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Abstract 

Evidence based medicine (EBM) is defined as the use of best available evidence for 

decision making, and it has been the predominant paradigm in clinical decision 

making for the last 20 years. EBM requires evidence from multiple sources to be 

combined, as published results may not be directly applicable to individual patients. 

For example, randomised controlled trials (RCT) often exclude patients with 

comorbidities, so a clinician has to combine the results of the RCT with evidence 

about comorbidities using his clinical knowledge of how disease, treatment and 

comorbidities interact with each other. Bayesian networks (BN) are well suited for 

assisting clinicians making evidence-based decisions as they can combine 

knowledge, data and other sources of evidence. The graphical structure of BN is 

suitable for representing knowledge about the mechanisms linking diseases, 

treatments and comorbidities and the strength of relations in this structure can be 

learned from data and published results. However, there is still a lack of techniques 

that systematically use knowledge, data and published results together to build BNs. 

This thesis advances techniques for using knowledge, data and published results to 

develop and refine BNs for assisting clinical decision-making. In particular, the 

thesis presents four novel contributions. First, it proposes a method of combining 

knowledge and data to build BNs that reason in a way that is consistent with 

knowledge and data by allowing the BN model to include variables that cannot be 

measured directly. Second, it proposes techniques to build BNs that provide decision 

support by combining the evidence from meta-analysis of published studies with 

clinical knowledge and data. Third, it presents an evidence framework that 

supplements clinical BNs by representing the description and source of medical 

evidence supporting each element of a BN. Fourth, it proposes a knowledge 

engineering method for abstracting a BN structure by showing how each abstraction 

operation changes knowledge encoded in the structure. These novel techniques are 

illustrated by a clinical case-study in trauma-care. The aim of the case-study is to 

provide decision support in treatment of mangled extremities by using clinical 

expertise, data and published evidence about the subject. The case study is done in 

collaboration with the trauma unit of the Royal London Hospital.  
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Introduction 

Evidence based medicine (EBM) has been the predominant paradigm in medical 

decision making for the last 20 years (Evidence-Based Medicine Working Group, 

1992; Sackett et al., 1996; Straus et al., 2005). The underlying idea of EBM is to 

search and employ the best available evidence to make clinical decisions. Several 

ranking systems have been proposed to weigh the evidence when multiple sources of 

evidence is available (Guyatt et al., 2008; Hadorn et al., 1996; Harbour and Miller, 

2001). These systems rank the evidence according to the way it is collected: the 

evidence from randomised controlled trials (RCT) has higher ranks than the evidence 

from datasets, and the evidence from expert opinion have the lowest ranks. However, 

a study with lower rank must never be ignored unless a higher rank study targets 

exactly the same population with exactly the same inclusion criteria (Marshall, 2006; 

Rawlins, 2008). RCTs provide the highest ranked evidence as they are powerful 

tools for understanding treatment effects by eliminating confounding and biases. The 

absence of RCTs, however, is not the same as the absence of evidence (Sackett et al., 

1996; Smith and Pell, 2003). Evidence from clinical expertise and datasets should be 

used even when RCTs are available since: 

1. It is not possible to conduct RCTs for many clinical problems because of 

ethical or practical difficulties (Horton, 2000; Rawlins, 2008; Sackett et al., 

1996). For example, although a prosthesis following a limb amputation can 

be beneficial for patients with painful or non-functioning limbs, it is ethically 

impossible to conduct an RCT for studying the benefits and disadvantages of 

this intervention. Horton (2000) describes the time and cost challenges of 

trialing the clinical use of coronary stents, with the results that several types 

of these stents are commonly used without any RCTs supporting their use. 
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Clinicians evaluated the benefits and risks of the coronary stents based on 

their expertise and the information from medical datasets.  

2. The results from RCTs often cannot be generalised to the individual patients 

treated by clinicians (Marshall, 2006). Bradford Hill, the architect of RCTs, 

notes the issues about generalisability: “it is wise to limit the questions 

strictly to a few and to be absolutely precise upon those few. The loss in so 

doing lies, of course, in the fact that the answers are limited to very specific 

questions and clearly cannot be generalised upon outside their fields.” (Hill, 

1951). RCT studies are designed with strict inclusion criteria to observe the 

effects in less time, and to decrease the already high costs (Rawlins, 2008). 

For example, as comorbidities can interact with treatment effects, patients 

with comorbidities are often excluded from RCTs to observe the effects in 

less time and with fewer patients. Individual patients, however, can have 

comorbidities and thus the result of such RCTs may not be valid for them. 

Moreover, RCTs about the same subject can have conflicting results because 

of the differences in their inclusion criteria (Marshall, 2006; Rawlins, 2008).  

In order to make evidence-based decisions for individual patients, all of the relevant 

evidence about the disease, treatment options, and background factors of the patient 

must be taken into account, and combined, whether they are RCT or not. Clinicians 

are an essential part of this: the evidence can be combined for individual patients 

only by using 1) the clinical opinion about the similarities and differences between 

an individual patient and the available evidence, 2) the clinical expertise about the 

disease mechanisms of how different evidence relates to each other (Guyatt et al., 

2004; Haynes et al., 2002; Marshall, 2006; Sackett et al., 1996). 

There are, however, significant challenges for clinicians to apply EBM in daily 

practice. The time that clinicians can spare for reviewing evidence keeps getting 

smaller as their workload continues to increase (Royal College of Nursing, 2012; 

Smith, 2013). Even though technologies, such as PubMed and MeSH, has made it 

easier to access publication, identifying the relevant evidence is often time 

consuming. The ever increasing number of medical journals and publications makes 

this even more challenging (Alper et al., 2004; Haynes, 1993). Moreover, combining 
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the results of the related studies can be both mathematically challenging and time 

consuming.  

Evidence can potentially be encoded in quantitative models, which can then make 

mathematically correct predictions for individual patients. For example, a model that 

combines the separate pieces of evidence regarding treatment and comorbidity 

outcomes can make predictions for the individual patients who have both of these 

factors. In order to combine such evidence, a quantitative model must be capable of 

modelling the clinical knowledge about the mechanisms between the treatment, 

comorbidity and outcome. Most traditional modelling approaches, however, cannot 

represent the clinical knowledge about disease mechanisms especially when the 

mechanisms are complicated containing multiple and interrelated pathways (Buchan 

et al., 2009). For example, statistical tools, such as meta-analysis, can effectively 

combine the evidence about simple relations but they are not well suited for 

integrating knowledge about the complicated mechanistic relations from clinicians.   

A Bayesian network (BN) is a probabilistic graphical model that is composed of a 

graphical structure that represents the relations between the variables, and a set of 

parameters that defines the strength of these relations. A BN can be used to make 

probabilistic inferences given the information observed. BNs offer a convenient and 

powerful approach for providing decision support based on knowledge and data. The 

graphical structure of the BN is well suited for representing knowledge about the 

disease mechanisms and clinical pathways. Evidence, from RCTs, data and clinical 

opinion, can be combined to learn the strength of relations in this structure. As a 

result of these unique features, BNs offer a powerful way of providing evidence-

based decision support for individual patients. Moreover, the reasoning mechanism 

and predictions of BNs can be presented to clinicians as they have a graphical 

structure suited for representing knowledge.  

BNs for EBM, however, cannot be built automatically from data. Clinicians must be 

closely involved in various stages of the modelling to identify the related evidence 

and to provide clinical knowledge about the mechanistic relations. Although several 

knowledge engineering methodologies exists (Cano et al., 2011; Flores et al., 2011; 

Helsper and van Der Gaag, 2007; Laskey and Mahoney, 2000; Neil et al., 2000), 
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there are still many issues in BN development that need to be addressed with 

methods that systematically combine knowledge and evidence.  

Another challenge in applying BNs for EBM is to present the evidence behind the 

BNs. Many publications do not give a thorough description of the BN structure even 

when the BN is based on extensive clinical knowledge (for examples of inadequately 

described knowledge-based BNs see Ahmed et al., 2009; Burnside et al., 2006; 

Onisko et al., 1998; Wasyluk et al., 2001). This makes it difficult, if not impossible, 

to understand the evidence supporting the BN and its derivation steps.  

1.1 Research Objectives 

The primary objective of this thesis is to provide practical tools that combine 

evidence to provide decision support for EBM. The secondary research objectives 

that contribute to the primary objective are: 

1. To show that it is possible to build decision support models that are 

consistent with the best available evidence by combining clinical knowledge 

with data. The observed data is more useful when it is analysed consistent 

with clinical knowledge.  

2. To show that it is possible to provide clinical decision support by combining 

the evidence from systematic reviews that is pooled by meta-analysis with 

clinical knowledge and data about the domain.  

3. To show how a practical decision support model can be derived through a 

series of simplifications without losing the link between the simplified 

model and underlying domain knowledge. 

4. To represent both supporting and conflicting clinical evidence about the 

important clinical factors and relations involved in decision making whether 

or not they are included in the decision support model. 

The novel contributions are illustrated by a case study about the treatment of 

mangled extremities. In an attempt to provide decision support for this treatment, we 

propose two BNs that are developed by combining clinical knowledge, previous 
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research and data about the domain. We examine systematic ways of using different 

sources of evidence in BN development, and presenting the evidence to the user. 

The case-study was done in collaboration with the trauma sciences unit of the Royal 

London Hospital (RLH). The RLH provided the clinical expertise and patient 

datasets that are used throughout the thesis. The AgenaRisk software was used for 

building and calculating the BNs models presented in this thesis (Agena Ltd, 2013). 

1.2 Structure of the Thesis 

Chapter 2 presents an introduction to BNs and their conditional independence (CI) 

properties. The introduction is followed by a review of the existing methods for 

building BNs from knowledge and data. The BN properties presented in this chapter 

are necessary to follow the methodologies presented in Chapters 5 – 8. 

Chapter 3 examines the potential benefits of quantitative models in medical and 

surgical decision making. It reviews the existing approaches for developing medical 

decision support models, and investigates why some models are not being adopted 

by clinicians.  

Chapter 4 introduces the trauma case study and reviews the previous models that 

have been developed for this domain. This chapter examines the decision making in 

mangled extremity treatment, and discusses the challenges of building useful 

decision support models for the domain. Finally, this chapter gives an overview of 

Chapters 5 – 8, with a brief discussion of how these chapters address the challenges. 

Chapter 5 proposes a methodology of combining knowledge and data to build BNs 

that reason in a way that is consistent with knowledge and data by allowing the BN 

model to include variables that cannot be measured directly. The methodology is 

illustrated by a BN that is used to provide decision in mangled extremity treatment 

by predicting a potentially fatal physiological disorder in early stages of the 

treatment. Several variables in this BN, including the variable indicating the state of 

the physiological disorder, cannot be directly measured and thus they are not present 

in the dataset. 
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Chapter 6 proposes a methodology of building decision support BNs by combining 

the results of systematic reviews and meta-analyses with knowledge and data. The 

methodology is illustrated by a BN that predicts the short-term – viability – 

outcomes of the treatment of mangled extremities. A systematic review and meta-

analysis have been conducted to collect information about the factors affecting this 

treatment.  

Chapter 7 proposes a knowledge engineering methodology to derive a BN structure 

through a series of simplifications. The proposed methodology shows how each 

simplification step affects the knowledge encoded in the BN.   

Chapter 8 proposes a framework to represent clinical evidence behind BNs. The 

evidence framework is able to organise and present both conflicting and supporting 

evidence related to fragments, variables and relations in a BN. 

Chapter 9 summarises the novel contributions of the thesis, and discusses the future 

directions of research. 

1.3 Publications and Awards 

This section shows a list of the publications, conference presentations and awards 

that are based on this thesis. 

Publications 

1. Yet B, Marsh DWR (2014) “Compatible and Incompatible Abstractions in 

Bayesian Networks” Knowledge-Based Systems. DOI: 10.1016/j.knosys. 

2014.02.020 

2. Yet B, Perkins ZB, Fenton NE, Tai N, Marsh DWR (2013) “Not Just Data: A 

Method for Improving Prediction with Knowledge” Journal of Biomedical 

Informatics. DOI: 10.1016/j.jbi.2013.10.012 

3. Yet B, Marsh DWR, Perkins ZB, Tai N, Fenton NE (2013) “Predicting 

Latent Variables with Knowledge and Data: A Case Study in Trauma Care” 

29th Conference on Uncertainty in Artificial Intelligence (UAI-13) 
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Applications Workshop: Part-1 Big Data Meets Complex Models, Bellevue 

Washington, USA, 11-15 July, p.49 

4. Perkins ZB, Yet B, Glasgow S, Brohi K, Marsh DWR, Tai N (2013) “Early 

Prediction of Acute Traumatic Coagulopathy Using Admission Clinical 

Variables”, In Proceedings of the 15th Congress of the European Shock 

Society, September 12-14 Vienna, Shock, 40 (Supp-1) ,  p. 25, DOI: 10.1097/ 

SHK.0b013e3182a590b8 

5. Yet B, Perkins ZB, Marsh DWR, Fenton NE (2011) “Towards a Method of 

Building Causal Bayesian Networks for Prognostic Decision Support” 

ProBioMed-11 - Probabilistic Problem Solving in BioMedicine 2011, Bled, 

Slovenia , 2-6 July, pp. 107-120 

6. Yet B, Perkins ZB, Rasmussen TE, Tai N, Marsh DWR “Combining Data 

and Meta-analysis to Develop Bayesian networks for Clinical Decision 

Support” submitted to Medical Decision Making. 

7. Yet B, Perkins ZB, Tai N, Marsh DWR “Explicit Evidence for Clinical 

Bayesian Networks” submitted to Artificial Intelligence in Medicine. 

Conference Presentations (Abstract Submission) 

Yet B, Perkins ZB, Kokuer M, Tai N, Marsh DWR (2012) “Decision Support for 

Trauma Surgery: Causal Modelling Using Bayesian Networks” World Trauma 

Congress 2012, Rio de Janeiro, Brazil, 2012 22-25 August. 
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Our work “Early Prediction of Acute Traumatic Coagulopathy”, presented by Mr 

Zane Perkins, received the Young Investigator Award at the 15th Congress of the 

European Shock Society. The presentation that received the award was focused on 

the description and results of the Acute Traumatic Coagulopathy (ATC) BN. The 

details of the development methodology and validation of the ATC BN are presented 

in Chapter 5.  
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Bayesian Networks 

This chapter provides an introduction to Bayes’ theorem and BNs. We illustrate the 

reasoning mechanism and flow of evidence in BNs by a simple example. Next, we 

describe the mathematical properties of probability distributions and conditional 

independence in BNs. These properties are necessary to follow the novel 

methodologies described in Chapters 5 – 8. Finally, we summarise the steps of 

building BNs and review the existing methods for building BNs from knowledge and 

data. 

2.1 Bayes’ Theorem 

Bayes’ theorem is a simple equation that shows how a conditional probability 

depends on its inverse conditional probability. According to Bayes’ theorem, the 

probability of an event 𝐴 conditioned on an event 𝐵 can be calculated as: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

Bayes’ theorem expresses how a prior belief about a probability should change in the 

light of new evidence. For example, it can be used to update the probability of a 

diagnosis hypothesis given the observation of a symptom. Suppose that the 

prevalence of tuberculosis in a particular community is 1%, and 44% of the people in 

the same community suffers from shortness of breath. By considering the historical 

patient records, we know that 79% of the patients who had been diagnosed with 

tuberculosis also suffered from shortness of breath. Although this information tells 

nothing about the probability of having tuberculosis given that one suffers from 

shortness of breath, this probability can be calculated using Bayes’ theorem.  
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Let 𝑇 represent the event ‘the patient has tuberculosis’ and 𝑆 represent the event ‘the 

patient has shortness of breath’. The probability of having tuberculosis given that the 

patient has shortness of breath can be calculated as: 

𝑃(𝑇|𝑆) =
𝑃(𝑆|𝑇)𝑃(𝑇)

𝑃(𝑆)
=

0.79 ∗ 0.01

0.44
=̃ 0.02 

The probability of tuberculosis increased from 1% to 2% when we observe that the 

patient suffers from shortness of breath.  

When we need to apply Bayes’ theorem to complex problems with many variables, 

we can use graphical models called BNs to represent the problem and update the 

probabilities. The following section introduces the basics of BNs.   

2.2 Introduction to Bayesian Networks 

BNs are graphical probabilistic models that are composed of a graphical structure 

and a set of parameters. The graphical structure of a BN contains nodes representing 

variables and directed edges representing relations between those variables. If a 

directed edge connects variables 𝐴 and 𝐵 as in 𝐴 → 𝐵, 𝐴 is called a parent variable 

and 𝐵 is called a child variable. Figure 2.1 shows a BN model, known as the Asia 

BN, which has 8 nodes and 8 edges.  

 

Figure 2.1 Asia BN 
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Variables in a BN can either be discrete or continuous. Discrete variables are defined 

by mutually exclusive and collectively exhaustive set of states. All of the variables in 

Asia BN are discrete variables that have 2 states.  

Each variable in a BN has a set of parameters that defines its probabilistic relation 

with its parents, or its prior distribution if the variable does not have any parents. The 

parameters of discrete nodes are encoded by node probability tables (NPT). A NPT 

contains probability values for each state of the variable given every combination of 

the states of its parent variables. Table 2.1 shows the NPT of the ‘Has tuberculosis’ 

variable in the Asia BN. The NPT has 4 probability values since the variable has 1 

parent, and both the variable and its parent have 2 states each.  

Table 2.1 NPT of the ‘Has tuberculosis’ variable 

  Visit to Asia? 

  Yes No 

Has tuberculosis 
Yes 0.05 0.01 

No 0.95 0.99 

The probability distributions of continuous variables can be defined by using 

statistical distributions or functions of their parent variables (see Fenton and Neil 

(2012a; 2012b) for a thorough introduction to modelling with discrete and 

continuous variables in BNs). In the following chapter, we illustrate how BNs reason 

by an example about the Asia BN. 

2.3 Reasoning with Bayesian Networks  

Mr John Doe has been suffering from an unusual shortness of breath lately. He 

cannot stop worrying about the possibility of having cancer even though he tries to 

reassure himself by thinking of more common causes of this condition such as 

bronchitis. Eventually, he decides to visit a clinician to get a diagnosis. The clinician 

uses the Asia BN (see Figure 2.1) as a decision support tool to diagnose Mr Doe’s 

condition. The clinician initially considers 3 disease hypotheses: cancer, tuberculosis 

and bronchitis. The BN model has a variable representing each of these hypotheses 

(‘Has tuberculosis’, ‘Has lung cancer’, ‘Has bronchitis’), and it can make 
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probabilistic calculations about the hypotheses based on information entered to the 

model.  

First, the clinician asks about Mr Doe’s symptoms, and recalculates the probabilities 

as he enters the symptom about shortness of breath. Bronchitis is the most probable 

hypothesis at this stage (see Figure 2.2a). The clinician demands a chest x-ray as he 

does not want to misdiagnose a life-threatening disease such as tuberculosis or 

cancer. The result of the x-ray turns out to be positive which makes the clinician 

more worried about the cancer hypothesis (see Figure 2.2b). 

 

Figure 2.2 Probabilities updated after observing a) symptoms and b) X-ray 

In order to collect more information, the clinician asks questions about the cancer 

cases in Mr Doe’s family and his smoking habit. Mr Doe says that he does not 

smoke regularly but he smoked a few cigarettes at his recent holiday in Cambodia. 

The trip to Cambodia may be an important piece of information for the tuberculosis 

hypotheses at this stage of treatment as tuberculosis is more prevalent in this country 

(World Health Organization, 2012). The probability of cancer is much lower after 

the information about smoking and visit to Asia is entered, and tuberculosis, which 

initially had a low prior probability, is now a more convincing diagnosis (see Figure 

2.3a and Figure 2.3b). 
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Figure 2.3 Probabilities updated after observing a) smoking history and b) visit to Asia 

This simple example illustrates the 3 ways that BNs propagate information to update 

probabilities:  

1. Causal reasoning: Entering an observation to a ‘cause’ node will update the 

probabilities in its ‘effect’ nodes. In Asia BN, knowing the patient’s visit to 

Asia increased the probability of tuberculosis 

2. Diagnostic reasoning: Entering an observation to an ‘effect’ node will update 

the probabilities in its ‘cause’ nodes. For example, observing the patient’s 

shortness of breath increased the probability of bronchitis 

3. Explaining away: If any of the ‘effect’ nodes or their descendants is 

observed, entering an observation to a ‘cause’ node will update the 

probabilities of the other ‘cause’ nodes. For example, after knowing the 

results of the x-ray and the presence of shortness of breath, knowing the visit 

to Asia increases the probability of tuberculosis and decreases the probability 

of cancer, which is the other cause of a positive X-ray and shortness of 

breath. In other words, a higher probability of tuberculosis, resulting from the 

trip to Asia, explained away the other causes of the positive X-ray and 

shortness of breath. Such flow of information would not happen if the state of 

the X-ray result and shortness of breath were not known.  

The following section presents a formal definition of BNs and their conditional 

independence (CI) properties. 
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2.4 Condition Independence and Bayesian Networks 

A BN can represent a joint probability distribution compactly in a factorised way. 

The graphical structure of a BN is a directed acyclic graph that encodes a set of CI 

assertions about its variables. Every node in a BN is independent of its non-

descendants given that the state of its parents is known. Therefore, each node has a 

conditional probability distribution (CPD) that defines its probabilistic relation with 

its parents. A probability distribution 𝑃𝑋 factorises over a BN structure 𝐺𝑋 if 𝑃𝑋 can 

be decomposed into the product of factors 𝑃𝑋 = 𝑃(𝑋1, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝐴𝑋𝑖

𝐺𝑋)𝑛
𝑖=1  

where 𝑋1, … , 𝑋𝑛 are a set of variables, 𝑃𝐴𝑋𝑖

𝐺𝑋  is the set of parents of 𝑋𝑖 in 𝐺𝑋. 

The CIs that can be encoded in a BN can be shown by the relation between three 

variables. 

1. If two variables, 𝐴 and 𝐵, are directly connected by an edge, as shown in 

Figure 2.4a, a BN does not assert any CI conditions between these variables. 

2. If there is a serial relation between three variables 𝐴, 𝑉 and 𝐵, as shown in 

Figure 2.4b, then 𝐴 and 𝐵 becomes independent given that the state of 𝑉 is 

known. 

3. If there is a diverging relation between 𝐴, 𝑉 and 𝐵, as shown in Figure 2.4c, 𝐴 

and 𝐵 becomes independent given that the state of 𝑉 is known. 

4. If there is a converging relation between 𝐴, 𝑉 and 𝐵, as shown in Figure 2.4d, 

𝐴 and 𝐵 are independent. However, this independence disappears if the state 

of 𝑉 or one of its descendants is known. 

 

Figure 2.4 (a) Direct Connection (b) Serial Relation (c) Diverging Relation (d) Converging 

Relation 



30 

 

In general, CI assertions of a BN can be determined by d-separation (Pearl, 1988): 

d-separation: A trail 𝑋1 ⇋ ⋯ ⇋ 𝑋𝑛 is a consecutive sequence of edges that can be 

in any direction. Let 𝐺 be a BN structure, 𝐴, 𝐵 and 𝑉 be a three disjoint sets of 

nodes in 𝐺. 𝐴 and 𝐵 are d-separated by 𝑉, 𝑑𝑠𝑒𝑝𝐺(𝐴; 𝐵|𝑉), if and only if there is no 

active trail between 𝐴 and 𝐵 given that 𝑉 is observed. An active trail requires the 

following conditions: 

1. For every converging relation 𝑋𝑖−1 → 𝑋𝑖 ← 𝑋𝑖+1 in the trail, the node 𝑋𝑖 or 

one of its descendants is a member of 𝑉. 

2. The other nodes in the trail are not members of 𝑉. 

If 𝐴 and 𝐵 are d-separated given 𝑉 in the BN structure 𝐺, then 𝐴 and 𝐵 are 

conditionally independent given 𝑉 in any probability distribution that factorises over 

the BN. 𝐴 and 𝐵 are called d-connected if they are not d-separated. It follows from 

the definition of d-separation that adding an edge to a BN increases the number of 

trails and therefore does not increase the number of CI conditions.  

A BN structure 𝐺 asserts a set of conditional independencies 𝐼(𝐺). 𝑃 can factorise on 

𝐺 if 𝐼(𝐺) is a subset of 𝐼(𝑃), i.e. the set of conditional independencies in 𝑃. Such 𝐺 

is called an I-map of 𝑃. 

𝐺 is an I-map of 𝑃 if and only if 𝐼(𝐺) ⊆ 𝐼(𝑃) 

Any CI that holds on the BN structure 𝐺 must also hold on the probability 

distribution 𝑃, if 𝑃 factorises over 𝐺. On the other hand, 𝑃 can have additional CI 

conditions that are not reflected in 𝐺. Therefore, a probability distribution can 

factorise over various BN structures. 

An example of this situation can be seen by the two BNs in Figure 2.5. Some 

probability distributions can factorise on both of these BNs even though their 

graphical structure is different. In the BN in Figure 2.5a, as well as in the probability 

distribution 𝑃 that factorises over this BN, 𝐴 and 𝐵 are conditionally independent 

given that the state of 𝐶 is not known. This CI is not represented in the graphical 

structure of the BN in Figure 2.5b. However, the CI condition can still be present in 

the probability distribution that factorises over this BN structure. In other words, the 
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CI between 𝐴 and 𝐵 can be encoded in the parameters of this BN rather than its 

structure. The BN on the left is preferable since an edge between 𝐴 and 𝐵 is 

unnecessary for this probability distribution, and additional edges increase the 

computational burden of a BN. The obvious conclusion is to choose a BN structure 

that encodes all of the independencies of the probability distribution in its graphical 

structure. Unfortunately, this is not possible in general. Symmetric variable-level CIs 

or some regularities in the parameters do not have a BN structure that represents all 

of the CIs (Pearl, 1988). 

 

Figure 2.5 Same Probability Distribution Factorised over Two Different BN Structures 

2.5 Features of Bayesian Networks 

Algorithmic breakthroughs in the 1980s (Lauritzen and Spiegelhalter, 1988), and 

more recent advances for using continuous variables (Neil et al., 2007), have made it 

possible to calculate inferences on a large number of continuous and discrete 

variables in BNs. The strengths of BNs in knowledge representation and 

probabilistic reasoning made them an attractive tool for providing decision support 

in a wide variety of domains including medicine (Lucas et al., 2004), finance (Neil et 

al., 2009), law (Fenton, 2011; Fenton et al., 2013), sports (Constantinou et al., 2013, 

2012),  reliability (Marquez et al., 2010) and safety (Bearfield and Marsh, 2005; 

Marsh and Bearfield, 2004). The benefits that BNs offer include: 

 Knowledge Representation: BNs have a graphical structure that is well-

suited for representing causal relations. This makes it possible to encode 

domain knowledge about the causal and associational relations in the BN 

structure. Unlike the statistical – black box – approaches, the reasoning and 

predictions of a BN can be explained as its graphical structure can be built in 
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a way that make sense to domain experts. 

 Causal Structure: The structure of knowledge based BNs are often built 

based on causal relations since 1) this is a natural way of expressing 

knowledge by domain experts (Fenton and Neil, 2012c; Lucas, 1995) 2) 

probability distributions can be represented more sparsely this way (Koller 

and Friedman, 2009a). Moreover, variables that are important in a domain 

but not available in data can be modelled using causal relations elicited from 

domain experts. Causal BNs also makes it possible to distinguish between 

observations and interventions allowing analysis of interventions and 

counterfactuals (Pearl, 2000). 

 Missing Observations: Statistical models, such as regression models, 

require values for all of the independent variables in the model to calculate 

the value of the dependent variable. The predictions cannot be generated 

when some of the values are missing. BNs, on the other hand, have no 

specific set of variables that must necessarily be observed. A BN can 

calculate the posterior probability distribution of its unknown variables 

whenever an observation is entered to any of its variables. When additional 

observations are entered, the BN updates the probability distribution based on 

the new information. 

 Flow of Information: When a variable is observed in a BN, it can update the 

probability distribution of its both ‘cause’ and ‘effect’ variables. Information 

can flow both forwards and backwards in BNs allowing both causal and 

diagnostic reasoning as shown in the Asia BN example (see Section 2.1). 

Moreover, when the state of an ‘effect’ variable is known, observing the state 

of its causes can be used to update the probability of the other – unobserved – 

causes. This type of reasoning is crucial for making what-if analysis and 

cannot be done by statistical models such as multivariate regression. 

 Probability Distribution: BN can represent probability distributions 

compactly in a factorised way as every variable is conditioned on its parents 

(see Section 2.4). In other words, probability distributions can be defined 

more sparsely in BNs therefore requiring less data and expert resources for 
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their parameters. 

2.6 Building Bayesian Networks 

A BN can be built in two steps: 

1. Structure: The structure of the BN is defined in the first step. This involves 

identifying the set of variables that are important in the problem domain, and 

defining the set of states for each of these variables. Afterwards, the relations 

between the variables, and the directions of those relations are defined.  

2. Parameters: The parameters, representing the strength of the relations in the 

BN structure, are defined in the second step. If a variable and its parents are 

discrete, a probability is defined for each probability value in the NPT of the 

variable. If continuous variables are present, a statistical distribution and the 

necessary parameters are defined. 

Both BN structure and parameters can be learned from data, elicited from experts or 

estimated by a combination of them. In the remainder of this section, we review the 

existing methods for defining the structure and parameters of a BN. 

2.6.1 Knowledge Engineering Methods 

Structure 

The recommended way of modelling the correct probability distribution and CI is to 

model the causal relations in a BN structure (Fenton and Neil, 2012c; Koller and 

Friedman, 2009a). However, eliciting a causal structure can be challenging, and 

assistance can be required, especially when a large number of variables and complex 

relations need to be modelled. 

Neil et al. (2000) use specific BN fragments called idioms for representing common 

types of uncertain reasoning. Knowledge engineers and domain experts select the 

most appropriate idioms for their modelling problems and use these idioms as 

building blocks for their BN structure. Idioms are reused for the similar modelling 

tasks in order to develop BNs efficiently and consistently. 
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Koller and Pfeffer (1997) describe object-oriented Bayesian networks (OOBN) 

language that represents BNs with inter-related objects. OOBN are particularly 

useful for complex models that contain repeated fragments, where objects can be 

reused to decrease the modelling effort. Laskey and Mahoney (1997) also use object-

oriented concepts to construct a BN by using semantically meaningful fragments as 

basic building blocks. 

Nadkarni and Shenoy (2004) use a managerial tool, called causal maps, to capture 

causal information from domain experts. The causal map is transformed into a BN 

by assuming that it represents the dependency-map of the probability distribution. 

Laskey and Mahoney (2000) propose a system engineering approach that uses a 

spiral lifecycle model for BN development. Their approach starts by defining 

objectives and building initial prototypes with simple features. These prototypes are 

evaluated and rebuild. This process helps a knowledge engineer understand the 

domain and a domain expert understand the principles of BN modelling.  The 

systems engineering approach uses network fragments (Laskey and Mahoney, 1997) 

as basic elements of BN development.  

Heckerman (1990) describes similarity networks that can be used for diagnosing a 

single hypothesis that has mutually exclusive and exhaustive states. In this approach, 

each pair of similar hypotheses is connected in a similarity network. A separate BN 

network structure is elicited for each pair of these similar hypotheses. Then, the 

separate BN structures are merged to form the final BN structure. This approach 

divides the task of network building into pieces that are easier to manage. However, 

it can only be applied when the hypotheses are mutually exclusive and exhaustive, 

and the hypothesis variable has no parents. 

Abstraction methods for simplifying an expert elicited BN has also been proposed. 

However, most of the methods have been designed for a specific problem and are not 

generalisable to a wider range of problems. Srinivas (1994) proposes a hierarchical 

BN approach for fault diagnosis in engineering systems. In this approach, functional 

schematics are defined in multiple levels of abstraction between the inputs and 

outputs of the system. Shachter's topological operations (1986) are used to reach to 
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higher level schematics. The different abstraction levels of schematics must have the 

same inputs and outputs. 

Wu and Poh (2000) propose a set of operations that changes the abstraction level of a 

knowledge-based influence diagram. They propose the ‘extend’ and ‘retract’ 

operations to add and remove the parents of a variable. The ‘abstract’ operation 

merges a set of variables that shares a single parent and child. The ‘refine’ operation 

is the opposite of the ‘abstract’ operation. These operations can be applied to a 

limited variety of modelling tasks. For example, Wu and Poh (2000) do not discuss 

how to apply the ‘abstract’ operation to variables that do not share the same parent or 

that have multiple parents. 

Parameters 

The parameters of a BN can be elicited from domain experts without using any data. 

Several direct and indirect methods have been proposed to elicit probabilities 

including the use of probability scales and lotteries (Korb and Nicholson, 2004a; 

Renooij, 2001; Van der Gaag et al., 2002). Probability elicitation is a challenging 

task as domain experts display various kinds of biases while expressing probabilities 

(see Tversky and Kahneman (1974) and O’Hagan et al. (2006) for a detailed 

discussion of these issues). Methods to overcome these biases can take too much 

time and make it infeasible to elicit a large number of parameters from domain 

experts (Renooij, 2001). 

Parameters elicited from experts can be refined by sensitivity analysis methods 

(Coupé et al., 2000, 1999). In this approach, a knowledge engineer selects a target 

variable and examines the changes in the marginal probability distribution of this 

variable by systematically changing other parameters. This can be computationally 

expensive especially when the parameters of multiple variables are changed 

simultaneously (Coupé et al., 2000). Other types of sensitivity analysis exists for 

analysing the effects of observations and edge removals (Korb and Nicholson, 

2004b; Renooij, 2010). 

There are several techniques for decreasing the number of parameters in a BN. These 

techniques can be used to reduce the number of parameters that needs to be elicited 
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from experts. The parameter space of a variable grows rapidly as it has more parent 

variables. Adding an intermediate variable between the variable and its parents can 

reduce the size of its parameter space. This approach is known as ‘parent divorcing’ 

(Nielsen and Jensen, 2007). Canonical models, such as Noisy-OR and Noisy-Max 

gates, are also used for simplifying the elicitation task (Diez and Druzdzel, 2006; 

Henrion, 1987; Pearl, 1988; Pradhan et al., 1994). These models decrease the 

number of parameters in a NPT by assuming that the effect of each parent variable is 

independent from other parents. For example, Noisy-OR (Pearl, 1988) assumes that 

the presence of any of the causes is enough for the presence of the effect but there is 

a possibility that some of the causes may fail to produce the effect as indicated by the 

term ‘Noisy’. Parent divorcing and canonical models can be used together with 

parameter learning approaches when data is not large enough. 

Ranked nodes can simplify parameter elicitation for variables with ordinal scale 

(Fenton et al., 2007). A ranked node is an approximation of the truncated normal 

distribution to the multinomial distribution with ordinal scale. Fenton et al. (2007) 

provides a framework for using ranked nodes for parameter elicitation in BNs. In this 

approach, parameters are defined by 1) selecting a suitable ranked node function for 

modelling the relation between the variable and its parents, 2) eliciting the weights 

required for the ranked node function from domain experts, 3) eliciting the expert’s 

degree of confidence in these weights. The ranked nodes offer the possibility of 

modelling a wide range of relations for the variables with ordinal scale. Moreover, a 

ranked node requires fewer parameters compared to a complete NPT therefore the 

elicitation task requires significantly less effort (Fenton et al., 2007). However, 

selecting a suitable function for the elicited relation can be challenging as it demands 

thorough understanding of the behaviour of different ranked node functions. 

2.6.2 Data Based Methods 

Structure 

Structure learning algorithms for BNs can be divided into two categories: constraint-

based algorithms and score-based algorithms. Constraint-based algorithms aim to 

determine CIs in the dataset, and build a structure satisfying these CIs. The tests 

required for determining CIs may become computationally infeasible as the BN gets 
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larger. Therefore, these algorithms make several simplification assumptions such as 

limiting the maximum number of parents that a variable can have. 

A common statistical test for identifying CIs in data is the χ2 test. This test calculates 

the false-rejection probability of a CI hypothesis. The mutual information measure, 

which is mathematically related to the χ2 test, is also used for testing the same 

hypothesis. A more recent CI test for constraint-based learning is developed by Dash 

and Druzdzel (2003). A non-parametric test is proposed by Margaritis (2004). 

Constraint-based algorithms such as IC (Pearl and Verma, 1991) can learn a part of 

the causal relations from data. However, the true – complete – causal structure is not 

identifiable from the data. Even if a learning algorithm identifies all of the CIs in the 

probability distribution, it may not find the true causal structure as multiple BN 

structures can represent the same probability distribution (see Section 2.2). 

Moreover, since data is noisy, we may never be sure about the CIs identified by the 

learning algorithm. Notable constraint-based structure learning algorithms include IC 

(Pearl and Verma, 1991), LCD (Cooper, 1997), PC (Spirtes et al., 2001), Grow-

shrink (Margaritis, 2003) and TDPA (Cheng et al., 2002). 

Scored-based algorithms aim to find the BN structure that maximises a likelihood 

score. Adding edges to a BN increases the likelihood of representing the probability 

distribution but it can also reduce the quality of parameter estimation by dividing the 

data. Therefore, the scoring functions for these algorithms are often a combination of 

the goodness of fit and penalty for additional edges. Commonly used scoring 

functions include the Bayesian information criterion (Cruz-Ramírez et al., 2006; 

Schwarz, 1978), minimum description length (Lam and Bacchus, 1994), minimum 

message length (Wallace et al., 1996; Wallace and Korb, 1999) and BDe score 

(Heckerman et al., 1995). 

Based on the selected scoring function, a score-based algorithm searches the space of 

possible BN structures to find the structure with the maximum score. The search is 

done by removing, adding or reversing edges between the variables available in data. 

The algorithms can either search the space of singular BN structures or the space of 

equivalent structure classes. Notable search algorithms include Cooper and 
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Herskovits (1992), Glover and Laguna (1997), Chickering (2003; 1996), Chickering 

and Meek (2002), and Castelo and Kocka, (2003). 

Tsamardinos et al. (2006) proposed a combination of score-based and constraint-

based methods for structure learning. Their algorithm, called max min hill climbing 

(MMHC), defines a skeleton for the BN structure based on a constraint-based 

method, and orients the edges in the skeleton by maximising a scoring function.  

Structure learning is more complicated when missing values exist in the data. 

Calculation of the scoring functions becomes more difficult as these functions do not 

decompose when missing values exist. Daly et al. (2011) and Koller and Friedman 

(2009b)  provide a thorough review of structure learning methods for complete and 

incomplete data. 

Parameters 

A popular approach for parameter learning is to find the parameters that maximises 

the likelihood of the model given the data. For discrete variables, the maximum 

likelihood estimates can be found by calculating the related conditional probabilities 

in the data. Replacing zero probabilities with small values can increase the 

performance of the model in other datasets. Parameters can also be estimated by a 

Bayesian approach, which uses a prior distribution, representing the background 

knowledge, for the parameters and updates the prior based on data. Bayesian 

approach can provide better results especially for small datasets as it includes expert 

knowledge into parameter learning. 

Parameter learning becomes more difficult when data contains missing values. A 

simple way to deal with missing values is to complete the data by assigning values to 

them. The values can be assigned randomly, sampled from a distribution or 

estimated from the data. This approach is called imputation in statistics. After the 

missing values are assigned, standard parameter learning methods can be used. 

Expectation-maximisation (EM) is an iterative algorithm that uses the BN structure 

to deal with missing values (Lauritzen, 1995). EM starts with assigning initial values 

either to the BN parameters or to the missing values. In each iteration, EM calculates 

the parameters based on expected values of the missing values, and it updates the 



39 

 

expected values based on the new parameters. EM is guaranteed to converge to a 

local maximum. EM has also been applied to learn the parameters of canonical 

models such as noisy-OR (Meek and Heckerman, 1997).  

Bayesian learning can also be used for datasets with missing values. While 

calculating the posteriors in Bayesian learning is often trivial for complete datasets, 

it becomes computationally expensive, and sometimes infeasible, when missing 

values are present. In complete datasets, the parameters of different CPDs are 

independent of each other, and the posterior often has a compact form that can be 

solved analytically. However, the parameters become correlated when missing 

values exists. A thorough introduction to Bayesian parameter learning with complete 

and incomplete data is presented by Koller and Friedman (2009c; 2009d).  

2.6.3 Hybrid Methods that Combine Knowledge and Data 

Previous sections discussed several limitations of purely data and knowledge driven 

techniques. Methodologies that combine data and expert knowledge seek to 

overcome these limitations by using all available information in BN development. 

However, research in this area is still in early steps, and there are many challenges 

that need to be addressed.  

Structure 

Flores et al. (2011) proposes a method that integrates expert’s opinion about the 

presence and direction of the arcs into structure learning. In this method, experts can 

define the type of the relations between variables and assign a prior probability 

representing their confidence. For example, an expert can say that he is 80% 

confident that there is a direct relation between two variables but he is not sure about 

the causal direction of this relation. The expert can also define other types of 

relations including direct causal connection, causal dependence, temporal order, and 

correlation. Afterwards, the BN structure is learned based on these expert priors 

using a score-based method.  

Cano et al.'s method (2011) uses expert judgement during the learning process 

instead of using it as priors. A Bayesian score is used for the learning algorithm. The 
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arcs that have the most uncertainty, according to the learning algorithm, are shown to 

experts. Afterwards, the experts make the final decision about the presence and 

direction of these arcs. This approach can decrease the time spent by experts since 

their opinion is only used for the most uncertain BN elements. 

Velikova et al. (2013) uses structure learning methods as a complementary approach 

to evaluate and refine the BN structure built with experts. Antal et al. (2004) 

proposed a method for combining data and textual information from the medical 

literature to build BNs. They use information retrieval techniques to assist structure 

learning based on the textual information in medical literature.  

Parameters 

Bayesian learning methods can integrate expert knowledge into parameter learning 

by using informative priors. However, eliciting numbers for informative distributions 

can be difficult as experts often feel less confident in expressing quantitative 

statements (Druzdzel and Van Der Gaag, 2000). Therefore, using qualitative 

constraints, such as “value of A is greater than value of B”, can be more convenient. 

Zhou et al. (2013a, 2013b) proposed a technique for integrating expert knowledge as 

constraints when learning multinomial parameters from data. Similar approaches are 

also proposed by Feelders and Van der Gaag (2006) for binomial parameters, by 

Tong and Ji (2008) for a limited amount of constraints, and by Khan et al. (2011) for 

diagnostic BNs. 

2.6.4 Knowledge Gap 

The knowledge engineering and machine learning communities has focussed less on 

hybrid methodologies compared to purely knowledge or data driven approaches. 

Although the number of studies about hybrid methodologies has been increasing in 

recent years, many of these studies have addressed similar challenges. From the 

reviewed studies, the hybrid structure learning methods mainly focus on using 

knowledge to assist a data-based structure learning algorithms. The hybrid parameter 

learning studies mainly focus on using knowledge as constraints for parameter 

learning. Combination of knowledge and data also has potential benefits in other 

challenges of BN modelling that need to be addressed. For example, BNs that reason 
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consistent with knowledge often contains variables that cannot be directly measured 

and thus not available in the dataset. Hybrid methodologies that combine knowledge 

and data are required to deal with this task. In the following chapter, we discuss the 

application of knowledge and data driven techniques for medical models. In Chapter 

4, we introduce the medical case study and, by using the case study, we illustrate 

several modelling challenges that can be dealt with novel hybrid methodologies. 
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Clinical Decision Support 

The nature of medical decision making is inherently uncertain as the true state of a 

patient can almost never be observed (Sox and Higgins, 1988). A clinician can 

interview the patient, examine his physical conditions and conduct laboratory tests 

but these may not necessarily reveal the true state of the patient. The findings of 

these tests are often related to more than one disease therefore they can only help in 

ruling out some diseases and decreasing the uncertainty regarding the diagnosis. 

Selecting the best treatment is also not simple because of the uncertainty. The 

treatment options often have different benefits and disadvantages; an optimal 

decision, that is better in all aspects, may not exist. According to Sox and Higgins 

(1988), clinicians generate hypotheses about the patient’s problem often in early 

stages of patient care. They compare only a few hypotheses and gather more 

information to confirm or falsify them. In this regard, medical decision making 

follows the principles of Bayesian reasoning. 

There are systematic errors that clinicians, and other experts, make when they reason 

with uncertainty (Tversky and Kahneman, 1974). The classic study by Casscells et 

al. (1978) and the cases by Gigerenzer (2003) show examples of striking errors that 

clinicians make when calculating probabilities. Quantitative models, such as BNs, 

can be helpful in preventing these errors.  

In this chapter, we examine the potential benefits of quantitative models for 

providing clinical decision support. We review the pitfalls of the existing approaches 

to examine why many of these models have not been employed by clinicians.  
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3.1 Surgical Decision Making 

Most surgical decisions are made in challenging conditions. Surgeons often face 

uncertainty and strict time constraints when making decisions with critical and 

irreversible outcomes. A branch of decision science, called naturalistic decision 

making, studies decision making under such conditions (Klein, 2008; Lipshitz et al., 

2001). Other domains of naturalistic decision making include piloting and 

firefighting (Klein et al., 1986; Orsanu and Fischer, 1997).  

Flin et al. (2007) examined surgical decision making using concepts from other 

domains of naturalistic decision making. They defined surgical decision making in 

two stages. In the first stage, a surgeon focuses on situation awareness. He observes 

the overall situation of the patient, diagnoses the anatomical and physiological 

disorders, and evaluates the expected outcomes and risks. In the second stage, the 

surgeon adopts one of the following decision making strategies to select a treatment 

that maximises the expected outcomes:  

1. Recognition: The surgeon recognises the problem and recalls a treatment 

used in a similar problem. 

2. Rule-based: The surgeon selects the treatment recommended by the 

guidelines. 

3. Analytical: The surgeon evaluates multiple treatment options simultaneously 

and selects the one with maximum benefit.  

4. Creative: The surgeon uses a novel course of action for an unfamiliar 

situation. 

Surveys of experienced surgeons showed that they adopt the recognition and 

analytical decision making strategies more commonly than the rule-based and 

creative strategies (Pauley et al., 2011). The recognition strategy is preferred when 

the operation is familiar to the surgeon or when there is only one plausible option 

(Jacklin et al., 2008; Pauley et al., 2011). The analytical strategy is preferred when 

there are multiple treatment options with similar risks and benefits. The analytical 

strategy is more common in surgery than in other domains of naturalistic decision 
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making (Cristancho et al., 2013; Klein et al., 1993, 1986). The rule-based strategy is 

more commonly preferred by novice surgeons (Pauley et al., 2011); experienced 

surgeons occasionally adopt this strategy mainly for routine surgical operations 

(Jacklin et al., 2008). The creative strategy is not considered suitable for most 

surgical operations because of the risks and time constraints involved, and thus it is 

rarely adopted (Flin et al., 2007; Pauley et al., 2011). 

Quantitative models offer the potential to improve two areas of surgical decision 

making. First of all, the situation awareness stage can be improved by models that 

calculate risks and probabilities. Way et al. (2003) showed that misperception of 

risks leads to poor outcomes in many surgical operations even when the surgical skill 

and judgement is adequate. Experts make errors when reasoning with uncertainty 

(Casscells et al., 1978; Gigerenzer, 2003; Kahneman, 2011; Tversky and Kahneman, 

1974), and uncertainty is often abundant at the situation awareness stage (Flin et al., 

2007; Way et al., 2003). Quantitative models can be used at the situation awareness 

stage to quantify uncertainty when evaluating probabilities and risks.  Secondly, the 

analytical decision making strategy can be assisted by quantitative models. Experts 

who adopt this strategy need to calculate the expected outcomes of the available 

hypotheses.  The calculations have to be made iteratively as the observed state of the 

patient changes. Experts have to deal with the uncertainty regarding these 

calculations. Moreover, decision science research showed that experts can consider 

only a few hypotheses at a time (Kahneman, 2011; Sox and Higgins, 1988). 

Quantitative models can be used to assist analytical decision making strategy by 

enabling calculation of a larger number of hypotheses.  

3.2 Statistical Modelling Approaches in Medicine 

Models that predict the course of a disease or a medical condition, based on a single 

or multiple variables, are called prognostic models in the medical literature. 

Typically, the relation of the predictors to the model outcome is analysed by 

multivariate statistical models or similar approaches (Abu-Hanna and Lucas, 2001). 

The accepted way of selecting predictors is to adjust the variables and check their 

effects on the outcome in data. If an adjustment of a variable is connected to the 

outcome with statistical significance, the variable can be called an independent 
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predictor (Royston et al., 2009). The danger is that correlation is confused with 

causation. For example, grey hair is an independent risk factor for heart disease, 

however, if two men of the same age but different hair colours are considered, grey 

hair does not probably increase the heart disease risk (Brotman et al., 2005). 

Therefore, the independent predictors are not necessarily causal factors; they are the 

factors that are correlated with causal factors according to the available data and 

selected variables. The number and identity of the included variables is sometimes 

considered to be not important (Katz, 2003; Moons et al., 2009b). Consequently, the 

independent predictors and their relations to outcome can be completely different 

between studies. Jenks and Volkers (1992) shows more extreme examples about 

variable selection where electric-razors or owning refrigerators have been identified 

as risk factors for cancer.  

Although, a large number of prognostic models are developed and published, the 

majority are not adopted into clinical practice (Altman et al., 2009). The 

predominant reason for this are concerns regarding model accuracy. Accuracy alone, 

however, does not ensure use of a model. Predictors with different sets of variables 

can be statistically accurate but statistical accuracy of a model does not ensure its 

clinical acceptance (Moons et al., 2009a) and there are now widely accepted 

arguments against the use of statistical significance tests and their associated p-

values (Goodman, 1999; Ziliak and McCloskey, 2008). On the other hand, some 

models with mediocre performance are widely used in clinical practice (Moons et al., 

2009a). 

Clinicians tend to reject a prognostic model if they are not convinced that the 

model’s performance, for their patients, will be similar to its published performance 

in validation studies (Moons et al., 2009a; Wyatt and Altman, 1995). The clinical 

evidence supporting the model and its reasoning mechanism must be understood for 

clinicians to evaluate its prospective performance in their practice (Akhtar and Forse, 

2010; Wyatt and Altman, 1995). It may be necessary to modify an existing 

prognostic model because of the changes in clinical knowledge and practice. In this 

case, the model is often retrained from scratch with the new data. This approach 

discards all of the information in the previous model even though a part of the model 

may still be relevant (Moons et al., 2009a). This can be avoided by identifying the 
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obsolete parts of the model and refining only those parts. The link between clinical 

knowledge and the reasoning mechanism of the model must be clear for clinicians to 

identify and modify the obsolete parts. However, most statistical models are linear 

equations that represent the correlations in their training dataset. The structure of 

these models is often not intuitive to clinicians as they do not reflect causal relations. 

For example, it is difficult, if not impossible, to modify a regression model to include 

a new clinical factor that is known to affect the outcome and some of the 

independent variables through multiple causal pathways. 

Wyatt and Altman (1995) argue that useful prognostic models have 4 properties in 

common: clinical credibility, accuracy, generalisability, and ability to provide useful 

decision support. Traditional – purely data-driven – modelling approaches often 

target only one of these qualities: statistical accuracy. They disregard domain 

knowledge about the clinically relevant variables and their causal relations which is 

often available in abundance. As a result, evidence supporting the model becomes 

limited to its training data. Using knowledge from other sources, as well as data, can 

be an important step to achieve all four properties. In the following section, we 

review knowledge and data driven artificial intelligence (AI) approaches for 

developing clinical models.  

3.3 Artificial Intelligence and Bayesian Networks in 

Medicine 

Medicine has been a popular domain for applying AI techniques. The early 

applications tried to imitate decision making of clinicians using a set of rules defined 

in their system. MYCIN system was arguably the first successful application in 

medicine (Buchanan and Shortliffe, 1984; Shortliffe, 1976). It was developed in the 

1970s to recommend treatments for infectious blood diseases based on a knowledge 

base of about 500 rules. MYCIN performed better than most clinicians who were not 

specialised in infectious blood diseases (Yu et al., 1979).  Other notable expert 

systems include Internist (Miller et al., 1982), Casnet (Weiss et al., 1978) and ABEL 

(Patil et al., 1981). The early expert systems had two major disadvantages. First, by 

imitating the decision making of experts, these systems also imitated its undesirable 
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flaws (Druzdzel and Flynn, 2009). Second, their rule-based reasoning mechanism 

could not represent the uncertain nature of medicine. As a result, most expert 

systems have not been widely used in clinical practice. 

Machine learning (ML) is a branch of AI that focuses on learning systems purely 

from data. Following the advances in computing technology, ML applications have 

become increasingly popular. They have had successful results in some medical 

areas where data is available in large amounts. These include analysis of radiography 

images (Savage, 2012) and identification of the patterns between genes and diseases 

(Shipp et al., 2002). However, just like statistical models, ML methods have not 

always provided useful models for complicated clinical decisions even when a large 

amount of data is available. 

According to Buchan et al. (2009), this is because the complexity of clinical 

mechanisms is not taken into account by purely data-based approaches. Knowledge, 

from clinicians and published evidence, should be used to uncover the clinical 

mechanisms related with data, and the data should be used on top of this to reflect 

the complexity. Patel et al. (2009) confirmed this in a recent panel between the 

leading researchers of AI in medicine: combining knowledge and data offer the 

potential to be useful in areas that purely knowledge-based or data-based approaches 

fail (Holmes and Peek, 2007; Patel et al., 2009; Zupan et al., 2006).  

BNs are well-suited for combining knowledge and data (see Chapter 2 for a review 

of knowledge and data driven approaches for BNs). Complex clinical mechanisms 

with multiple pathways can be represented in the structure of BNs (Fenton and Neil, 

2010). Moreover, the probabilistic reasoning of BNs can effectively deal with 

uncertainty and unobserved variables, both of which are not rare in medical decision 

making. 

BNs have been a popular approach in medicine for more than 20 years (see Table 

3.1) (Abu-Hanna and Lucas, 2001; Lucas et al., 2004). Many of the early 

applications of BNs were built purely by knowledge. One of the first large-scale 

applications in medicine, the Pathfinder project, was aimed to diagnose 60 diseases 

of lymph nodes (Heckerman and Nathwani, 1992; Heckerman et al., 1989). Both the 

structure and parameters of Pathfinder were elicited from experts. It was 
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commercialised as a training tool, called IntelliPath, for junior pathologists 

(Nathwani et al., 1990). 

Alarm BN is one of the earliest applications in emergency medicine (Beinlich et al., 

1989). Its aim is to diagnose patient disorders and generate alarm messages based on 

the inputs from the patient monitoring devices. The BN structure and CPDs were 

elicited from experts. Data was used for learning the probability distributions of 

variables without parents. 

Table 3.1 Some Knowledge and Data Driven Applications of BN in Medicine 

Purely Data-Based Expert Knowledge Used in Modelling 

Arteriosclerosis (McGeachie et al., 2009) 

Breast Cancer (Cruz-Ramírez et al., 2007) 

Cardiac Surgery (Verduijn et al., 2007) 

Chronic Obstructive Pulmonary Disease 

(Himes et al., 2009) 

Clinical Therapeutics (Nordmann and 

Berdeaux, 2007) 

Colorectal Cancer Surgery (Nissan et al., 

2010) 

Head Injuries (Sakellaropoulos and 

Nikiforidis, 1999) 

Intensive Care (Celi et al., 2008; Crump et 

al., 2011) 

Malignant Skin Melanoma (Sierra and 

Larrañaga, 1998) 

Mortality Prediction (Celi et al., 2008) 

Radiography Interpretation (Maskery et al., 

2008; Neumann et al., 2010) 

Venous Thromboembolism (Kline et al., 

2005) 

Anticoagulant Treatment (Yet et al., 2013a) 

Breast Cancer (Wang et al., 1999) 

Chronic Obstructive Pulmonary Disease 

(van der Heijden et al., 2013) 

Echocardiography (Díez et al., 1997) 

Electromyography (Andreassen et al., 1989) 

Gastric Lymphoma (Lucas et al., 1998) 

Intensive Care (Beinlich et al., 1989) 

Infectious Diseases (Charitos et al., 2009; 

Lucas et al., 2000; Schurink et al., 2007, 

2005; Visscher et al., 2008) 

Liver Disorders (Onisko et al., 1998; 

Wasyluk et al., 2001) 

Multidisciplinary Team Meetings 

(Ogunsanya, 2012) 

Multiple morbidities (Lappenschaar et al., 

2013) 

Nasogastric Feeding Tube Insertion (Hanna 

et al., 2010) 

Oesophageal Cancer (Helsper and van Der 

Gaag, 2007; Van der Gaag et al., 2002) 

Pathologic Disorders (Heckerman and 

Nathwani, 1992) 

Prostate Cancer (Lacave and Díez, 2003) 

Pyloric Stenosis – Pediatric Surgery 

(Alvarez et al., 2006) 

Radiography Interpretation (Burnside et al., 

2006; Velikova et al., 2013, 2009) 

Trauma Diagnosis (Ahmed et al., 2009) 

Causality has been an important principle for representing expert knowledge in BN 

models as it is a natural way of expressing knowledge (Lucas, 1995) and it enables 
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development of less complex models (Koller and Friedman, 2009a). Even before the 

discovery of BNs, causality was employed by many AI approaches to model 

complex pathways between treatments and diseases (Patil et al., 1981; Weiss et al., 

1978). Many large scale applications of BNs, including MUNIN (Andreassen et al., 

1989) and Hepar II (Onisko et al., 1998), have causal structures based on domain 

knowledge. 

Many BN applications use domain knowledge in development of the BN (see Table 

3.1). Knowledge behind the BN, however, is often unclear to anyone else except the 

developers of the BN. The derivation of the BN structure, and supporting medical 

evidence, is often explained in a few paragraphs due to the space limitations in 

publications (for examples of inadequately described knowledge-based BNs see 

Ahmed et al., 2009; Burnside et al., 2006; Onisko et al., 1998; Wasyluk et al., 2001). 

The BN structure is often presented but the structure may not be descriptive enough 

as variable names often contain a limited amount of characters. As a result, the 

knowledge behind the BN may not be disseminated even when it is based on strong 

evidence. 

More recently, BNs have been used to synthesise published evidence for clinical 

guidelines (Ni et al., 2011). Hanna et al. (2010) used BNs to develop clinical 

guidelines for inserting nasogastric feeding tubes. They modelled the reliability of 

different tests of verifying the position of a nasogastric feeding tube using a BN 

model. The variables and states of the BN were selected based on expert opinion. 

Published statistics from relevant studies were used to define the parameters. The 

BN model was used to compare the performance of different measurements, and to 

prepare a clinical guideline showing the optimal measurements. Hanna et al’s study 

illustrates the power of BNs for combining evidence from different sources. 

BNs can also be used as a purely data-based ML approach by using the learning 

techniques described in Section 2.6.2. Such BNs, as well as other ML approaches, 

are well suited for pattern recognition and knowledge discovery from large datasets. 

For example, data-driven BNs have had successful results in revealing biological 

relations in genome datasets (Friedman, 2004; Needham et al., 2007). These BNs, 

however, share the same disadvantages with other purely data based methods when 

they are applied to complicated decision making problems.  
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Fenton (2012) shows a simple example where purely data based approaches fail even 

when data is available in large amounts. In this example, the sample size of the 

dataset is large but there is no data about some rare combination of events. 

Therefore, a purely data-driven approach cannot gather information about these 

events even though the dataset is large in overall. Yet, experts are able to provide 

knowledge about the rare events based on other sources of information. Fenton's 

example (2012) has been encountered in real medical problems: in Chapter 6 we 

describe a similar challenge about modelling of rare events in the trauma case-study. 

We address this challenge by combining the information from previous publications 

with domain knowledge and data.  

 

Figure 3.1 BNs for Head Injury Prognosis by Sakellaropoulos and Nikiforidis (1999) 

Despite these problems, many clinical BNs continue to ignore clinical knowledge 

regardless of its abundance. For example, Sakellaropoulos and Nikiforidis  (1999) 

built two, purely data-based, BNs to predict prognosis of head injuries by using two 

different learning methods on the same dataset (see Figure 3.1). Some the arcs 

between the same variables are in the opposite direction in these BNs, and some 

contradict with clinical understanding of the subject and common sense. For 

example, blood pressure is the parent of age in both models but the direction of this 

relation should be the opposite from a causal perspective as it makes sense to think 
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that old age causes increased blood pressure; not the other way around. Similarly, the 

result of the CT scan is the parent of delay in hospital admission in both models but 

this is confusing as CT scan is a measurement that is done after a patient is admitted. 

It may be more reasonable to think that delays in arrival to hospital made the 

patient’s condition worse therefore led to a worse result from the CT scan. Another 

possibility is to include a clinically relevant latent variable to make the BN more 

consistent with clinical knowledge. For example, a latent variable about the severity 

of injury can be included as the parent of ‘CT scan’ and child of ‘delays in arrival’ 

based on an expert statement such as: “the severity of injury is measured by CT scan, 

and delays in arrival may worsen the state of overall injury”.  

In summary, it is difficult to explain how these BNs reason to a clinician apart from 

saying that they predict the previous cases in their data. Moreover, the data may not 

produce consistent results alone, as in this example, the BN structure may change 

significantly depending on the learning method applied. The results of the BNs may 

be statistically accurate but, like many statistical models, they fail to satisfy the other 

three properties that useful prognostic models should have: clinical credibility, 

generalisability and ability to provide useful decision support (Wyatt and Altman, 

1995). The following chapter illustrates the challenges of building useful decision 

support models in the trauma case study. 
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Case Study: Trauma Care 

This chapter introduces the clinical case study which covers the treatment of 

mangled extremities in trauma care. We illustrate the challenges of building useful 

decision support models for the case study from two aspects. Firstly, we review the 

existing models for trauma care and discuss their limitations. Secondly, we describe 

the available datasets for the case study and discuss the need for expert knowledge to 

analyse the datasets. The chapter finishes with an overview of the novel 

methodologies proposed in the following chapters of the thesis. 

4.1 Overview of the Case Study 

One of the most difficult decisions for a clinician to make is whether to amputate or 

salvage a mangled extremity. This decision, with irreversible consequences for the 

patient, revolves around three possible adverse outcomes, which change prominence 

as the treatment progresses. 

1. Death. Many trauma patients arrive at hospital with severely deranged 

physiology. Their risk of death is high and most prominent during the early 

stage of treatment.  To reduce the risk of death, clinicians should resuscitate 

these patients, and allow their physiology to recover, before embarking on 

definitive limb reconstruction operations. Therefore, in the early stages of 

treatment, it is crucial to evaluate the physiological status and predict the risk 

of death before deciding to undertake a treatment. 

2. Limb tissue viability. If the limb loses its blood supply for too long, its 

tissues cease to become viable and surgical removal of these tissues is 
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inevitable. The viability of the limb tissues is evaluated as the extent of the 

injury is assessed. The limb may become unsalvageable if a large amount of 

its tissues become unviable and are removed. 

3. Non-functional limb. A salvaged limb may be more or less functional due to 

anatomical problems such as loss of muscle compartments or transected 

nerves. For some patients a prosthetic limb may be preferable to a non-

functional or painful limb.  

The clinician’s concerns about these three treatment outcomes changes as the 

treatment progresses. The probabilities of the adverse outcomes are both positively 

and negatively related with each other so it may not be possible to find a decision 

that minimises all of them. For example, lengthy reconstruction surgery can salvage 

the patient’s limb, but it can also put the patient’s life in danger when the patient is 

physiologically unwell. In later stages of the treatment, following correction of the 

initial physiology, infections of the damaged limb tissues may again threaten the 

patient’s life. Finally, the clinicians may decide to amputate the limb if it is not likely 

to be functional in the long run. Although the choice of treatment is the same, the 

underlying reasoning changes significantly through different stages of the treatment. 

The activity diagram in Figure 4.1 illustrates the decision making stages and 

changing priorities in treatment of mangled extremities. In the remainder of this 

section, we describe the activity diagram by an example of a patient who survived a 

motorcycle accident. The patient is physiologically unstable since he had lost a large 

volume of blood before arriving to the hospital. One of his lower extremities has a 

bleeding traumatic injury. At the emergency room, surgeons assess his physiological 

state, risk of death, and injury. Since the patient’s physiology is severely deranged, 

the surgeons decide to resuscitate the patient until his physiological state improves. 

His limb appears to be salvageable but the surgeons decide to delay any definitive 

reconstruction operations as such operations may put the patient’s life in danger due 

to his physiological state. The surgeons make quick preventive operations to stop the 

bleeding in the lower extremity until the patient’s physiology becomes stable enough 

for a definitive reconstruction operation. These preventive and lifesaving operations 

are also known as damage control surgery (DCS). 
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Figure 4.1 Activity Diagram for Treatment of Mangled Extremities 

After the patient’s physiology stabilises, the surgeons attempt to repair the vascular 

injuries on the lower extremity by a definitive reconstruction operation. The blood 

circulation in his lower extremity had been compromised as a result of the 

motorcycle accident and this lack of circulation caused a part of the soft tissue to 

become non-viable. The contamination and direct damage from the injury also 

caused a part of the soft tissue to become non-viable. At this stage, the surgeons 

assess the likelihood of successful limb salvage as they remove the non-viable tissue 

from the limb. Amputation may become inevitable if a large part of the soft tissue 

becomes non-viable since, without an adequate cover of soft tissue, his wounds may 

become infected, his limb may not function well and the vascular repair may fail. 

The surgeons also assess the projected functional outcome throughout the care. They 

evaluate whether an amputation followed by a prosthetic limb may lead to better 

outcomes than the reconstruction of his limb.  

4.1.1 Medical Collaborations 

This section describes the medical collaborations that provided clinical knowledge 

and datasets used in the trauma case study. 
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4.1.1.1 Domain Experts 

A trauma registrar at RLH, Mr Zane Perkins (ZP), provided clinical knowledge for 

analysing the case study and developing the decision support models presented in 

this thesis. ZP was closely involved in development of the BN models. His 

contribution included providing clinical knowledge, making systematic reviews of 

clinical literature and clinical verification of the developed models. 

A consultant trauma surgeon at RLH, Mr Nigel Tai (NT), was involved in clinical 

verification of the developed models. NT was ZP’s primary research supervisor. 

4.1.1.2 Trauma Unit at the Royal London Hospital 

The case study was done in collaboration with the trauma unit at RLH. RLH is an 

internationally recognised leader in trauma care and trauma research. The trauma 

unit is the busiest in the United Kingdom treating over 2000 injured patients in a 

year, a quarter of whom were severely injured. The hospital is also the lead for a 

network of trauma hospitals, the London Trauma System, which provides specialist 

trauma care for the millions of people living in London and the South-East of 

England. This trauma system is believed to be the largest of its kind in the world. As 

a major trauma centre, the hospital provides access to the latest technology, 

treatments and expert trauma clinicians around the clock. Evidence has shown that 

people who suffer serious injuries need the highest quality specialist care to give 

them the best chances of survival and recovery. The most common causes of injury 

seen at RLH are road traffic collisions, followed by stabbings and falls from a height. 

Nearly half of the trauma patients have an injury to an extremity or the pelvic girdle, 

and 1% of these patients end up having lower limb amputations. A large 

multidiscipline team manages those with severe limb injuries. These devastating 

injuries carry a high mortality and morbidity in a predominantly young population. 

The multidiscipline approach ensures the best possible outcome for these patients. 

The clinical datasets used for developing the ATC BN were provided by the RLH 

trauma unit and by their national and international collaborations with other hospitals 

(see Section 4.3.1 for a description of the ATC datasets). 
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4.1.1.3 United States Army Institute of Surgical Research 

United States Army Institute of Surgical Research (ISR) in San Antonio, Texas 

provided the dataset used for developing the lower extremity vascular trauma 

(LEVT) BN (see Section 4.3.2 for a description of the LEVT dataset). The author 

and ZP visited ISR to extract and refine the LEVT dataset, and to develop the LEVT 

BN model.  

ISR is one of the 6 research institutes within the United States Army Medical 

Research and Materiel Command. It is the leading research institute of combat 

casualty care for the United States Army. ISR focuses on a wide variety of research 

areas including extremity trauma, burn treatment, emergency medical monitoring 

and casualty care engineering. A diverse workforce of over 250 military and civilian 

personnel works at ISR to accomplish these research objectives. 

4.1.2 Decision Support Requirements 

Since the treatment of mangled extremities involves multiple decisions that affect 

multiple outcomes in multiple stages, it is crucial to define the scope of the decision 

support models according to the requirements of the clinicians. We conducted a 

series of interviews with the domain expert (ZP) in order to have a shared 

understanding of the areas where probabilistic models can provide useful decision 

support. The description of the case study and the activity diagram (see Figure 4.1) 

in Section 4.1 were also produced as a result of these interviews. The domain expert 

suggested that predictions of the following outcomes can potentially assist the 

decision making in treatment of traumatic lower extremity injuries: 

1. Death and ATC: One of the most critical physiological problems at the early 

stage of treatments is acute traumatic coagulopathy (ATC). ATC is the failure 

of the body’s protective mechanisms to limit bleeding. The patients with 

ATC have a considerably higher risk of bleeding and death. A model that 

accurately predicts ATC and the related risk of death can be used as the basis 

of a risk-benefit analysis for limb reconstruction operations during the early 

stages of treatment. 
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2. Limb Tissue Viability: The extremity may become unsalvageable if large 

amount of tissue becomes unviable and removed. Success of the vascular 

reconstruction is essential for the tissues to have adequate blood supply and 

remain viable. Predicting the outcome of a reconstruction operation and 

projected soft tissue viability would be useful in early decision making. Such 

prediction would allow informed treatment decisions and be helpful in 

assessing the risk of failure of a salvage attempt.  

3. Non-functional Limb: Since amputations followed by prostheses can 

sometimes lead to better functional outcomes than salvaged extremities, 

predicting the long-term function outcomes of a salvaged extremity would 

assist the decision making. 

We developed two BN models that aim to provide decision support for the first and 

second outcomes above. The first BN model predicts ATC and mortality using the 

observations that are available in the first 15 minutes of the treatment. The 

development methodology and results of this BN are described in Chapter 5. The 

second BN model predicts the short term outcomes of a vascular reconstruction 

operation by estimating the soft tissue viability. The development methodology and 

results of this BN are presented in Chapter 6. The third – non-functional limb – 

outcome was considered to be out of the scope of this thesis due to the issues 

discussed in Section 4.3.3.  

In the following section, we review the existing models that were built to provide 

decision support for the death, limb tissue viability and non-functional limb 

outcomes.  

4.2 Review of Existing Models in Trauma Care 

Most decision support models in trauma care are designed as scoring systems: they 

calculate a score for the situation of a patient using several inputs. Some scoring 

systems aim to summarise clinical conditions, leaving decisions to a clinician. For 

example, the Glasgow coma scale (GCS) summarises the level of consciousness after 

head injury (Teasdale and Jennett, 1974). The abbreviated injury scale (AIS) 

summarises the severity of anatomical injury in different parts of the body (Civil and 
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Schwab, 1988; Gennarelli and Wodzin, 2008), and the injury severity score (ISS) 

(Baker et al., 1974) summarises the severity of all injuries combined by using AIS 

scores. Other scoring systems aim to recommend a treatment by setting a threshold 

to the calculated score. For example, the mangled extremity scoring system (MESS) 

recommends amputation if the score is over a certain threshold value (Johansen et 

al., 1990). However, this adds little to an experienced clinician’s judgement 

especially when the score is close to the threshold. If there is a discrepancy between 

the model’s recommendations and clinician’s decisions, the model does not provide 

any useful decision support apart from implying that the recommended decision was 

the decision made in a similar circumstance in the model’s training data.  

Both kinds of scoring systems have been developed for trauma care. In the remainder 

of this section, we review the scoring systems related to the 3 main treatment 

outcomes in our case study: death, limb tissue viability and non-functional limb. 

4.2.1 Death 

The revised trauma score (RTS) is one of the earliest scoring systems about patient 

physiology (Champion et al., 1989, 1981). RTS was originally developed as a triage 

tool that assigns patients to trauma care if they score less than a predefined threshold 

value. However, RTS has been mainly used to predict mortality as it is found to be 

correlated with the rate of survival. RTS is calculated from three inputs: blood 

pressure, respiratory rate and GCS. Several studies indicate that RTS is overly 

simple and lacks important factors, such as those about anatomy, for predicting 

mortality (Gabbe et al., 2003; Russell et al., 2010). 

The trauma and injury severity score (TRISS) calculates the probability of death by 

combining the scores from RTS and ISS, and also adjusting for patient’s age and 

mechanism of injury (Boyd et al., 1987). TRISS cannot be used for decision support 

in early stages of care since acquiring the necessary injury descriptions for ISS may 

take several weeks. It has been mainly used for auditing and performance assessment 

(Russell et al., 2011). 

In a recent study, Perel et al. (2012) proposed a regression model, called the 

CRASH-2 prognostic model, to predict mortality specifically for bleeding trauma 
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patients. The independent variables in the model include injury characteristics, 

physiological variables and demographic factors such as the level of income. The 

variables were selected according to their p-values in a large international dataset. 

Limitations of using p-values for building clinical models are discussed in Section 

3.2. 

ATC is one of the most critical physiological problems in trauma care. The 

coagulopathy of severe trauma score (COAST) (Mitra et al., 2011) has been 

developed for predicting this condition but its performance were found inadequate 

for clinical use (Brohi, 2011). The COAST score had several erroneous assumptions 

about modelling of the latent variables; the limitations of the COAST score are 

examined further in Chapter 5.  

4.2.2 Limb Tissue Viability 

Many scoring systems have been developed to provide decision support for the 

treatment of traumatic lower extremities at the initial evaluation of a patient (see 

Table 4.1). These models calculate a score for the patient based on several physical 

and physiological factors, and recommend amputation if the score is above a certain 

threshold value. Table 4.2 shows the variables used for calculating scores in each of 

the scoring systems. 

Table 4.1 Scoring Systems for Traumatic Limb Injuries 

Scoring Systems for Traumatic Limb Injuries 

Mangled Extremity Syndrome Index (MESI) (Gregory et al., 1985) 

Predictive Salvage Index (PSI) (Howe et al., 1987) 

Hannover Fracture Scale (HFS) (Südkamp et al., 1989) 

Mangled Extremity Severity Score (MESS) (Johansen et al., 1990) 

Limb Salvage Index (LSI) (Russell et al., 1991) 

Nerve, Ischemia, Soft tissue, Skeletal, Shock, Age Score (NISSA) (McNamara et al., 1994) 

The scoring systems were developed based on the historical decisions in their 

training datasets. For example, the threshold for MESS, which is one of the most 

popular limb scoring systems, was defined with the score that discriminated all of 

the amputations and salvages in the training dataset of MESS (Johansen et al., 1990). 

MESS is likely to be overfitted to its training dataset as the dataset was small, 
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containing 39 patients. The initial performance of MESS was never repeated in 

external validations (see Table 4.3). 

Bosse et al. (2001) conducted a prospective multi-centre study that validated 5 of the 

scoring systems on 556 patients. This study concluded that the scoring systems are 

not good predictors of short term outcome and they should not be used for decision 

making in clinical practice. The sensitivity and specificity values in Bosse et al.'s 

study (2001) were substantially lower than the values reported by the models’ 

developers (see Table 4.4).  

Table 4.2 Variables Used in Scoring Systems for Traumatic Limb Injuries 

 MESI PSI HFS MESS LSI NISSSA 

Patient Age ▪   ▪  ▪ 

Bone Fracture ▪ ▪ ▪ ▪ ▪ ▪ 

Comorbidities ▪  ▪    

Nerve Injury ▪ ▪ ▪  ▪ ▪ 

Physiology/Shock ▪   ▪  ▪ 

Skin/soft tissue Injury ▪ ▪ ▪ ▪ ▪ ▪ 

Time until Treatment ▪ ▪ ▪    

Vascular Ischemia ▪ ▪ ▪ ▪ ▪ ▪ 

The scoring systems recommend a decision based on the historical decisions in their 

training dataset. In other words, they try to imitate the decisions that are made in 

similar circumstances in the training dataset without relating them to objective 

patient outcomes. This kind of approach is fundamentally flawed since some of the 

decisions, which were correct at the time, may become incorrect due to the changes 

in medical knowledge and practice. 

Table 4.3 Validations of MESS 

Study Participants Sensitivity Specificity 

Johansen et al. (1990) 26 100% 100% 

Robertson (1991) 154 43% 100% 

Bonanni et al. (1993) 89 22% 53% 

Durham et al. (1996) 51 79% 83% 

Bosse et al. (2001) 556 46% 91% 

Korompilias et al. (2009) 63 87% 71% 

Studies about the sensation in feet and amputation decisions illustrate the change of 

clinical practice and decision making in time. A limb cannot function without a 



61 

 

functional nerve therefore a permanent nerve dysfunction can make amputation 

inevitable. A nerve dysfunction in a lower limb can be diagnosed with the lack of 

sensation in the foot. A survey of orthopaedic surgeons showed that they considered 

insensate feet as an important factor for making amputation decisions (Swiontkowski 

et al., 2002). Several scoring systems also used insensate feet as a predictor of 

amputations (Johansen et al., 1990; McNamara et al., 1994). However, insensate foot 

is only an indicator of a more important decision factor: permanent nerve 

dysfunction. A few years after the Swiontkowski et al.’s survey, Bosse et al. (2005) 

showed that although insensate foot can indicate permanent dysfunction of nerves, it 

can also be related to long-term but temporary problems. They observed that some 

patients regain their sensation after several years. Bosse et al. (2005) concluded that 

surgeons should avoid making amputation decisions based on sensation in feet. 

Using sensation in feet, as a predictor, possibly increased the scoring systems’ 

accuracy for predicting historical amputations but it would have affected clinical 

outcomes negatively if these models were used for decision making. 

Swiontkowski et al.’s survey shows that some of the historical amputation decisions 

were possibly based on the sensation in the foot. If so, a data-driven approach would 

find correlation between the sensation and amputation, and would continue to build 

erroneous models. Such errors can be avoided if causal relations between sensation 

in the foot and permanent nerve function are modelled with domain experts. In this 

case, the experts would be able to indicate evidence from Bosse et al’s study and 

include other – temporary – causes of the loss of sensation in the model.  

Table 4.4 Internal and External Validation Results of Scoring Systems 

Scoring 

System 

Sensitivity Specificity 

Internal 

Validation* 

External 

Validation** 

Internal 

Validation* 

External 

Validation** 

PSI 0.78 0.46 1 0.87 

MESS 1 0.46 1 0.91 

LSI 1 0.46 1 0.97 

NISSA 0.81 0.33 0.92 0.98 

HFS 0.82 0.37 0.99 0.98 

*Results reported by authors, **Results from Bosse et al. (2001) 
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4.2.3 Non Functional Limb 

Following Bosse et al.'s study (2001), Ly et al. (2008) examined the performance of 

the scoring systems for predicting limb function. They showed that none of the 

scores reviewed by Bosse et al. (2001) are usefully correlated with function 

outcomes. 

Several survey based scores are available for summarising function outcomes. The 

short musculoskeletal function assessment (SMFA) score calculates multiple scores 

about function and emotional status based on 46 questions (Swiontkowski et al., 

1999).  Similarly, the short form – 36 – health survey (SF-36) calculates several 

outcome scores including a function score based on 36 questions (Ware and 

Sherbourne, 1992). 

4.3 Available Datasets 

This section describes the datasets used for the trauma case-study. The datasets were 

used to develop and validate the BN models presented in Chapter 5 and 6. 

4.3.1 ATC Datasets 

We used three datasets to develop and validate a decision support model that predicts 

physiological derangements and mortality at early stages of trauma care. 

The first of these datasets, called the training dataset, were used to build the ATC 

BN described in Chapter 5. The training dataset contains detailed information about 

600 trauma patients who were treated at RLH.  Table 4.5 summarises the available 

information in the dataset in different categories. 

The second dataset, called the test dataset, contains 300 patients who were treated at 

RLH at a later date than the first 600 patients in the training dataset. The test dataset 

was used for the temporal validation of the ATC BN. A temporal validation is the 

validation of a predictive model using data collected from the same population after 

the model was developed. 
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Table 4.5 Information in the ATC Datasets 

Data Section  Available Information 

Patient Characteristics Age, Gender and Comorbidities of the patient 

Injury Characteristics Mechanism and Energy of Injury, Injury Descriptions, ISS and 

AIS scores, result of the FAST* scan, presence of haemothorax, 

pelvic fractures and long bone injuries. 

Initial Observations Heart rate, systolic blood pressure, Glasgow coma score and 

body temperature of the patient measured shortly after 

admission to the hospital 

Initial Point of Care 

Results 

Blood pH, lactate and base excess values from the arterial blood 

gas test, ROTEM* test results including EXTEM A5* and A30* 

values measured shortly after admission to the hospital. 

Initial Laboratory 

Results 

INR*, PTR* and APTTR* values measured shortly after 

admission. 

Fluid Transfusions The amount of blood product and other fluid transfusions before 

and after admission.  

Later Point of Care and 

Laboratory Results 

Blood pH, lactate and base excess values, ROTEM EXTEM 

A5* and A30* values, INR*, PTR* and APTTR* values 

measured after 4th, 8th and 12th unit of blood is transfused to the 

patient. 

Outcome Survival outcome 

*FAST: Focused Assessment with Sonography for Trauma, ROTEM EXTEM A5 and A30: Amplitude 

of Rotational Thromboelastometry Extem tests at 5th and 30th minutes, INR: International Normalised 

Ratio, PTR: Prothrombin Ratio, APTTR: Activated Partial Thromboplastin Time Ratio.  

The third dataset, called the external dataset, contains 122 patients: 92 patients who 

were treated at a hospital in Oxford, UK, and 30 patients who were treated at a 

hospital in Cologne, Germany. This dataset was used for the external validation of 

the ATC BN. The variables in this dataset are exactly the same as the other two 

datasets from RLH since all datasets were collected as a part of a research 

collaboration led by RLH. Penetrating injuries, such as stabbings, were less 

common, and blunt injuries, such as traffic accidents, were more common in the 

external dataset compared to the datasets from RLH. A summary of the injuries in 

the training and validation datasets are shown in Table 4.6. 

All of the datasets contained missing variables mainly due to recording errors or 

missing laboratory tests. Apart from the missing values, two of the most important 

clinical variables about the physiological derangements, i.e. ATC and 

Hypoperfusion, were not available in any of the datasets. Lack of data for these 
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variables makes it challenging to build a model to predict physiological 

derangements and related mortality. In Chapter 5, we discuss these challenges and 

propose a methodology that systematically uses expert knowledge to overcome 

them. Using this methodology, a group of experts, including ZP, reviewed the 

categorical and free-text information in the data and extracted information about the 

Hypoperfusion and ATC variables. 

Table 4.6 Training and Validation Datasets for the ATC BN 

ATC BN Datasets Training Temporal Validation External Validation 

Patients 600 300 122 

Deaths 71 27 23 

Massive Blood Transfusion 37 21 7 

High Energy Injuries 202 78 42 

Low Energy Injuries 398 182 76 

Unknown Energy - 40 4 

Blunt Injuries 475 239 121 

Penetrating Injury 125 61 1 

4.3.2 LEVT Dataset 

We used a dataset of 521 lower extremity injuries of 487 patients to build a model 

that predicts the short term viability outcomes of lower extremities with vascular 

trauma (LEVT). All patients in the dataset had lower limb vascular injuries with an 

attempted salvage. Some of the patients had injuries on both limbs or vascular 

injuries at multiple levels on the same limb. The dataset contained a large amount of 

information recorded as free text descriptions. ZP reviewed these free text 

descriptions and extracted categorical information that was necessary for training the 

BN model. A summary of the dataset is shown in Table 4.7. 

Amputations that are performed after an attempt to reconstruct a lower extremity are 

called secondary amputations. Secondary amputations may indicate unsuccessful 

salvage outcomes in the dataset. The LEVT dataset contained 90 lower extremities 

that had secondary amputations. It is, however, crucial to identify the clinical reasons 

of the secondary amputations since some secondary amputations may have reasons 

other than short-term viability. For example, several patients in the dataset, who had 

successful limb repairs in terms of viability, decided to undergo amputation several 

years after the injury. The main reason for their amputation was the pain and limited 
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function of their lower extremity. Although these patients had secondary 

amputations, they are considered as positive outcomes in terms of short-term 

viability and negative outcomes in terms of long-term function. Since long-term 

function is out of the scope of our model, these patients were labelled as positive 

outcomes in our training data. ZP reviewed all of the secondary amputations in the 

dataset and identified the clinical reasons of these decisions based on the free-text 

descriptions of injuries and operations. Amputations due to the causes other than 

short-term viability were labelled as positive outcomes in the training data. A 

summary of the learning dataset is shown in Table 4.8.  

Table 4.7 Description of the LEVT Dataset 

Data Section Available Information 

Patient 

Background 

Id number, age, gender of the patient, and the laterality of the 

traumatic lower extremity   

Vascular Injury Location and type of the injured vessel,  

Vascular Repair Description and results of the vascular reconstruction operations 

Ischaemia Degree and duration of ischemia. 

Soft Tissue Injury Location and severity of soft tissue damage 

Associated Injuries Presence of associated bone, nerve and vein injuries.  

Physiology Degree of Shock 

Amputations The reason for amputation, the level of amputation (below the knee, 

through the knee, above the knee).  

Table 4.8 Summary of the LEVT BN Training Dataset 

LLVI BN Cross Validation Dataset 

Patients 487 

Lower Limb Vascular Injuries 521 

Secondary Amputations 90 

Secondary Amputations – Short Term Viability 54 

Above Knee Vascular Injuries 231 

Below Knee Vascular Injuries 290 

Patients with Bilateral Vascular Injuries 18 

Vascular Injuries at Multiple Levels at the Same Lower Limb 16 

Although the LEVT dataset had data for 521 injuries, there were not enough data for 

some severe but uncommon types of injuries. For example, the level of vascular 

injury, the type of repair operation and the presence of vascular injuries at multiple 

levels are important factors that are known to affect the outcome of reconstruction 

operations. Some combinations of these factors are uncommon but have significant 

consequences for the patient. The dataset contains a very small amount of 
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information for these combinations but their prediction is clinically important. In 

Chapter 6, we propose a methodology that combines results from previous research 

and expert knowledge with data to overcome these challenges. 

4.3.3 Limb Function Dataset 

The LEVT dataset also contained data about the function outcomes of 478 patients. 

This data was composed of the SMFA survey scores of 208 patients and SF-36 

survey scores of 278 patients. We built a prototype BN that aims to predict the 

functional components of SMFA and SF-36 scores using the injury and treatment 

variables available in the LEVT dataset. However, the accuracy of the prototype was 

not satisfactory. The domain experts indicated that factors related to life style, such 

as social and economic factors, are known to be affecting the function outcome 

reported by patients (Harris et al., 2008; MacKenzie et al., 2005; Wegener et al., 

2011). The lack of accuracy was possibly due to not including these factors in the 

prototype. Since we had neither data nor experts about the life style factors, we 

decided to leave decision support for the non-functional limb outcome out of the 

scope of this thesis. It would not be possible to identify this issue if we used a purely 

data-driven approach. Expert knowledge showed us the limitations of our resources 

and the requirements for developing a useful model for predicting limb function. 

4.4 Challenges of Developing Useful Decision 

Support Models 

Decision support models must be consistent with clinical knowledge to combine 

relevant evidence and provide evidence-based decision support. This could be 

achieved by models that reason with causal relations supported by clinical evidence. 

However, information about some of the clinically important causal relations is often 

not available in clinical datasets. The dataset described in Section 4.3.1 does not 

contain some of the most clinically important variables about physiological 

derangements. In this case, a decision support model must contain ‘latent’ variables 

in order to be consistent with clinical knowledge. The latent variables are not 

available in the dataset therefore their behaviour must be learned using expert 
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knowledge and other sources of information.  In other cases, data may exist but in 

small amounts for some clinically important variables. The dataset in Section 4.3.2 

also lacks some clinically important variables and it has only a limited amount of 

information for some severe and uncommon injury types. Therefore, the data needs 

to be supplemented by other sources of information to model the behaviour of these 

uncommon injuries.  

The previous trauma models reviewed in Section 4.2 were primarily based on the 

correlations learned from their training datasets. For example, the previous models 

for predicting limb tissue viability imitated the previous decisions in their datasets, 

and ignored factors that lack data. As a result, their predictions were overfitted to 

their training dataset, and failed to be useful in external datasets. 

BNs are well suited for modelling causal relations by combining evidence from 

experts, data and published research. Causal relations are often modelled based on 

expert knowledge as data-driven approaches have limited ability to identify causal 

relations (see Section 2.6.2). However, the elicitation of causal relations from experts 

is a challenging task requiring iterative steps of knowledge engineering to define the 

important variables and identify their relations. Moreover, evidence supporting the 

causal relations is often not presented in detail and is ambiguous to anyone else 

except the model’s developers. Consequently, knowledge and evidence supporting 

the BN becomes unclear even when the BN is based on reliable evidence. 

These challenges demonstrate the need of novel methodologies to develop and 

maintain evidence-based BN models for decision support. In the remainder of this 

thesis, we propose methodologies to address these issues. These novel 

methodologies are illustrated by two BNs developed for the trauma case study. 

In Chapter 5, we propose a methodology to build BNs that reason consistent with 

clinical knowledge without being limited by the observed variables in data. We use 

this methodology to develop a BN that predicts a potentially fatal physiological 

derangement, ATC, and death outcome using the training dataset described in 

Section 4.3.1. Some of the most important variables about this outcome are latent 

variables that cannot be directly observed and thus not present in the dataset. A 

purely data-driven model either ignores the existence of these variables or tries to 
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estimate them from the other variables available in the dataset. Both of these 

approaches ignore clinical knowledge about the latent variables.  Our methodology 

systematically combines clinical knowledge and data to learn the behaviour of latent 

variables, and to refine the BN model. The performance of the BN is evaluated in 

multiple datasets using a 10-fold cross-validation, a temporal and an external 

validation.  

In Chapter 6, we propose a methodology to build decision support models by 

combining evidence provided by meta-analysis of systematic reviews with expert 

knowledge and data. We use this methodology to develop a BN for predicting limb 

tissue viability outcome using the dataset described in Section 4.3.2. Although this 

dataset contains a total of 521 injuries, there is small amount of data for some 

uncommon injury types with potentially severe consequences. Therefore, a purely 

data-driven approach cannot uncover the relation between these uncommon injuries 

and outcomes due to the limitations of the data. We conducted a systematic literature 

review and meta-analysis of these factors, and combine the results of the meta-

analysis with expert knowledge and data to derive the structure and parameters of the 

BN decision support model. The accuracy of the BN is compared with purely data-

based learning methods and with existing models in a 10-fold cross validation. 

The BN models in Chapter 5 and 6 were developed with two trauma surgeons (Mr 

Zane Perkins and Mr Nigel Tai). Deriving BN structure from expert knowledge is a 

challenging task requiring iterative stages of knowledge engineering. The initial BN 

structures elicited from experts are often complicated with too many arcs and 

variables. The knowledge engineer and domain experts iteratively simplify the 

structure by removing some of the less relevant variables and relations. However, 

these modifications can lead to undesirable effects to knowledge encoded in the 

initial structure. When the derivation stages are not presented, knowledge behind the 

BN structure cannot be completely understood by anyone else except the developers 

of the BN. Knowledge engineering methodologies to systematically observe and 

present the effects of BN simplifications have not been thoroughly studied. Chapter 

7 proposes a method of abstracting a knowledge-based BN structure elicited from 

domain experts. The abstraction method shows the link between the initial and final 

BN structures by showing the effects of each abstraction step to underlying 
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probability distribution. A part of the ATC BN is used as a case study to illustrate the 

application of the abstraction method. 

In order to use a BN for EBM, evidence behind the BN should be explicitly 

presented to clinicians. The graphical structure of a BN shows the variables and 

relations included in the model but it does not present evidence supporting or 

conflicting with these elements. As a result, evidence behind the model becomes 

unclear to its users even when the model is based on substantial evidence. Chapter 8 

proposes a framework for representing the evidence behind clinical BNs. The 

evidence framework is composed of two parts: 1) an ontology that organises 

evidence regarding variables, relations and fragments in a BN 2) a web page 

generator that presents evidence in a web page without showing the technical details 

of the ontology. The ATC BN is used as a case study to illustrate the evidence 

framework.  
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Modelling Latent Variables with 

Knowledge and Data 

Many medical conditions are only indirectly observed through symptoms and tests. 

Developing predictive models for such conditions is challenging since they can be 

thought of as ‘latent’ variables. They are not present in the data and often get 

confused with measurements. As a result, building a model that fits data well is not 

the same as making a prediction that is useful for decision makers. Chapter 4 

illustrates these challenges based on the existing trauma models and available 

datasets. In this chapter, we present a methodology for developing BN models that 

predict and reason with latent variables, using a combination of expert knowledge 

and available data. The method is illustrated by the BN that aims to assist early 

stages of mangled extremity decision making by predicting acute traumatic 

coagulopathy (ATC), a disorder of blood clotting that significantly increases the risk 

of death following traumatic injuries. There are several measurements for ATC and 

previous models have predicted one of these measurements instead of the state of 

ATC itself. Our case study illustrates the advantages of models that distinguish 

between an underlying latent condition and its measurements, and of a continuing 

dialogue between the modeller and the domain experts as the model is developed 

using knowledge as well as data. 

5.1 Introduction 

Purely data-driven approaches are currently accepted as the primary, if not the only, 

way of developing predictive models. Because of the impressive results achieved 
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with such approaches by organizations like Amazon and Google, it is often assumed 

that this success is repeatable in other domains as long as a large enough amount of 

data is available. However, a purely data-driven approach can only predict the type 

of values recorded in a dataset, such as measurements made, decisions taken or 

outcomes recorded. Even when large volumes of data exist, purely data driven ML 

methods may not provide either accurate predictions or the insights required for 

improved decision-making. In this chapter, we consider the common real-world 

situation in which successful decision making depends on inferring underlying or 

latent information that is not – and can never be – part of the data. In such a situation 

a predictive model for decision support will contain latent variables representing this 

underlying state but the values of these variables will not be present in the data. We 

therefore need to depend on domain expertise to identify the important latent 

variables and to model relations between them and the observed variables.  

Domain experts do not just substitute guesswork for data. They may have access to 

information that is not machine-readable and they should back up any judgements by 

reference to published research whenever possible. Yet, such expert knowledge is 

usually avoided in data-driven approaches using arguments such as ‘avoiding 

subjectivity’ and ‘using facts based on the data’ (Gelman, 2008; Tonelli, 1999). The 

use of latent variables is also limited: some data-driven approaches, such as 

regression modelling, do not include latent variables at all. Other approaches contain 

latent variables but these are estimated only from data values, so that the use of latent 

variables in these methods does not escape the limits of the data. The objectivity of 

data-driven approaches holds only so far as the prediction of observed values really 

serves the needs of users. When this is not the case, erroneous results may follow. In 

this chapter, we show some examples of these errors and how they are avoided by 

appropriate and rigorous use of domain knowledge.  

We propose a pragmatic methodology to develop BN models with latent variables. 

Our method integrates domain expertise with the available data to develop and refine 

the model systematically through a series of expert reviews. We illustrate the 

application and results of this method with a clinical case study of a problem for 

which purely data-driven approaches have been tried but have not been considered to 
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be successful by clinicians. Our case study shows some possible reasons for these 

past failures. The details of the case study are provided in Chapter 4. 

The remainder of this paper is as follows: Section 5.2 presents the overview of our 

methodology. The case study is introduced in Section 5.3 and developed further in 

Sections 5.4 (learning and review), 5.5 (model refinement) and 5.6 (temporal and 

external validations). We present our conclusion in Section 5.7. 

5.2 Method Overview 

The limitations of data for making predictions useful to a decision-maker can be 

summarised in three points: 

1. Measurement errors: a dataset contains measurements of variables, but 

measurement errors mean that the true state of each variable differs from the 

measured data.  In some domains, including clinical diagnosis, this 

introduces significant uncertainty about the true value, so that a data-driven 

model cannot accurately predict the underlying state even if it can accurately 

predict the associated measurement values. 

2. Sub-optimal decisions: the objective of a decision-support model is to enable 

a decision-maker to determine the optimal decisions given the observed 

situation. A dataset may contain a ‘decision’ variable, that is, one that reflects 

the decision made (e.g. a treatment given by a clinician). A model that 

predicts the value of a decision variable can be useful if all the past decision-

makers had similar utilities and they were completely rational in evaluating 

utilities with their underlying uncertainties. However, there is usually no 

information about the utilities involved in past decisions, and the data may 

have records of some decisions that were incorrect at the time or, although 

correct at the time, were made on outdated understanding. A model that 

predicts the value of a decision variable is therefore limited in its 

performance even if the prediction is highly accurate. Moreover, a model can 

only be used for ‘what if’ analysis – exploring the consequences of decision 

alternatives – if it is causal; choosing one of the decision alternatives erases 

the factors that influenced past decisions (Pearl, 2000). Although these 
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problems are well known, models that are developed to fit past decisions are 

common in scientific literature (see Section 3.1). 

3. Causes of outcomes: an ‘outcome’ variable records what happened. But 

outcomes can have many causes, only some of which may be recorded in the 

dataset (for example, in medical applications not all interventions and 

treatments are recorded). A prediction based on only some causes may be 

useful – the missing causes simply add uncertainty – but understanding of the 

scope of the causes included is important to the correct application of the 

model. A purely data-driven approach does not resolve this problem; only an 

expert can detect if the data omits known causes of the outcome. If omitted 

causes can be identified, this information can be used either to improve the 

model or to clarify its scope and to assess its performance within the scope of 

the causes modelled. 

The main aim of our method (illustrated in the flow diagram in Figure 5.1) is to 

overcome these limitations. We show how to develop BNs that predict and reason 

with latent variables using a training dataset including measurements of these 

variables, but not including their true state. Domain expertise is used both at the start 

of the development to discover latent variables and then later to refine the model in a 

series of expert reviews; it is during these reviews that discrepancies between 

knowledge and data are revealed. Expert knowledge can be used in various degrees 

when deriving the structure of a BN (Korb and Nicholson, 2004a). In our method, 

the structure of the BN is developed with domain experts by using small BN 

fragments for commonly occurring reasoning types as building-blocks to form the 

complete BN structure (Neil et al., 2000). The advantage of experts deriving the 

model’s structure, rather than learning it from data, is to ensure causal coherence: 

latent variables influence measurements and decision variables influence outcomes. 

Hybrid approaches that combine expert knowledge and data can also be used at this 

stage for deriving the BN structure (Cano et al., 2011; Flores et al., 2011). Moreover, 

structure learning methods can be used as a complementary approach to evaluate and 

refine a BN structure developed by experts (Velikova et al., 2013). Of course, all 

causal assumptions need to be supported by the best available evidence, such as 

experimental results or expert consensus. Lack of knowledge of true causal 



74 

 

relationship is a problem and affects both expert and data-led modelling (aside from 

the limited capabilities of algorithms such as inductive causation (IC) (Pearl and 

Verma, 1991)) alike. Equally, not all causal relationships are uncertain: it is clear 

that an object’s temperature causes the thermometer reading rather than the other 

way around. 

 

Figure 5.1 Method for Learning BN with Latent Variables 

The next step is to label the latent variables in the training dataset, overcoming the 

problem that their values are unknown. The first label is derived from measurement 

data using deterministic (but not necessarily complete) rules defined by domain 

experts; the second uses data clustering. The experts’ rules can be of any form, but 

are typically derived from current practice. For example, if the related measurements 

are continuous, these rules are threshold values for the measurements.  For 

clustering, we use the standard Expectation-Maximisation (EM) for BNs with known 

structure (Lauritzen, 1995). EM is an iterative algorithm that is used for learning the 

parameters of a BN from a dataset with missing values. Each iteration of EM has two 

steps: the E-step completes the data by calculating the expected values of 

unobservable variables based on the current set of parameters; the M-step learns a 

new set of parameters from the maximum likelihood estimate of this completed data. 

When EM is used for parameter learning, the M-step of the final iteration calculates 

the BN parameters. When it is used for clustering, the unobserved variables are 
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labelled according to the values in the E-step of the final iteration. In our method, all 

of the values of the unobserved variable are missing from the dataset and we are 

using EM for clustering the unobserved values. Although EM can also be used for 

structure learning (Friedman, 1998, 1997) this is not required in our method as the 

BN structure is developed with domain experts. Extensions of EM that builds upon 

the information bottleneck (Elidan and Friedman, 2006), variational Bayesian 

(Attias, 1999) and hierarchical (Zhang, 2004) frameworks have been proposed for 

learning latent variables. Van Der Gaag et al. (2010) presents a similar approach to 

labelling with expert rules where they represent combinations of multiple 

observations with latent variables. 

We now have two labels for each latent variable: one from clinical measurements 

and the experts’ rules, the other from EM clustering. A final label is achieved by 

combining the two labels in cases where the labels are the same and by expert review 

of cases where there is a difference between the two labelling methods. We prepare a 

list of cases where the labels differ. Domain experts then decide the final label for 

each data record in this list. The experts can review other data including information 

that is not machine-readable and cite relevant research to support this decision. We 

also include a random subset of cases that were labelled consistently in the review to 

assess the experts’ consistency with the labelling by measurements and clustering 

approaches. This combination of expert review and data has a number of advantages. 

It allows for the possibility of errors in measurement, and it uses the experts 

efficiently. Expert review is a costly resource and using it for every single case in the 

data is usually not feasible, especially if the dataset is large. Therefore, our method 

aims to use it only for ambiguous cases, where the labels from measurements 

conflict with the results of the clustering on our data.  

After the expert review, we use the original dataset to which the latent variable labels 

have been added, to learn the BN’s parameters and to evaluate its performance. We 

again use the EM algorithm but this time to learn the parameters, since the dataset 

may still contain missing values of other variables for some patients. The second use 

of the EM algorithm in this step should not be confused with the previous use of the 

same EM algorithm to label latent variables in the step 2A (see Figure 5.1). Expert 

constraints (Helsper et al., 2005) in the form of parameter orders can also be used if 
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the available data is too small for learning a part of the parameters. We use k-fold 

cross-validation to evaluate the performance of the BN. In this approach, the data is 

divided into k equal sized groups. One of the k groups is used as test data while the 

remaining k-1 groups are used for training the BN. The learning and testing 

continues iteratively until the model is validated with all of the k groups. 

The inaccurate predictions of a predictive model offer useful lessons for improving 

the model and are the focus of the next stage of review. The BN modelling approach 

is well-suited for this kind of review since it concretely represents separate medical 

pathways leading to its predictions (Fenton and Neil, 2010; Lucas et al., 2004). 

When the BN model’s prediction in the cross-validation differs from the value 

recorded in the data, the domain experts investigate the reasons for this difference to 

look for potential improvements to the model or clarify its scope. The domain 

experts look at cases where the recorded values are what is expected in their 

experience even though it is different to what was predicted by the model. In some 

cases, the domain experts may agree with the prediction of the model, and they may 

consider the value recorded in the data as an error or simply as an unexpected 

outcome. For example, in a medical decision-support scenario, survival of a patient 

with a severe injury burden and high blood loss might be considered to be an 

unexpected outcome. The expert review can also clarify scope of the model: if the 

recorded outcome is explained by factors that have been excluded from the model 

then this should be made clear to the model’s users. For example, the experts might 

note that patient who unexpectedly survived did so as a result of a particular pre-

hospital treatment, and the model could not identify this as pre-hospital interventions 

were out of the scope of the model. Alternatively, additional latent variables and 

relations that are important for the predictions can be discovered and added to the 

model. Since the BN’s structure represents domain knowledge, any modifications 

must be supported by evidence. 

Differences between the available data and the target subpopulation of the BN must 

be examined as the knowledge from these two sources is combined in our method. 

Correlations, caused by these differences, must be analysed and modelled in the BN 

structure in order to avoid developing erroneous models (Druzdzel and Díez, 2003). 
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5.3 Case Study: Trauma Care 

We illustrate our methodology with the ATC BN which aims to provide decision 

support for the first outcome of the mangled extremity case study (see Section 4.1.2 

for a description of three main outcomes in the case study). The details of the case 

study and the development and validation datasets of the ATC BN are described in 

Chapter 4. In this section, we recap limitations of the data driven models. Next, we 

discuss the significance of ATC in trauma care and challenges of predicting ATC. 

The structure of the ATC BN is also presented in this section. 

5.3.1 Data-driven Models in Trauma Care 

Several data-driven prediction models have been developed for decision support in 

trauma care (see Section 4.2) but with little impact in clinical practice due to the 

limitations discussed in Section 5.2:  

1. Measurement errors: in the previous models to predict ATC, the presence of 

ATC is identified with a threshold value on a blood test called international 

normalised ratio (INR) (Mitra et al., 2011) despite the fact that this test has 

known limitations at identifying this condition. This approach has been 

criticised as it fails to produce useful clinical results (Brohi, 2011). 

2. Sub-optimal decisions: models that predict the decision values in data have 

been developed in other areas of trauma care. One example is decision 

support for injured extremities which encompasses knowledge of the 

presence of ATC. Several data-driven models have been developed to predict 

amputation decisions in this domain (see Section 4.2). Although some of 

these models have been used as research or evaluation tools, none of them 

have been recommended as a decision support tool in clinical practice (Bosse 

et al., 2001). The output of these models shows the percentage of clinicians 

that made amputation decision in similar circumstances. However, 

recommending an amputation without relating it with patient outcomes 

makes it difficult to assess the model or to understand its reasoning. 

Moreover, recent advances in trauma care may have made some of the 
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decisions in the training data inappropriate for current use.  A more useful 

prediction for the decision-maker would be to compare the function expected 

from a salvaged versus an amputated extremity, given the characteristics of 

the injury factors. 

3. Causes of outcomes: Variables about sensation in the foot has been included in 

previous trauma models as a predictor of amputation even though this variable 

is known to indicate temporary nerve problems, therefore not recommended as 

a decision factor (see Section 4.2.2). Yet, some clinically important factors, 

such as nerve recovery and causes of nerve dysfunction, were ignored in the 

data-driven models as the data were not available. Considering the irreversible 

outcomes of amputation decisions, all relevant factors should be examined. 

5.3.2 Acute Traumatic Coagulopathy 

Acute traumatic coagulopathy (ATC) is one of the most critical risks regarding 

patient physiology in early stages of trauma care. Up to a quarter of trauma patients 

develop ATC soon after their injury. These patients have a considerably higher risk 

of bleeding and death since the body’s protective mechanisms to limit bleeding are 

deranged. Several effective treatment options are available if ATC can be identified 

early. Immediate treatment is most effective however; standard laboratory tests to 

identify ATC take over an hour to produce results. The primary aim of the BN model 

is therefore to predict ATC with the information normally available within the first 

10 minutes of care. It should be noted that the variables included in the BN are not 

limited to the ones that are available in the first 10 minutes; the predictions of the BN 

are generated by instantiating only those variables that can be observed in 10 

minutes of care. The methodology we have described is relevant to this problem: the 

values of both ATC and of its causal factors are measured but none of the 

measurements are perfectly accurate. 

5.3.3 ATC Bayesian Network 

The initial structure of the BN, shown in Figure 5.2, was developed with domain 

experts using the AgenaRisk software (Agena Ltd, 2013). The BN structure contains 

two latent variables: ATC and Hypoperfusion. In addition, several other variables are 
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available in the training dataset but are usually unobserved in the first 10 minutes of 

treatment when the model is designed to be used. Each of these unobserved and 

latent variables is modelled with their measurements as naïve BN fragments or 

‘measurement idioms’ (Neil et al., 2000). These naïve BN fragments were used as 

building blocks to form the BN structure, connected using causal relations elicited 

from experts. Table 5.1 shows the variables modelled with measurement idioms. 

 

Figure 5.2 ATC BN 

Table 5.1 Measurement Idioms in the ATC BN 

Latent Variables Measurements / Markers 

ATC ROTEMA5*, ROTEMA30*, INR*, PTR*, APTTR*  

Hypoperfusion Lactate, BE*, pH, SBP*, HR* 

Variables Unobserved at 

First 10 Minutes 
Measurements / Markers 

Chest Injury Haemothorax (HT) 

Abdomen Injury FAST* Scan 

Pelvic Injury Long Bone Injury (LB), Unstable Pelvis (UP) 

Head Injury Glasgow Coma Score (GCS) 

*APTTR: Active partial thromboplastin time ratio, BE: Base excess, FAST: Focused assessment 
with sonography for trauma HR: Heart rate, INR: International normalised ratio, PTR: 

Prothrombin ratio, ROTEMA5 and A30: Amplitude of rotational thromboelastometry extem test 

at 5th and 30th minute, SBP: Systolic blood pressure 

The model is divided into four components, corresponding to the four boxes shown 

in Figure 5.2. The remainder of this section explains the variables and relations in 

each of these components briefly: 
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 Coagulopathy: the ATC variable has two states: ‘Present’ and ‘Absent’, and 

it can be estimated from 5 measurements. None of these measurements are 

available within the first 10 minutes but the variables are useful for model 

development. The main drivers of ATC are the degree of tissue injury and 

hypoperfusion. This may be aggravated by the infusion of large volumes of 

fluid (PreHosp). 

 Shock: The hypoperfusion variable represents inadequate oxygen delivery to 

tissues as a result of blood loss, and it has three states: ‘None’, Compensated’ 

and ‘Uncompensated’.  It can be estimated by 5 measurements: base excess 

(BE), lactate, pH, systolic blood pressure (SBP) and heart rate (HR). BE, 

lactate and pH are all relevant to the acidity of blood and they can be 

measured by a single, point-of-care, blood gas test. Blood gas test results are 

available within a few minutes. SBP and HR are continuously measured after 

admission to the hospital.  

 Injury: The degree of overall tissue injury may not be known at the early 

stages of care. Overall tissue injury is estimated from the mechanism and 

energy of injury, and the number of severely injured body regions in the BN. 

Injury in each body part is estimated by mechanism and energy of injury, and 

also by clinical or radiological markers that would be expected to be 

available within 10 minutes of care: haemothorax (HT), FAST scan, long 

bone injuries (LB), unstable pelvic fracture (UP) and Glasgow coma score 

(GCS). 

 Death: The model predicts death caused by physiological derangements, i.e. 

ATC and hypoperfusion. Age is an established independent predictor of 

death and has important effects on the physiological response to injury. Head 

injury is also a major cause of trauma deaths and thus the BN is refined to 

predict this (see Section 5.2.2).   

Table 5.2 shows a brief description and the state-space of each variable in the ATC 

BN. The training and validation datasets of the ATC BN are described in Section 

4.3.1. 
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Table 5.2 Variable Definitions and States in ATC BN  

Variable Description States 

ATC* Acute Traumatic Coagulopathy {Present, Absent} 

ROTEM A30 Amplitude of ROTEM 

EXTEM at 30th minute 

Continuous 

ROTEM A5 Amplitude of ROTEM 

EXTEM at 5th minute 

Continuous 

INR International normalised ratio Continuous 

PTR Prothrombin ratio Continuous 

APTTr Activated Partial 

Thromboplastin time 

Continuous 

PreHosp Amount of liquids infused 

before admission to hospital. 

{≥ 500ml, <500ml} 

Hypoperfusion* Decrease in the volume of 

blood perfusion to tissues. 

{Uncompensated, Compensated, 

None} 

BE Base excess in blood Continuous 

pH pH of blood Continuous 

Lactate Amount of lactate in blood Continuous 

HR Heart Rate Continuous 

SBP Systolic Blood Pressure Continuous 

Bleeding Parts Number of bleeding main body 

parts 

{0, 1, 2, 3, 4} 

Death Risk of death in 48 hours {Yes, No} 

Age Patient’s age {≥ 65, <65} 

Tissue Injury Severity of the overall tissue 

injury defined by injury 

severity score (ISS) 

{Profound (ISS ≥ 45), Severe (45 > 

ISS ≥ 30), Moderate (30 > ISS ≥ 15), 

Mild (ISS < 15)} 

Injured Parts Number of severely injured 

main body parts 

{0, 1, 2, 3, 4} 

Chest Severe chest injury {Present (AIS ≥ 3), Absent (AIS < 

3)} 

Abdomen Severe abdomen injury  {Present (AIS ≥ 3), Absent (AIS < 

3)} 

Pelvis & 

Extremity 

Severe pelvis and extremity 

injury 

{Present (AIS ≥ 3), Absent (AIS < 

3)} 

Head Severe head injury {Present (AIS ≥ 3), Absent (AIS < 

3)} 

Energy Energy of Injury. {Low, High} 

Mechanism Mechanism of Injury {Penetrating, Blunt} 

HT Haemothorax {Present, Absent} 

UP Unstable pelvis {Present, Absent} 

LB Long bone injury {Present, Absent} 

GCS Glasgow coma scale Integer between [3,15] 

FAST FAST scan result {Positive, Negative} 

*ATC and Hypoperfusion variables were not available in the datasets. 
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5.3.4 Issues with ATC Measurements 

The true state of ATC, which is the main outcome of our model and a crucial factor 

in trauma care, cannot be directly observed in practice, even after all the laboratory 

measurements have been completed. The ATC state is estimated using laboratory 

measurements such as the clotting time of a blood sample. However, none of these 

measurements can estimate the underlying ATC state with complete certainty. One 

measurement is the INR which is the normalised ratio of the clotting time of a 

patient’s blood plasma to the clotting time of a healthy person. INR, and its clinically 

interchangeable measure prothrombin ratio (PTR), are the clinically accepted 

standard for diagnosing ATC (Frith et al., 2010). A normal INR value is 1, meaning 

that a patient has the same clotting time as a healthy person, and higher INR values 

indicate coagulation problems. However, there is not a clear borderline to distinguish 

normal coagulation from coagulopathy. Given that the actual mechanism of 

coagulation is complex and incompletely understood, INR and similar measurements 

have limitations that lead to uncertainty in the diagnosis of coagulopathy: 

1. INR only tests blood plasma, disregarding other components essential to 

clotting such as the contribution made by platelets and the blood vessel wall. 

2. INR does not measure the strength of a formed clot, the primary abnormality 

in ATC. It only measures the time it takes to form a clot. 

3. INR is designed to monitor the effects of the drug Warfarin; it is not 

specifically designed for trauma. 

Developing and validating a model that predicts INR values is convenient, but 

predicting INR is quite different from predicting the underlying coagulopathy state. 

For example, Mitra et al. (2011) used an INR of 1.5 as a threshold value for 

classifying ATC. However, a patient with an INR of 1.3 may have serious 

coagulation problems. 

Consequently, the true underlying coagulopathic state of some patients cannot be 

known with certainty until a completely accurate way of measuring coagulopathy is 

discovered. Until then, clinicians will continue to estimate coagulopathy using their 

clinical judgement together with available measurements and observations. These 
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clinical judgements are not recorded in the hospital database. Only the data about 

INR and similar measurements are recorded in the dataset. The situation is similar 

for ‘Hypoperfusion’ which is the other latent variable in our model. 

5.4 Learning 

5.4.1 Initial Labelling with Expert Thresholds and 

Clustering 

The latent variables were labelled twice using two different methods: first using 

measurement thresholds that reflect current clinical understanding (Brohi et al., 

2003; Davenport et al., 2011; Frith et al., 2010), and then by clustering using the EM 

algorithm (2A and 2B of Figure 5.1). The thresholds used for labelling the ATC and 

Hypoperfusion variables are shown in Table 5.3. As a result of missing data, a 

number of patients could not be labelled. The labelling criteria for Hypoperfusion 

(see Table 5.3) are not complete so this state could not be labelled for several 

patients.  Clustering was performed using the EM algorithm on the BN structure 

shown in Figure 5.2. EM uses all of the observed values and the BN structure to 

classify the data into coherent groups based on the maximum likelihood estimate of 

the latent variables. We used EM to classify the data into two coherent ATC states 

and three coherent hypoperfusion states. 

Table 5.3 Criteria for Labelling ATC and Hypoperfusion from Measurements in Data 

ATC 

No Yes 

INR≤ 1.2 INR> 1.2 

Hypoperfusion 

None Compensated Uncompensated 

BE≥-2 & Lactate≤2 & 

SI<0.9 

SBP<90 & BT>4 BE<-4 & Lactate>4 & 

BT>0 

Alive & BT in 12 Hours=0 -4≤ BE<-2 & 2<Lactate≤4 & 

BT>0 

Pre-hospital cardiac arrest 

Died in > 48 hours & 
BT=0 

 Death from haemorrhage 

BT= Blood Transfusion in 12 Hours, SI = Shock Index, BE= Base Excess, SBP= Systolic 

Blood Pressure 
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5.4.2 Expert Review of the Labelling Differences 

We compared the labels given by the measurement threshold and clustering 

approaches and prepared a list of the patients with differing labels, no label and a 

random subset of other cases. Three domain experts independently reviewed these 

cases and provided an expert label. All clinical information was available to the 

experts to assist labelling. The experts were blind to the labels assigned by the 

measurement threshold and EM clustering methods. The consensus between the 

experts’ labels was assigned as the final label. Table 5.4 shows the number of cases 

reviewed for the two latent variables. 

Table 5.4 Number of Cases Reviewed by Domain Expert 

Hypoperfusion ATC 

Label Differs No Label Label Same Label Differs No Label Label Same 

114 57 17 27 10 17 

Total: 188 Total: 54 

This method required the domain experts to review 188 (31%) and 54 (9%) of the 

600 cases respectively to label the hypoperfusion and ATC categories. Table 5.5 and 

Table 5.6 show the number of measurement threshold labels changed after the 

review: for example Table 5.5 shows that 6 patients classified as coagulopathic on 

the basis of the INR threshold were re-classified to non-coagulopathic by the expert 

review. At the end of this step, each latent variable had a single set of labels that 

were obtained from the combination of measurement threshold and clustering 

approaches, and the expert review of the differing labels. 

Table 5.5 Measurement Threshold ATC Labels Changed by Expert 

ATC Label Review -  Measurements 

 After Review 

Measurements Yes No Unlabelled 

Yes 57 6 - 

No 3 524 - 

Unlabelled 1 5 4 

Total: 600 
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Table 5.6 Measurement Threshold Hypoperfusion Labels Changed by Expert 

Hypoperfusion Label Review – Measurements 

 After Review 

Measurements Uncomp. Comp. None Unlabelled 

Uncomp. 62 9 4 - 

Comp. 1 52 5 - 

None 1 6 403 - 

Unlabelled - 17 35 5 

Total: 600 

5.4.3 Learning and Cross-Validation 

The result of the expert review (step 3 of Figure 5.1) is a dataset now including 

values for the latent variables for almost all patients. The ATC value of 4 patients 

and Hypoperfusion value of 5 patients remained unlabelled after the expert review 

because the expert was not confident about the correct value. We used the standard 

EM algorithm to learn the parameters of the model. The performance of the model 

trained on the RLH data was tested by 10-fold cross validation. Only the variables 

that can be observed in the first 10 minutes of treatment are instantiated for 

generating the predictions in 10-fold cross validation. 

Performance of a model can be measured in terms of its discrimination, calibration 

and accuracy. Discrimination measures whether the model can distinguish the 

patients with the event. A model that has well discriminatory performance gives 

higher probabilities to the patients with the event, and lower probabilities to the 

patients without the event. Calibration measures whether the predicted probability 

represents the correct probability on average. For example, when a model predicts 

10% chance of survival for a group of patients, 10% of these patients are expected to 

survive if the model is well calibrated. Accuracy measures whether the predicted 

outcomes are close to the actual outcomes by combining features of discrimination 

and calibration. Medlock et al. (Medlock et al., 2011) recommends using multiple 

performance measures to quantify different aspects of the model performance. 

We used multiple performance measures to assess the discrimination, accuracy and 

calibration of the ATC BN as recommended by the Medlock framework (Medlock et 

al., 2011). The discrimination of the ATC BN was evaluated with receiver operating 

characteristic (ROC) curves, sensitivity and specificity values. The area under the 
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ROC curve (AUROC) is 0.90 and 0.81 for the prediction of ATC and death 

respectively. Brohi (2011) argues that a useful prediction model for coagulopathy 

must operate with at least 90% sensitivity: the BN achieves specificities of 71% for 

ATC and 44% for death when operating with 90% sensitivity. The initial 

performance of the model on the cross-validation dataset can be seen in Table 5.7. 

Table 5.7 Initial Cross Validation Results 

 ATC Death 

AUROC 0.90 0.81 

Specificity* 71% 44% 

Specificity** 83% 67% 

Brier Score 0.06 0.09 

Brier Skill Score 0.32 0.15 

*At 0.90 sensitivity **At 0.80 Sensitivity 

The accuracy of the BN was evaluated with the Brier score (BS) and Brier skill score 

(BSS) (Brier, 1950; Weigel et al., 2007). BS is the mean squared difference between 

the predicted probability and actual outcome. The score can take values between 0 

and 1; 0 indicates a perfect model and 1 is the worst score achievable. BSS measures 

the improvement of the model’s prediction relative to a reference prediction which is 

often the average probability of the event in the data. BSS can take values between 

negative infinity and 1; a negative value indicates a worse prediction than the 

average probability and 1 indicates a perfect model. The BN has BS of 0.06 and BSS 

of 0.32 for ATC predictions, BS of 0.09 and BSS of 0.15 for death predictions. 

The calibration of the BN was assessed with the Hosmer-Lemeshow test (Hosmer 

and Lemeshow, 1980). This test divides the data into 10 subgroups, and calculates a 

chi-square statistic comparing the observed outcomes to the outcomes expected by 

the model in each subgroup. Low p-values indicate a lack of calibration. Hosmer-

Lemeshow test is strongly influenced by the sample size. In large datasets, small 

differences between the expected and observed outcomes can lead to low p-values 

but the visual representation of this test provides a concise summary of the model 

calibration. 

The BN was well calibrated for both ATC and death predictions with Hosmer-

Lemeshow statistics of 9.7 (p=0.29) and 6.7 (p=0.57) respectively. Figure 5.3 is a 

visual representation of the model’s calibration for ATC predictions. The similarity 
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between the expected and true outcomes in each subgroup shows that the model was 

well calibrated. 

 

Figure 5.3 Model Calibrations for ATC Predictions 

5.4.4 Inaccurate Predictions and Unexpected Clinical 

Outcomes 

After the learning and cross-validation steps, we reviewed the inaccurate predictions 

of the model with the domain experts (step 5 of Figure 5.1). We divided the 

predictions, given by cross validation of the model, into ten bins according to the 

predicted probability, and prepared a contingency table that compares the predictions 

of the model to the outcome values in data for each bin as shown in Table 5.8. 

Table 5.8 Predictions and Recorded Outcomes 

ATC 

Prediction 

Outcome in Data 

P ATC=Yes ATC=No 

1.0 > P ≥ 0.9 0 0 

0.9 > P ≥ 0.8 1 1 
0.8 > P ≥ 0.7 5 1 
0.7 > P ≥ 0.6 15 5 
0.6 > P ≥ 0.5 7 8 
0.5 > P ≥ 0.4 7 8 
0.4 > P ≥ 0.3 1 8 
0.3 > P ≥ 0.2 7 25 
0.2 > P ≥ 0.1 6 40 
0.1 > P ≥ 0.0 12 440 

Total 61 535 

The negative outcomes with ATC prediction over 0.1, and the positive outcomes 

with ATC prediction less than 0.1 (shown in bold in Table 5.8) were considered as 

the possibly inaccurate predictions since 10% of the patients were initially labelled 

with ATC and thus 0.1 was our prior probability. A clinician reviewed the data and 
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patient notes for each of these 108 cases and analysed the possible causes of each 

unexpected prediction: 

a. Expert agrees with the prediction: The actual outcome is unexpected, 

possibly requiring further clinical investigation. Another possible 

explanation is incorrectly recorded data.  

b. Expert expects the recorded outcome: The model was considered to be 

making inaccurate predictions for these cases.  The clinician decided that 

the outcome value in the data is clinically expected and analysed the 

causes of the inaccurate predictions. These inaccuracies could be caused 

by an error in the model structure.  

Table 5.9 gives a summary of this review: the domain experts agreed with about a 

third of the apparently inaccurate predictions. During the review, domain experts 

explained why they agreed with the individual predictions or recorded outcomes 

which led to a number of refinements to the model and to the clinicians’ 

understanding of the data. Death predictions were also reviewed by the same 

approach. We describe these issues and the way the model was refined in the 

following section. 

Table 5.9 Inaccurate Predictions and Expert Review 

ATC 

Prediction P 
Prediction 

differs from the 

recorded 

outcome 

Expert agrees 

with the 

prediction 

0.9 > P  ≥ 0.8 1 0 (0%) 

0.8 > P  ≥ 0.7 1 1 (100%) 

0.7 > P  ≥ 0.6 5 5 (100%) 

0.6 > P  ≥ 0.5 8 4 (50%) 

0.5 > P  ≥ 0.4 8 5 (63%) 

0.4 > P  ≥ 0.3 8 6 (75%) 

0.3 > P  ≥ 0.2 25 8 (32%) 

0.2 > P  ≥ 0.1 40 6 (15%) 

0.1 > P  ≥ 0.0 12 2 (17%) 
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5.5 Model Refinement 

Three issues were found from the review of inaccurate predictions: 

1. ATC may develop in some patients soon after the blood test used for INR 

and other measurements was taken. 

2. Some of the deaths recorded in the dataset were most likely due to conditions 

other than ATC. 

3. There are mechanisms of coagulopathy other than ATC that may be 

occurring in patients in the dataset. 

These issues all challenge the supposed objectivity of data and reinforce the need to 

combine data with expert review. The following sections describe these issues in 

more detail.  

5.5.1 Incipient Coagulopathy 

A group of patients who had normal values for their initial ATC measurements (see 

Table 5.1) showed significant signs of ATC in a second set of measurements that 

were conducted soon after. Moreover, these patients had severe injury burden and 

poor perfusion; they were therefore at high clinical risk of developing ATC. The 

ATC model predicts high risk of coagulopathy for these patients but the value in the 

data is negative since only the initial measurements were considered while labelling 

the ATC state of patients with measurement thresholds and clustering approaches. 

Coagulopathy is a dynamic phenomenon that develops in time, so the results of 

measurements are dependent on the time they are carried out. Variations in the 

interval between the injury and the arrival at the hospital add further uncertainty. 

Therefore, the domain experts considered the prediction of those patients with 

‘incipient coagulopathy’ as a clinically useful feature of the BN. 
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Figure 5.4 Predictions with Incipient Coagulopathy 

We relearnt the ATC BN and recalculated its performance in a cross validation when 

patients with incipient ATC were also considered as positive outcomes. The structure 

of the ATC BN was not changed in this analysis. Figure 5.4 compares the ROC 

curves for ATC prediction based on only the initial measurements with the one for 

patients with incipient ATC. The AUROC is 0.92, and the model achieves specificity 

of 79% with sensitivity of 90%, BS of 0.06 and BSS of 0.39. 

Prediction of incipient coagulopathy shows the difference between the clinically 

useful models and the models that predict measurements in data well. The patients 

with incipient coagulopathy would count as incorrect predictions for a purely data-

based approach, and such an approach would try to change the parameters to 

‘correct’ these predictions. In contrast, the expert was able to explain the apparent 

anomaly and show that predicting incipient coagulopathy was useful; this was not 

obvious at the beginning of the model development. 

5.5.2 Other Causes of Death 

The review revealed that a large proportion of deaths that could not be predicted by 

the BN were the result of head injuries and thus these deaths were expected by the 

domain experts. The ATC model is designed to predict risk of death relevant to 

bleeding and coagulopathy, so the initial model does not predict deaths related to 

head injuries. However, the model structure is easily modified to predict these deaths 

since we already have a head injury variable in the model which is used to estimate 
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the overall tissue injury burden of patients. By adding an arc between head injury 

and death variable, we increase the accuracy of the model for death prediction. 

Although death might be considered to be the least ambiguous outcome in a clinical 

dataset, our experience shows that this is not the case when there is a mismatch 

between the modelled and actual cause of death. 

This simple modification increased the accuracy of death predictions significantly. 

The AUROC increased from 0.81 to 0.88 as shown in Figure 5.5. The specificity of 

the BN is increased from 44% to 72% when it is operated at 90% sensitivity level. 

BS and BSS also indicated an increased accuracy in the death predictions: BS of the 

BN decreased from 0.09 to 0.08; and BSS increased from 0.15 to 0.23. This change 

had no impact on ATC prediction. 

 

Figure 5.5 Predictions with Head Injury Modification 

5.5.3 Unmodelled Mechanisms of Coagulopathy 

The aim of this BN is to predict ATC, which is driven by a combination of the 

degree of tissue injury and hypoperfusion following traumatic injuries. The scope of 

the model has to be clearly defined since other forms of coagulopathy exist. For 

example, the anticoagulation medicine Warfarin makes a person coagulopathic 

without any traumatic injury, and predicting drug induced coagulopathy is out of 

scope for this model. 
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Another important cause of traumatic coagulopathy is a catastrophic brain injury. 

These injuries seem to effect coagulation via a different mechanism to ATC.  The 

review of unexpected predictions showed that 9 of the 12 coagulopathic patients that 

the BN model could not accurately predict had severe head injuries, and in 7 of these 

patients brain injury was fatal. It is likely that these patients were suffering from a 

coagulopathy caused by brain injury (BIC) rather than ATC. 

BIC is now documented as being outside the scope of our BN. This issue was not 

clear at the beginning of the model development even though the clinicians were 

aware of the phenomenon; it was identified as a result of the review of inaccurate 

predictions with the domain expert. If prediction of the BIC is required by the users, 

the model structure can be adapted accordingly by adding two variables ‘BIC’ and 

‘Coagulopathy’ as shown in Figure 5.6. In this model fragment, ‘Coagulopathy’ 

variable represents the overall coagulopathy risk that sums the risk of ‘BIC’ and 

‘ATC’ variables. 

 

Figure 5.6 BN Structure Refined for Brain Injury Induced Coagulopathy 

5.6 Temporal and External Validation 

Further validation of the model, with the head injury and incipient coagulopathy 

modifications, was done on the test and external datasets (see Section 4.3.1 for a 

description of these datasets). These datasets are composed of exactly the same 

variables as the training dataset as all datasets were collected as a part of an 

international collaboration. The ATC states in the test and external datasets were 

labelled using the methodology described in Section 5.2. 
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A temporal validation of the ATC BN was done using the test dataset. In the 

temporal validation, the AUROC is 0.94 for the ATC predictions, and 0.92 for the 

death predictions. At 90% sensitivity level, the BN achieves 92% specificity for 

predicting ATC, and 79% specificity for predicting death (see Table 5.10). The ATC 

BN was well calibrated for both ATC and Death predictions at the temporal 

validation (see Figure 5.7a and Figure 5.7b) 

 

Figure 5.7 Calibration of a) ATC b) Death predictions at Temporal Validation 

An external validation of the ATC BN was done using the external dataset. In the 

external validation, the AUROC is 0.90 for ATC predictions, and 0.91 for death 

predictions. The BN achieves 88% specificity and 90% sensitivity for ATC 

predictions; 84% specificity and 90% sensitivity for death predictions (see Table 

5.10). The calibration for ATC and Death predictions on the external data is shown 

in Figure 5.8a and Figure 5.8b respectively. The model was well calibrated for ATC 

predictions. For death predictions, the discrimination of the model was accurate but 

there were more deaths in the external data than it was expected by the model. A part 

of these deaths were caused by factors such as neck and chest injuries which are 

outside the scope of the ATC BN. 

Table 5.10 Temporal and External Validation Results 

 Temporal Validation External Validation 

 ATC Death ATC Death 

AUROC 0.94 0.92 0.91 0.90 

Specificity* 92% 79% 88% 81% 

Specificity** 94% 87% 90% 84% 

Brier Score 0.05 0.06 0.07 0.10 

Brier Skill Score 0.48 0.30 0.27 0.30 

*At 0.90 sensitivity **At 0.80 Sensitivity 
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Figure 5.8 Calibration of a) ATC b) Death predictions at External Validation 

5.7 Conclusion 

This chapter proposed a method for developing and refining BNs with latent clinical 

conditions, using a combination of expert knowledge and data. The method is 

successfully applied to a clinical case study about the prediction of ATC in trauma 

care. Our method addresses the problems related to measurement errors and causes 

of outcomes by: 

1. Making a clear distinction between a latent variable that we wish to predict 

for decision support and any measurements of this variable that may be 

recorded in a dataset; both latent and observed variables are represented 

explicitly in the BN model. 

2. Using iterative expert review of the model to refine the model and to 

understand the relationship between the data and the real decision problem. 

Our methodology systematically integrated domain expertise into model 

development at two stages. Firstly, the ‘true’ but unobserved state was added to a 

dataset by combining labelling by observed measurements with data clustering in an 

expert-elicited BN structure. Focussing the detailed expert review on the cases 

labelled differently in these two steps saves time compared to a review of all cases. 

Secondly, the experts examined differences between the model’s predictions and the 

data. 

In our case study, this examination revealed several issues initially neglected by our 

experts and emphasised the difference between useful predictions for the decision-

maker and an accurate prediction of measurements in data. Other latent and observed 
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causes of predicted outcomes, which were not clear at the beginning, were modelled 

during the review. These issues were resolved either by refining the model or by 

acknowledging the scope of its applicability, which were not obvious at the initial 

stages of model development. 

The case study demonstrates significant improvements in predictions from the 

iterative expert reviews and refinements. Identifying and including the other causes 

of death increased the specificity for death predictions from 44% to 72% when the 

model is operated at 90% sensitivity. Similarly, identifying the clinically important 

patient subgroup with incipient coagulopathy increased the specificity for ATC 

predictions from 72% to 79% at 90% sensitivity. The ATC BN performed well in the 

temporal and external validations. 
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Building Bayesian Networks 

using the Evidence from  

Meta-analyses 

Meta-analysis is an important statistical tool for EBM as it combines evidence from 

multiple studies to infer the overall effect and variation. By combining the results 

from individual datasets, meta-analysis can provide evidence based on a larger 

number of patients compared to the size of the individual datasets. This is beneficial 

especially for uncommon medical conditions, such as mangled extremities, where 

data is typically available in small amounts. Chapter 4 illustrated the need for 

combining evidence from different sources to develop useful decision support 

models in this domain. 

However, many medical studies report ‘univariate’ relations between a single factor 

and a single outcome. RCTs, for example, analyse the effect of a single treatment by 

using randomisation to decrease the confounding effect of other variables. Similarly, 

many observational studies report the relation between individual risk factors and 

outcomes even when the dataset contains information about multiple factors. 

Moreover, medical studies rarely present their raw data (Vickers, 2006).  

Meta-analysis can effectively combine evidence about univariate relations but 

decision support from such evidence is limited in most circumstances. Clinical 

decisions are often complex (Buchan et al., 2009). They require decision maker to 

evaluate multiple factors that may interact with each other. For example, separate 

meta-analyses can be conducted to combine the evidence about the individual effect 
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of a treatment and a comorbidity factor. However, if the treatment and comorbidity 

factor interacts with each other, their joint effect may be completely different from 

their individual effects. In this case, decision support provided by the meta-analysis 

of individual effects may be invalid for a patient who is exposed both to the 

treatment and the comorbidity factor (see Marshall  (2006) and Rawlins (2008) for a 

discussion of generalisation of clinical evidence). More useful decision support can 

be provided by combining the evidence about all plausible causes and interaction 

effects. Statistical techniques, such as multivariate meta-regression, are available for 

combining evidence about multivariate relations, but clinical studies rarely publishes 

information detailed enough to use for these techniques (Vickers, 2006).  

In this chapter, we present a methodology for building decision support models that 

reason consistent with the best available evidence and accounts for the complexity of 

clinical decisions. Our methodology aims to build BNs based on the evidence from 

meta-analysis, expert knowledge and data. As discussed in Chapters 2, 3 and 5, BNs 

offer a powerful framework for providing decision support by combining different 

sources of evidence. However, a systematic methodology to build a BN by using 

meta-analysis results has not been proposed. Our methodology combines the 

evidence from meta-analysis with expert knowledge and data to define the structure 

and parameters of a BN. Our methodology uses auxiliary BNs to learn the 

parameters of the BN used for decision support. We apply this methodology to 

develop a BN that predicts the short-term viability outcomes of lower extremities 

with vascular trauma. 

In the remainder of this chapter, Section 6.1 summarises the meta-analysis 

techniques. Section 6.2 describes our methodology for defining BN structure and 

parameters based on the results of a meta-analysis. Section 6.3 and 6.4 present the 

application and results of this method for the case-study, and Section 6.5 presents the 

conclusions. 
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6.1 Meta-analysis 

Meta-analysis is a statistical method for combining evidence from different RCTs or 

observational studies. It is often used as a part of systematic literature reviews to 

combine the statistics from reviewed studies. 

A RCT or an observational study may compare the outcome of patients who were 

exposed to a treatment or a risk factor against those who were not exposed to this 

factor. For example, a researcher, who aims to investigate the effects of bone 

fractures to the outcomes of lower extremity surgery, examines the fractured lower 

extremities 𝑁𝑃 in the data. He records the number of fractured extremities that had a 

successful operation 𝑆𝑃, and the number of extremities that had a failed operation 𝐹𝑃. 

Afterwards, he examines the lower extremities that were not fractured 𝑁𝐴, and 

records the number of successful 𝑆𝐴 and failed outcomes 𝐹𝐴 among these extremities 

(see Table 6.1). 

Table 6.1 Numbers Presented in the Example about Mangled Extremity 

 Success Fail Total 

Fracture - Present 𝑆𝑃  𝐹𝑃 𝑁𝑃 =  𝑆𝑃 + 𝐹𝑃 

Fracture - Absent 𝑆𝐴 𝐹𝐴 𝑁𝐴 = 𝑆𝐴 +  𝐹𝐴 

The results of this study can be presented in several ways including counts, 

conditional probabilities and odds ratios. Perhaps the crudest way is to present the 

counts. The counts must be transformed into conditional probabilities or other forms 

of ratios in order to compare and combine results from multiple studies. The results 

can be presented by two conditional probabilities: the probability of a successful 

outcome given a fractured lower extremity 𝑃(𝑆|𝑃) = 𝑆𝑃/ 𝑁𝑃 and the probability of a 

successful outcome given a non-fractured lower extremity 𝑃(𝑆|𝐴) = 𝑆𝐴/𝑁𝐴. Rather 

than presenting two conditional probabilities, the effect of a bone fracture can also be 

summarised as a single odds ratio. The odds ratio can be calculated by dividing the 

odds of having a successful outcome with a fractured extremity by the odds of 

having the same outcome with a non-fractured extremity: 

𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝑆𝑃/𝐹𝑃

𝑆𝐴/𝐹𝐴
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Meta-analysis can be used to combine various statistics including conditional 

probabilities and odds ratios. Since BN parameters are composed of conditional 

probabilities, we focus on the meta-analysis of conditional probabilities in the 

remainder of this chapter.  

6.1.1 Fixed and Random Effects Meta-analysis 

Evidence can be combined based on either a fixed effect or a random effects model 

in a meta-analysis. The fixed effect model assumes that all of the individual studies 

in the analysis share the same true effect and that there is no variation between the 

studies (see Figure 6.1a). Therefore, the individual studies are expected to be centred 

on the true effect value, and the only source of variation is dependent on the sample 

size of the studies. However, it is often implausible to assume, especially for 

observational studies, that a single effect is common to all studies. The random 

effects model assumes that several known or unknown factors may cause variations 

(heterogeneity) in the true effect size between the studies. The random-effects model 

accounts for variation between the studies as well as variation within the studies (see 

Figure 6.1b).  

 

Figure 6.1 Illustration of a) Fixed Effects b) Random Effects Models in Meta-analysis 

The assumptions behind the fixed effects model are not realistic in most real-world 

cases. Observational studies, for example, are likely to be heterogeneous. Besides, 

large observational studies are not necessarily preferable to smaller ones as their data 

may contain less detail and more errors (Egger et al., 2001). In the fixed effect 

model, the contribution of each study to the pooled estimate is weighted by their 

sample sizes: the studies with larger sample size accounts for most of the combined 



100 

 

evidence whereas small studies may practically have no effect. The random-effects 

meta-analysis is more conservative in allocating weight to sample sizes as it also 

takes heterogeneity into account. 

6.1.2 Bayesian meta-analysis 

Meta-analysis can be conducted using either a frequentist or a Bayesian approach. 

Computation of the frequentist approach is simpler and readily implemented in 

popular statistical software such as SPSS and R. The Bayesian approach has several 

advantages over the frequentist approach including the following (Sutton and 

Abrams, 2001): 

1. It offers a unified modelling framework to model the variation between and 

within the studies. 

2. The results of the meta-analysis can be presented in a predictive distribution 

that takes both heterogeneity and the uncertainty of the pooled estimate into 

account. 

3. Individual study effects do not necessarily follow the normal distribution in 

Bayesian meta-analysis models. 

4. Prior information can be included into the analysis. Priors must be chosen 

with care: it is often useful to conduct a sensitivity analysis for different prior 

alternatives. 

6.1.3 A Bayesian meta-analysis model for combining 

probabilities 

Conditional probabilities from multiple studies can be combined using the Bayesian 

meta-analysis model shown in Figure 6..  This model takes the variation between the 

studies into account, and it does not assume normality for the distribution of 

individual studies.  

The binomial distribution is the probability distribution of the number of positive 

outcomes in 𝑛 independent experiments where the probability of a positive outcome 

is 𝑝 for every experiment. In this model, the result of each individual study 𝑖 is 

modelled with the binomial distribution: 
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𝑟𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖 , 𝑛𝑖) 

Where 𝑟𝑖 is the number of positive outcomes observed in the study 𝑖, 𝑝𝑖 is the true 

study probability of the study 𝑖, and 𝑛𝑖 is the sample size of the study 𝑖. 

When combining estimates from different studies, a transformation can be used to model 

the pooled estimates with the normal distribution. For probability values, the logit 

transformation can be used for this purpose. The normal distribution is convenient for 

modelling the pooled estimate and variation between studies. In our model, the logit 

transformation of the true study probability 𝑝𝑖 follows the normal distribution. The 

mean 𝜇 of this distribution represents the transformed pooled estimate, and the 

variance 𝜏2 represents the variation between studies. 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝜃𝑖  

𝜃𝑖 ~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜏2) 

The predictive distribution of the conditional probability for a future study can also 

be calculated by a logit transformation. 

𝜃𝑛𝑒𝑤~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜏2) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛𝑒𝑤) = 𝜃𝑛𝑒𝑤 

Finally, priors need to be chosen for the mean and variance of the normal 

distribution. The ignorant priors shown below can be used if informative priors are 

not available. 

𝜇~𝑁𝑜𝑟𝑚𝑎𝑙(0,1000) 

𝜏~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,2) 

In order to calculate the posteriors of 𝜇, 𝜏2 and 𝑝𝑛𝑒𝑤, we enter the observed number 

of positive outcomes 𝑟𝑖 and sample sizes 𝑛𝑖 from each reviewed study. The 

posteriors can be calculated by using the dynamic discretisation algorithm (Neil et 

al., 2007) in the AgenaRisk software (Agena Ltd, 2013) or the Markov Chain Monte 

Carlo (MCMC) sampling technique in the OpenBUGS software (Lunn et al., 2009). 
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Figure 6.2 Bayesian Meta-analysis model for pooling proportions 

6.2 Building BNs based on Meta-analysis 

Previous section described a Bayesian meta-analysis technique for pooling 

proportions. In this section, we present a methodology that uses the evidence from a 

meta-analysis of proportions to define the structure and parameters of a BN decision 

support model. Our methodology integrates the evidence from meta-analysis with 

data and clinical knowledge to build the BN. Our methodology assumes that expert 

knowledge, a meta-analysis of univariate relations from a relevant systematic review 

and some data about multivariate relations is available. However, the data is not 

large enough to learn the behaviour of some of the relations in the BN.  

6.2.1 Structure 

Development of a BN structure can be defined in two stages: selecting variables, and 

identifying the relations between those variables. Our aim is to use clinical evidence 

in both of these stages. 

In our method, domain experts use the meta-analysis as a guide for selecting the 

important variables for the BN. They review every variable that is found to have a 

clinically significant effect in the meta-analysis. During the review, they define the 

mechanistic relations between each of these variables and the outcome, and describe 

how these variables clinically affect the outcomes. Expert knowledge about the 
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mechanistic relations allows us to 1) build a causal BN structure based on clinical 

knowledge 2) examine whether each variable is within the scope of the model. 

The mechanistic relations between the observed factors and outcomes often depend 

on several clinical factors that cannot be observed. In this case, latent variables may 

be required to represent the clinical knowledge in the BN. For example, a meta-

analysis may show that a complicated surgery has worse outcomes than its 

alternatives. A decision support model, with only the surgery and outcome variables, 

may therefore never recommend this surgery. However, the reason for the worse 

outcomes can be that the surgery is only applied to patients with more severe 

conditions. Even though its outcomes are worse compared to the average, it may 

perform better in patients with severe conditions. Such knowledge can only be 

provided by domain experts as the meta-analysis contains only the univariate effects. 

Moreover, a latent variable representing the severity of injury is required to model 

this knowledge in the BN structure.  

Knowledge about mechanistic relations also allows knowledge engineers to 

understand whether each variable is within the scope of the BN. Some variables may 

be irrelevant considering the aims and scope of the model even though they have 

significant effects in the meta-analysis. For example, although the complicated 

surgery performs well for severe conditions, it may not be included in the BN if such 

patients are outside its scope.  

6.2.2 Parameters 

Since most studies, especially in the medical domain, publish the results about 

univariate relations, the meta-analysis of such studies provides a probability 

conditioned on a single variable, such as 𝑃(𝑌|𝑋1). Such probability distributions can 

be used for the parameters of BN variables with a single parent but BNs often 

contain variables with multiple parents. The parameters of these variables require 

probabilities conditioned on multiple variables such as 𝑃(𝑌|𝑋1, … , 𝑋𝑛). The 

probability distributions from a meta-analysis of univariate relations cannot be used 

for such BNs.  
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In this section, we present a parameter learning method for combining the results of 

a meta-analysis with data to learn the parameters of a BN variable with multiple 

parents. The Bayesian framework of this method assumes that the data generating 

process of the reviewed studies is similar, but not necessarily the same as the 

available data. The differences between the subpopulations of the data and the 

previous research must be evaluated before applying this method in order to avoid 

developing erroneous BNs (Druzdzel and Díez, 2003). In the remainder of this 

section, we illustrate the proposed method by a simple example in Section 6.2.2.1, 

and we present the generalisation of the method in Section 6.2.2.2. 

6.2.2.1 Illustration of the Parameter Learning Method 

In this section, we illustrate our parameter learning method with the simple BN 

shown in Figure 6.3.  

 

Figure 6.3 Simple BN for Illustrating the Parameter Learning Method 

This BN has 3 variables and each of the variables has 2 states: 

𝑋1 = {𝑥1
1, 𝑥1

2} 

𝑋2 = {𝑥2
1, 𝑥2

2} 

𝑌 = {𝑦1, 𝑦2} 

Table 6.2 NPT of the Variable Y 

 𝑋1 = 𝑥1
1 

 𝑋2 = 𝑥2
1  

𝑋1 = 𝑥1
1 

 𝑋2 = 𝑥2
2  

𝑋1 = 𝑥1
2 

 𝑋2 = 𝑥2
1 

𝑋1 = 𝑥1
2  

𝑋2 = 𝑥2
2  

𝒀 = 𝒚𝟏 𝑃(𝑦1|𝑥1
1 , 𝑥2

1) 𝑃(𝑦1|𝑥1
1 , 𝑥2

2) 𝑃(𝑦1|𝑥1
2 , 𝑥2

1) 𝑃(𝑦1|𝑥1
2 , 𝑥2

2) 

𝒀 = 𝒚𝟐 1 − 𝑃(𝑦1|𝑥1
1 , 𝑥2

1) 1 − 𝑃(𝑦1|𝑥1
1 , 𝑥2

2) 1 − 𝑃(𝑦1|𝑥1
2 , 𝑥2

1) 1 − 𝑃(𝑦1|𝑥1
2 , 𝑥2

1) 

Table 6.2 shows the NPT of the variable 𝑌. We require 4 parameters for this NPT: 

𝑃(𝑦1|𝑥1
1, 𝑥2

1), 𝑃(𝑦1|𝑥1
1, 𝑥2

2), 𝑃(𝑦1|𝑥1
2, 𝑥2

1) and 𝑃(𝑦1|𝑥1
2, 𝑥2

2). 
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The parameters of the variable 𝑌 can be learnt from data using the maximum 

likelihood estimate (MLE) approach. For example, 𝑃(𝑦1|𝑥1
1, 𝑥2

1) can be estimated by 

dividing 𝑀[𝑦, 𝑥1
1, 𝑥2

1] to 𝑀[𝑥1
1, 𝑥2

1], where 𝑀[𝑦, 𝑥1
1, 𝑥2

1] represents the count of data 

instances where 𝑌 = 𝑦1, 𝑋1 = 𝑥1
1 and 𝑋2 = 𝑥2

1, and 𝑀[𝑥1
1, 𝑥2

1] represents the count 

of data instances where 𝑋1 = 𝑥1
1 and 𝑋2 = 𝑥2

1. 

𝑃(𝑦1|𝑥1
1, 𝑥2

1) =
𝑀[𝑦1, 𝑥1

1, 𝑥2
1]

𝑀[𝑥1
1, 𝑥2

1]
 

Suppose we have a dataset with a sample size of 𝑀 = 250 to learn the parameters of 

the BN in Figure 6.3. Table 6.3 shows a part of the relevant counts from this 

imaginary dataset. There is only 3 data instances where 𝑌 = 𝑦1, 𝑋1 = 𝑥1
1 and 𝑋2 =

𝑥2
2 as shown by the first row of this table. 

Table 6.3 Some Relevant Counts from the Data 

Counts in the 

Data 

𝑴[𝒚𝟏, 𝒙𝟏
𝟏, 𝒙𝟐

𝟏] 3 

𝑴[𝒚𝟏, 𝒙𝟏
𝟏, 𝒙𝟐

𝟐] 25 

𝑴[𝒙𝟏
𝟏, 𝒙𝟐

𝟏] 10 

𝑴[𝒙𝟏
𝟏, 𝒙𝟐

𝟐] 160 

𝑴[𝒙𝟐
𝟏] 230 

𝑴[𝒙𝟐
𝟐] 20 

𝑴 250 

Our aim is to estimate the parameters of the BN. Although the overall sample size of 

the data is not small, there is not an adequate amount of data for learning some of the 

parameters. For example, there are only a few data instances to learn the probability 

of 𝑃(𝑦1|𝑥1
1, 𝑥2

1) since  𝑀[𝑦1, 𝑥1
1, 𝑥2

1] = 3 and M[𝑥1
1, 𝑥2

1] = 10. 

As well as the data, suppose we have the results of a meta-analysis that analyses the 

relation between 𝑌 and 𝑋1. This meta-analysis pools the conditional probabilities 

𝑃(𝑦1|𝑥1
1) reported in multiple studies. The result of the meta-analysis is reported by 

the mean, 𝜇𝑝𝑛𝑒𝑤(𝑦1|𝑥1
1), and variance, 𝜎𝑝𝑛𝑒𝑤

2 (𝑦1|𝑥1
1), of the predictive distribution 

of the pooled conditional probability (see Table 6.4). The way that these statistics are 

calculated is described in Section 6.1.3.  



106 

 

Table 6.4 Predictive Distribution Parameters from the Meta-analysis 

Meta-analysis of 𝑷(𝒚𝟏|𝒙𝟏
𝟏) 

Predictive Distribution Parameters 

𝝁𝒑𝒏𝒆𝒘(𝒚𝟏|𝒙𝟏
𝟏) 0.2 

𝝈𝒑𝒏𝒆𝒘
𝟐 (𝒚𝟏|𝒙𝟏

𝟏) 0.005 

The results of the meta-analysis cannot be directly used for the BN parameters since 

the variable 𝑌 is conditioned on both 𝑋1 and 𝑋2 in the BN model whereas it is 

conditioned only on 𝑋1 in the meta-analysis. In other words, there is no parameter to 

use 𝑃(𝑦1|𝑥1
1) directly in the NPT of the variable 𝑌 (see Table 6.2).   

In the remainder of this section, we present a novel technique that combines the data 

shown in Table 6.3 and the meta-analysis results shown in Table 6.4 to learn the 

parameters 𝑃(𝑦1|𝑥1
1, 𝑥2

1) and 𝑃(𝑦1|𝑥1
1, 𝑥2

2) for the NPT of the variable 𝑌. The 

generalisation of this method for a larger number of parents and states is described in 

Section 6.2.2.2. 

Figure 6.4 shows a BN representation of the implemented technique. The BN 

representation is divided into five components that are described in the remainder of 

this section:  

1. Data: This part uses the binomial distribution to model the relation between 

the CPDs that we aim to estimate and the observed counts in the data. For 

example, the number of data instances where 𝑋1 = 𝑥1
1, 𝑋2 = 𝑥2

2 and 𝑌 = 𝑦2, 

shown by 𝑀[𝑦1, 𝑥1
1, 𝑥2

1], has a binomial distribution where the probability 

parameter is 𝑃(𝑦1|𝑥1
1, 𝑥2

1) and the number of trials parameter is 𝑀[𝑥1
1, 𝑥2

1]. 

The binomial distributions used in this part are shown below: 

𝑀[𝑦1, 𝑥1
1, 𝑥2

1] ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀[𝑥1
1, 𝑥2

1], 𝑃(𝑦1|𝑥1
1, 𝑥2

1)) 

𝑀[𝑦1, 𝑥1
1, 𝑥2

2] ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀[𝑥1
1, 𝑥2

2], 𝑃(𝑦1|𝑥1
1, 𝑥2

2)) 

𝑀[𝑥2
1] ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀, 𝑃(𝑥2

1)) 

𝑀[𝑥2
2] ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀, 𝑃(𝑥2

2)) 



107 

 

 

Figure 6.4 BN Representation of the Auxiliary Parameter Learning Model 

2. Probability Distributions for NPT: This part contains the CPDs that we 

aim to estimate for the NPT of 𝑌. We assign a uniform prior for these 

distributions:  

𝑃(𝑦1|𝑥1
1, 𝑥2

1) ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

𝑃(𝑦1|𝑥1
1, 𝑥2

2) ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

3. Marginalisation of NPT Distributions: Since the variable 𝑌 is conditioned 

only on 1 variable in the meta-analysis and 2 variables in the BN, we model 

the probability distribution from the meta-analysis, 𝑃(𝑦1|𝑥1
1), as the 

marginalisation of the probability distribution from the BN parameters 

𝑃(𝑦1|𝑥1
1, 𝑥2

1) and 𝑃(𝑦1|𝑥1
1, 𝑥2

2): 



108 

 

𝑃(𝑦1|𝑥1
1) = ∑(𝑃(𝑦1|𝑥1

1, 𝑋2) ∗ 𝑃(𝑋2))

𝑋2

= 𝑃(𝑦1|𝑥1
1, 𝑥2

1)𝑃(𝑥2
1) + 𝑃(𝑦1|𝑥1

1, 𝑥2
2)𝑃(𝑥2

2) 

4. Probabilities Required for Marginalisation: In order to calculate the 

marginalisation in part 3, we need the probability distributions of 𝑃(𝑥2
1) and 

𝑃(𝑥2
2). We assign a uniform prior for these variables. We also assign a 

constraint to ensure that sum of 𝑃(𝑥2
1) and 𝑃(𝑥2

2) equals to 1.  

𝑃(𝑥2
1) ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

𝑃(𝑥2
2) ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

∑ 𝑃(𝑋2)

𝑋2

= 𝑃(𝑥2
1) + 𝑃(𝑥2

2) = 1 

5. Values from Meta-analysis: The pooled estimate 𝜇𝑝𝑛𝑒𝑤(𝑦1|𝑥1
1)  from the 

meta-analysis is modelled with the normal distribution centred on the 

marginalisation shown in part 3. We use 𝜎𝑝𝑛𝑒𝑤
2 (𝑦1|𝑥1

1) from the predictive 

distribution as the variance of this normal distribution. The normal 

distribution is truncated to a unit interval as it represents a probability value, 

denoted by 𝑇𝑁𝑜𝑟𝑚𝑎𝑙[0,1](𝜇, 𝜎2). The values from the meta-analysis are 

modelled as: 

𝜇𝑝𝑛𝑒𝑤(𝑦1|𝑥1
1) ~ 𝑇𝑁𝑜𝑟𝑚𝑎𝑙[0,1] (𝑃(𝑦1|𝑥1

1), 𝜎𝑝𝑛𝑒𝑤
2 (𝑦1|𝑥1

1)) 

After the observations from the data and meta-analysis is entered to the BN (see 

Figure 6.4), the posteriors for 𝑃(𝑦1|𝑥1
1, 𝑥2

1) and 𝑃(𝑦1|𝑥1
1, 𝑥2

2) can be calculated. Note 

that, the NPT of 𝑌 requires point estimates for 𝑃(𝑦1|𝑥1
1, 𝑥2

1) and 𝑃(𝑦1|𝑥1
1, 𝑥2

2) 

whereas our model calculates the entire probability distribution of these parameters. 

Therefore, we take the mean of these distributions for the point estimates required 

for the NPT. 

In the following section, we describe the generalisation of this technique for 

estimating parameters of variables with more parents or states.  
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6.2.2.2 Generalisation of the Parameter Learning Method 

Let 𝑌 be a BN variable that has 𝑛 parents, and �̅� = {𝑋1, 𝑋2, … , 𝑋𝑛} be the set of 

parents of 𝑌 (see Figure 6.5). Both 𝑌 and its parents have multiple states: 

𝑌 = {𝑦1, … , 𝑦𝑘} 

𝑋𝑖 = {𝑥𝑖
1, … , 𝑥𝑖

𝑘} 

 

Figure 6.5 BN Model 

Our dataset contains a total of 𝑀 data instances about �̅� and 𝑌 (see Table 6.5). We 

also have pooled conditional probability and variance estimates of the predictive 

distribution of 𝑃(𝑌|𝑋𝑖) from a meta-analysis (see Table 6.6). The way that these 

statistics are calculated is described in Section 6.1.3. The predictive distribution is a 

recommended way of presenting the results of a meta-analysis as it represents the 

uncertainty from both pooled estimate and heterogeneity (Higgins et al., 2009). 

However, the meta-analysis only provides us with the univariate conditional 

probability estimates; conditional probabilities such as 𝑃(𝑌|𝑋1, 𝑋2) are not available.  

Table 6.5. Sample Learning Dataset 

 Y X1 … Xn 

1 𝑦4 𝑥1
3 … 𝑥2

2 

2 𝑦2 𝑥1
2 … 𝑥2

1 

: 

: 

: 

: 

: 

: 

 : 

: 

M 𝑦1 𝑥1
1 … 𝑥2

4 

Figure 6.6 shows an abstract graphical illustration of the generalised auxiliary 

parameter learning model. This model is a generalisation of the model shown in 

Figure 6.4. This illustration is not a BN; it is a schema for building an auxiliary 

parameter learning BN for any number of states and parent variables. The size of the 
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auxiliary parameter learning BN grows rapidly with increasing number of parents 

and states. 

Table 6.6 Sample Meta-analysis Results 

 𝝁𝑷𝒏𝒆𝒘 𝝈𝑷𝒏𝒆𝒘
𝟐

 

𝑷(𝒀|𝑿𝟏). 0.13 0.007 

𝑷(𝒀|𝑿𝟐). 0.21 0.025 

: 

: 

: 

: 

: 

: 

𝑷(𝒀|𝑿𝒏). 0.19 0.001 

In Figure 6.6, the variables shown by circles are unknown variables that will be 

estimated by the model. The variables shown by rounded rectangles are observed 

with the values from the meta-analysis, and the variables shown by rectangles are 

observed from the dataset. The constraints that sum probabilities to 1 are not 

included in this figure to simplify the illustration. By running this auxiliary model, 

we estimate probability distributions for the parameters 𝑃(𝑌|�̅�) required by the NPT 

of 𝑌. Since the BN requires only a point estimate of the parameter, not the whole 

distribution; we use the mean of this distribution as the BN parameter. 

 

Figure 6.6 Graphical Illustration of the Generalised Auxiliary Parameter Learning Model 

According to our model, the data related to 𝑌, i.e. 𝑀[�̅�, 𝑌], is generated by the 

binomial distribution with the probability of success 𝑃(𝑌|�̅�) and the number of trials 

𝑀[�̅�].  

𝑀[𝑌, �̅�]~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀[�̅�], 𝑃(𝑌|�̅�)) 



111 

 

𝑀[�̅�, 𝑌] represents the count of data instances for specific values of 𝑋1, … , 𝑋𝑛 and 𝑌. 

For example, 𝑀[𝑥1
1, 𝑥2

3, … , 𝑥𝑛
4 , 𝑦2] represents the number of data instances where 

𝑋1 = 𝑥1
1, 𝑋2 = 𝑥2

3, … , 𝑋𝑛 = 𝑥𝑛
4 and 𝑌 = 𝑦2. Similarly 𝑀[�̅�] represent the number of 

data instances where 𝑋1, … , 𝑋𝑛 have certain values. 

Our aim is to estimate the CPD of 𝑃(𝑌|�̅�). We assign a uniform prior for this 

distribution; informative expert priors can also be used when available. 

𝑃(𝑌|�̅�)~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

The meta-analysis results are conditioned on a fewer variables than the CPD in the 

BN. Therefore, the expected values of the meta-analysis results are modelled as a 

marginalisation of the CPD. The meta-analysis provided the pooled conditional 

probability estimates about 𝑃(𝑌|𝑋𝑖) that are marginalisations of P(𝑌|�̅�) 

𝑃(𝑌|𝑋𝑖) = ∑ 𝑃(𝑌|�̅�)𝑃(�̅� ∖ {𝑋𝑖})

�̅�∖{𝑋𝑖}

 

𝑃(�̅� ∖ {𝑋𝑖}) is also estimated by the following binomial distribution.  

𝑀[�̅� ∖ {𝑋𝑖}]~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀, 𝑃(�̅� ∖ {𝑋𝑖})) 

Where 𝑀 denotes the total number of data instances, and 𝑀[�̅� ∖ {𝑋𝑖}] denotes the 

counts of data instances with �̅� ∖ {𝑋𝑖}. 𝑃(�̅� ∖ {𝑋𝑖}) has a uniform prior 

𝑃(�̅� ∖ {𝑋𝑖})~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

The pooled estimates from the meta-analysis 𝜇𝑃𝑛𝑒𝑤(𝑌|𝑋𝑖) are modelled with a normal 

distribution that is centred on the marginalisation of the CPD. The normal 

distribution is truncated to a unit interval, i.e. [0 – 1], as it represents a probability. 

The variance of the truncated normal distribution 𝜎𝑃(𝑌|𝑋𝑖)
2  represents the degree of 

uncertainty we assign to the meta-analysis results. We enter the mean and variance 

of the predictive distribution in meta-analysis as observations for 𝜇𝑃𝑛𝑒𝑤(𝑌|𝑋𝑖) and 

𝜎𝑃𝑛𝑒𝑤(𝑌|𝑋𝑖)
2 . We use the truncated normal distribution as it is convenient to define the 

expected value and variance parameters for it but 𝜇𝑃𝑛𝑒𝑤(𝑌|𝑋𝑖) may not be normally 

distributed as it represents a probability value between 0 and 1.  
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𝜇𝑃𝑛𝑒𝑤(𝑌|𝑋𝑖)~𝑇𝑁𝑜𝑟𝑚[0,1](𝑃(𝑌|𝑋𝑖), 𝜎𝑃𝑛𝑒𝑤(𝑌|𝑋𝑖)
2 ) 

Finally, we introduce constraints to ensure that probability distributions sum up to 1.  

∑ 𝑃(𝑌|�̅�) = 1

𝑌

 

∑ 𝑃(�̅� ∖ {𝑋𝑖}) = 1

�̅�∖{𝑋𝑖}

 

∑ 𝑃(𝑌|𝑋𝑖) = 1

𝑌

 

6.3 Case-study 

The method described in Section 6.2 was used for developing a BN that aims to 

predict the short term outcomes of a traumatic lower extremity with vascular injury.  

The LEVT BN is designed for the limb-saving stage of the treatment: it estimates the 

risk of a failure of a salvage attempt, which makes amputation inevitable due to 

inadequate blood supply and nonviable soft tissue in the lower extremity.  

The BN is built in collaboration with the Trauma Sciences Unit at the RLH and the 

ISR. Two trauma surgeons (ZP and NT) were involved in development of the LEVT 

BN. The LEVT dataset (see Section 4.3.2) and a meta-analysis of a systematic 

review were used for developing the LEVT BN. The remainder of this section 

describes the meta-analysis and development methodology of the LEVT BN.  

6.3.1 Meta-analysis for Lower Extremity Vascular Trauma 

Our first step was to conduct a systematic review and meta-analysis of the factors 

affecting outcomes of lower extremity vascular injuries. The systematic review was 

conducted by ZP. The studies published between 2000 and 2012 were searched using 

Medline, EMBASE and CINAHL databases. Another trauma registrar followed the 

same search procedure to evaluate the consistency of the inclusion criteria. Forty-

four articles, containing information about 3054 lower extremity repairs, were 
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included in the systematic review. The protocol for systematic review is published in 

the PROSPERO register of systematic reviews (Perkins et al., 2012).  

Meta-analysis of the systematic review was conducted by the author. The complete 

meta-analysis included pooling of conditional probabilities, odds ratios and risk 

differences regarding 23 variables in 44 studies reviewed in the systematic review. In 

this section, we use a part of the pooled conditional probabilities that are relevant to 

the LEVT BN as pooled conditional probabilities are naturally suited for learning 

BN parameters. We used the model described in Section 6.1.3 to pool the conditional 

probabilities and calculate the predictive distributions. The calculations were done in 

AgenaRisk (Agena Ltd, 2013). Table 6.7 shows the means and variances of these 

predictive distributions. In the following sections, we describe how these results 

were used for defining the BN structure and parameters. 

Table 6.7 Mean and Variances of the Predictive Distributions from the Meta-analysis 

Clinical Factor Predictive Distribution 

 𝜇𝑃𝑛𝑒𝑤 𝜎𝑃𝑛𝑒𝑤
2  

Arterial Repair 

  Graft 

  Primary Repair 

Anatomical Site 

  Femoral 

  Popliteal 

  Tibial 

Associated Injuries 

  MAI* - present 

  MAI* - absent 

  Soft tissue - present 

  Soft tissue - absent 

  Fracture - present 

  Fracture - absent 

  Nerve - present 

  Nerve - absent 

Complications 

  Shock - present 

  Shock – absent 

  Ischaemia time > 6 hrs. 

  Ischaemia time ≤ 6 hrs. 

  CS+ - present 

  CS+ - absent 

 

0.11 

0.05 

 

0.04 

0.14 

0.10 

 

0.22 

0.10 

0.28 

0.09 

0.14 

0.02 

0.12 

0.05 

 

0.12 

0.06 

0.24 

0.05 

0.31 

0.06 

 

0.009 

0.002 

 

0.004 

0.005 

0.018 

 

0.045 

0.006 

0.066 

0.009 

0.013 

0.001 

0.022 

0.016 

 

0.047 

0.030 

0.050 

0.009 

0.008 

0.002 
*MAI= Arterial Injuries at Multiple Levels, +CS: Compartment Syndrome 
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6.3.2 Deriving the BN structure 

The structure of the BN was defined using the methodology described in Section 

6.2.1. A domain expert (ZP) identified the variables that are found to have clinically 

significant effect in the meta-analysis. ZP described the mechanistic relation between 

each of the variables and the predicted outcome, which were modelled in a causal 

BN structure. Knowledge about the mechanistic relations helped us to identify the 

variables that are outside the scope of the BN. For example, nerve injuries were not 

included in the model even though it is found to increase the probability of 

amputation in the meta-analysis. The domain expert indicated that the outcomes 

related to limb function are outside the scope of the LEVT BN, and the amputations 

related to nerve injuries are often caused by pain and poor function outcomes. 

Table 6.8 Observed and Latent Variables in LEVT BN 

Observed Variables Latent Variables 

Arterial Repair 
Anatomical Site 

Multiple Levels (MAI) 

Soft Tissue Injury 

Associated Fracture 
Shock 

Ischemic Time 

Ischemic Degree 
Compartment Syndrome 

Repair Failure 

Number of Injured Tibials 
Nonviable Extremity 

Blood Supply 
Ischemic Damage 

Microcirculation 

Soft Tissue Cover 

 

Several latent variables were introduced while the domain expert identified the 

mechanistic relations between the observed clinical factors and outcomes. These 

variables were clinically important but neither the dataset nor the reviewed studies 

contained them as they cannot be directly observed. For example, both graft repairs 

and soft tissue injuries have higher probabilities of amputation in the meta-analysis. 

However, each of these factors is related to amputation through a different pathway. 

Graft repairs can lead to amputation when the repaired artery bleeds or gets blocked, 

and thus cannot deliver enough blood to the lower extremity. A variable about the 

degree of blood supply is required to model this relation. Although the degree of 

blood supply can be estimated by several measurements, the precise state of this 

variable is difficult to observe and therefore is not in the dataset. Soft tissue injuries 
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can lead to amputation if there is not enough viable soft tissue to cover the injuries 

and to repair the wounds. Similarly, a latent variable about the degree of soft tissue 

cover is required to model this relation into the BN model. Table 6.8 shows a list of 

the observed and latent variables in the LEVT BN structure. These variables are 

described in the remainder of this section. 

The information in our dataset was more detailed, for some variables, compared to 

the information reported in the meta-analysis. For example, soft-tissue injuries were 

modelled with more detailed states in the BN as the dataset had more information 

about this variable. Similarly, information about the degree of ischemia were present 

in the dataset but not in the meta-analysis. Therefore, the BN contains more detail 

about some variables compared to the information obtained from the meta-analysis. 

Model Structure 

The LEVT BN is divided into 5 components, corresponding to the 5 boxes shown in 

Figure 6.7. The remainder of this section describes the LEVT BN by summarising 

the meanings of the variables and relations in each of these components: 

 

Figure 6.7 LEVT BN Structure 

 Lower Extremity Outcome: The aim of the LEVT BN is to predict the risk 

of failure of an attempted salvage for a lower extremity with vascular injury. 

The ‘Nonviable Extremity’ variable represents extremities that are amputated 

as a result of nonviable tissue. A lower extremity can sustain life if there is 

adequate blood flow from the vessels and enough viable soft tissue to cover 
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the vessels. ‘Nonviable Extremity’ is the main outcome variable that the 

LEVT BN aims to predict. 

 Ischaemia: Ischaemia is the deficiency of blood supply as a result of an 

arterial injury or obstruction. Ischaemia causes permanent damage to tissues 

if it continues for a prolonged time. Since our model is built for lower 

extremities with vascular injuries, most of the extremities within the scope of 

our model will be partly or completely ischemic until the vascular injury is 

repaired. The severity of ischaemic damage depends on the time elapsed 

since the beginning of ischemia (Ischaemic Time) and the degree of 

obstruction (Ischaemic Degree). A major cause of ischemia is a compartment 

syndrome, which causes complete obstruction of blood flow due to increased 

pressure in the muscle compartments of a lower extremity.  

 Soft Tissue Damage: This part of the model predicts the projected amount of 

viable soft tissue cover in the lower extremity. Adequate amount of soft 

tissue cover is necessary to repair the tissues and protect them from infection. 

Therefore, soft tissue cover is one of the main factors affecting the viability 

outcome. Our model estimates the amount of soft tissue cover based on the 

amount of non-viable tissue due to the direct damage from the injury (Soft 

Tissue Injury) and ischemia (Ischaemic Damage). 

 Success of Arterial Repair: This part of the model predicts the success of a 

vascular repair operation. ‘Arterial Repair’ variable represents the type of the 

repair operation, and have two states: ‘Graft’ and ‘Primary Repair’. ‘Graft’ 

represents bypassing of the injured artery by a vein harvested from the 

patient. ‘Primary repair’ represents a simpler repair operation such as 

stitching of a small laceration in the artery.  ‘Graft’ repairs have higher rate 

of failure compared to ‘Primary Repair’ as this operation is more complicated 

and applied to more severe cases. Injury characteristics often define the type 

of the arterial repair. For example, an arterial injury cannot be treated by 

primary repair if a significant part of the artery has been torn apart and thus a 

graft is necessary. 

The ‘Multiple Levels’ variable represent whether vascular injuries are present 

at multiple levels of the same extremity. Repair of such injuries have a higher 
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probability of failure as clots are more likely to form when the artery is 

injured at multiple levels.  

‘Anatomical Site’ variable represents the location of the main arterial injury. 

The injury can be at above the knee (femoral artery), at the knee (popliteal 

artery) or below the knee (tibial artery). Reconstruction of a femoral artery 

often has better outcomes compared to a popliteal or a tibial artery.  

 Blood Circulation: ‘Blood Supply’ variable represents the degree of blood 

supply to the lower extremity. This variable essentially depends on the 

‘Repair Failure’ variable. If the vascular repair fails, the extremity will not 

have adequate blood supply; so there is a deterministic relation between the 

negative repair failure and inadequate blood supply. However, a successful 

arterial repair may not guarantee adequate blood supply throughout the lower 

extremity; side factors including ‘Shock’ and ‘Microcirculation’ can also 

affect the outcomes. The ‘Shock’ variable represents an overall deficiency of 

blood supply throughout the body. ‘Microcirculation’ represents the severity 

of injury in the smaller vessels of the lower extremity. 

 

Figure 6.8 LEVT BN Modification for Below the Knee 

The main branch of artery that carries blood to the lower extremity divides 

into three branches below the knee. In other words, a single main branch of 

artery supplies blood for the tissues above the knee whereas three branches, 

called tibial arteries, supply blood for the tissues below the knee. In order to 

model this difference, we modified the BN structure for injuries below the 

knee by adding a variable about the number of injured tibial arteries. This 
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modification is shown by the variable with dashed lines in Figure 6.8. 

Modelling of tibial arteries is important since the extremity is more likely to 

survive if all of the tibial arteries are not injured, even when the arterial repair 

fails. Apart from this difference, the BN models for above the knee and 

below the knee injuries are exactly the same. Table 6.9 shows the description 

and states of each variable in the LEVT BN. 

Table 6.9 Description and States of Variables in LLVI BN 

Variable Description States 

Anatomical Site Level of arterial injury {Femoral, Popliteal, Tibial} 

Arterial Repair Surgical method for treating 

arterial injury 

{Primary, Graft, Ligation} 

Associated Fracture Associated fracture at the 

level of arterial injury 

{True, False} 

Blood Supply Predicted degree of blood 

supply after repair 

{Low, Medium, High} 

Ischaemic Damage Degree of soft tissue damage 

caused by ischaemia 

{Low, Medium, High} 

Ischaemic Degree Degree of obstruction in 

blood supply 

{None, Partial, Complete} 

Ischaemic Time Duration of obstructed blood 

supply 

{<1hr, <3hr, <6hr, ≥6hr} 

Microcirculation Degree of microcirculation 

problems at the level of 

arterial injury 

{Normal, Severe, 

Deranged} 

Multiple Levels Presence of arterial injuries 

at multiple levels 

{True, False} 

Nonviable Extremity Presence of a non-survivable 

lower extremity 

{True, False} 

Number of Injured Tibials Number of tibial arteries 

injured 

{0, 1, 2, 3} 

Shock Presence of uncompensated 

shock 

{True, False} 

Soft Tissue Cover Degree of soft tissue damage 

due to injury and ischaemia 

{Low, Medium, High} 

Soft Tissue Injury Degree of soft tissue damage 

cause by injury 

{None, Mild, Moderate, 

Severe, Profound} 

Repair Failure Failure of arterial repair due 

to occlusion or bleeding 

{True, False} 
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6.3.3 Learning Parameters 

We examined the amount of data available for learning each parameter in the BN. 

Data were too small, or not available, to learn the parameters for some relations.  In 

this section, we describe the techniques used for learning the parameters when they 

have 1) small amount of data, 2) no data at all (latent variables) and 3) adequate 

amount of data. 

Variables with Small Data 

We learned the parameters that had less than 20 data instances from a combination of 

meta-analysis and data using the technique described in Section 6.2.2. Table 6.10 

shows the data available for learning the NPT of the ‘repair failure’ variable. There 

was small amount of data to learn some of these parameters (shown by bold in Table 

6.10) therefore we learned these parameters by combining the meta-analysis results 

with the data. We used the mean and variance of the predictive distributions from the 

meta-analysis (see Table 6.7) as observations to 𝜇𝑃𝑛𝑒𝑤 and 𝜎𝑃𝑛𝑒𝑤
2  variables in the 

Bayesian learning model (see Figure 6.6). 

The meta-analysis provides us the pooled probabilities of an unsuccessful outcome 

conditioned on each individual clinical factor (see Table 6.7). The variable 

equivalent to an unsuccessful outcome is ‘nonviable extremity’ in the LEVT BN. 

However, the meta-analysis results could also be used for the NPT of the ‘repair 

failure’ variable as 1) our model assumes a deterministic relation between an 

unsuccessful outcome and repair failure 2) the parents of ‘repair failure’ can 

influence ‘nonviable extremity’ through only one pathway. For example, the ‘arterial 

repair’ variable can affect ‘nonviable extremity’ through the following pathway in 

our model: 

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 𝑅𝑒𝑝𝑎𝑖𝑟 → 𝑅𝑒𝑝𝑎𝑖𝑟 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 → 𝐵𝑙𝑜𝑜𝑑 𝑆𝑢𝑝𝑝𝑙𝑦 → 𝑁𝑜𝑛𝑣𝑖𝑎𝑏𝑙𝑒 𝐸𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 

        (𝐴𝑅)                                (𝑅𝐹)                           (𝐵𝑆)                         (𝑁𝐸) 

The probability provided by the meta-analysis, 𝑃(𝑁𝐸 = 𝑇𝑟𝑢𝑒|𝐴𝑅 = 𝐺𝑟𝑎𝑓𝑡), is 

equivalent to marginalisation of ‘repair failure’ and ‘blood supply’ from this 

pathway: 
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𝑃(𝑁𝐸 = 𝑇𝑟𝑢𝑒|𝐴𝑅 = 𝐺𝑟𝑎𝑓𝑡) = ∑ 𝑃(𝑁𝐸 = 𝑇𝑟𝑢𝑒|𝐵𝑆)𝑃(𝐵𝑆|𝑅𝐹)𝑃(𝑅𝐹|𝐴𝑅 = 𝐺𝑟𝑎𝑓𝑡)

𝐵𝑆,𝑅𝐹

 

In our model, a repair failure always leads to inadequate blood supply, and 

inadequate blood supply always leads to a nonviable extremity: 

𝑃(𝐵𝑆 = 𝐿𝑜𝑤|𝑅𝐹 = 𝑇𝑟𝑢𝑒) = 1, 𝑃(𝑁𝐸 = 𝑇𝑟𝑢𝑒|𝐵𝑆 = 𝐿𝑜𝑤) = 1 

𝑃(𝐵𝑆 = 𝐿𝑜𝑤|𝑅𝐹 = ¬𝑇𝑟𝑢𝑒) = 0, 𝑃(𝑁𝐸 = 𝑇𝑟𝑢𝑒|𝐵𝑆 = ¬𝐿𝑜𝑤) = 0 

By using these values in the marginalisation equation above, we get: 

𝑃(𝑁𝐸 = 𝑇𝑟𝑢𝑒|𝐴𝑅 = 𝐺𝑟𝑎𝑓𝑡) = 𝑃(𝑅𝐹 = 𝑇𝑟𝑢𝑒|𝐴𝑅 = 𝐺𝑟𝑎𝑓𝑡). Consequently, we can use 

the probabilities from the meta-analysis for learning the relation between ‘repair 

failure’ and its parents. 

The meta-analysis does not provide any information about the multiplicity of tibial 

arteries (see Section 6.3.2 how the multiplicity of tibial arteries is modelled in the 

BN). Therefore, we model the number of injured tibial arteries as a risk modifier. 

Our model assumes that a repair failure leads to a non-viable extremity if all 3 tibial 

arteries are injured. However, there is a chance of a successful outcome, which is 

learned from data, if only 1 or 2 tibial arteries are injured. 

Table 6.10 Amount of Data Available for Learning Parameters of Repair Failure Variable 

AR* Graft 

True 

Femoral 

Graft 

True 

Popliteal 

Graft 

True 

Tibial 

Graft 

False 

Femoral 

Graft 

False 

Popliteal 

Graft 

False 

Tibial 

Primary 

True 

Femoral 

Primary 

True 

Popliteal 

… MAI* 

AS* 

RF*          

Data 14 

 

6 

 

2 

 

71 

 

115 

 

38 

 

1 

 

3 … 

*AR: Arterial Repair, MAI: Multiple Levels, AS: Anatomical Site, RF: Repair Failure 

We used the OpenBUGS software (Lunn et al., 2009) to calculate the posteriors of 

the auxiliary learning model for this case study. Since OpenBUGS uses MCMC 

sampling, it is necessary to assess the convergence of the Markov chain to ensure 

that sampled values cover the entire distribution. We used Gelman and Rubin (1992) 

diagnostic technique, sample plots and autocorrelation plots to assess the 

convergence. None of the diagnostic techniques can prove convergence but they can 

assist detecting the lack of convergence. We discarded the first 10,000 samples in 
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MCMC as the burn-in samples, and calculated the posterior distributions based on 

the next 70,000 samples. 

Table 6.11 shows extracts of the NPTs of the ‘Repair Failure’ and the amount of data 

available for learning its parameters. The values in bold and italic fonts are the 

parameters learned by combining the results of the meta-analysis with the data, and 

the values in normal fonts are the parameters learned purely from the data. The 

parameters learned from two approaches differ substantially for smaller amounts of 

data. The effects of this difference to the model performance are discussed in Section 

6.4.1. 

Table 6.11 Learning from Data, and from Combining Data and Meta-Analysis Results 

AR*: Graft 

True 

Femoral 

Graft 

True 

Popliteal 

Graft 

True 

Tibial 

 

… 

 

Primary 

True 

Femoral 

Primary 

True 

Popliteal 

… MAI*: 

AS*: 

RF*:       ….      

True 0.17 0.17 0.39 0.41 0.99 0.49 0.01 0.14 0.01 0.29 … 

False 0.83 0.83 0.61 0.59 0.01 0.51 0.99 0.86 0.99 0.71  

Data: 14 6 2  1 3  

*AR: Arterial Repair, MAI: Multiple Levels, AS: Anatomical Site, RF: Repair Failure 

Latent Variables 

The BN contained several latent variables as described in Section 6.3.2 (see Table 

6.8 for a list of these variables). Ranked nodes were used to model the NPT of these 

variables (Fenton et al., 2007). A ranked node is an approximation of the truncated 

normal distribution to the multinomial distribution with ordinal scale (see Section 

2.6.1 for a more detailed description of ranked nodes). We used the framework 

proposed by Fenton et al. (2007) to elicit the parameters of ranked nodes. 

For each of the latent variables we first asked the domain experts to describe the 

relation between the variable and its parents. Afterwards, we selected a suitable 

ranked node function and elicited initial weights that imitate the described relation. 

We presented the behaviour of the ranked node under various combinations of 

observations to the domain experts, and refined the weights based on their 

comments. 
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Adequate Amount of Data 

After the parameters with small or no data were defined, the remainder of the 

parameters were learned purely from the data. The EM algorithm was used to learn 

the parameters as the dataset contained missing values. The parameters that were 

already defined from the experts or meta-analysis were kept fixed while EM was 

applied. 

6.4 Results 

The performance of the LEVT BN for predicting the ‘Nonviable Extremity’ variable 

was tested by a 10-fold cross-validation in the LEVT dataset. The AUROC was 0.90. 

The BN had 80% specificity when operated at 80% sensitivity, and 70% specificity 

when operated at 90% sensitivity. The LEVT BN had a BS of 0.06 and a BSS of 

0.33. Hosmer-lemeshow test was used to assess the calibration of the BN. The BN 

was well calibrated with a Hosmer-lemeshow statistic of 12.7 (p-value: 0.13, see 

Figure 6.9). 

 

Figure 6.9 Calibration of the LEVT BN 

6.4.1 Parameters from Pure Data vs. Hybrid Approach 

The LEVT BN was learned by a hybrid approach that reinforces the data with the 

meta-analysis results when there is small amount of data to learn a parameter (see 

Section 6.3). We compared the results of this approach to a purely data-based 

parameter learning algorithm. We learned the parameters of the same BN structure 

purely from data and compared it with the LEVT BN learned by the hybrid 

approach. Note that, the parameters of the ranked nodes, which were elicited from 
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the experts, were kept the same in both models. The purely data-based parameter 

learning had poor results in all measures. The AUROC was 0.48, the specificity was 

13% at 80% sensitivity, and the Hosmer-lemeshow test indicated poor calibration (p-

value: 0.01). Both BS and BSS indicated poor performance for the purely data-based 

parameter learning as well (see Table 6.12).  

The LEVT BN has a quite complicated structure compared to the data available for 

learning some of its parameters. As a result, the purely data-based approach overfits 

the data, which leads to poor results in the cross-validation. 

Table 6.12 Results of Parameter Learning from Data and Hybrid Approach 

 Hybrid Approach Data 

AUROC 0.90 0.48 

Specificity (at 90% Sensitivity) 70% 7% 

Specificity (at 80% Sensitivity) 80% 13% 

Hosmer-Lemeshow Test 12.7 (p=0.13) 20 (p=0.01) 

Brier Score 0.06 0.10 

Brier Skill Score 0.33 0.02 

6.4.2 Mangled Extremity Severity Score 

MESS (Johansen et al., 1990) is a well-known scoring system developed for 

providing decision support in treatment of mangled extremities. MESS calculates a 

score based on the injury mechanism, the degree of shock, the ischemic status and 

the patient’s age. If the score is above a certain threshold value MESS recommends 

an amputation (see Section 4.2.2 for the results of MESS in different validation 

studies). In the LEVT dataset, MESS had an AUROC of 0.75 for predicting the 

‘Nonviable Extremity’ variable (Figure 6.10). Its specificity was 40% when operated 

at 90% sensitivity and 60% when operated at 80% sensitivity. Both the accuracy and 

calibration of MESS were worse than the predictions of the LEVT BN as shown in 

Table 6.13. BS and BSS could not be calculated for MESS since the outputs of 

MESS are not probabilities. 
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Table 6.13 Results of LEVT BN and MESS 

 LEVT BN MESS 

AUROC 0.90 0.75 

Specificity (at 90% Sensitivity) 70% 40% 

Specificity (at 80% Sensitivity) 80% 60% 

Hosmer-Lemeshow Test 12.7 (p=0.13) 20 (p=0.01) 

 

 

Figure 6.10 ROC Curves for LEVT BN and MESS 

6.4.3 Learning BN Purely From Data vs. LEVT BN 

Clinical knowledge was an essential factor in development of the LEVT BN. In 

order to assess the effects of using knowledge in modelling, we compared the 

performance of the LEVT BN to 3 other BNs that were developed purely from the 

data using 3 different structure learning algorithms. We used a score based learning 

algorithm (hill climbing (HC) algorithm with BIC score (Korb and Nicholson, 

2004b; Margaritis, 2003; Schwarz, 1978)), a constraint based learning algorithm 

(grow shrink (GS) algorithm (Margaritis, 2003)), and a hybrid algorithm that 

combines the score and constraint based approaches (max-min hill climbing 

(MMHC) algorithm (Tsamardinos et al., 2006)) to learn each of these BNs. Expert 

knowledge was not used in development of these BNs, and the BNs do not contain 

any latent variables. 
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Table 6.14 Results of LEVT BN and Structure Learning Methods 

 LEVT BN HC MMHC GS 

AUROC 0.90 0.83 0.83 0.84 

Specificity 

(at 90% Sensitivity) 

70% 37% 41% 54% 

Specificity 

(at 80% Sensitivity) 

80% 71% 80% 69% 

Hosmer-Lemeshow Test 12.7 (p=0.13) 11.5 (p=0.17) 15.3 (p=0.05) 8.5 (p=0.39) 

Brier Score 0.06 0.07 0.07 0.07 

Brier Skill Score 0.33 0.22 0.21 0.23 

We first imputed the missing values in the dataset using the Amelia package 

(Honaker et al., 2013) in the R statistical software (R Core Development Team, 

2013) as all of the structure learning algorithms require complete datasets. 

Afterwards, we learned a separate BN structure using each of the learning 

algorithms. These algorithms are readily implemented in the BNLearn package 

(Scutari, 2010) of the R statistical software.  

 

Figure 6.11 ROC Curves for LEVT BN and Structure Learning Methods 

We assessed the performance of each BN for predicting the ‘Nonviable Extremity’ 

variable in a 10-fold cross validation. The LEVT BN has a larger AUROC than the 

BNs learned purely from the data (see Figure 6.11). The LEVT BN had substantially 

better performance at operating points with higher sensitivity levels. At the 90% 

sensitivity level, the predictions of the LEVT BN have over 70% specificity which 

is, on average, 27% more than the BNs learned from the data. Both BS and BSS also 
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indicated better performance for the LEVT BN (see Table 6.14). The Hosmer-

lemeshow test indicated that the LEVT BN, HC and GS were calibrated at 95% 

confidence level. 

Figure 6.12 shows the BN structures learned by MC (Figure 6.12a), MMHC (Figure 

6.12b) and GS (Figure 6.12c) methods. In Section 6.4.1, we observed that a purely 

data-driven approach overfits the data for the LEVT BN as the BN structure is too 

complicated for the available data. In order to avoid overfitting, the structure 

learning methods learned simpler BN structures. Consequently, their predictions 

were better than the purely data-based parameter learning algorithm in Section 6.4.1. 

 

Figure 6.12 BN Structures Learned by a) HC b) MMHC c) GS methods 

One of the disadvantages of a purely data-driven structure learning method is that the 

learnt structure is often not meaningful to domain experts (see Section 3.3). In this 

case study, the structure learning methods built different, and sometimes 

contradicting, BN structures. For example, while the ‘Shock’ variable is a cause of 

the ‘Nonviable Extremity’ variable in the GS model (see Figure 6.12c); the same 

variable is the consequence of the ‘Nonviable extremity’ variable in the HC and 

MMHC models (see Figure 6.12a and Figure 6.12b).  

The potential use of the model for evidence based medicine may be limited if the BN 

structure is not meaningful to experts. First of all, the BN cannot be supported by the 

evidence from the clinical literature if its structure does not make sense to domain 

experts (see Chapter 8). The relations defined in the BN must be consistent with 

clinical knowledge in order to identify the relevant evidence for them.  
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The predictions of a BN can also be explained if its structure is consistent with 

clinical knowledge. If causal pathways in the BN are aligned with clinical 

knowledge, its predictions can be explained in a way that makes sense to domain 

experts. However, it is not possible to explain the predictions of some machine 

learned BN apart from saying that the input variables are correlated with the 

outcome. 

6.5 Conclusion 

This chapter presented a methodology to build BNs for decision supports based on 

clinical evidence from meta-analyses, expert knowledge and data. Meta-analysis 

results were used to identify the BN variables based on the evidence from previous 

research. We proposed a Bayesian learning technique that can combine the meta-

analysis results with data to learn the BN parameters. Our method was successfully 

applied to the trauma case-study, in which we developed an accurate model for 

predicting short-term outcomes of lower extremities with vascular injuries. The 

techniques presented in this paper can be applied to a wider scope of problems than 

trauma care. A meta-analysis is an important source of evidence but it is often used 

to analyse simple relations, conditioned on a few variables, therefore it does not 

account for the complexity of disease mechanisms. By combining evidence from the 

meta-analysis with data and knowledge, our method enables evidence to be used in 

more complicated decisions by taking causal pathways and interaction effects into 

account.  

In our case study, we developed an accurate model for a clinical problem where the 

previous modes have not been successful. The case study demonstrated the benefits 

of integrating meta-analysis results and expert knowledge into BN development. The 

BN built by our approach performed better than the structure learning techniques and 

the scoring system compared: the AUROC was 0.90 for our BN, 0.84 for the best 

performing structure learning method and 0.75 for the MESS scoring system.  

The LEVT BN contained latent variables that were modelled by ranked nodes. The 

parameters of these variables were elicited from domain experts. It would also be 

possible to estimate the parameters of these variables using the methodology 
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presented in Chapter 5. In this case, each step of the EM algorithm would estimate 

the parameters of a ranked node rather than a normal NPT. The EM algorithm has 

not been implemented to learn ranked nodes.  Such implementation would be useful 

for domains with limited data as ranked nodes require fewer parameters than 

complete NPTs. 

As further research, the parameter learning method described in this Chapter could 

be expanded with qualitative expert constraints (see Section 2.6.3 for a review of the 

Bayesian parameter learning methods with qualitative expert constraints). This 

expansion would allow expert knowledge to be integrated with meta-analysis results 

and data when learning parameters. In Bayesian parameter learning methods, such as 

the one we described in Section 6.2.2, we estimate the entire distribution of the 

parameters. This gives us both expected value of the parameter and a variance 

showing the degree of uncertainty for this estimate. Usually, the expected value of 

this distribution is used as the BN parameter, and the variance is ignored. However, 

if the BN structure is meaningful and aligned with knowledge, the variance could be 

used to show our degree of understanding about the parameters. Ways of integrating 

this variance to the parameter estimation techniques could be investigated. 
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Abstractions in Bayesian 

Networks 

The graphical structure of a BN makes it a technology well-suited for developing 

evidence-based decision support models from a combination of domain knowledge 

and data. However, the available data seldom match the variables in the structure 

that is elicited from experts, whose models may be quite detailed; consequently, the 

structure needs to be abstracted to simplify parameter estimation. Up to now, this 

abstraction has been informal, loosening the link between the final model and the 

experts’ knowledge. In this chapter, we propose a method for abstracting the BN 

structure by using four ‘abstraction’ operations: node removal, node merging, state-

space collapsing and edge removal. Approximations introduced by the abstraction 

operations can be identified from changes in the conditional independence (CI) 

assertions of a BN. 

7.1 Introduction 

A knowledge-based BN aims to model the data-generating process of a problem 

domain by encoding knowledge about influences and independences between the 

important variables of the domain. They are often developed through multiple stages 

as the knowledge engineers and the domain experts refine the model iteratively 

(Laskey and Mahoney, 2000). The initial knowledge model is often large and 

detailed, and some elements of the model may need to be simplified or abstracted as 

data is lacking or the parameters are too difficult to elicit. However, even simple 

abstraction operations, such as removing a node, can result in numerous and 
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complicated alternative BNs which are difficult for the knowledge engineers to 

evaluate without a structured method. The effects of these abstractions must be 

carefully examined by the domain experts to prevent any unwanted changes in the 

modelled knowledge of the data generating process. Moreover, the way that the final 

BN has been derived needs to be presented thoroughly so that the knowledge base of 

the model and its derivation is understandable. 

Our aim is to present a method of abstracting a BN structure. The method is 

developed for knowledge engineers building a BN structure with domain experts. 

The method provides a set of abstraction operations which together: 

1. Allow a BN to be simplified by removing and merging nodes, removing 

edges and reducing the number of states 

2. Distinguish abstractions that add to the knowledge base from those 

compatible with the knowledge elicited so far, so that the added knowledge 

can be confirmed by domain experts  

3. Provide a way to show the link between the initial and abstracted models, in 

the form  of a derivation that captures the complete sequence of abstraction 

operations 

The method can be used to help knowledge engineers select the most suitable model 

refinements by evaluating alternative abstractions, in consultation with domain 

experts. The selection may also be guided by considering the availability of data or 

compatibility with causal relationships.  

Our knowledge engineering method is based on well-known techniques mainly used 

for learning and inference problems (Choi and Darwiche, 2006; Shachter, 1986; Van 

Engelen, 1997; Wellman and Liu, 1994). Our main contribution is to explore the 

knowledge engineering aspect of these operations. 

The remainder of this chapter is organised as follows: Section 7.2 gives an overview 

of the relation between knowledge and conditional independencies (CI) in BNs. 

Section 7.3 introduces abstraction as a knowledge engineering method and Section 

7.4 describes the abstraction operations of this method and examines their 
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compatibility properties. These operations are illustrated by a medical case-study in 

Section 7.5. Section 7.6 shows the graphical representation of the abstraction 

operations. Finally, Section 7.7  discusses the motivation from ABEL (Patil et al., 

1981), and Section 7.8 presents the conclusions. 

7.2 Knowledge and Conditional Independencies 

The aim of a knowledge-based BN is to model the data-generating process of a 

domain by encoding knowledge about influences and independences in the BN 

structure. A satisfactory modelling of this knowledge is when a BN 𝐺𝑋 is able to 

represent the joint probability distribution 𝑃𝑋 of the data-generating process (see 

Figure 7.1).   

 

Figure 7.1 Knowledge-based Bayesian Network 

A BN structure encodes a set of CIs; therefore its ability to represent the data-

generating process depends on the CIs the BN asserts. Consequently, compatibility 

of the BN abstractions can be evaluated by their effect on the CI assertions of the 

BN. The preliminaries regarding CIs and BNs are provided in Section 2.4. 

7.3 Abstraction as a Knowledge Engineering Method 

In this section, we present an overview of our abstraction method for knowledge-

engineered BNs. Our approach is to construct the BN structure based on expert 

knowledge before using data, statistics from relevant studies, and numbers elicited 
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from domain experts to parameterise the BN. The first step of our method is to elicit 

the BN structure about the domain. The initial structure should be considered as a 

knowledge-model of the domain so it should include all relevant variables and 

relations without being limited by issues such as availability of data or complexity of 

the model. Knowledge engineering techniques for eliciting the BN structure are 

discussed in Section 2.6.1. 

When the initial structure of the BN is complete, we compare it with the resources 

available for parameterising the BN. The data and the statistics from relevant studies 

may not be enough to learn the parameters for all of the variables in the BN. For 

example, information about some of the variables may not be observed in practice, 

or they may not be recorded in the data. Moreover, the NPTs of some variables may 

be too large to elicit from the domain experts or to learn from the data. 

Consequently, the initial BN structure has to be abstracted in order to have a 

parameterised and working BN. 

 

Figure 7.2 Overview of abstraction as a method of model development 

We propose 4 abstraction operations that are classified as compatible or 

incompatible as shown in Table 7.1. Node removal and node merging are 

‘compatible’ abstractions meaning that these operations can always be applied 

without adding new CI conditions to the variables shared between the initial and the 

abstracted BN. State-space abstraction and edge removal are ‘incompatible’ 

abstractions that bring additional CI conditions to the BN structure. The probability 

distribution of the data-generating process that factorises on the initial BN structure 
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may not factorise after incompatible abstractions are applied. Therefore, the domain 

experts should review the effects of the incompatible abstractions on the knowledge-

base of the BN. The compatibility properties of the abstraction operations are 

defined in Section 7.4.1. Figure 7.2 illustrates the overview of our method. In 

summary: 

 We use compatible abstraction first to reduce the number of variables in the 

model  

 We then make approximations with incompatible abstractions to improve 

learning and elicitation, often to complement the compatible abstractions 

However, the order of the abstraction operations is not restricted to this pattern; any 

operation can be applied to any network. 

Table 7.1 Abstraction Operations 

Operation Compatibility 

Node removal Compatible 

Node merging Compatible 

State-space abstraction Incompatible 

Edge removal Incompatible 

The purpose of the BN must be considered when removing variables: some variables 

may have primary importance, and they should not be removed even when no data is 

available; whereas other variables may be removed without affecting the reasoning 

mechanism of the model significantly. The node removal operation is described in 

Section 7.4.2. 

Node merging can be used for a set of variables that together represent an abstract 

concept. Each of the merged variables is described as a part of the definition of the 

abstract concept. The node merging operation is demonstrated in Section 7.4.3. 

The states of a variable can be collapsed in order to decrease the size of its NPT 

thereby making it easier to learn or elicit the parameters with available resources. 

Domain experts should review the CI conditions that are added as a result of state-

space abstraction. The state-space abstraction operation is described in Section 7.4.4. 
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Edge removal can also be used to simplify the parameter-space of a BN. Edge 

removal is an incompatible abstraction; therefore, its effects on the CI conditions 

should be reviewed by domain experts. Data, if available, can be used to assess the 

effects of edge removals by statistical independence tests or model selection scores. 

The edge removal operation and approaches for reviewing its effects are described in 

Section 7.4.5. 

7.4 Abstraction Operations 

7.4.1 Compatibility of Abstractions 

A BN structure has fewer variables, states or relations than the initial – knowledge – 

model after the abstraction operations are applied. A crucial factor to consider is 

whether the abstracted BN 𝐺𝐴 is a compatible abstraction that is able to represent the 

probability distribution of the remaining variables. In this section, we present the 

definition of compatible abstractions in the case where some variables are removed 

from the model1. In the following sections we will expand this definition for the 

node merging operation, and discuss the compatibility of the state-space abstraction 

and edge removal operations. 

A compatible node removal operation is able to represent the probability distribution 

of the remaining variables in the BN. Let 𝐺𝑋 be a BN structure where the probability 

distribution 𝑃𝑋 of the set of variables 𝑋 factorises. When a set of nodes are removed 

from this BN, the abstracted BN structure 𝐺𝐴 must be able to represent the 

probability distribution of the set of remaining variables 𝐴. Since 𝐴 ⊆ 𝑋, the 

probability distribution 𝑃𝐴 of the set of variables 𝐴 is simply a marginalisation of 𝑃𝑋, 

and the compatible abstraction 𝐺𝐴 is able to factorise  𝑃𝐴 = ∑ 𝑃𝑋𝑋−𝐴 . This is possible 

if the abstraction operation does not introduce additional independence assertions to 

the BN structure so that 𝐺𝐴 asserts the subset of the d-separations in 𝐺𝑋. 

                                                
1 This section uses the concepts of d-separation, active trails and CI to define the compatibility of 

abstractions, see Section 2.4 for the definition of these concepts. 
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Compatible Abstraction: 𝐺𝑋 is an compatible abstraction of 𝐺𝐴 if  

𝑑𝑠𝑒𝑝𝐺𝐴
(𝐷; 𝐸|𝐹) → 𝑑𝑠𝑒𝑝𝐺𝑋

(𝐷; 𝐸|𝐹) and ¬𝑑𝑠𝑒𝑝𝐺𝑋
(𝐷; 𝐸|𝐹) → ¬𝑑𝑠𝑒𝑝𝐺𝐴

(𝐷; 𝐸|𝐹) 

where 𝐷, 𝐸, 𝐹 three sets of variables in 𝐴. 

When an abstraction operation adds a CI assertion, therefore is incompatible, the 

knowledge engineers must carefully evaluate the differences brought by the 

additional CI comparing it to the initial knowledge-based model (see Figure 7.3). 

 

Figure 7.3 Compatible and Incompatible Abstraction 

In the remainder of this section, we present each of the abstraction operations and 

discuss their compatibility properties. 

7.4.2 Node Removal 

Any node in a BN can be removed without adding independence assertions using 

Shachter’s topological operations (Shachter, 1988, 1986). The node removal 

operation is based on the concepts of barren nodes, covered edges and edge 

reversals: 

1. Barren Nodes: Nodes that do not have any descendants in the BN are called 

barren nodes. Removing barren nodes does not add independence 

assumptions for the rest of the BN: 𝑑𝑠𝑒𝑝𝐺𝐴
(𝐷; 𝐸|𝐹) = 𝑑𝑠𝑒𝑝𝐺𝑋

(𝐷; 𝐸|𝐹) 

where (𝑋 − 𝐴) are barren nodes and 𝐷, 𝐸, 𝐹 are three sets of variables in 𝐴. 

2. Covered Edge and Edge Reversal: An edge 𝑌 → 𝑍 in a graph 𝐺 is covered 

if 𝑃𝐴𝑌
𝐺 = 𝑃𝐴𝑍

𝐺 − {𝑌} that is if the set of parents of 𝑌 and set of parents of 𝑍 

excluding 𝑌 are equivalent. Covered edges can be reversed without adding 
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any independence assertions to the BN structure. This is useful since the 

outgoing edges from a node can be reversed to make the node barren, and to 

remove the node without adding CIs, when these edges are covered. 

3. Adding Edges: Adding edges to a BN structure do not add CI assertions to 

𝐺𝑋, but they remove CI assertions, since all the previously active trails are 

still present and the added edges may add further active trails: 𝐼(𝐺𝐸) ⊆ 𝐼(𝐺𝑋) 

where 𝐺𝐸 is derived from adding some edges to 𝐺𝑋. As a result, any edge in a 

BN can be covered, without introducing CIs, by adding edges between the 

variables that share the edge and their parents. 

In summary, we can cover any edge in a BN by adding more edges to the BN 

structure, and this will not add more independence assertions. We can reverse any 

edge and make any node barren as we can cover any edge in the BN structure. 

Consequently, we can remove any node as a compatible abstraction without adding 

independence assertions to the BN (Shachter, 1988). 

Removing a node can increase the parameter-space and computational complexity of 

a BN especially if the removed node has many children. As the number of children 

of a variable increases, more edges are required to cover the outgoing edges from the 

variable. For example, we need to add 4 edges in order to remove the node 𝑅 from 

the BN structure in Figure 7.4a with a compatible abstraction. As a result, the 

number of parents that 𝐶, 𝐷 and 𝐸 have is tripled (Figure 7.4c). 

Suppose that we need to reverse an edge 𝐴 → 𝐵 so that A becomes a barren node. If 

another directed path exists from 𝐴 → ⋯ → 𝐵 then reversing the edge 𝐴 → 𝐵 would 

introduce a cycle. However, in this case the node 𝐵 has another parent ‘𝑋’ on this 

path; since 𝑋 is a descendant of 𝐴 and the BN is acyclic we can be sure that there is 

no directed path from 𝑋 to 𝐵 via 𝐴. In general, since the BN is acyclic, the set 𝑃𝐴𝐵
𝐺  

must contain at least one node that does not have an additional directed path leading 

to 𝐵. This node is not greater than the other parents of 𝐵 in the partial order on edges 

defined by the BN’s graph. It is therefore always possible to select a node from 𝑃𝐴𝐵
𝐺  

so that its edge to 𝐵 can be reversed without introducing a cycle and is therefore 

possible to make any node in a BN barren without introducing a cycle. 
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Figure 7.4 (a) R with multiple children (b) Making R a barren node (c) R removed 

Since the BN’s graph defines only a partial, not total order, on nodes, we may have 

to choose the order in which the edges leading from a node 𝑅 are reversed as we 

transform the BN to make 𝑅 a barren node. Changing the order of edge reversal can 

change the structure of the final BN. For example, we have to reverse 𝑅 → 𝐷 and 

𝑅 → 𝐶 in order to remove 𝑅 from the BN shown in Figure 7.5a. If we start by 

reversing 𝑅 → 𝐷 the resulting structure has a total of 6 edges as shown in Figure 

7.5b. However, if we start by reversing 𝑅 → 𝐶, the resulting structure has 7 edges as 

shown in Figure 7.5c. 

The order of edge reversals can be selected in a way to minimise either the number 

of edges added or the size of the final state space. Having the least number of 

additional edges does not guarantee that the state-space is minimised. A BN with 

fewer edges can have a larger state-space due to the state-space of its individual 

variables. 

Making an exhaustive search for possible equivalent abstractions gets increasingly 

difficult as the number of children of the removed node increases. The outgoing 

edges from a node that has 𝑛 children can be reversed in 𝑛! possible orders. 

However, an exhaustive search can be unnecessary from a knowledge engineering 

perspective. A relation in a BN can represent causality or association. Edges added 

between the children of a removed node are assumed to represent association due to 
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the missing parent, therefore they can be modelled in any direction. However, some 

of the directions can make more sense to the domain experts even though these 

variables are assumed to be independent when the state of missing parent is known. 

 

Figure 7.5 (a) Initial BN (b) Equivalent Abstraction (c) Equivalent Abstraction 

If the domain experts have no preference about the directions of edges, following 

heuristics can be useful to choose the order of removing nodes without making an 

exhaustive search: 

 In order to add the minimal number of edges, start reversing from the edge 

𝑅 → 𝑋 where 𝑋 has the least number of parents. When multiple edges must 

be reversed to remove 𝑅, an edge is added from 𝑋 and 𝑃𝐴𝑋
𝐺 − {𝑅} in order to 

cover edges directed to other children of 𝑅 that are reversed later. Therefore, 

if we start from reversing the node that has the smallest number of parents, 

fewer edges will be added to cover the edges that are reversed later. 

 Similarly, in order to have a minimal increase in the size of the state-space, 

start reversing from the edge 𝑅 → 𝑋 where 𝑋 has the smallest number of 

parameters.  

Node removal is a well-known technique that has been primarily used for inference 

problems (Shachter, 1990, 1988, 1986). It is a crucial operation for knowledge 

engineering of BNs as it explicitly shows the number and possible direction of edges 

that must be added for abstraction. A node removal operation is straightforward 

when the removed node has a single or no child. In this case, no edges are added and 
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the edge directions are maintained. However, removing a node with multiple 

children can result in multiple equivalent BN structures with many additional edges 

as shown in Figure 7.5. The additional edges are necessary for compatibility but, if 

further simplifications are required, incompatible abstractions may follow. 

Using Edge Removal with Node Removal  

The edge removal operation (see Section 7.4.5) can complement node removal when 

a large number of edges are added due to node removal. Rather than making ad-hoc 

approximations, the domain experts should evaluate the CIs modelled by each of the 

new edges, and remove the ones that are considered to be trivial. An example of a 

node removal followed by edge removals is shown by the case-study in Section 7.5. 

7.4.3 Node Merging 

The second of the compatible abstraction operations is merging multiple nodes 

𝑇1, … , 𝑇𝑛 into a single node 𝑀. Two nodes 𝑇𝑖 and 𝑇𝑗 can be merged into a single node 

𝑀 when an edge can be added between 𝑇𝑖 and 𝑇𝑗 and this edge is reversible by 

adding extra edges to cover it. The network with the merged variable combines the 

networks with this edge in both directions. The merging operation is a compatible 

abstraction since covering and reversing the edge between 𝑇𝑖 and 𝑇𝑗 does not add CI 

conditions to the BN structure (see Section 7.4.2). When we merge the nodes 𝑇𝑖 and 

𝑇𝑗 into 𝑀, the state-space of 𝑀 becomes the Cartesian product of the state-spaces of 

𝑇𝑖 and 𝑇𝑗.  

Node merging does not change the probability distribution that factorises on the BN. 

The main difference is that 𝑇i and 𝑇j  cannot be observed separately, they must be 

observed or unobserved together. Therefore, while comparing the CI conditions 

between 𝐺𝑋 and 𝐺𝐴 observing 𝑀 is equivalent to observing 𝑇i and 𝑇j together. 

An example of the merging operation is shown in Figure 7.6 where the nodes 𝑋 and 

𝑌 are merged into 𝑋𝑌. The first step is to add an edge between 𝑋 and 𝑌 as shown in 

Figure 7.6b. Next, this edge is covered and reversed as shown in Figure 7.6c. The 

final BN with the merged variable 𝑋𝑌 (see Figure 7.6e), can be seen as equivalent to 

the BNs with edges in both directions (see Figure 7.6d).  



140 

 

Multiple nodes can be merged into a single node by repeating the merging operation 

pairwise. For instance, the nodes 𝑋, 𝑌 and 𝑍 in Figure 7.6a can be merged pairwise 

by first merging 𝑋 and 𝑌 to 𝑋𝑌 (see Figure 7.6e), then merging 𝑋𝑌 and 𝑍 to 𝑋𝑌𝑍 as 

shown in (see Figure 7.7). 

 
Figure 7.6 (a) Initial BN (b) 𝑿 → 𝒀 added (c) 𝑿 → 𝒀 reversed (d) BNs with 𝑿 → 𝒀 and 𝑿 ← 𝒀 

combined (e) 𝑿𝒀 merged 

A BN with merged nodes has the same or fewer CI assertions than the initial BN. 

The edges added after edge reversal and covering operations may remove some CIs. 

Moreover, some of the CI encoded in the initial BN disappears after merging since 

the merged variables cannot be observed separately. For example, 𝐴 and 𝐵 is 

independent given that 𝑋 and 𝑌 is observed in Figure 7.8a, but this independence 

disappears after merging 𝑋 and 𝑌 as shown in Figure 7.8b. 

 

Figure 7.7 𝑿𝒀 and 𝒁 merged 

 

Figure 7.8 (a) Initial BN (b) 𝑿 and 𝒀 Merged 

The merging operation introduces a cycle if there is a directed path between the 

nodes to be merged, 𝑇𝑖 and 𝑇𝑗, that includes some other node. These cycles have to 
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be eliminated since BNs are acyclic graphs. Our solution is to reverse some of the 

edges in these directed paths until none of the directed paths remain between 𝑇𝑖 and 

𝑇𝑗. In other words, if there is a directed path between 𝑇𝑖 and 𝑇𝑗 that includes other 

nodes, we break this directed path by reversing some of the edges in it. There are two 

issues to consider while reversing these edges: 

 The reversed edges must not introduce a cycle as well. 

 The edges must be covered before reversing (see Section 7.4.2). 

For example, we cannot immediately merge 𝑋 and 𝑌 in Figure 7.9 since there is a 

directed path 𝑋 → 𝐵 → 𝐷 → 𝑌 between 𝑋 and 𝑌 that includes the nodes 𝐵 and 𝐷. 

We have to reverse one of the edges between 𝑋 → 𝐵, 𝐵 → 𝐷 or 𝐷 → 𝑌 to prevent 

the merging operation from introducing a cycle. 

 
Figure 7.9 BN before 𝑿 and 𝒀 are merged 

We consider whether any of 𝑋 → 𝐵, 𝐵 → 𝐷 or 𝐷 → 𝑌 are covered or not. If one of 

them is covered, it can be reversed. In this case, none of these edges are covered 

therefore we need to add more edges to cover and reverse them:  

 Parents of 𝐵 = {𝐴, 𝑋}, parents of 𝑋 = { } therefore the edge 𝑋 → 𝐵 is not 

covered. The edge 𝐴 → 𝑋 has to be added in order to make this edge covered 

(see Figure 7.10a). 

 Parents of 𝐷 = {𝐶, 𝐵}, parents of 𝑌 = {𝐷, 𝑋, 𝐸}; therefore the edge 𝐷 → 𝑌 is 

not covered. The edges 𝐶 → 𝑌, 𝐵 → 𝑌, 𝑋 → 𝐷 and 𝐸 → 𝐷 must be added 

(Figure 7.10b). 

 Parents of 𝐵 = {𝐴, 𝑋}, parents of 𝐷 = {𝐶, 𝐵}; therefore the edge 𝐵 → 𝐷 is 

not covered. The edges 𝐴 → 𝐷, 𝑋 → 𝐷 and 𝐶 → 𝐵 must be added (Figure 

7.10c). 
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Figure 7.10 (a) 𝑿 → 𝑩 reversed (b) 𝑫 → 𝒀 reversed (c) 𝑩 → 𝑫 reversed 

Figure 7.10a, Figure 7.10b and Figure 7.10c shows the model structure when the 

edges 𝑋 → 𝐵, 𝐷 → 𝑌 and 𝐵 → 𝐷  are covered and reversed respectively. The edges 

that were added are shown by dashed lines, and the reversed edges are shown by 

bold lines in these figures. The BN in Figure 7.10a does not have a directed path 

between 𝑋 and 𝑌 therefore the nodes 𝑋 and 𝑌 can be merged. The BNs in Figure 

7.10b and Figure 7.10c, on the other hand, still have directed paths 𝑋 → 𝐵 → 𝑌 and 

𝑋 → 𝐷 → 𝑌 respectively. We need to reverse more edges in order to merge 𝑋 and 𝑌 

in these BNs. Since we already have a structure without a directed path between 𝑋 

and 𝑌 (Figure 7.10a), we will continue with this structure. 

The BN in Figure 7.11 is a compatible abstraction of the BN shown in Figure 7.9. 

The probability distribution 𝑃(𝐴, 𝐵, 𝐶, 𝐷, 𝑋𝑌, 𝐸) can be represented in the same way 

in these two BNs assuming that observing 𝑋𝑌 is equivalent to observing 𝑋 and 𝑌 at 

the same time in the initial BN. 

The BN in Figure 7.11 has one more edge compared to the initial BN. It is possible 

to select the sequence of reversals that leads to the fewest number of additional edges 

or to the smallest state-space. In our example, reversing 𝑋 → 𝐵 (Figure 7.10a) added 

the least number of edges compared to reversing 𝐷 → 𝑌 (Figure 7.10b) or 𝐵 → 𝐷 

(Figure 7.10c). 
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Figure 7.11 Compatible Merging of 𝑿 and 𝒀 

In general, it is possible to merge any pair of nodes in a BN. In the worst case the 

process described above will lead to a fully connected BN, with no CI conditions. 

Since all fully connected BNs that are formed by the same set of nodes have 

equivalent CI conditions (i.e. none), any (acyclic) combination of edge directions can 

be reached by an appropriate sequence of reversals of covered edges. Therefore, any 

edge can be reversed in a fully connected network, and any pair of nodes can be 

merged. 

Although possible, not all merging operations are sensible from a knowledge 

engineering perspective. In Figure 7.9, 𝑋 is a cause of 𝑌, and 𝐵 and 𝐷 are the 

intermediate variables between the cause and effect. Merging the cause and effect, 

and leaving the intermediate variables in the model would not be sensible in most 

knowledge engineered BNs. One would prefer to merge an intermediate variable 

with either its cause or its effect in order to simplify a causal BN. 

Using Node Merging with State-Space Abstraction 

Abstraction by merging variables is suitable when multiple variables in the model 

are parts of the definition of a more abstract concept. For example, one option to 

model an engine fault in a BN is to represent it with a single variable with ‘Yes/No’ 

states. Alternatively, the same concept can be modelled in detail with multiple 

variables each representing faults in different components of the engine such as 

faults in pistons, alternators and crankshaft. The merging operation makes it possible 

to show the link between the abstracted and detailed representations in this case. The 

variables about the individual engine components can be merged into the abstract 

variable about overall engine fault. After node merging the state-space of the abstract 

variable becomes the Cartesian product of the states of the merged variables. 

However, we would expect the abstract variable to have more abstract states as well. 
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State-space abstraction will follow node merging operation in such cases (see 

Section 7.4.4). An example of a node merging followed by state-space abstraction is 

shown in the case-study in Section 7.5. 

7.4.4 State-space Abstraction 

State-space abstraction collapses multiple states of a variable into a single state. For 

example, suppose a variable has 4 states named {None, Moderate, Severe, 

Profound}. We can collapse ‘Moderate’, ‘Severe’ and ‘Profound’ states into a single 

state called ‘Present’, as a result, the variable will have 2 states named {None, 

Present}. Consequently, the NPT of the variable requires fewer parameters and its 

learning, or elicitation, becomes simpler. This operation is often used in combination 

with node merging (See Section 7.4.3).   

State-space abstraction is an incompatible abstraction although it makes no change in 

the BN structure (Chang and Fung, 1990; Wellman and Liu, 1994). The changes in 

the CI and their effects to the domain representation should be discussed with the 

experts before making state-space abstractions.  

7.4.5 Edge Removal 

Edge removal is an incompatible abstraction that always adds CI assertions to the 

BN structure (see Section 7.2). Therefore, an edge should not be removed if it is not 

recommended by experts or statistical evidence. By adding CIs, edge removal 

decreases the parameter space and computational complexity of the BN. Edges 

added after the node removal and merging operations, and weak relations 

represented in the BN structure are suitable candidates for edge removal. The 

remainder of this section presents knowledge and data driven approaches for 

assisting edge removal. 

Using Domain Knowledge for Selecting Edges to be Removed 

Before removing an edge, the effects of removing the edge should be reviewed with 

domain experts. The review focuses on the strength of the relation modelled by the 

edge, and the CI conditions introduced due to removing it. It may not be feasible to 
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review the CI conditions between all subsets of variables especially if the BN is 

large. In this case, the domain experts can identify the important variables in the 

domain, and limit the review to these variables. 

Edge removal can be used with node removal and node merging as these operations 

can add many edges to the BN structure (see Section 7.4.2 and 7.4.3). For example, 

when the node 𝑅 is removed from the BN in Figure 7.12a 3 edges are added between 

the variables 𝐵, 𝐶 and 𝐷 as shown in Figure 7.12b. Removing these edges simplify 

the BN but it also adds CIs that are not present in the initial BN. For example, 

removing 𝐶 → 𝐷 and 𝐵 → 𝐶 as in Figure 7.12c adds two new CI conditions: 

(𝐵 ⊥ 𝐶|𝐴) and (𝐶 ⊥ 𝐷|𝐴). The knowledge engineers should discuss with the 

domain experts whether these CIs are acceptable in the domain. 

 

Figure 7.12 (a) Initial BN (b) Node R removed (c) Edges 𝑩 → 𝑪 and 𝑪 → 𝑫 removed 

Using Data for Selecting Edges to be Removed 

If data is available, statistical tests, including χ2, Margaritis (2004) and Dash and 

Druzdzel (2003), can be used to assist edge removal. These tests can identify the 

statistically significant CI assertions between variables. Alternatively, model 

selection scores, such as Bayesian Information Criterion (Schwarz, 1978), can be 

used to compare the effects of removing edges. Another possible approach is to 

assess the sensitivity of certain variables to edge removals (Renooij, 2010). 

7.5 Case-Study: Shock 

In this section, we use the ATC BN as a case study to illustrate the abstraction 

methodology. We apply the abstraction methodology to derive the shock fragment of 

the ATC BN from a more complicated BN structure elicited from the domain experts 

(see Section 5.3.3 for a description of the ATC BN). In the remainder of this section, 
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Sections 7.5.1 and 7.5.2 describe clinical knowledge modelled in the shock fragment 

and the initial BN structure elicited from the experts. Sections 7.5.3 – 7.5.6 applies 

each of the abstraction operations to the initial BN.  

7.5.1 Background 

Blood is the medium through which oxygen, which is vital for metabolism, is 

delivered to tissues. Patients with significant blood loss are unable to adequately 

perfuse their tissues with blood and thus unable to adequately deliver oxygen to the 

tissues. The body tissues start to die if starved of oxygen for a prolonged time. The 

body responds in several ways to compensate for the effects of blood loss. First, the 

heart rate increases in order to maintain normal perfusion and blood pressure. 

However, as the blood loss increases the increased heart rate cannot compensate and 

the blood pressure decreases. Second, as oxygen delivery to the tissues decreases, 

less efficient (anaerobic) metabolism takes over to compensate for the lack of 

oxygen. The by-products of anaerobic metabolism increase the acidity of blood and 

tissues, which in turn causes the respiration rate to increase. A patient in whom these 

mechanisms are operating as a result of bleeding is said to be in a state of 

haemorrhagic shock. 

Table 7.2 Definitions of Variables in the Shock fragment 

Variable Definition 

Bleeding 

Body Parts 

The number of bleeding body compartments. 

Hypovolemia Decrease in the volume of blood in circulatory system. Heart rate (HR) increases as 

a result of this to maintain normal blood pressure. 

Cardiac 

Output 

Volume of blood ejected from left side of the heart in 1 minute. As the blood loss 

increases cardiac output and blood pressure (SBP) will fall. Urine output and 

Glasgow coma score (GCS) is dependent on the perfusion of blood to kidney and 

brain respectively. 

PVS Vascular resistance to the flow of blood in peripheral arterial vessels. Degree of 

PVS can be estimated by capillary refill time (CRT). 

Oxygen 

Delivery 

Amount of oxygen delivery to the tissues. Body temperature (Temp) indicates the 

degree of overall oxygen delivery to the tissues. 

Metabolic 

Acidosis 

As oxygen delivery to the tissues decreases, less efficient (anaerobic) metabolism 

takes over to compensate for the lack of oxygen. The by-products of anaerobic 

metabolism increase the acidity of blood and tissues, which in turn causes the 

respiration rate (RR) to increase. The degree of metabolic acidosis can be estimated 

by pH, base excess (BE) and lactate values in blood. 

Death The risk of death in 48 hours 
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It is not possible to directly observe the state of the many variables explained above. 

For example, the oxygen perfusion to the tissues cannot be measured precisely. 

Instead, these ‘latent’ variables are inferred from related measurements and clinical 

observations. Reasoning of this type suggests the potential of a BN to detect shock. 

7.5.2 Shock Fragment of the ATC BN 

We developed a BN structure for reasoning about the physiology of bleeding patients 

and for predicting the risk of death from shock. We did not consider the limitations 

of data at this stage; our aim was to model all main variables and relations indicated 

by the domain experts. The structure of the initial BN is shown in Figure 7.13. The 

circular nodes in this BN are the main clinical variables, and rectangular nodes are 

the measurements and observations relevant to the main clinical variables. Table 7.2 

shows the definition of the main variables in the BN. We do not have data about 

some of these variables since they either cannot be directly observed or are not 

recorded in practice. We choose to simplify the BN structure using abstraction 

operations before applying the methodology described in Section 5 to learn the 

parameters of this BN fragment. 

 

Figure 7.13 Initial Structure of the Physiology BN 

7.5.3 Node Removal 

We removed the Metabolic Acidosis, Loss of Blood Volume, CRT, PVS, Urine 

Output, RR, Temp and GCS variables from the BN structure. These variables are 

selected with domain experts, considering both the objectives of the BN and 

availability of data. 
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Removing the blood loss and metabolic acidosis variables requires 1 and 4 edge 

reversal operations respectively. The measurement variables CRT, RR, Temp and 

Urine Output are already barren nodes therefore they can be removed without any 

edge reversal operations. The PVS variable become barren after CRT is removed so 

no edge reversal is needed for it either. The resulting BN structure after the node 

removal operations can be seen in Figure 7.14.  

 

Figure 7.14 BN Structure after Node Removals 

Removing metabolic acidosis with a compatible abstraction made the abstracted BN 

more complex: 3 edges were added between the children of this variable and one of 

its children (BE) has 3 parents now. These edges do not represent causal relations 

but removing them will introduce CIs that were not present in the initial BN. Before 

simplifying the graph, the effects of removing each of these edges, in terms of CI 

assertions, should be investigated by the domain experts (see Section 7.4.5). 

 

Figure 7.15 BN Structure after Node Merging 

7.5.4 Node Merging 

The state of the cardiac output, oxygen delivery and hypovolemia variables cannot 

be directly observed. The domain experts do not recommended removing these 

variables as they represent an important physiological mechanism about bleeding. 
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The parameters of these variables can be estimated by combining the observed data 

of their measurements and expert knowledge using the methodology described in 

Chapter 5.  However, the domain experts indicated that the BN structure could be 

further simplified before starting to learn or elicit the parameters. 

The domain experts stated that oxygen delivery, cardiac output and hypovolemia are 

elements of a more abstract physiological definition that can be called hypoperfusion 

or shock. Shock is clinically defined as a metabolic disturbance due to the failure of 

the circulatory system to maintain adequate perfusion to vital organs. Hypovolemia 

and cardiac output is associated with failure of the circulatory system, oxygen 

delivery and its relation to death represents the metabolic disturbance. Therefore 

these 3 variables can be merged into a single variable. We did not have to reverse 

any edges during merging since the merged node do not have directed path that 

includes a non-merged node between them. The resulting BN after merging is shown 

in Figure 7.15. 

Table 7.3 States of Shock before and after State-Space Abstraction 

Before  

state-space 

abstraction1 

 After  

state-space 

abstraction 

A,A,A 
 

Abnormal 

N,N,N 

: 

: 

N,A,A 

 

Normal 

1A: Abnormal, N: Normal 

7.5.5 State-Space Abstraction 

The node merging operations have simplified the structure of the BN resulting in a 

hypoperfusion variable that is easier to elicit clinically. However, the state-space of 

the hypoperfusion variable still requires simplification since it is formed by the 

Cartesian product of the states of each merged variable. For simplicity we defined 

binary states for the merged variables: {Normal, Abnormal}. The domain experts 

stated that Shock is present when all of the 3 factors are abnormal. In other words, 

we are interested in two states of Shock variable: the state when all of the factors are 



150 

 

abnormal, and when all of the factors are not abnormal. An illustration of this state-

space abstraction is shown in Table 7.3. 

7.5.6 Edge Removal 

Several edges were added between BE, Lactate and pH as a result of removing the 

‘Metabolic Acidosis’ variable. We listed the CI conditions that removing each of 

these edges can bring, and discussed these CIs with the domain experts. For 

example, when we remove pH → BE, pH becomes independent of BE given that 

Shock or the variables that are merged into Shock are observed. This CI was not 

present in the initial BN. The resulting BN structure after edge removals can be seen 

in Figure 7.16. 

 

Figure 7.16 Final Abstracted BN after Edge Removal 

7.6 Graphical Notation for Abstractions 

In this section, we present a graphical notation that shows the order and type of 

abstraction operations applied to a BN. The notation shows how the abstracted 

structure is derived from the initial BN by showing each abstraction step. This is 

essential for communicating the knowledge-base of a BN or for deriving a more 

detailed version of the BN when, for example, more data become available. We use 

both the initial and the abstracted BN structures to show the steps of abstraction. 

These structures are annotated by the symbols shown in Table 7.4.  In the remainder 

of this section, we illustrate the application of these symbols using the case study. 
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Table 7.4 Symbols for Abstraction Operations 

Operation Symbol Operation Symbol 

Node merging 

 

Edge added after  

node merging  

Node removal 

 

Edge reversed after  

node merging  

State-space abstraction 

 

Edge added after  

node removal  

Edge removal  

Removed nodes are shown with dashed boundaries and annotated by ‘xR’ where x is 

an integer that indicates the order of the abstraction operation and R indicates a 

removal operation. Edges that are added as a result of node removal operation are 

shown by an ‘xR’ annotation with the same ‘x’. In the case study, first abstraction 

operation is the removal of the ‘Metabolic Acidosis’ node, and this operation adds 

several edges to the model. Both the variable, and the added edges are annotated by 

‘1R’ in the initial and abstracted BNs respectively as shown in Figure 7.17. 

 

Figure 7.17 Notation for initial (a) and abstracted (b) BN fragment for removal of Metabolic 

Acidosis variable 

Nodes involved in a merging operation are annotated by ‘xM’ where x is the order of 

the abstraction operation and M stands for ‘merging’. In the shock example, we 

merged three nodes: ‘Oxygen Delivery’, ‘Cardiac Output’ and ‘Hypovolemia’. The 

node resulting from this merging operation is called ‘Hypoperfusion (Shock)’. We 

annotate each of these variables with ‘2M’ since it is the second abstraction 

operation and it is a merging operation. The initial and abstracted BNs after this 

operation can be seen in Figure 7.18. 
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Figure 7.18 Notation showing before (a) and after (b) merging multiple variables into Shock 

variable 

A node merging operation may introduce edges (see Section 7.4.3). In this case, both 

the added and the reversed edges are annotated by ‘xM’, and the reversed edges are 

shown by bold lines. 

Variables with state-space abstractions are shown by a double lined boundary, and 

removed edges are shown by dashed lines. The order of state-space abstraction and 

edge removal does not change the BN structure (other than the removed edge itself) 

so the order is not annotated. However, the collapsed or removed states after state-

space abstraction must be documented (for example, as in Table 7.3). In the case 

study, the state-space of ‘Shock’ is abstracted and the edges between ‘pH’, ‘RR’, 

‘BE’ and ‘Lactate is removed in order to simplify the BN, as shown in Figure 7.19. 

 

Figure 7.19 Notation showing edge removals and state-space abstraction (a) and the BN 

structure after edges are removed (b) 
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Figure 7.20 shows the initial and abstracted structure of the Shock BN with all the 

abstraction operations annotated. The graphical notation presented in this section 

clarifies the derivation of the final abstracted structure from the initial – detailed – 

structure. Multiple graphs each showing a particular step of abstraction should be 

recorded if the BN is simplified with multiple abstraction operations. 

 

Figure 7.20 Initial (a) and abstracted (b) bleeding physiology BN with abstraction notation 

7.7 Motivation from ABEL 

ABEL (Patil, 1981; Patil et al., 1981) was a pioneering clinical expert system that 

was developed for diagnosing acid-base disturbances of patients. Given laboratory 

data about a particular patient, ABEL generates the relevant causal diagrams from its 

knowledge-base, which is known as the patient specific model (PSM). It reasons by 

abstracting and elaborating these causal models to make diagnostic inferences, which 

is considered to be similar to how clinicians express their decisions. The causal 

models at the higher levels are directed acyclic graphs like BNs. Although widely 

referenced, PSMs have not become a commonly used approach for developing 

clinical decision support models. 

The causal diagrams of ABEL have several differences from the BN formalism. 

Firstly, each node in a PSM represents a single state of a variable, whereas the nodes 

in a BN are variables that can have multiple states. Secondly, the lower abstraction 

levels of PSM can have feedback loops which are always eliminated at higher levels; 

but BNs are acyclic graphs. Thirdly, PSM do not reason probabilistically and its 
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reasoning mechanism does not take the prior probabilities of diseases into account; 

BNs have superior probabilistic reasoning algorithms that are able to calculate 

complex learning and inference problems. Finally, BNs are lacking techniques for 

abstracting their knowledge-base for different levels of detail in a similar way to the 

abstraction mechanism in ABEL. Abstraction is clearly necessary for developing 

knowledge-based BNs for complex domains, and for explaining these models to 

external users. Our work on this paper was initially motivated by ABEL, notably its 

hierarchical structure and abstraction operations. 

7.8 Conclusion 

This chapter proposed abstraction as a knowledge engineering method for 

simplifying a BN structure. The method is illustrated by a medical case study about 

haemorrhagic shock. Our method provided: 

1. A sufficient set of operations that simplify a BN by removing and merging 

nodes, removing edges and reducing the number of states 

2. The compatibility properties of each abstraction in terms of CIs added to the 

BN structure 

3. A graphical notation that captures the sequence and type of abstraction 

operations, and thereby showing the link between the knowledge-base and 

the abstracted BN 

Some of the abstraction operations in our method are based on existing techniques 

that has been mainly used for learning and inference problems. This paper 

emphasises the potential of these techniques for following a systematic approach to 

knowledge engineering. The compatible abstraction operations do not add CIs but 

they can make the BN structure increasingly complex by adding edges. Incompatible 

abstraction can be used to simplify the structure but they approximate the BN 

structure by adding new CI conditions. Trade-offs between the approximations and 

complexity must be considered carefully. The next stage in this research is to 

implement these abstraction operations in BN software such as AgenaRisk (Agena 

Ltd, 2013). The BN software, augmented with the abstraction operations, would 
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guide the user through BN development by showing the impacts of compatible 

abstractions and presenting the approximations resulting from incompatible 

abstractions. Moreover, it would be beneficial to evaluate practical impacts of our 

method to BN development. 
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Evidence behind Clinical 

Bayesian Networks 

Clinicians may reject a prognostic model if they are not convinced that the model’s 

performance, for their patients, will be similar to its published performance in 

validation studies (Moons et al., 2009a; Wyatt and Altman, 1995). It may be difficult 

to evaluate the prospective performance of a model in clinical practice if the 

reasoning mechanism and clinical evidence behind the model is not completely 

understood (Wyatt and Altman, 1995). The graphical structure of a BN is well suited 

for representing causal and associational reasoning between a large number of 

variables. However, the current representation of BNs is not descriptive enough to 

show the details of clinical evidence behind a BN. In many clinical BNs, the names 

of variables are often short and ambiguous, the relations modelled by edges are not 

explained, and the corresponding evidence from the clinical literature and data is not 

presented. Consequently, domain knowledge and evidence behind these BNs are 

clear only to their developers. 

The clarity of a BN and relevant evidence also enables other domain experts to 

recommend local modifications in the BN when new evidence becomes available. 

For example, a part of the BN may become obsolete due to recent evidence and a 

modification may be required.  Prognostic models are often redesigned from scratch 

in such circumstances by disregarding all information present in the previous model 

(Altman et al., 2009; Moons et al., 2009a; Royston et al., 2009). BNs allow local 

modifications as their parameters can be defined locally, and their graphical structure 

can be built consistent with clinical evidence. However, evidence relevant to all parts 
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of a BN, including relations, variables, and a group of variables (BN fragments), 

must be defined in order to identify and refine the parts with obsolete evidence. 

In this chapter, we present an evidence framework for representing the evidence 

behind clinical BNs. Our framework is composed of two elements: an ontology for 

organising evidence, and a browser for presenting evidence. The main aim of the 

evidence framework is to organise and present evidence that supports or conflicts 

with a clinical BN. We use the ATC BN (see Section 5.3.3) as a case study to 

illustrate the evidence framework. Evidence behind ATC BN can be browsed online 

at the ATC BN website (ATCBN, 2013). 

8.1 Challenges of the Evidence Framework 

The challenges of describing the evidence behind a BN can be summarised in two 

points: 

1. Organising Evidence: The evidence about a BN must be detailed enough to 

prevent ambiguities about its relevance, source and type. First of all, the 

evidence can be relevant to different parts of the BN: some can be relevant to 

a particular variable or relation whereas others can be relevant to an entire 

group of variables. The evidence framework must be able to store evidence 

relevant to the fragments of the BN as well as to the individual variables and 

relations. Secondly, there may be different items of evidence. A part of the 

BN may have evidence from the data, and another part may be based on 

clinical publications. Thirdly, conflicting evidence must also be taken into 

account in order to have a comprehensive description of the evidence. The 

evidence framework must contain all of the relevant evidence even if it  

belongs to something not modelled in the BN. The type of the evidence must 

be recorded to show whether the evidence supports or conflicts with the BN 

model. Finally, the meaning of the variables must also be clear. Variable 

names in a BN structure are often short and may be ambiguous (see Section 

3.3); more detailed information must be given in the evidence framework.  

2. Presenting Evidence: Another challenge is to present evidence in a clear and 

simple way without losing any important information. Although the evidence 
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framework may require a complicated structure to store the evidence data, 

users do not necessarily need to see the technical details of the structure when 

browsing the evidence. Evidence should be presented in a user-friendly 

environment that is compatible with commonly available software such as 

web page browsers.  

The first challenge shows that BNs require a supporting evidence structure that is 

able to cope with the complications of organising and recording evidence with 

adequate amount of detail. The evidence structure must be flexible to deal with 

changing requirements in different applications. For example, some clinical models 

may require additional types of evidence to be defined, and the evidence structure 

must be flexible in addressing such requirements. Moreover, the evidence structure 

must be able to answer the queries about its completeness by showing the parts of 

the BN that lacks evidence.  

The second challenge can be overcome by an evidence browser that is automatically 

generated from the evidence structure. The evidence browser aims to present the 

evidence in a clear and understandable way without necessarily showing the details 

of the structure that organises evidence data. 

In order to overcome these challenges, we propose an evidence framework that is 

composed of two elements: a structure for organising the evidence data and a web 

page for browsing the evidence. We use ontology technology to build the structure 

and organise the data about evidence. The web page is automatically generated from 

the ontology. In the following sections, we describe the structure (Section 8.2) and 

browser (Section8.3) parts of the evidence framework. 

8.2 Evidence Structure 

We use the web ontology language (OWL) (W3C, 2013) framework for modelling 

and organising the evidence data, and the Protégé software (version 4.3.0) 

(Knublauch et al., 2004) to create and populate the OWL ontologies. In Section 

8.2.1, we give a brief introduction to ontologies. We present the structure of the 

evidence ontology in Section 8.2.2, illustrate how data is entered to this structure in 
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Section 8.2.3, and show queries for assessing the completeness of evidence in 

Section 8.2.4. 

8.2.1 Introduction to Ontologies 

Ontology is a formal definition of the relations among terms (Berners-Lee et al., 

2001), and OWL is a flexible language for building ontologies (W3C, 2013). Our 

primary reason for storing the evidence data in an ontology is their flexibility in 

building, modifying and querying a data structure. Our aim is to develop a general 

structure for recording and presenting evidence for BNs in medical domain but we 

do not assume that our evidence structure will satisfy the needs in all other BN 

applications. For example, some clinical applications may require additional types of 

evidence to be defined in the ontology structure, and ontologies offer a simple and 

robust framework for making such changes. Making similar modifications in 

relational databases is, however, difficult and time-consuming due to their highly 

structured schema and query system. 

An OWL ontology is composed of individuals, classes, object properties and data 

properties. Individuals represent objects in the domain, and classes represent the sets 

that individuals belong. Properties define the relations between individuals: object 

properties define the relation between two objects, and data properties define the 

relation between an object and a data value. In the remainder of this chapter, 

individuals are represented by purple diamonds, classes are represented by yellow 

circles, object properties are represented blue squares, and data properties are 

represented by green squares as shown in Figure 8.1. 

 

Figure 8.1 Representation of Ontology Elements 
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An example of a relation between two individuals is shown in Figure 8.2. In this 

example, John and Anna are individuals, and hasMother is an object property that 

defines the relation between these individuals. 

 

Figure 8.2 Individuals and Properties 

 

Figure 8.3 Classes and Individuals 

Members of a class can be defined by the user or it can be inferred from classes and 

property characteristics. For example, we can either manually define that Anna is a 

member of the Mother class (see Figure 8.3) or we can infer this from the 

characteristics of the hasMother property. Let the hasMother property have 3 

characteristics: 

1. The inverse of the hasMother property is the hasChild property 

2. The domain of the hasMother property is the Child class 

3. The range of the hasMother property is the Mother class 

Based on each of these characteristics, we are able to infer that (see Figure 8.4): 

1. Anna hasChild John – inferred from the inverse of hasMother 

2. Anna belongs to the Mother class – inferred from the domain of hasMother 

3. John belongs to the Child class – inferred from the range of hasMother 
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Figure 8.4 Inferred Classes and Properties 

Classes can be defined in multiple levels of hierarchy. For example, we can define 

that the Mother class is a subclass of the Woman class, and that the Woman class is a 

subclass of the Human class (see Figure 8.5). In this case, all individuals that are 

members of the Mother class are also members of the Woman and Human classes. 

An individual can belong to multiple classes with different hierarchies unless the 

classes are explicitly defined as disjoint. For example, Anna can belong to both 

Mother and Child classes but she cannot belong to both Human and Item classes as 

these are disjoint classes. 

 

Figure 8.5 Class Hierarchy 

Data properties describe the relation between an individual and a data value. Figure 

8.6 shows the relation between an individual and a string type of data value using a 

data property.   
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Figure 8.6 Data Property Example 

OWL contains many other features for defining properties and objects. A thorough 

description of OWL is, however, beyond the scope of this chapter, and the readers 

are referred to Allemang and Hendler (2011), and Segaran et al. (2009) for an 

introduction to ontology modelling and OWL. In the following section, we describe 

the classes, and properties of the evidence ontology. 

8.2.2 Evidence Ontology 

Our evidence structure is based on three main classes: BN element, evidence and 

source (see Figure 8.7). The BN element class contains the nodes, edges and BN 

fragments that form a BN. Each node in a BN represents a variable, and each edge 

represents a relation. We use the terms node and variable, and edge and relation 

interchangeably throughout this chapter. The evidence class defines the type and 

description of evidence. The source class describes the source of evidence; which 

can be a dataset, a domain expert or a scientific publication. Individuals of the 

evidence class may have multiple sources, for example, a relation in the BN structure 

may have evidence from several publications.  

 

Figure 8.7 Class Hierarchy of the Evidence Ontology 

In the remainder of this section, we describe the subclasses and properties related to 

the BN element, evidence and source classes. 
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8.2.2.1 BN element 

The BN element class has 3 subclasses: fragment, node and edge. This section 

describes the object and data properties related to each of these subclasses. 

Fragment 

A BN is composed of variables and edges, and it is necessary to clarify the meaning 

of these in order to describe knowledge behind the BN model. Several studies used 

BN substructures to assist BN development and to give a more concise summary of a 

BN model (see Section 2.6.1). A BN substructure represents a part of the BN that 

describes an important concept in its domain. Our ontology defines BN substructures 

in a general way as ‘BN fragments’. Any group of variables can be defined as a BN 

fragment in the evidence ontology. The complete structure of the BN is always 

defined as a BN fragment containing all of the other fragments and nodes in the BN. 

The information about a BN fragment is stored within the fragment class. Figure 8.8 

shows the object and data properties related to this class. A BN fragment may 

contain nodes and other – smaller – BN fragments. Members of a fragment can 

overlap with other fragments. Description of clinical knowledge modelled in the BN 

fragment, and evidence relevant to the entire BN fragment can be stored in the 

evidence ontology. 

 

Figure 8.8 Object and Data Properties related to Fragment Class 
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Subclasses of the fragment class can be defined if certain type of BN fragments, such 

as idioms (Neil et al., 2000) and object oriented BNs (Koller and Pfeffer, 1997), are 

used repetitively in the BN. In the ATC BN, we use measurement idiom structure 

multiple times to define parts of the BN structure (see Section 5.3.3). In order to 

distinguish the measurement idioms from other BN fragments in the evidence 

framework, we could add a class called ‘MeasurementIdiom’ as a subclass of the 

fragment class (see Figure 8.9).  

 

Figure 8.9 Subclasses of Fragment Class 

Node 

Individuals of the node class represent the variables in a BN. Knowledge modelled in 

a BN cannot be understood without having a clear understanding of the meaning of 

its variables. Variable names are often short, consisting of a few letters, therefore 

they may not clearly describe the concept that is represented by the variable (see 

Section 3.3). For example, a BN variable named ‘Heart Rate’ may be sufficient to 

show that this variable represents a measurement of the patient’s heart rate; but this 

name may not be descriptive enough if the time and location of this measurement is 

important for the use of the BN. In order to avoid such ambiguities, the evidence 

ontology stores a description of each BN variable (see Figure 8.10). 

The variables in a BN can be discrete or continuous. For discrete variables, we 

define the names of the states in the evidence ontology. Continuous variables have 

infinitely many states therefore we define the upper and lower bounds of the 

distribution. 

Since the edges of a BN are directed, we have an object property for both the edges 

that are directed to the variable (hasIncommingEdge) and the edges that are directed 

away from the variable (hasOutgoingEdge) (see Figure 8.10). The hasParent and 

hasChild properties show the parent – child relations between the BN variables. 

These 4 properties about edge directions and parent – child relations are inferred 

from the object properties related to the edge class described in the remainder of this 

section. The within property shows the BN fragments that contain the variable.  
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Figure 8.10 Object and Data Properties related to Node Class 

Different sources can be used to define the parameters of different BN variables as 

BN parameters can be learnt locally. For example, we can use data to define the 

parameters of some variables, and use expert knowledge to elicit the parameters of 

others. For each variable, we record the source used for defining its parameters (see 

Figure 8.11). 

Some variables may not be modelled in the BN even when evidence exists that they 

are relevant to the problem domain. For example, the knowledge engineers and 

domain experts may choose to exclude some variables to keep the BN simple. The 

evidence about the excluded variables and relations is recorded to have a 

comprehensive evidence base for the BN (see Figure 8.11).  
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Figure 8.11 Object Properties related to Node, Evidence and Source Classes 

Edge 

Edges represent the relations in a BN. BNs are directed acyclic graphs, therefore 

only one directed edge can exist between two variables. The variables that an edge 

connects are defined with two object properties in the evidence ontology: pointsTo 

shows the variable that the edge is directed to, and comesFrom shows the variable 

that the edge is directed away.   

 

Figure 8.12 Object Properties related to Edge Class 

Defining the direction of edges using pointsTo and comesFrom properties is 

sufficient for the ontology to infer the other object properties about the relation 

between two variables. For example, in order to define the directed relation A → B 
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between two variables A and B, we define an individual for the edge class, e.g. 

Edge1, and we define that Edge1 pointsTo B and comesFrom A (see Figure 8.13).  

The evidence ontology is able to infer the other object properties related to the 

relation between A and B (shown by dashed arrows in Figure 8.13) by using the 

following characteristics: 

1. The inverse of the comesFrom property is the hasOutgoingEdge property. By 

using the inverse property, the ontology can infer that A hasOutgoingEdge 

Edge1 when it is defined that Edge1 comesFrom A. Similarly, the inverse of 

the pointsTo property is the hasIncomingEdge property. 

2. The hasParent property can be inferred from the combination of the 

hasIncomingEdge and comesFrom properties. For example, if the variable B 

hasIncomingEdge Edge1 and Edge1 comesFrom the variable A, then the 

ontology can infer that the variable B hasParent A. Similarly, the ontology 

can infer the hasChild property from the combination of the 

hasOutgoingEdge and pointsTo properties.   

 

Figure 8.13 𝑨 → 𝑩 modelled in Evidence Ontology 

Each relation modelled in a BN should have supporting evidence in an evidence-

based BN (see Figure 8.12). When the BN structure is built with domain experts, 
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evidence for the relations often comes from expert knowledge or scientific 

publications. The justification for including the relation is recorded as the statement 

of evidence. In purely data-driven BNs, the evidence comes from the dataset only. It 

may be difficult to describe knowledge supporting the relations in data-driven 

models apart from saying that the variables were correlated in the data (see Section 

3.2 and 3.3). Conflicting evidence may also exist for a relation in the BN. For 

example, one publication may claim that two variables are independent, whereas 

another publication may find correlation between those variables. If these variables 

are connected by an edge in the BN structure, in accordance with the latter 

publication, the conflicting evidence from the former publication must also be 

recorded in order to have a comprehensive evidence base.  

The meaning of a modelled relation is shown by its supporting evidence. In order to 

include an edge in a BN model, the BN developer must have evidence that the 

relation exist between two variables. Therefore, all edges in a BN must have 

supporting evidence in an evidence-based model, which may come from domain 

experts, publications or data. An edge does not require a separate description like a 

variable since evidence associated with the edge describes its meaning. 

8.2.2.2 Evidence 

Figure 8.14 shows the properties related to the evidence class. The evidence class 

organises the data about the type and statement of evidence related to the BN 

elements. There are 3 types of evidence in our ontology: 

1. Supporting Evidence: This class contains the statement of evidence that 

supports the elements of a BN model. 

2. Conflicting Evidence: Evidence in this class conflicts with the BN model. 

For example, two variables that are found to be independent in a scientific 

study may not be modelled as independent in the BN model. In this case, the 

results of the scientific study must be recorded as conflicting evidence in the 

evidence ontology.  Conflicting expert opinions may also be recorded as 

conflicting evidence. 
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3. Excluded BN Element: Evidence about relevant variables or relations that 

are not included in the BN model is recorded within this class. The statement 

of evidence relevant to a excluded BN element and the justification for not 

including the element should be recorded. The excluded BN element class 

has 3 subclasses related to the type of the BN element excluded. The 

excluded child (parent) classes indicate that a variable in the BN may have an 

effect (cause) that is not modelled in the BN. The excluded relation class 

indicates that a direct relation may exist between two variables that are not 

directly linked in the BN.  

Each type of evidence is a subclass of the evidence class. The subclasses can be 

inferred from the type of object property that refers to the evidence. For example, 

any evidence recorded by the hasSupportingEvidence property is inferred as a 

member of the SupportingEvidence class. Similarly, any evidence that is recorded by 

the hasConflictingEvidence or hasExcludedBNElement properties are inferred as the 

members of the ConflictingEvidence or ExludedBNElement classes respectively. 

 

Figure 8.14 Object and Data Properties related to Evidence Class 

A BN element can have multiple items of evidence, and an item of evidence can 

have multiple sources. For example, two publications that are stating similar results 

about a relation in the BN can be recorded as a single evidence item with two 

sources (publications). Two publications that are discussing different aspects of a 

relation can be recorded as two separate items of evidence with one source each. 

More examples about recording evidence and source are shown in Section 8.2.3. The 

following section describes the ontology class about the source of evidence.  
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8.2.2.3 Source 

The source class contains information about the publication, expert opinion or data 

providing evidence. The subclasses, object and data properties of the source class are 

shown in Figure 8.15. The source class has three subclasses as shown below: 

1. Publication: The members of this class are scientific publications. 

Information for referring these publications, such as digital object identifier 

(DOI) and PubMed identification number (PMID), can be stored in this class. 

A PMID is a unique identifier assigned that makes it convenient to find the 

publications in the PubMed database. 

2. Expert: The domain experts’ credentials and contact information can be 

recorded in this class. 

3. Data: Evidence supporting or conflicting with model may come from data. 

The individuals of this class contain information about the details of the 

dataset including the sample size and the method of collecting the data. 

 

Figure 8.15 Object and Data Properties related to Source Class 

8.2.3 Entering Data to Evidence Ontology 

In this section, we illustrate how data is entered to the evidence ontology by using a 

simplified version of the ATC BN that has 3 variables and 2 edges (see Figure 8.16).   
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Figure 8.16 Simplified ATC BN 

8.2.3.1 Fragment 

The simplified ATC BN in Figure 8.16 contains a BN fragment called shock 

measurements. The state of hypoperfusion variable cannot be directly observed in 

clinical practice; it is estimated by several tests and observations including the lactate 

and pH levels in blood (see Chapter 5 for the description of the ATC BN). The shock 

measurements fragment models the relation between hypoperfusion and its 

measurements.  

Table 8.1 Defining Shock Fragment 

 

Type: 
 

Object Properties: 
 
 
 
 

 Data Properties: 
 
 

Table 8.1 shows the classes, object and data properties related to the shock 

measurements fragment. The structure of the shock measurements fragment is 

modelled using a pre-defined BN structure called a measurement idiom (see Sections 

5.3.3 and 8.2.2).  We use the object property ‘contains’ to show the variables and 

fragments within this fragment, and ‘within’ to show the larger fragments that 

contain this fragment. The entire BN is also defined as a BN fragment 

(SimplifiedATCBN) that contains all of the other variables and fragment in the 

BNElement within SimplifiedATCBN 

contains Hypoperfusion 

contains Lactate 

contains pH 

description “This 

part of the model 

estimates…” 

MeasurementIdiom 

Fragment 

ShockMeasurements 



172 

 

evidence ontology. A free-text description of the fragment is recorded using a data 

property.  

8.2.3.2 Variable 

Table 8.2 shows the data related to the Hypoperfusion variable in the evidence 

ontology. This variable is within the Shock fragment, and it has three children: ATC, 

Lactate and pH. The parameters of the variable are learnt from the RLH dataset. The 

description of the variable and the names of its states are recorded by the 

‘description’ and ‘stateName’ data properties. The edges between the Hypoperfusion 

variable and its children are modelled by the ‘hasOutgoingEdge’ object property that 

shows the edges that is directed away from the Hypoperfusion variable. For example, 

‘HypoToLactate’ is a member of the edge class that represents the edge 

Hypoperfusion → Lactate. The evidence supporting the relation between 

Hypoperfusion and Lactate variables is defined under the edge individual. More 

information about the edge class and its individuals are shown in Section 8.2.3.3. 

Table 8.2 Defining Hypoperfusion Variable 

 

Type: 
 

Object Properties: 
 
 
 
 

 Data Properties: 
 
 

Table 8.3 shows the information recorded about the lactate variable. Since lactate is 

a continuous variable, we define its upper and lower bounds instead of state names. 

There is evidence that some factors affecting lactate are not included in this model. 

BNElement within Shock 

hasChild ATC 

hasChild Lactate 

hasOutgoingEdge HypoToLactate 

hasOutgoingEdge HypoToATC 

description “The degree of 

inadequate oxygen…” 

stateName “None” 

stateName “Compensated” 

stateName “Uncompensated” 

Variable 

parameterisedFrom RLHDataset 

Hypoperfusion 

hasChild pH 

hasOutgoingEdge HypoToPH 
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This information is recorded in an item of evidence named ‘LactateExParEv1’ 

belonging to the evidence class (see Section 8.2.3.4). 

Table 8.3 Defining Lactate Variable 

 

Type: 
 

Object Properties: 
 
 
 
 

Data Properties: 
 
 

8.2.3.3 Edge 

HypoToLactate represents the edge Hypoperfusion → Lactate in the simplified ATC 

BN (see Table 8.4). The variables connected by this edge are modelled with 

‘comesFrom’ and ‘pointsTo’ properties. There are two items of evidence supporting 

the modelling of this edge. 

Table 8.4 Defining the Hypoperfusion → Lactate Edge 

 

Type: 
 

Object Properties: 
 
 
 
 

8.2.3.4 Evidence 

Two publications indicated that lactate is an important marker of the degree of 

hypoperfusion. We recorded this as an item of evidence supporting the edge 

Hypoperfusion → Lactate in the ATC BN (see Table 8.5). The details of the 

publications are described under the source class in Section 8.2.3.5. 

Lactate 

BNElement within Shock 

hasParent Hypoperfusion 

hasIncommingEdge HypoToLactate 

hasExcludedParent LactateExParEv1 

description “The amount of 

lactate in…” 

hasLowerBound 0 

hasUpperBound 100 

Variable 

parameterisedFrom RLHDataset 

BNElement comesFrom Hypoperfusion 

pointsTo Lactate 

hasSupportingEvidence LactateSuppEv2 

hasSupportingEvidence LactateSuppEv1 

Edge 

HypoToLactate 
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Table 8.5 Supporting Evidence 1 

 

Type: 
 

Object Properties: 
 
 

Data Properties: 
 

Hypoperfusion and lactate levels were highly correlated in our dataset. We recorded 

this correlation as a second item of evidence supporting the edge 

Hypoperfusion →  Lactate (see Table 8.6). 

Table 8.6 Supporting Evidence 2 

 

Type: 
 

Object Properties: 
 

Data Properties: 
 
 

One publication indicated that several factors, including excessive alcohol use, can 

affect lactate levels independent from the effects of hypoperfusion but these factors 

were not included in the ATC BN. We recorded this as evidence for a parent variable 

for Hypoperfusion that is not included in the BN (see Table 8.7). 

Table 8.7 Evidence about Excluded Parent 

 

Type: 
 

Object Properties: 
 
 
Data Properties: 
 
 

Evidence hasSource RixenEtAl2005 

hasSource VanDrommeEtAl2010 

statement “Lactate is 

produced during anaerobic…” 

SupportingEvidence 

LactateSuppEv1 

LactateSuppEv2 

LactateExParEv1 

Evidence hasSource RixenEtAl2005 

statement “…excessive 

alcohol use can increase 

the lactate levels …” 

ExcludedBNElement 

ExcludedParent 

Evidence hasSource RLHDataset 

statement “The likelihood 

of hypoperfusion increases 

with increasing lactate 

values in the RLH dataset…” 

SupportingEvidence 
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8.2.3.5 Source 

Table 8.8 shows the details of the publication related to the items of evidence in 

Table 8.5 and Table 8.7. The publication is recorded as a member of the source class 

with its referencing details and PMID. 

Table 8.8 Publication Source 

 

Type: 
 

Data Properties: 
 
 

Table 8.9 shows the details of the database related to the item of evidence in Table 

8.6. We recorded the description, sample size and method of collecting the dataset.  

Table 8.9 Data Source 

 

Type: 
 

Data Properties: 
 
 

 

8.2.4 Completeness Queries using SPARQL Query 

Language 

The parts of a clinical BN that lacks evidence may be interesting to clinicians who 

review the BN. Therefore, an efficient way of assessing the completeness of 

evidence can be a useful feature for the evidence framework. SPARQL is a query 

language that can retrieve the data stored in an OWL ontology. In this section, we 

show several SPARQL queries to find the BN elements that have or lack evidence. It 

RixenEtAl2005 

Source 

Publication 
hasPMID 16277731 

hasRefDetails “D. Rixen and 

J. H. Siegel, Critical Care, 
vol. 9, no. 5, p. 441, 2005  

…” 

RLHDataset 

Source 

Data 
datasetInfo “A dataset of 

600 patients who were 

treated at the…” 

dataCollection “Prospective 

Observational” 

sampleSize 600 
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is beyond the focus of this chapter to give a comprehensive description of SPARQL, 

a thorough introduction is given by Allemang & Hendler (2010). 

The simplest form of query in SPARQL is the SELECT query that extracts the data 

from the ontology and presents them in a table format. SELECT query is followed by 

the WHERE block that limits the query by question pattern. For example, we can get 

a list of the edges that has supporting evidence by: 

SELECT ?x 

 WHERE {  ?x a :Edge. 

     ?x :hasSupportingEvidence ?evidence.} 

 

The first line of the WHERE construct above filters out the individuals that are not 

members of the Edge class. The second line filters out the individuals that do not 

have supporting evidence. When we apply this query to the evidence ontology of the 

simplified ATC BN (see Section 8.2.3), we get the following result: 

:HypoToLactate 

:HypoToLactate 

Note that we get duplicate results since the edge Hypoperfusion ⟶ Lactate (named 

HypoToLactate in the ontology) has two items of supporting evidence 

(LactateSuppEv1 and LactateSuppEv2). We can use the DISTINCT keyword to filter 

out the duplicate results:   

SELECT DISTINCT ?x 

 WHERE {  ?x a :Edge. 

     ?x :hasSupportingEvidence ?evidence.} 

We get the following results after adding the DISTINCT keyword:  

:HypoToLactate 

The BN elements without evidence can be retrieved by using the MINUS keyword. 

The UNSAID keyword can be used as an alternative to MINUS keyword in SPARQL 

1.1. The MINUS keyword is used within the WHERE construct. 

SELECT DISTINCT ?x 

 WHERE { ?x a :Edge. 

  MINUS { ?x :hasSupportingEvidence ?evidence . } } 
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The SPARQL query above can be used to find the edges that do not have supporting 

evidence. The first line of the WHERE construct extracts all of the individuals that 

are edges. The second line filters out the individuals that have supporting evidence. 

For the simplified ATC BN example, it gives the following result: 

:HypoToPH 

:HypoToATC 

The ASK query is another kind of SPARQL query that can answer Yes/No questions 

in the ontology. The answer for an ASK query is either ‘True’ or ‘False’.  For 

example, we can ask whether the Hypoperfusion ⟶ ATC edge has supporting 

evidence in the simplified ATC BN by: 

ASK WHERE { atcbn:HypoToATC atcbn:hasSupportingEvidence 

?evidence} 

Since we haven’t defined any evidence for this edge in Section 8.2.3, we get the 

following answer: 

FALSE 

8.3 Browsing Evidence 

The evidence ontology is well suited for organising and querying evidence but it is 

not a convenient tool to browse evidence especially if the user is not proficient with 

the ontology language. Therefore, our ontology framework prepares a web page 

(HTML files) for browsing evidence after the data is entered to the evidence 

ontology. The web page is automatically generated from the ontology (a Protégé 

OWL file)2. 

The web page generator is not specific to a particular BN; it can generate the HTML 

files for browsing any BN model given that evidence is entered to Protégé OWL 

using the structure presented in Section 8.2.2. In the remainder of this section, we 

use the complete version of the ATC BN (see Section 5.3.3) as a case study to 

                                                
2 An early prototype of the web page generator was prepared as a part of an undergraduate graduate 

project at Queen Mary, University of London. The author continued the development of the browser 

and completed the current version. 
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demonstrate a web page generated from the evidence ontology. We call this web 

page the evidence browser for the ATC BN (see ATCBN, 2013).  

The ATC BN has a total of 7 fragments (see Figure 8.17): 

 The entire BN structure (‘ATCBN’) 

 The mortality, injury, coagulopathy and shock fragments that are described in 

Section 5.3.3 

 Two measurement idioms that models the relation between the latent 

variables and their measurements (‘ShockMeasurements’ and 

‘ATCMeasurements’). These measurement idioms fragments exist within the 

shock and coagulopathy fragments. 

 

Figure 8.17 Shock Fragment shown in the Evidence Browser 
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Figure 8.17 is the presentation of the Shock fragment in the evidence browser. The 

browser shows a description of the fragment and links to other variables and 

fragments that are members of this fragment. 

 

Figure 8.18 Hypoperfusion variable shown in the evidence browser 

If the user clicks to the Hypoperfusion variable in Figure 8.17, the evidence browser 

shows the details of this variable as in Figure 8.18. The browser shows the 

description of the variable, type of its probability distribution, list of its states, and 

relevant evidence. In this example, there are two items of evidence relevant to the 

hypoperfusion variable. The first item, named ‘Hypoperfusion States’, shows 
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evidence for selecting the states of this variable. The second item, named 

‘Hypoperfusion ↛ Respiratory Rate’, shows that the degree of Hypoperfusion can be 

also be measured with other markers that are not included in the ATC BN. These 

markers could be added as a child of the hypoperfusion variable. The reason for not 

adding these variables is also described.  

The variables that are directly related to the hypoperfusion variable, as its child or 

parent, are also listed in Figure 8.18. Each variable in this list is linked to a page 

showing the evidence about the relation. For example, when the user clicks to ATC 

which is in the relations section in Figure 8.18, the evidence related to the 

Hypoperfusion ⟶  ATC relation is shown (see Figure 8.19). 

 

Figure 8.19 Relation between Hypoperfusion and ATC shown in the Evidence Browser 
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There are 4 items of evidence relevant to the relation Hypoperfusion ⟶  ATC (see 

Figure 8.19). The user can click any of the references in Figure 8.19 to examine the 

source of the evidence statements.  For example, if the user clicks to 

BrohiEtAl2007a, the browser shows the details of this publication by connecting to 

the PubMed database (see Figure 8.20). The browser uses the PMID stored in our 

evidence ontology to find the publication in the PubMed database. If the source is a 

domain expert or a dataset, the browser shows the related information such as the 

institution and credentials of the expert or the description of the dataset. 

 

Figure 8.20 A Referred Publication shown in the Evidence Browser 

8.4 Related Work 

Several other frameworks have been proposed to describe knowledge behind a BN 

model. Antal et al. (2001) propose annotated BNs that describe the background 

knowledge for each node, edge and state in a BN by annotations. This representation 
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was primarily used for automated learning of BNs from the textual information in 

medical literature (Antal et al., 2004). 

Helsper and van Der Gaag (2007) use ontologies to clarify the elicited knowledge 

used for building a BN. They use a semi-formal ontology language that includes 

tables, figures and natural language descriptions. Their ontology documents expert 

knowledge from static, dynamic and definitional perspectives. Causal and temporal 

relations are described using Rieger and Grinberg's representation (1977). Helsper 

and van der Gaag (2002) also propose a methodology to derive a BN structure from 

this ontology however the method was not used to develop the model in their case-

study since the ontology is prepared retrospectively from an existing BN. Van der 

Gaag and Tabachneck-Schijf (2010) extend Helsper and van Der Gaag's ontology 

framework (2007) for describing BNs that are built for similar tasks. 

While both Helsper and van Der Gaag's ontologies (2007) and Antal et al.'s 

annotated BNs (2001) aims to clarify knowledge behind BNs but these frameworks 

do not aim to show the link between the model and evidence. Helsper and van Der 

Gaag (2007) focus on describing knowledge elicited from experts in more detail. For 

example, their ontology has numerous types of causal and temporal relations that can 

distinguish between continuous and one-shot causal events. However, Helsper and 

van der Gaag do not show the link between the model and evidence. Knowledge for 

their ontology is elicited from experts. Evidence from publications or conflicting 

expert opinions is not shown. Annotated BN (Antal et al. 2004; 2001) lacks the 

structure for recording information regarding type and source of evidence which is a 

crucial feature for the clarity of an evidence-base.  

Several studies have developed methodologies to use existing ontologies for 

automated construction of BNs. Devitt et al. (2006) propose a methodology for 

automated construction of a BN from ontologies in telecommunication networks 

domain. In this method, an ontology specific to the BN is derived from a more 

general ontology, and BN is automatically generated from the specific ontology. 

Similarly, Sadeghi et al. (2005) build an ontology more specific for the problem 

domain using the concepts from the unified medical language system (UMLS) 

(Bodenreider, 2004) and they learn a BN is based on this specific ontology. UMLS is 

a complicated medical terminology system but it lacks information about the causal 
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relations between clinical factors. Ishak et al. (2011) presents a set of rules that 

transform an ontology into a preliminary OOBN structure. Bucci et al. (2011) uses 

ontologies to build BNs on a predefined hierarchical structure in medical diagnosis 

domain. Fenz (2012) uses a semi-automated methodology to generate BNs from 

ontologies. In their methodology, the experts review the ontology and identify the 

nodes and states of the BN based on the classes and individuals in the ontology. 

Afterwards they identify the edges in the BN based on the object properties in the 

ontology. Fenz proposes a technique that uses weights defined in the ontology to 

parameterise NPTs in a similar approach to the parameterisation of ranked nodes 

(Fenton et al., 2007). An evidence-based BN requires justification for the relations 

modelled in the BN. Each edge in the BN should be supported with clinical studies, 

expert opinion or data. Many clinical ontologies are defined as clinical terminologies 

therefore they do not contain detailed information about causal and associational 

relations, and medical publications and datasets relevant to those relations. 

Therefore, the reviewed studies about automated BN construction from ontologies 

are not aligned with the aims of our evidence framework. 

Another active field of research focuses on extending ontologies with BNs to 

represent uncertain knowledge. Ding and Peng (2004) propose additional mark-ups 

to OWL to represent probabilistic information. They present a set of rules that 

transforms ontology into a BN. Similarly, Yang and Calmet (2005) present a BN 

extension to OWL that is also able to cope with multinomial variables. Costa et al. 

(2008) extend OWL to express uncertainty using multi entity BNs (Laskey and 

Costa, 2005) which is a combination of first-order logic and Bayesian reasoning. 

Zheng et al. (2008) propose mark-ups to transform an ontology representing clinical 

concepts into a BN. The aims of these studies are also different from the aims of our 

evidence framework. These studies extend ontology languages, such as OWL, so that 

the ontologies are able to cope with uncertainties about class membership, object 

properties and their other features. The evidence framework uses ontology as a 

complementary tool to clarify knowledge and evidence behind a decision support 

model, and it does not require the ontology to deal with uncertainty.  
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8.5 Conclusion 

This chapter proposed an evidence framework that complements clinical BNs by 

representing relevant knowledge and clinical evidence. The proposed framework 

consists of two parts: an ontology that stores evidence relevant to different elements 

of a BN, and a browser that presents the BN and evidence to clinicians. The ATC 

BN is used as a case-study to illustrate the evidence framework.  

Our evidence framework is able to organise and present the evidence in more detail 

than it is possible with the existing BN representation or previously proposed 

annotation techniques. The evidence framework can store various types of evidence 

including evidence supporting or conflicting with the BN, as well as evidence 

justifying the exclusion of variables and relations from the BN. Although the 

evidence is stored within a complicated ontology structure, users can browse the 

evidence in a web page that is automatically generated from the ontology, without 

dealing with any of the underlying technical details. 

The next step is to run a validation session with a group of clinicians to evaluate 

whether browsing evidence can improve their understanding of a BN model and its 

applicability in clinical practice. The evidence framework can also be improved to 

receive comments and suggestions from clinicians browsing the BN. Clinicians from 

different institutions can criticise evidence behind the BN and suggest modifications 

when new evidence becomes available.  

The evidence ontology could be proposed as a standardised format for recording BN 

models. This would require the ontology to store information about NPTs. Another 

option could be to extend the currently available XML formats for representing BNs 

(Cozman, 1998) to include information about evidence using the structure presented 

in this chapter. The evidence framework could also be extended to match its data 

with the definitions from medical terminology systems such as UMLS and 

SNOMED (Bodenreider, 2004; Spackman et al., 1997). This would make it possible 

to have a universally consistent terminology for the evidence recorded in the 

framework. However, synchronising the evidence framework with the terminology 

systems is challenging due to the complexity of these systems. 
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Finally, the evidence framework could be integrated with the abstraction 

methodology presented in Chapter 7. Such integration would enable the abstraction 

methodology to show how each simplification in the BN structure relates to 

underlying evidence supporting the model.  
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Summary and Future Directions 

This chapter summarises the contributions of the thesis in three topics: combining 

evidence, assisting BN development and understanding evidence. The chapter also 

discusses the future directions of research.   

9.1 Combining Evidence 

One of the challenges of applying EBM for individual patients is to combine the 

relevant evidence about different aspects of the treatment from multiple sources. In 

this thesis, we proposed methodologies to develop BN models that combine 

evidence from previous publications, data and expert opinion based on clinical 

knowledge about the domain. The proposed methodologies contribute to EBM as 

they can provide decision support by combining evidence from multiple sources 

based on clinical knowledge. We claim novelty for the methodologies and BN 

models presented in Chapters 5 – 8. 

Chapter 5 proposed a methodology for building decision support models that are 

consistent with clinical knowledge without being limited by the availability of data. 

The proposed methodology systematically used a combination of knowledge and 

data to develop and refine BN models. In this methodology, domain experts define 

the BN structure that explicitly models the important clinical variables even when 

they are not a part of the available data. The expert knowledge and data is used at 

two different stages: 1) to understand and model the behaviour of the latent 

variables, 2) to identify the potential improvements and refine the BN accordingly. 

We demonstrated the success of this methodology by using it for the development of 
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the ATC BN, which accurately predicts ATC, a fatal physiological disorder, in early 

stages of trauma care.  

The challenges that Chapter 5 address are not specific to the trauma case study. In 

order to build a BN model that is consistent with domain knowledge, variables that 

are important for expressing causal knowledge must be included in the model 

whether or not they are a part of the available data. Our methodology allows 

inclusion of these variables into decision support as long as domain knowledge is 

provided by experts. Moreover, we proposed a systematic way of identifying the 

potential model improvements. Our approach can be applied to other domains where 

all important factors cannot be directly observed but domain knowledge and some 

data is available. 

Chapter 6 proposed a methodology for building decision support models based on 

the evidence provided by meta-analyses. This methodology combines the evidence 

from a meta-analysis with expert knowledge and data to define the structure and 

parameters of a BN. This chapter also proposed a novel auxiliary Bayesian 

parameter learning model that combines data with the probabilities, from a meta-

analysis, that are conditioned on fewer variables than the parameter being learned. 

We demonstrate the success of this methodology by applying it to a BN for 

predicting the short-term outcomes of a traumatic lower extremity with vascular 

injury. The results of our methodology are better than the results of purely data-

based structure and parameter learning approaches, and an existing decision support 

model. 

Both Chapters 5 and 6 proposed methodologies to combine the evidence from 

different sources for providing decision support. Yet, these methodologies address 

different aspects of this problem. Chapter 5 combined expert opinion and data for 

discovering knowledge about important variables that cannot be directly observed. 

Chapter 6 addressed the case where the data for some combinations of factors, in this 

case injuries, were small and inadequate to build a decision support model. This 

chapter combined evidence from systematic reviews and meta-analysis with data for 

these rare combinations. The methodologies proposed in Chapters 5 and 6 can be 

used together when, for example, a decision problem has both latent variables and 

inadequate data for some combinations of factors. The case-study in Chapter 6 
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contained several latent variables that were modelled by using ranked nodes. These 

latent variables could also be modelled with the methodology proposed in Chapter 5 

instead of ranked nodes.  

9.2 Assisting BN Development 

Chapter 7 proposed a knowledge engineering methodology of simplifying a BN 

structure without losing the link to clinical knowledge supporting the BN structure. 

This chapter presented a sufficient set of operations that simplify a BN by merging 

or removing nodes, removing edges and collapsing states. Our methodology shows 

how each abstraction operation changes knowledge encoded in the BN. This chapter 

also proposed a graphical notation that shows the link between the initial and 

abstracted models by capturing the sequence and type of the abstraction operations 

applied. The proposed knowledge engineering problems addresses the problems of 

making ad-hoc simplifications in the BN structure without considering their effects 

to the BN’s knowledge-base.  

9.3 Understanding Evidence 

Chapter 8 proposed a framework to organise and present evidence behind clinical 

BNs. The evidence framework can represent evidence related to different variables, 

relations and fragments of a BN. It also provides a detailed description of the BN 

elements and evidence to clarify the BN for other clinicians. The evidence 

framework is composed of an ontology that organises evidence, and a browser that 

presents evidence without showing the technical details of the ontology. The 

evidence framework is able to represent evidence in a more detailed and structured 

way than it is possible with the structure of a BN or with making annotations on the 

structure. 

Both Chapters 7 and 8 aims to clarify knowledge encoded in a BN to its users. The 

methodology proposed in Chapter 7 addresses this issue at the stage of BN 

development. The methodology shows how simplifications of the BN structure affect 

knowledge behind the model. The evidence framework in Chapter 8 focuses on the 
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application stage. The framework aims to clarify knowledge and evidence behind a 

BN model that has already been developed and is being used. The evidence 

framework could complement the abstraction methodology at the development stage 

of a model. For example, while the abstraction methodology shows how encoded 

knowledge changes after a simplification, the evidence framework can enhance this 

by showing evidence relevant to these changes. 

9.4 Future Directions 

This thesis has showed that BNs can contribute to EBM by being used as a 1) 

evidence repository for organising evidence about clinical problems 2) risk 

calculator that quantifies uncertainties and calculates risks based on encoded 

evidence. The potential benefits for EBM can only be utilised if evidence-based BN 

models can be easily built by any BN developer who has access to clinical evidence. 

A BN developer must know the basic properties of BNs and relevant knowledge 

engineering methodologies in order to build a BN that correctly represents clinical 

knowledge and evidence. This thesis has contributed to the latter of these issues by 

proposing knowledge engineering methodologies for developing evidence-based 

BNs. BN developers also require tools that assist them in using correct modelling 

techniques and that provide them with state-of-the-art algorithms. Fenton and Neil’s 

recent BN textbook (2013), and some commercial BN tools including AgenaRisk, 

has addressed some of these issues by focussing on the practical use of BNs and 

handling calculations details by the algorithms implemented in software. However, 

some techniques for BN development cannot be widely used in practical applications 

as they are not implemented in user friendly BN tools, whereas most traditional 

statistical techniques are readily implemented in software that is convenient and 

familiar to the medical community. More BN resources, textbooks and software 

must be targeted to practical applications in order to make BNs a mainstream 

modelling approach in clinical care. Further development of the ideas presented in 

this thesis could contribute to a wider use of BNs in clinical care. 

The abstraction methodology proposed in Chapter 7 requires graphical operations 

with complicated calculations. The use of this methodology in practical applications 

could be improved if it could be implemented in an interactive development 
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environment (IDE) that handles the graphical operations. The IDE could assist a BN 

user in developing knowledge-based models and making abstractions without 

making undesirable changes in knowledge encoded in these models. Moreover, the 

IDE could show the equivalent ways of making an abstraction and recommend the 

option that adds the least amount of parameters to the BN. The result of each 

abstraction could be presented both graphically and textually. The evidence 

framework (see Chapter 8) could be integrated with the abstraction IDE to show 

evidence related to abstracted BN elements. A more systematic approach to 

knowledge-based modelling can be achieved by implementing the abstraction IDE to 

major BN software.   

In Chapters 5 and 6, we proposed methodologies to combine data with knowledge 

and published studies to define the parameters of a BN. Data could also be integrated 

with other sources of evidence to build the BN structure. For example, it could be 

used to identify the parts of the BN that require more attention from the domain 

experts. The domain experts could review the BN structure more systematically by 

focusing on the edges that has weak correlations, and the unconnected variables that 

have strong correlations in the data. Although hybrid structure learning methods that 

combine knowledge with data exists, these methods are aligned for using expert 

knowledge to assist a data-driven learning. However, it could be beneficial for an 

evidence-based BN to use expert knowledge as the primary source of information for 

the BN structure, and the data as a way of reviewing the structure. 

The evidence framework proposed in Chapter 8 could be expanded as a 

communication medium that aims to organise and disseminate state-of-the-art 

clinical evidence. The expanded framework could use a causal BN structure to give 

an overview of evidence about a particular medical topic. For example, a causal 

structure can show an overview of how various background factors, treatments and 

comorbidities are related with a disease. Since clinicians have limited amount of 

time to identify relevant evidence for individual patients, summarising evidence in a 

graphical BN structure could be beneficial for employing EBM in daily clinical 

practice (see Alper et al., 2004; Smith, 2013 for some examples of the challenges of 

identifying relevant evidence in daily practice). The meaning of each factor in the 

causal structure and the link with the publications would be provided by the evidence 
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framework. The expanded framework would also allow experts to suggest 

refinements on the causal structure when new evidence becomes available. 

Consensus methods such as Delphi could be used to update the causal structure when 

multiple expert opinions are available. Since the aim of the causal structure would be 

to give an overview of evidence, it does not have to be a complete – parameterised –

BN. However, organising evidence in causal structures would make it easier to 

derive evidence-based decision support models from them. If causal knowledge 

about a subject is well documented, a BN developer would only need to focus on 

defining the parameters. 

The BNs proposed in this paper provide predictions that are useful for the decision 

makers in trauma care. A useful next step would be to explain the predictions 

generated by the BN based on clinical evidence. For example, instead of plainly 

showing the probability of death, explaining why the model has calculated such 

probability of death can be more helpful to make a better risk assessment. Several 

techniques are available for explaining BN predictions by showing the influences 

and reasoning pathways of observed variables. By coupling the explanation 

techniques with the evidence framework, it could be possible to show how different 

items of evidence support a particular prediction of the model.  
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