis of such an error exists. Though one has to assume that it
is bounded and small, explicit operator evaluation overcomes this problem completely.
For future work tackling the smoother challenge, we refer in particular to patch-based
approaches [Ghysels et al. 2013; Ghysels and Vanroose 2014]. Proof-of-concept studies
from other application areas exist that use the same software infrastructure [Weinzierl
et al. 2014] to embed small regular Cartesian grids into each spacetree cell. These
small grids, patches, allow for improved robustness due to stronger smoothers result-
ing from Chebyshev iterations, higher-order smoothing schemes on embedded regular
grids or a multilevel Krylov solver based on recursive coarse grid deflation [Sheikh
et al. 2013; Erlangga and Nabben 2008]. Deflation is a particular interesting feature
for highly heterogeneous Helmholtz problems where bound states emerge as isolated
eigenvalues near the origin. These states are of special interest as they correspond
to resonances in the system [Aguilar and Combes 1971; Balslev and Combes 1971;
Moiseyev 1998; Simon 1979]. Their proper treatment seems to be implementationally
straightforward within the present code idioms.

Patch-based approaches allow for efficient smoothers, but they are also promising
with respect to multi- and manycores as well as MPI parallelisation. These two levels
of parallelisation are a second track to follow. While our channels exhibit some perfect
concurrency, the application of a proper domain decomposition on the long term will
become mandatory due to the explosion of cores or high memory requirements. Sev-
eral papers state that additive multigrid algorithms—though inferior to multiplica-
tive variants in terms of convergence—are well-suited to parallel architectures due to
their higher level of concurrency in-between the levels (notably [Chow et al. 2006] and
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references therein or [Vassilevski and Yang 2014]). For the present codes, these state-
ments are problematic. Our additive solvers exhibit a tight inter-grid data exchange
and benefit from vertical integration. It is doubtful whether it is advantageous to de-
ploy different grid resolution solves to different cores. Yet, the topic deserves further
studies, notably if multiple sweeps are used to solve the individual levels’ problems.
Furthermore, the exact interplay of concurrent channel solves, time-in-between inter-
grid data transfer and shared and distributed memory parallelisation remains to be
investigated. Segmental refinement [Adams et al. 2016] in contrast seems to be an
obviously promising technique. Starting from a reasonably fine grid, the underlying
tree here is split up into independent subtrees deployed to different cores. This ap-
proach should integrate with the present ideas where we ensure high core efficiency
through our vertical integration of various levels, while segmentation yields paral-
lelism through horizontal decoupling of the grid levels.

To the best of our knowledge, p ∈ {3, 4} in our application context already is a step
forward compared to many state-of-the-art simulation runs. On the long term, how-
ever, bigger p have to be mastered. While stronger smoothers and better grid transfer
operators might be able to deliver codes that do not suffer from the reduced coarse
correction impact, the explosion of unknowns for p ≥ 5 remains a challenge. Alterna-
tive techniques such as sparse grids [Bungartz and Griebel 2004] or sampling-based
methods then might become a method of choice.
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APPENDIX
A. REMARKS ON TRADITIONAL ADDITIVE MULTIGRID
The top-down Algorithm 2 can be derived from the classic additive variant (Algo-
rithm 1) in small steps. For this, we retain the bottom-up formulation (Algorithm 4)
but, different to the plain correction scheme from Algorithm 1, already realise FAS.
This variant introduces a helper variable per level du` holding the impact of the
smoother S, i.e. its correction of the solution on level `. This helper variable trans-
lates into sc and sf for the final top-down algorithm. In the final line 11, we update
the unknown on each level with a correction due to the smoother held in du`, and we
also add the coarse grid contribution. To obtain a BPX-type solver, we have to rewrite
this line into

u` ← u` + du` + P (u`−1 − I(u` + du`)) .

Both the coarse grid update and the smoother update are independent of each other
and both rely on the injected solution from the previous traversal. Due to the former
property, an additive scheme is realised. Due to the latter property, we may not only
project some coarse data u`−1, but we have to reduce this coarse contribution by the
value injected from the current level Iu`. For the pure additive multigrid, this is one
major difference to the similar scheme proposed in [Mehl et al. 2006] and references
therein.
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ALGORITHM 4: Additive FAS scheme running through the grid bottom-up, i.e. from fine grid
to coarse level. Invoked by BUFAS(`max).
1: function BUFAS(`)
2: du` ← ω`S(u`, b`) . Bookmark update due to a Jacobi step.
3: if ` = `min then
4: u` ← u` + du`

else
5: u`−1 ← Iu` . Inject into next coarser level
6: . to be able to compute the û`.
7: û← u` − Pu`−1 . Determine hierarchical surplus.
8: r̂` ← b` −H`û
9: b`−1 ← Rr̂` . Determine coarse grid rhs.
10: BUFAS(`− 1) . Go to coarser level.
11: u` ← u` + du` + P (u`−1 − Iu`)

end
12: end function

LEMMA A.1. The prolongation of u`−1 − I(u` + du`) ensures that only a coarse cor-
rection is prolongated though the coarse grid holds a injected fine grid representation
(FAS).

PROOF. In what follows we will introduce the variable corr` = du`−PIdu`+Pcorr`−1

to label the update to the previous solution after one cycle. It consists of the net con-
tribution du` − PIdu` from the last smoothing step on the current level, plus the total
prolongated correction from the coarse grid Pcorr`−1. By definition, the new solution
on level ` equals,

u` = uprev` + du` + P (u`−1 − I(uprev` + du`))

= uprev` + du` + Pu`−1 − PIuprev` − PIdu`
= uprev` + du` + Pu`−1 − Puprev`−1 − PIdu`
= uprev` + du` − PIdu` + P (u`−1 − uprev`−1 )

= uprev` + du` − PIdu` + Pcorr`−1

= uprev` + corr`.

We now show that the injection property holds, indeed for the finer level we have,

Iu`+1 = I(uprev`+1 + corr`+1)

= Iuprev`+1 + Idu`+1 − IPIdu`+1 + IPcorr`

= uprev` + Idu`+1 − Idu`+1 + IPcorr`

= uprev` + corr`,

and so we can update the solution on level ` before the update on the finer level ` + 1,
and still conserve the injection property that is needed for the FAS scheme.

The lemma’s prolongation can be postponed to the subsequent tree traversal. It then
acts as prelude there. This allows for the transform to a top-down algorithm and Al-
gorithm 4 the logical starting point for the formulation of a top-down algorithm. We
start the cycle with the update of the solution and the lines preceding the recursive call
on line 10 are computed in a fine to coarse order. To facilitate this ‘permutation’, we
introduced an additional variable t`−1 = Idu` that carries over the injected smoothing
update from the previous cycle. Such a technique is a common pattern in pipelining.
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B. REMARKS ON ELEMENT-WISE MATRIX-FREE MAT-VECS
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Fig. 15. Cartoon of element-wise matrix-free matrix-vector evaluations. (a) shows an exemplary stencil,
i.e. one line of the matrix-vector product. (b) decomposes the stencil among the elements. These compo-
nents are used within the cells, (c) through (f), that illustrate how the original stencil thus is successively
reassembled. However, all data accesses are strictly element local.

The element-wise matrix-free evaluation of matrix-vector products (matvec) is a
state-of-the-art technique in scientific computing. To simplify reproducibility and for
matter of completeness, it is reiterated here.

We split up the stencils among the affected elements, i.e. rewrite them into an
element-wise representation (Figure 15, (a) into (b)). For each vertex, we store a tuple
with the current solution u as well as two helper variables r and diag.

The latter are set to zero before the traversal runs through any adjacent cell of the
respective vertex, i.e. prior to Figure 15, (c). When we enter a cell, we read the p2 adja-
cent u values and apply the local assembly matrix to these values. The result is added
to the temporary variable r. Analogously, we accumulate the diagonal value diag. As
we run through the grid, the whole stencil, i.e. assembly matrix line, is successively
accumulated within r and diag (Figure 15, (c) through (f)). Once all adjacent ele-
ments of a particular vertex have been run through, Figure 15 (f), r and diag hold the
matvec evaluation result associated to the vertex in r and the diagonal element value
within diag. We add the right-hand side to r and update the u value using both r and
diag.
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