research

Distillation protocols for Fourier states in quantum computing

Abstract

Fourier states are multi-qubit registers that facilitate phase rotations in fault-tolerant quantum computing. We propose distillation protocols for constructing the fundamental, nn-qubit Fourier state with error O(2n)O(2^{-n}) at a cost of O(nlogn)O(n \log n) Toffoli gates and Clifford gates, or any arbitrary Fourier state using O(n2)O(n^2) gates. We analyze these protocols with methods from digital signal processing. These results suggest that phase kickback, which uses Fourier states, could be the current lowest-overhead method for generating arbitrary phase rotations.Comment: 18 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions