9 research outputs found

    Usefulness of Bayesian networks in epidemiological studies

    Get PDF
    Introduction: Bayesian networks are a form of statistical modelling, which has been widely used in fields like clinical decision, systems biology, human immunodeficiency virus (HIV) and influenza research, analyses of complex disease systems, interactions between multiple diseases and, also, in diagnostic diseases. The present study aimed to show the usefulness of Bayesian networks (BNs) in epidemiological studies. Material and Methods: 3,993 subjects (men 1,758, women 2,235) belonging to the public productive sector from the Balearic Islands (Spain), which were active workers, constitute the data set. Results: A BN was built from a dataset composed of twelve relevant features in cardiovascular disease epidemiology. Furthermore, the structure and parameters were learnt with GeNIe 2.0 tool. Taking into account the main topological properties some features were optimized, obtaining a hypothesized scenario where the likelihoods of the different features were updated and the adequate conclusions were established. Conclusions: Bayesian networks allow us to obtain a hypothetical scenario where the probabilities of the different features are updated according to the evidence that is introduced. This fact makes Bayesian networks a very attractive tool.Introducción: Las redes Bayesianas son una forma de modelización estadística, las cuales han sido ampliamente utilizadas en campos como la decisión clínica, biología de sistemas, virus de inmunodeficiencia humana (VIH) e investigación en influenza, análisis de sistemas de enfermedades complejos, interacciones entre múltiples enfermedades y, también, en enfermedades de diagnóstico. Este estudio tiene como objetivo mostrar la utilidad de las redes Bayesianas en estudios epidemiológicos. Material y Métodos: 3,993 individuos (hombres 1,758, mujeres 2,235) pertenecientes al sector productivo público de las Islas Baleares (España), los cuales eran trabajadores activos, constituyen la base de datos. Resultados: Una red Bayesiana se ha obtenido a partir de una base de datos compuesta de doce características relevantes de la epidemiología de la enfermedad cardiovascular. Por otra parte, la estructura y los parámetros se han obtenido con la herramienta Genie 2.0. Teniendo en cuenta las principales propiedades topológicas algunas características fueron optimizadas. Conclusiones: Las redes Bayesianas permiten obtener un escenario hipotético donde las probabilidades de las diferentes características se van actualizando de acuerdo con la evidencia introducida. Este hecho hace de las redes Bayesianas una herramienta muy atractiva, además permite establecer diversas conclusiones

    A review of dynamic Bayesian network techniques with applications in healthcare risk modelling

    Get PDF
    Coping with an ageing population is a major concern for healthcare organisations around the world. The average cost of hospital care is higher than social care for older and terminally ill patients. Moreover, the average cost of social care increases with the age of the patient. Therefore, it is important to make efficient and fair capacity planning which also incorporates patient centred outcomes. Predictive models can provide predictions which their accuracy can be understood and quantified. Predictive modelling can help patients and carers to get the appropriate support services, and allow clinical decision-makers to improve care quality and reduce the cost of inappropriate hospital and Accident and Emergency admissions. The aim of this study is to provide a review of modelling techniques and frameworks for predictive risk modelling of patients in hospital, based on routinely collected data such as the Hospital Episode Statistics database. A number of sub-problems can be considered such as Length-of-Stay and End-of-Life predictive modelling. The methodologies in the literature are mainly focused on addressing the problems using regression methods and Markov models, and the majority lack generalisability. In some cases, the robustness, accuracy and re-usability of predictive risk models have been shown to be improved using Machine Learning methods. Dynamic Bayesian Network techniques can represent complex correlations models and include small probabilities into the solution. The main focus of this study is to provide a review of major time-varying Dynamic Bayesian Network techniques with applications in healthcare predictive risk modelling

    Diagnosis of hyperlipidemia in patients based on an artificial neural network with pso algorithm

    Get PDF
    One of the most common and most dangerous diseases of blood fats are such as heart disease, diabetes and stroke, heart and brain. It can control the timely diagnosis, treatment and then prevention of complications is become very effective even without using medicine. Heart disease and diabetes file if patients has useful information that can be used to estimate blood fat timely diagnosis. In this paper we introduce a method based on data mining according to the information of patients' medical records to predict and detect blood lipid cardiovascular. And to identify patients with high blood lipids,we use a category based on neural network without feedback and pso algorithm to train the neural network to determine the appropriate value to reduce error the weights of the neural network . Simulation is done in MATLAB environment by using Body Fat data set, it shows the accuracy of 93.22 percent compared to the same methods, which means high accurate, higher detection sensitivity and Democrats

    A Comprehensive Scoping Review of Bayesian Networks in Healthcare: Past, Present and Future

    Full text link
    No comprehensive review of Bayesian networks (BNs) in healthcare has been published in the past, making it difficult to organize the research contributions in the present and identify challenges and neglected areas that need to be addressed in the future. This unique and novel scoping review of BNs in healthcare provides an analytical framework for comprehensively characterizing the domain and its current state. The review shows that: (1) BNs in healthcare are not used to their full potential; (2) a generic BN development process is lacking; (3) limitations exists in the way BNs in healthcare are presented in the literature, which impacts understanding, consensus towards systematic methodologies, practice and adoption of BNs; and (4) a gap exists between having an accurate BN and a useful BN that impacts clinical practice. This review empowers researchers and clinicians with an analytical framework and findings that will enable understanding of the need to address the problems of restricted aims of BNs, ad hoc BN development methods, and the lack of BN adoption in practice. To map the way forward, the paper proposes future research directions and makes recommendations regarding BN development methods and adoption in practice

    Medicina Balear 2014, vol. 29, n. 3

    Get PDF
    Medicina Balear, òrgan de la Reial Acadèmia de Medicina de les Illes Balears, publica en català, castellà o anglès treballs originals, articles de revisió, cartes al director i altres escrits d'interès relacionats amb les ciències de la salut i presta particular atenció als treballs que tinguin per àmbit les Illes Balears i altres territoris de la conca mediterrània occidental. La revista sotmet els manuscrits a la revisió anònima per al menys dos experts externs (peer review

    Bayesian Networks for Evidence Based Clinical Decision Support.

    Get PDF
    PhDEvidence based medicine (EBM) is defined as the use of best available evidence for decision making, and it has been the predominant paradigm in clinical decision making for the last 20 years. EBM requires evidence from multiple sources to be combined, as published results may not be directly applicable to individual patients. For example, randomised controlled trials (RCT) often exclude patients with comorbidities, so a clinician has to combine the results of the RCT with evidence about comorbidities using his clinical knowledge of how disease, treatment and comorbidities interact with each other. Bayesian networks (BN) are well suited for assisting clinicians making evidence-based decisions as they can combine knowledge, data and other sources of evidence. The graphical structure of BN is suitable for representing knowledge about the mechanisms linking diseases, treatments and comorbidities and the strength of relations in this structure can be learned from data and published results. However, there is still a lack of techniques that systematically use knowledge, data and published results together to build BNs. This thesis advances techniques for using knowledge, data and published results to develop and refine BNs for assisting clinical decision-making. In particular, the thesis presents four novel contributions. First, it proposes a method of combining knowledge and data to build BNs that reason in a way that is consistent with knowledge and data by allowing the BN model to include variables that cannot be measured directly. Second, it proposes techniques to build BNs that provide decision support by combining the evidence from meta-analysis of published studies with clinical knowledge and data. Third, it presents an evidence framework that supplements clinical BNs by representing the description and source of medical evidence supporting each element of a BN. Fourth, it proposes a knowledge engineering method for abstracting a BN structure by showing how each abstraction operation changes knowledge encoded in the structure. These novel techniques are illustrated by a clinical case-study in trauma-care. The aim of the case-study is to provide decision support in treatment of mangled extremities by using clinical expertise, data and published evidence about the subject. The case study is done in collaboration with the trauma unit of the Royal London Hospital
    corecore