6 research outputs found

    Subgroup Preference Neural Network.

    Full text link
    Subgroup label ranking aims to rank groups of labels using a single ranking model, is a new problem faced in preference learning. This paper introduces the Subgroup Preference Neural Network (SGPNN) that combines multiple networks have different activation function, learning rate, and output layer into one artificial neural network (ANN) to discover the hidden relation between the subgroups' multi-labels. The SGPNN is a feedforward (FF), partially connected network that has a single middle layer and uses stairstep (SS) multi-valued activation function to enhance the prediction's probability and accelerate the ranking convergence. The novel structure of the proposed SGPNN consists of a multi-activation function neuron (MAFN) in the middle layer to rank each subgroup independently. The SGPNN uses gradient ascent to maximize the Spearman ranking correlation between the groups of labels. Each label is represented by an output neuron that has a single SS function. The proposed SGPNN using conjoint dataset outperforms the other label ranking methods which uses each dataset individually. The proposed SGPNN achieves an average accuracy of 91.4% using the conjoint dataset compared to supervised clustering, decision tree, multilayer perceptron label ranking and label ranking forests that achieve an average accuracy of 60%, 84.8%, 69.2% and 73%, respectively, using the individual dataset

    Preference Neural Network

    Full text link
    This paper proposes a preference neural network (PNN) to address the problem of indifference preferences orders with new activation function. PNN also solves the Multi-label ranking problem, where labels may have indifference preference orders or subgroups are equally ranked. PNN follows a multi-layer feedforward architecture with fully connected neurons. Each neuron contains a novel smooth stairstep activation function based on the number of preference orders. PNN inputs represent data features and output neurons represent label indexes. The proposed PNN is evaluated using new preference mining dataset that contains repeated label values which have not experimented before. PNN outperforms five previously proposed methods for strict label ranking in terms of accurate results with high computational efficiency.Comment: The current content is inappropriate and requires to be comprehensively reviewed agai

    Mixture-Based Probabilistic Graphical Models for the Label Ranking Problem

    Get PDF
    The goal of the Label Ranking (LR) problem is to learn preference models that predict the preferred ranking of class labels for a given unlabeled instance. Different well-known machine learning algorithms have been adapted to deal with the LR problem. In particular, fine-tuned instance-based algorithms (e.g., k-nearest neighbors) and model-based algorithms (e.g., decision trees) have performed remarkably well in tackling the LR problem. Probabilistic Graphical Models (PGMs, e.g., Bayesian networks) have not been considered to deal with this problem because of the difficulty of modeling permutations in that framework. In this paper, we propose a Hidden Naive Bayes classifier (HNB) to cope with the LR problem. By introducing a hidden variable, we can design a hybrid Bayesian network in which several types of distributions can be combined: multinomial for discrete variables, Gaussian for numerical variables, and Mallows for permutations. We consider two kinds of probabilistic models: one based on a Naive Bayes graphical structure (where only univariate probability distributions are estimated for each state of the hidden variable) and another where we allow interactions among the predictive attributes (using a multivariate Gaussian distribution for the parameter estimation). The experimental evaluation shows that our proposals are competitive with the start-of-the-art algorithms in both accuracy and in CPU time requirements
    corecore