
entropy

Article

Mixture-Based Probabilistic Graphical Models for the Label
Ranking Problem †

Enrique G. Rodrigo 1,2 , Juan C. Alfaro 1,2,* , Juan A. Aledo 2,3 and José A. Gámez 1,2

����������
�������

Citation: Rodrigo, E.G.; Alfaro, J.C.;

Aledo, J.A.; Gámez, J.A.

Mixture-Based Probabilistic

Graphical Models for the Label

Ranking Problem. Entropy 2021, 23,

420. https://doi.org/10.3390/

e23040420

Academic Editors: Rafael Rumí and

Antonio Salmerón

Received: 9 March 2021

Accepted: 27 March 2021

Published: 31 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain;
mail@enriquegrodrigo.com (E.G.R.); Jose.Gamez@uclm.es (J.A.G.)

2 Laboratorio de Sistemas Inteligentes y Minería de Datos, Instituto de Investigación en Informática de
Albacete, 02071 Albacete, Spain; JuanAngel.Aledo@uclm.es

3 Departamento de Matemáticas, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
* Correspondence: JuanCarlos.Alfaro@uclm.es
† This is an extended version in proceedings of the 15th European Conference on Symbolic and Quantitative

Approaches with Uncertainty, Belgrade, Serbia, 18–20 September 2019.

Abstract: The goal of the Label Ranking (LR) problem is to learn preference models that predict the
preferred ranking of class labels for a given unlabeled instance. Different well-known machine
learning algorithms have been adapted to deal with the LR problem. In particular, fine-tuned
instance-based algorithms (e.g., k-nearest neighbors) and model-based algorithms (e.g., decision
trees) have performed remarkably well in tackling the LR problem. Probabilistic Graphical Models
(PGMs, e.g., Bayesian networks) have not been considered to deal with this problem because of the
difficulty of modeling permutations in that framework. In this paper, we propose a Hidden Naive
Bayes classifier (HNB) to cope with the LR problem. By introducing a hidden variable, we can design a
hybrid Bayesian network in which several types of distributions can be combined: multinomial for
discrete variables, Gaussian for numerical variables, and Mallows for permutations. We consider two
kinds of probabilistic models: one based on a Naive Bayes graphical structure (where only univariate
probability distributions are estimated for each state of the hidden variable) and another where we
allow interactions among the predictive attributes (using a multivariate Gaussian distribution for the
parameter estimation). The experimental evaluation shows that our proposals are competitive with
the start-of-the-art algorithms in both accuracy and in CPU time requirements.

Keywords: mixture models; EM algorithm; Naive Bayes; probabilistic graphical models; label
ranking; preference learning; machine learning

1. Introduction

Preferences are comparative judgments about a set of alternatives or choices. The
Label Ranking (LR) problem [1–3] is a well-known non-standard supervised classification
problem [4,5], whose goal is to learn preference models that predict the preferred ranking
over a set of class labels for a given unlabeled instance. Practical applications of the LR
problem are found in cases where an order of preference (or ranking) for the class labels is
required given an input instance. Particular examples can be ranking a set of genes from
their expression level, ranking the set of relevant topics for a given document, ranking a set
of available machine learning algorithms for a given dataset and prediction task, etc. [6,7].

Formally, we consider a problem domain defined over n predictive variables (also
known as attributes), X1, . . . , Xn, and a class variable C with m labels, dom(C) = {c1, . . . , cm}.
We are interested in predicting the ranking π of the labels for an unlabeled instance et =
(x1,t, . . . , xn,t) ∈ dom(X1) × · · · × dom(Xn) given a dataset D = {(x1,j, . . . , xn,j, πj)}N

j=1
with N labeled instances. Therefore, the LR problem consists in learning a LR-Classifier C
from D which generalizes well on unseen data.

Entropy 2021, 23, 420. https://doi.org/10.3390/e23040420 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7211-7051
https://orcid.org/0000-0003-1777-8540
https://orcid.org/0000-0003-1786-8087
https://orcid.org/0000-0003-1188-1117
https://doi.org/10.3390/e23040420
https://doi.org/10.3390/e23040420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23040420
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/4/420?type=check_update&version=1

Entropy 2021, 23, 420 2 of 24

In other words, the goal of the LR problem is to induce a model able to predict a
permutation of the class labels by taking advantage of all the available information during
the learning process. Different approaches have been proposed to tackle this problem:

• Transformation methods. They transform the ranking-based prediction problem into
a set of single-class classifiers, whose outcomes must be later aggregated in order to
obtain a ranking. Various approaches have been considered, such as labelwise [8] and
pairwise approaches [9,10], chain classifiers [11], etc.

• Adaptation methods. They adapt well-known machine learning algorithms to cope with
the new class structure. Cheng et al. in [2] introduced a model-based algorithm that
induces a decision tree (Label Ranking Trees (LRT)) and a model-free algorithm which
uses k-nearest neighbors (Instance-Based Label Ranking (IBLR)). Other techniques, like
association rules [12] or neural networks [13], have also been adapted.

• Ensemble methods. Recently, different tree-based aggregation approaches, such as
Random Forests, Bagging predictors, and Boosting methods, have been successfully applied
to the LR problem [14–17].

In this paper, we propose a new model-based LR-classifier which belongs to the
adaptation methods family. Our motivation is twofold:

• Although fine-tuned instance-based algorithms have exhibited remarkable perfor-
mance (especially when the model is trained with complete rankings), they may demand
a great amount of computational resources (memory and time) during model selection
and inference when the size of the dataset grows.

• Although Probabilistic Graphical Models (PGMs; e.g., Bayesian networks) [18,19] consti-
tute a standard approach in machine learning, they have not been used in this problem
because of the difficulty in coping with permutations in this framework [2,20]. In this
work, we successfully introduce the use of PGMs to deal with the LR problem, obtain-
ing results which are competitive with the state-of-the-art IBLR and LRT algorithms.

The proposed probabilistic LR-classifier relies on the use of a hybrid Bayesian net-
work [21] where different probability distributions are used to conveniently model variables
of a different nature: Multinomial for discrete variables, Gaussian for numerical variables,
and Mallows for permutations [22]. The Mallows probability distribution is usually consid-
ered to model a set of permutations and, in fact, is the core of the decision tree algorithm
(LRT) proposed in [2].

To overcome the constraints regarding the topology of the network when dealing with
different types of variables, in the preliminary version of this study, we proposed a mixture-
based structure where the root is a hidden discrete variable. In [23], we based our proposal
on a Naive Bayes graphical structure, where only univariate probability distributions are
estimated for each state of the hidden variable. Learning and inference schemes were
also designed in [23], based on the use of well-known Expectation-Maximization (EM)
algorithm for parameter estimation and a combination of probabilistic inference with the
Kemeny Ranking Problem (KRP) [24], respectively. Nonetheless, the proposed methods
performed somewhat unevenly when dealing with the different datasets. With this more
comprehensive paper, we successfully overcome the main weaknesses of our former
proposal. Specifically, the main contributions of this study are as follows:

• After identifying early stopping as the main problem in our previous learning algo-
rithm (Method A), we propose a new learning scheme (see Method B in Section 3) to
search for the number of components in the mixture.

• For our Hidden Naive Bayes model, we explore discretization as an alternative to
modeling numerical variables as Gaussian distributions.

• We extend the complexity of the naive Bayes-based structure model in order to
allow interactions among the predictive attributes. In this new model, only numerical
predictive attributes are allowed, and interactions are managed by using a multivariate
Gaussian distribution.

Entropy 2021, 23, 420 3 of 24

• We perform an exhaustive experimental analysis over the standard benchmark for the
label ranking problem.

The rest of the paper is structured as follows. In Section 2, we review some basic
notions needed to deal with rank data. In Section 3, we formally describe the proposed
Hidden Naive Bayes (HNB) as well as the algorithms to induce it from data and to carry out
inference. Then, in Section 4, we extend our proposal to allow interactions between the
(numerical) predictive attributes, by using a multivariate Gaussian mixture. In Section 5,
we set out the empirical study conducted to evaluate the methods designed in this paper.
In Section 6, we briefly comment on some limitations of the presented approach. Finally, in
Section 7, we provide the conclusions and future research lines.

2. Background

In this section, we review the background to our proposal. In particular, we briefly
describe some permutation-based notions, such as the Kemeny Ranking Problem [24] and the
Mallows probability distribution [22]. We also revise the Naive Bayes model [18] and the two
competing methods to tackle the LR problem used in this study: the Label Ranking Trees
and the Instance-Based Label Ranking algorithms [2].

2.1. Kemeny Ranking Problem

Let Sm be the set of permutations defined over m elements {1, . . . , m}. The Kemeny
Ranking Problem (KRP) [24] consists in obtaining the consensus permutation (mode) π0 ∈ Sm
that best represents a sample with N permutations Π = {π1, . . . , πN}, πi ∈ Sm.

Formally, the KRP looks for the consensus permutation π0 ∈ Sm that minimizes

π0 = argmin
πi∈Sm

N

∑
i=1

D(π0, πi),

where D(π, τ), π, τ ∈ Sm is a distance measure between two permutations π and τ. Nor-
mally, the Kendall distance [25] is used, which counts the number of pairwise disagreements
between the two permutations, and the (greedy) Borda count algorithm [26] is employed to
solve the KRP, because of its trade-off between efficiency and accuracy. The Borda count
algorithm basically assigns m points to the item ranked first, m− 1 to the second one, and
so on. Once all the input rankings have been computed, the items are sorted according to
the number of accumulated points.

When not all rankings are equally important, a weight can be associated with each
one to reflect its relevance. Then, a generalized version of the Borda method called weighted
Borda count is used, which basically balances the points received by a permutation taking
its weight into account.

2.2. Kendall Rank Correlation Coefficient

In our learning process (see Section 3.3), the Kendall rank correlation coefficient τK is
used as goodness score [27]. Given the class variable C with dom(C) = {c1, . . . , cm} and
permutations π1, π2 of the values in dom(C), the τK Kendall rank correlation coefficient is
given by

τK(π1, π2) =
∑m

i=1 ∑m
j=1 β

ij
1 · β

ij
2

m · (m− 1)

where

β
ij
k =

1, if ci �πk cj

−1, if cj �πk ci

0, if i = j

for k = 1, 2. Here, ci �πk cj means that ci is ranked before cj in πk.

Entropy 2021, 23, 420 4 of 24

The τK Kendall rank correlation coefficient lies in the range [−1, 1]. In particular,
τK(π1, π2) = 1 means a total positive correlation between π1 and π2 (π1 = π2), whereas
τK(π1, π2) = −1 indicates a total negative correlation (actually this occurs when π1 is the
inverse of π2). Values of τK close to 0 mean a poor correlation between the permutations.

2.3. Mallows Probability Distribution

The Mallows probability distribution (also known as the Mallows model) [22] is an expo-
nential probability distribution over permutations based on distances. The Mallows model,
M(π0, θ), is parametrized by two parameters: the central permutation (mode) π0 ∈ Sm and
the spread parameter (dispersion) θ ∈ [0,+∞). Given a distance D in Sm, the probability
assigned to a permutation π ∈ Sm by the Mallows distributionM(π0, θ) is

P(π; π0, θ) =
e−θ·D(π,π0)

Ψ(θ)

where Ψ(θ) is a normalization constant. The spread parameter θ quantifies the concentra-
tion of the distribution around π0. For θ = 0, a uniform distribution is obtained, while for
θ = +∞ the model assigns a probability of 1 to π0 and of 0 to the rest of the permutations.
Both π0 and θ can be estimated accurately in polynomial time [28]. For consensus permuta-
tion (π0), the Borda count is usually employed. For the spread (θ), there is no closed form,
so numerical algorithms (e.g., Newton–Raphson) are normally used.

In this study, we take the Kendall distance as D, which is the usual choice in the
literature [2,29].

2.4. Naive Bayes

Naive Bayes (NB) models are well-known probabilistic classifiers based on the strong
independence hypothesis that, given the class variable, every pair of features is considered
conditionally independent [30]. This assumption allows an efficient factorization of the
join probability distribution (see Equation (1)) as well as efficient learning and inference
procedures. Figure 1 shows the graphical structure of an NB model.

C

X1 X2 Xn

Figure 1. Naive Bayes model structure.

Like most probabilistic classifiers, NB models follow the maximum a posteriori (MAP)
principle, that is, they return the most probable class label given the input instance as
evidence. Formally, given an input instance et = (x1,t, . . . , xn,t) ∈ dom(X1)× · · ·× dom(Xn)
and being C the class variable with dom(C) = {c1, . . . , cm}, a Naive Bayes Classifier C returns

C(et) = argmax
c∈dom(C)

P(c |et) = argmax
c∈dom(C)

P(et, c) = argmax
c∈dom(C)

n

∏
i=1

P(xi,t|c) · P(c) (1)

according to Bayes’ theorem and the conditional independence hypothesis, respectively. The
above conditional distributions may be multinomial for discrete attributes and Gaussian
for continuous attributes.

2.5. Instance-Based Label Ranking

The Instance-Based Label Ranking (IBLR) algorithm [2] is based on the nearest neighbors
estimation principle. It takes, as input, an instance et to be classified, a training dataset
D with N labeled instances and the number of nearest neighbors k ∈ N+, k ≤ N, to

Entropy 2021, 23, 420 5 of 24

be considered. Using an appropriate distance, the IBLR algorithm then compares the
input instance with all the N training ones, obtains the k nearest neighbors from D, R =

{(x1,j, . . . , xn,j, πj)}k
j=1, and takes the rankings associated with these instances, RΠ =

{πj}k
j=1. Then, the IBLR algorithm applies the Borda count algorithm to the permutations

in RΠ and the obtained consensus permutation π0 is returned as output.
The main advantage of instance-based learning is its local behavior, which allows it to

locally estimate a different target function for each new instance to be classified instead
of estimating a single target function for the entire instance space. On the other hand, its
main disadvantage is its high computational cost in the inference stage, as it must compare
the input instance against all the instances in the training dataset.

2.6. Label Ranking Trees

Decision trees are usually constructed by recursively partitioning the dataset. The
Label Ranking Trees (LRT) algorithm [2] receives, at each call, a set of instances R =
{(x1,j, . . . , xk,j, πj)}s

j=1 with 1 ≤ k ≤ n and 2 ≤ s ≤ N, and must decide whether to
stop the recursive call by creating a leaf node, or go on with the branching process by
splitting the received training dataset R into several subsets according to the value of an
attribute Xi.

The stopping and splitting criteria used in LRT are as follows:

• Stopping criterion. If we consider RΠ = {πj}s
j=1 as the rankings associated with the

instances in R, the LRT algorithm stops the splitting process and creates a leaf node if
either of the following two conditions hold:

– All the rankings are consistent. For all the pairs of class labels cu, cv ∈ dom(C),
they maintain the same preference relation (cu � cv or cv � cu) through all the
rankings in RΠ which rank both cu and cv.

– s < 2m. This condition is introduced as a pre-pruning operation to prevent
overfitting.

The leaf created is labeled with the consensus ranking π0 obtained by applying the
Borda count algorithm over the rankings in RΠ.

• Splitting criterion. The LRT algorithm uses the spread parameter θ of the Mallows
model (see Section 2.3) to measure the scattering of the rankings associated with a par-
tition with respect to the consensus one. Formally, given an attribute Xi with domain
dom(Xi) = {x1, . . . , xri}, the uncertainty associated with a partition {R1, R2, . . . , Rri}
of R is inversely proportional to

f (Xi) = f (R1, . . . , Rri}) =
ri

∑
j=1

∣∣Rj
∣∣ · θj

|R| , (2)

where θj is the spread parameter estimated from the rankings of the instances in Rj,
which can be computed by means of standard numerical optimization methods [2,29].
The LRT algorithm proceeds in a standard way, that is, sorting the values of the
attributes Xi in R and analyzing all the possible thresholds λ. Thus, it deals with the
resulting two-state discrete attribute Xλ

i with domain dom(Xλ
i) = {Xi ≤ λ, Xi > λ},

and selects the threshold λ of the attribute Xi that maximizes (2).

Then, an instance is classified by following the path from the root to the corresponding
leaf, selecting, at each decision node, the branch corresponding to the value of the attribute
in the instance to be classified. Thus, once a leaf node is reached, the permutation assigned
to the leaf node is returned.

Entropy 2021, 23, 420 6 of 24

3. Hidden Naive Bayes for Label Ranking

In this section, we propose an NB-based model to deal with the LR problem. We
start by defining the proposed PGM structure and then describe the parameter estimation
process and two different methods for training the model.

3.1. Model Definition

To overcome the constraints regarding the topology of the network when dealing with
different types of variables, the model proposed here combines an NB structure with a
hidden (latent) variable.

This idea is not new, and has been used, for instance, for unsupervised clustering [21,31],
to improve the performance (accuracy) of the base classifier [32], relax some of the indepen-
dence statements increasing the classifier modeling capability [33–35], or obtain models for
efficient probabilistic inference [36].

In this paper, the introduction of the hidden variable stems from the need to model the
join probability distribution involving variables of a different nature: discrete, continuous,
and permutation-based.

In the proposed NB model graphical structure, the root element of the model is a
discrete hidden variable, which we will denote as H, with dom(H) = {h1, . . . , hrH}, rH
being the total number of mixture models. The rest of the variables are observed variables.
We consider two types of observed variables:

• The feature variables, observed both in the training and in the test phase. We con-
sider two kinds: discrete variables, denoted as Xj, j = 1, . . . , nJ and dom(Xj) =
{xj1 , . . . , xjrj

}, and continuous variables, denoted as Yk, k = 1, . . . , nK.

• The ranking variable, denoted as π, which takes values in Sm, this being the set of
permutations defined over the class labels {c1, . . . , cm}. This variable is used only
during the training stage and is the target to be inferred.

Figure 2 shows a plate-based representation of the proposed model with the different
types of variables described above (n = nJ + nK). The model assumes that each of these
variable types follows a different conditional distribution given the root variable:

• Discrete variables follow a Multinomial distribution,

P(Xj|H) P(Xj|H = hz) ∼ Mult({p(xhz
ji
)}rj

i=1), z = 1, . . . , rH

• Continuous variables follow a Normal or univariate Gaussian distribution,

P(Yk|H) P(Yk|H = hz) ∼ N (µhz
k , σhz

k), z = 1, . . . , rH

• The ranking variable follows a Mallows distribution,

P(π|H) P(π|H = hz) ∼M(πhz
0 , θhz), z = 1, . . . , rH

• The hidden variable follows a Multinomial distribution,

P(H) ∼ Mult({p(hz)}rH
z=1)

H

X Y π

nJ nK

n

Figure 2. The proposed HNB model.

Entropy 2021, 23, 420 7 of 24

The parameters for each of the conditional distributions need to be estimated to
perform inference using the model.

3.2. Parameter Estimation

As is common in most machine learning papers, we assume i.i.d. data. Furthermore,
we also assume complete data, i.e., without missing values, both in the predictive and in the
ranking variables. If there are missing values in the training data, they must be imputed
previously to learn the model. The ranking variable can be imputed as described in [2].
Thus, we only deal with a hidden variable, H, and base our approach on the use of the
Expectation-Maximization (EM) algorithm to estimate jointly the parameters of both the
observed and hidden variables.

The EM algorithm [37] consists of two steps: the expectation step (E step), where the
values for the hidden variable are estimated, and the maximization step (M step), where the
parameters for the conditional distributions are obtained. Below, we describe these steps:

• E step: Under the assumption that the parameters of the model {µhz
k , σhz

k , p(xhz
ji
), πhz

0 ,

θhz , p(hz)} k = 1, . . . , nK, j = 1, . . . , nJ , i = 1, . . . , rj, z = 1, . . . , rH , are known, the
probability of an example et = (x1,t, . . . , xnJ ,t, y1,t, . . . , ynK ,t, πt) being in a mixture hz is

P(hz|x1,t, . . . , xnJ ,t, y1,t, . . . , ynK ,t, πt) =
1
C
· P(hz) · P(x1,t, . . . , xnJ ,t, y1,t, . . . , ynK ,t, πt|hz)

=
1
C
· P(hz) · P(πt|hz) ·

nJ

∏
j=1

P(xj,t|hz) ·
nK

∏
k=1

P(yk,t|hz)

=
1
C

p(hz) ·
e−θhz ·D(πt ,π

hz
0)

Ψ(θhz)
·

nJ

∏
j=1

p(xhz
j,t) ·

nK

∏
k=1

1

σhz
k

√
2π

e
− 1

2

(
yk,t−µhz

k
σ

)2

(3)

Here, C = ∑rH
z=1 P(hz) · P(x1,t, . . . , xnJ ,t, y1,t, . . . , ynK ,t, πt|hz) is the normalization constant.

• M step: Under the assumption that the probabilities of belonging to each mixture for
all examples are known, the parameters of the model can be estimated as follows:

– Multinomial parameters for the discrete variables. Each multinomial parameter
p(xhz

ji
) is estimated by using MLE, where the count for each instance is weighted

by the probability of H = hz given the instance.
– Gaussian distribution parameters for the continuous variables. The parameters

µhz
k and σhz

k of the Gaussian distribution are estimated through MLE for each
H = hz, weighting each instance by the probability of it being in the mixture.

– Mallows distribution parameters for the ranking variable. For each component of
the mixture hz of H, a Mallows distributionM(πhz

0 , θhz) must be estimated (see
Section 2.3). In particular, πhz

0 is computed by applying a weighted version of the
Borda count algorithm (points assigned to items are weighted by the probability
of H = hz given the instance), and θhz is calculated by using the Newton–Raphson
numerical optimization method.

– The mixture model probabilities P(H) are computed according to the weights
P(hz|et) for each mixture hz of H (see Equation (3)) by means of MLE.

Stopping condition: The EM algorithm can easily accommodate different types of stop
conditions, most of them based on checking the convergence of some score (logarithm
likelihood, accuracy, etc.).

3.3. Learning Process

In addition to the graphical structure and the parameter estimation already described,
we also need to determine some kind of structural learning in order to find the inner
structure of H, that is, its cardinality or number of states.

Entropy 2021, 23, 420 8 of 24

Basically, we follow a greedy technique by initializing rH to a certain number and
then running consecutive executions of the EM algorithm with an increasing number
of mixtures.

There are several points to discuss regarding the learning process: the initial value
for rH , the value used to increment rH between two consecutive iterations, the way the
components of the mixture are initialized, and how the goodness of the model is evaluated
and the final value of rH is selected. Below, we describe the two proposed schemes.

3.3.1. Method A: HNBE-LR

First, we describe the scheme proposed in the preliminary (conference) version of this
study [23], based on the learning process used in [36] and which basically wraps the EM method
for parameter estimation. In Algorithm 1, we show our adaptation from the NB estimation
algorithm [31] to the LR problem. The main characteristics of this method are as follows:

• It is a wrapper method. Thus, the data received is divided into training Tr and
validation Tv datasets, using the Kendall coefficient τK to assess the models and param-
eterizations explored during the search.

• The search for the number of components of the mixture is carried out greedily. We
start with an initial number of components z0 and a new component is added at each
iteration. However, low probability components are pruned both during the search
and during the EM-based parameter estimation. The search stops when the obtained
model does not improve the best one in a given number of consecutive iterations. The
improvement is assessed by evaluating the current parameterized model over the
training dataset Tr.

• Every time a new component is added to the mixture, the model parameters corre-
sponding to this component are initialized from a set of instances of Tr obtained by
using sampling with replacement.

• For each number of components in the mixture rH tried, an EM is run for parameter
estimation. After each iteration (E and M steps), the model is evaluated using the
Kendall coefficient τTr

K for the training data Tr. A threshold on the difference between
this value and the previous one is used to check convergence.

• When the number of components changes (either because of pruning low proba-
bility ones or because of the addition of a new one), the component weights are
properly rescaled.

3.3.2. Method B: HNB-LR

The results obtained in [23] shed light on certain drawbacks. The main one is that
the algorithm reaches the stopping condition too soon, which results in a small number of
components for the mixture. As the authors in [36] noted, in contrast to clustering (e.g.,
AutoClass [31]), a high number of mixture components is required to obtain an accurate
approximation of the joint probability estimation.

Bearing this in mind, and also that the number of different values tried for rH must
be small for reasons of efficiency, we propose an alternative scheme that we call Method
B. As in Method A, the main idea is to wrap the EM algorithm by a search procedure to
look for the number of components to be included in the mixture. In order to do that, we
introduce important design modifications. Algorithms 2 and 3 show the scheme of this
approach. Below, we comment on their main characteristics and differences with respect to
Method A.

• In Method B, low probability components are not pruned, and so the EM algorithm is
carried out in the search process (see Algorithm 2). Furthermore, the convergence of
the EM algorithm is checked by using the log-likelihood (LL) of the data (Tr) given
the model, that is, no wrapper evaluation is carried out to compute τK inside EM.

• The search process works in a wrapper style. Thus, we divide the data received into
a training Tr and validation Tv datasets, and use τK to assess the models explored
during the search.

Entropy 2021, 23, 420 9 of 24

Algorithm 1: Method A: HNBE-LR
Data: T: Training dataset; z0: Initial #of components; β: Maximum #of iterations

allowed without improvement; α: Minimum required improvement for each
EM iteration; p: #of cycles to prune low-weight components of the model.

Result: The HNBE-LR model fully specified.
1 Create a holdout partition {Tr, Tv} from T; Tr = {et}|Tr|

t=1;
2 rH ← z0;
3 Initialize the model with rH mixture components and compute all the model

parameters from a sample with replacement of Tr;
4 It← 0;
5 τTr

K ← −1;
6 τTv

K ← −1;
7 while (It < β) do

// EM - Parameter estimation
8 improving← true;
9 τc

K ← −1;
10 while improving do

// E step
11 Update P(hz|et), z = 1, . . . , rH and t = 1, . . . , |Tr| using Equation (3);

// M step
12 Compute model parameters as described in Section 3.2 (M-step);
13 Every p cycles, prune low-weight components of the model and update rH ;
14 τK ← Evaluate the model over Tr dataset;
15 if (τK − τc

K) < α then
16 improving← False;
17 else
18 τc

K ← τK;
19 end
20 end
21 Prune low-weight components of the model and update rH ;
22 τK ← Evaluate the model over Tv dataset;
23 if (τK > τTv

K) then
24 best←model;
25 τTv

K ← τK;
26 end
27 τTr

K ← Evaluate the model over Tr dataset;
28 if (τK > τTr

K) then
29 τTr

K ← τK;
30 It← 0;
31 else
32 It← It + 1;
33 end

// Adding a new mixture component
34 Re-scale mixture component weights by a factor rH

rH+1 ;
35 Add a new mixture component to the model with weight 1

rH+1 and compute
its parameters from a sample with replacement of Tr;

36 end
37 return best;

• The search for the number of components is carried out greedily, but we now split
it into two phases. The first is a forward search, where we evaluate the model with
rH = 21, 22, 24, . . . , 210. We then select the best value r′H according to τTv

K and run

a binary search between r′H
2 and r′H . Finally, the best value r∗H found in the binary

Entropy 2021, 23, 420 10 of 24

search (see Section 5.2) according to τTv
K is returned as the number of components for

our model.
The intuition behind this greedy search is to be efficient (at most, 20 values are tested)
and to quickly try large values for rH , as we identified this point as a shortcoming of
Method A.

• Each time a new value for rH is tried, the process starts from scratch, that is, all the
components are initialized simultaneously, instead of being added to the model as
in Algorithm 1. To initialize the component parameters (probabilities and weights),
k-means clustering processes [38] with k = rH are run, and the better one according
to the minimal sum of distances between points and clusters centroids is selected.
The instances associated with each cluster are used to initialize the corresponding
mixture component.

Algorithm 2: Method: EM

Data: Tr = {et}|Tr|
t=1: Training data set; rH : #of mixture components; β: Maximum

#of iterations; α: Minimum required improvement for each EM iteration; γ:
#of k-means clustering algorithm restarts.

Result: The HNB-LR model fully specified.
1 Initialize the model with rH mixture components by using the best of γ restarts of

the k-means clustering algorithm with k = rH ;
2 LLc ← −∞;
3 for i← 0 to β do

// E step
4 Update P(hz|et), z = 1, . . . , rH and t = 1, . . . , |Tr| using Equation (3);

// M step
5 Compute model parameters as described in Section 3.2 (M-step);
6 Compute LL for Tr given the current model;
7 if (LL− LLc < α) then

// Early stopping because of convergence
8 break;
9 end

10 end
11 return model;

3.4. Inference Process

In the inference process, the method needs to predict the ranking associated with a
given instance et. In our proposal, the probability of a ranking πs given et can be obtained
by marginalizing out variables until we obtain an expression for the posterior probability

P(πs|et) ∝
rH

∑
z=1

(
P(hz) · P(πs|hz) ·

nJ

∏
j=1

P(xj,t|hz) ·
nK

∏
k=1

P(yk,t|hz)

)

The outcome can then be obtained by using the MAP principle, that is, choosing the
ranking π∗ which maximizes the score

π∗ = argmax
πs∈Sm

P(πs|et).

However, due to the possible high cardinality of Sm, we propose an approximate method:

1. Compute the probability a posteriori of each component of the mixture given the
instance et:

P(hz|et) ∝
nJ

∏
j=1

P(xj,t|hz) ·
nK

∏
k=1

P(yk,t|hz) (4)

Entropy 2021, 23, 420 11 of 24

Algorithm 3: Method B: HNB-LR
Data: T: Training dataset; β: Maximum #of EM iterations; α: Minimum required

improvement for each EM iteration; γ: #of k-means clustering algorithm
restarts.

Result: The HNB-LR model fully specified.
1 Create a holdout partition {Tr, Tv} from T; Tr = {et}|Tr|

t=1;
2 τTv

K ← −1;
3 rH ← 0;
// Forward search

4 for i← 1 to 10 do
5 model← EM(Tr, 2i, α, γ);
6 τK ← Evaluate the model over Tv dataset;
7 if (τK > τTv

K) then
8 rH ← 2i;
9 end

10 end
// Binary search

11 rH ← Get the best number of components by using a binary search in range [rH
2 ,

rH] with EM to learn the model and τK over Tv to evaluate;
12 best← EM(T, rH , α, γ);
13 return best;

2. Solve a generalized aggregation problem by using the weighted Borda count over

the set of weighted rankings {(πh1
0 , w1), . . . , (π

hrH
0 , wrH)}, that is, the consensus rank-

ings associated with the components of the mixture, and taking as weight wz, the
probability a posteriori computed for the mixture component P(hz|et).

4. Gaussian Mixture-Based Semi-Naive Bayes for Label Ranking

In this section, we go one step further by allowing interactions between the predictive
variables. However, in order to maintain the complexity of the learning process under
control, we decided to use a model in which, apart from identifying the number of mixture
components, no structural learning is needed. Our proposal falls in the so-called Semi-Naive
Bayes approach [30,39], and we restrict our study to continuous predictive variables. This
constraint is quite natural in the LR problem, as all the benchmark datasets contain only
continuous variables. In the future, we plan to adapt our method to also allow discrete
predictive attributes, which, in general, means learning constrained graphical structures
by limiting the number of dependencies allowed [30] or even dealing with hybrid Bayesian
networks [40]. Learning PGMs with hidden variables is not an easy task, but there are
several approaches in the literature, most based on the use of the Structural EM (SEM)
algorithm [41].

4.1. Model Definition

Once we limit our model to contain only continuous predictive attributes Y1, . . . , YnK ,
π, and H, and also avoid structural learning apart from nH , we have to deal with represent-
ing the interactions between the variables. We maintain the interaction between π and the
predictive variables to be channeled through the hidden variable H. Thus, explicit interac-
tions are only allowed between the continuous attributes. As no structural learning of these
relations is desired, we decided to model them by using a multivariate Gaussian distribution,
MN (~µ, Σ). This has the advantage of having to estimate only nK

2 + nK parameters, as nK
are the values in the vector of means ~µ and nK

2 in the covariance matrix.
In the literature, a Gaussian Mixture Model (GMM) [42] is a parametric probability

density function represented as a weighted sum of Gaussian component densities, where
each component density is a multivariate Gaussian function. Therefore, we take advantage

Entropy 2021, 23, 420 12 of 24

of the widely used GMM to plug them into our PGM to deal with the LR problem. In the
literature, we can find several variants of the GMM, which differ in the way the covariance
matrix is constrained or not constrained. In particular, the standard or full GMM estimates a
covariance matrix for each component with no additional constraint. On the other hand, in
the diag variant, such a covariance matrix is constrained to be diagonal, which is equivalent
to the NB assumption. The third option is to use a tied covariance matrix, which means
estimating an unconstrained covariance matrix, but using it for all the components.

Figure 3 shows the graphical representation of the proposed semi-naive Bayes (SNB)
model, where the large node including all the continuous attributes emphasizes the idea
of modeling them jointly. The difference regarding the HNB presented in Section 3 is
that the continuous variables now follow a multivariate Gaussian distribution given the
root variable

P(Y|H) P(Y|H = hz) ∼MN (~µhz , Σhz), z = 1, . . . , rH

where Y is the set of continuous variables {Y1, . . . , YnK}, ~µ is the vector of means for
Y1, . . . , YnK , and Σ is the nK × nK covariance matrix.

H

Y1, . . . , YnK

π

Figure 3. The proposed GMSNB model.

4.2. Parameter Estimation

As in the case of the proposed HNB algorithm, we use the EM algorithm to estimate
the model parameters. Next, we point out the differences between this method and the
univariate case (see Section 3.2).

• E step: Under the assumption that the parameters of the model {~µhz , Σhz , πhz
0 , θhz ,

p(hz)}, z = 1, . . . , rH, are known, the probability of an example et = (y1,t, . . . , ynK ,t, πt) =
(~yt, πt) being in a mixture hz is

P(hz|~yt, πt) =
1
C
· P(hz) · P(~yt, πt|hz)

=
1
C
· P(hz) · P(πt|hz) · P(~yt|hz)

=
1
C
· P(hz) ·M(πt : πhz

0 , θhz) ·MN (~yt : ~µhz , Σhz)

(5)

where C = ∑rH
z=1 P(hz)P(~yt, πt|hz) is the normalization constant andMN (~yt : ~µhz , Σhz)

stands for the probability density function of the multinormal distribution with pa-
rameters ~µhz and Σhz given by

MN (~y : ~µhz , Σhz) =
1√

(2π)nK |Σ|hz
e−

1
2 (~y−~µ

hz)T(Σhz)−1(~y−~µhz)

Here, ~y is a configuration of values for variables (Y1, . . . , YnK), |Σ| is the determinant
of Σ, and −1 and T denote the inverse and transpose matrix operators, respectively.

• M step: Under the assumption that the probabilities of belonging to each mixture for
all the examples are known, the parameters of the model can be estimated as follows:

Entropy 2021, 23, 420 13 of 24

– Continuous variables. Empirical means and covariance matrices are calculated
in the standard way, using each instance being weighted by whz

t = P(hz|~yt, πt)
according to the expressions

Nhz =
N

∑
t=1

whz
t

~µhz =
1

Nhz

N

∑
t=1

whz
t ·~yt

Σhz =
1

Nhz

N

∑
t=1

whz
t · (~yt −~µhz)× (~yt −~µhz)T

Here, × stands for the usual matrix product.
In the tied case, where all the components share the same covariance matrix, Σ, it
is estimated as [43] (p. 71):

Σ =
1
N

rH

∑
z=1

N

∑
t=1

whz
t · (~yt −~µhz)× (~yt −~µhz)T

4.3. Learning Process

Method B, described in Section 3.3, is used to estimate the number of components for
the mixture H. To do so, Algorithm 2 is modified as follows:

• In the E step, Equation (5) is used instead of Equation (3).
• In the M step, the expressions in Section 4.2 are used instead of the respective ones in

Section 3.2.

4.4. Inference Process

The same inference process is used as in the HNB model (see Section 3.4). The only
difference is that we now compute the posterior probability of each component of the
mixture given the instance et by using the multivariate probability density function instead
of Equation (4).

P(hz|et) = P(hz|~yt) ∝
1√

(2π)nK |Σhz |
e−

1
2 (~y−~µ

hz)T(Σhz)−1(~y−~µhz) (6)

5. Experimental Evaluation

In this section, we assess the mixture-based algorithms proposed to solve the LR
problem. Below, we detail the datasets used, the algorithms tested, the methodology
adopted, and the results obtained.

5.1. Datasets

Table 1 shows the main characteristics of the 21 datasets widely used as benchmark for
the LR problem. The first 16 datasets were turned from multi-class (Type A) and regression
(Type B) problems into the LR problem [2], while the last 5 datasets (Type R) correspond to
real-world biological problems [10]. The columns #rankings and max #rankings represent
the actual number of different rankings in the dataset and the maximum number of different
rankings according to the number of classes (#classes), respectively. In the 21 datasets
considered, all the predictive attributes (features) are continuous variables. A more detailed
description of the datasets is provided at: https://scikit-lr.readthedocs.io/en/latest/user_
guide/datasets.html#datasets (accessed on 29 March 2021).

https://scikit-lr.readthedocs.io/en/latest/user_guide/datasets.html#datasets
https://scikit-lr.readthedocs.io/en/latest/user_guide/datasets.html#datasets

Entropy 2021, 23, 420 14 of 24

5.2. Algorithms

In this study, we considered the following algorithms:

• The IBLR algorithm introduced in [2] (see Section 2.5). To identify the nearest neigh-
bors, the Euclidean distance was used. To compute the prediction, the permutations
associated with the k-nearest neighbors were weighted according to the neighbor’s
(inverse) distance to the input instance. Although the IBLR algorithm belongs to
the lazy paradigm of machine learning, we carried out model learning to select the
number k of nearest neighbors. We applied the following process using a fivefold
cross-validation method (5-cv) over the training dataset to assess the goodness of each
candidate value:

1. We started with k = 5 and doubled it while the score was improving. From this
process, we obtained kl and kr, that is, the number of nearest neighbors leading
to the best score (the penultimate value tested) and the one stopping the iterative
process (the last value tested), respectively.

2. We applied a binary search in the range [kl , kr]. In this process, we took km =

b kl+kr
2 c, and if the score improved for km with respect to kl , we then repeated this

recursive process using the range [km, kr]. Otherwise, the range [kl , km] was used.

We kept the number of nearest neighbors that led to the best score.
• The LRT algorithm introduced in [2] (see Section 2.6).
• The HNBE-LR algorithm introduced in [23] (see Section 3.3.1). Note that all the

attributes of the datasets are continuous variables. Thus, the parameters of the model
were estimated by means of Gaussian distribution parameters (HNBE-LR-G). The
hyperparameter values were z0 = 5, β = 1, α = 0.001, p = 5. The holdout for the
training and validation datasets was 75%/25%.

• The HNB-LR algorithm (see Section 3.3.2). As in the previous case, we estimated the
conditional probability distributions with Gaussian univariate distributions (HNB-LR-
G). Furthermore, we binned the continuous variables using equal-frequency (HNB-
LR-F), equal-width (HNB-LR-W), and entropy-based [44] (HNB-LR-E) discretization
techniques, estimating the parameters of the model with Multinomial distribution
parameters. The number of bins was set to 5 for equal-width and equal-frequency
cases. The holdout for the training and validation datasets was 80%/20%. The γ value
was fixed to 10.

• The GMSNB-LR algorithm (see Section 4), with a different covariance matrix for each
component, full approach (GMSNB-LR-F), and sharing the same covariance matrix
between all the components of the mixture, tied approach (GMSNB-LR-T). The holdout
for the training and validation datasets was 80%/20%. The γ value was fixed to 10.

Entropy 2021, 23, 420 15 of 24

Table 1. Description of the datasets.

Dataset Type #Instances #Features #Classes #Rankings Max #Rankings

authorship A 841 70 4 17 4!
bodyfat B 252 7 7 236 7!

calhousing B 20,640 4 4 24 4!
cpu B 8192 6 5 119 5!

elevators B 16,599 9 9 131 9!
fried B 40,769 9 5 120 5!
glass A 214 9 6 30 6!

housing B 506 6 6 112 6!
iris A 150 4 3 5 3!

pendigits A 10,992 16 10 2081 10!
segment A 2310 18 7 135 7!

stock B 950 5 5 51 5!
vehicle A 846 18 4 18 4!
vowel A 528 10 11 294 11!
wine A 178 13 3 5 3!

wisconsin B 194 16 16 194 16!

spo R 2465 24 11 2361 11!
heat R 2465 24 6 622 6!
dtt R 2465 24 4 24 4!

cold R 2465 24 4 24 4!
diau R 2465 24 7 967 7!

5.3. Methodology

We adopted the following design decisions:

• We used five repetitions of a tenfold cross-validation method (5 × 10-cv) to assess the
algorithms.

• We used the Kendall rank correlation coefficient τK as goodness score: the higher, the
better (see Section 2.2).

• To properly analyze the results, we carried out the standard statistical analysis pro-
cedure for machine learning [45,46], using the exreport tool [47]. The procedure is
divided into two steps:

1. First, we carried out a Friedman test [48] with significance level α = 0.05. If the
obtained p-value ≤ α, then we rejected the null hypothesis H0 and concluded
that at least one algorithm is not equivalent to the rest.

2. Second, once the previous step rejected H0, we applied a post hoc test using the
Holm’s procedure [49] to discover the outstanding algorithms. This test compares
all the algorithms against the control algorithm, that is, the one ranked first by
the Friedman test.

• We executed the experiments on computers running the CentOS Linux 7 operating
system with an Intel(R) Xeon(R) E5–2630 CPU running at 2.40 GHz, and with 16 GB
of RAM memory.

5.4. Results

In this section, we present and analyze the results obtained. We focus on accuracy (τK
score) and CPU time.

5.4.1. Accuracy

First, we analyze the results obtained by the HNB-LR algorithms. The τK accuracy
results for this family of algorithms are shown in Table 2. The cells contain the average
and standard deviation over the test sets of the cross validation method for the rank
correlation coefficient τK between the real and predicted permutations. The boldfaced
values correspond to the algorithm(s) achieving the best mean accuracy for each dataset.

Entropy 2021, 23, 420 16 of 24

Table 2. Mean accuracy for each HNB-LR algorithm.

Dataset HNBE-LR-G HNB-LR-G HNB-LR-F HNB-LR-W HNB-LR-E

authorship 0.907 (±0.028) 0.919 (±0.018) 0.905 (±0.021) 0.905 (±0.019) 0.909 (±0.017)
bodyfat 0.078 (±0.074) 0.128 (±0.063) 0.115 (±0.066) 0.116 (±0.062) 0.117 (±0.068)

calhousing 0.171 (±0.018) 0.303 (±0.024) 0.278 (±0.009) 0.198 (±0.011) 0.343 (±0.013)
cpu 0.360 (±0.023) 0.435 (±0.013) 0.461 (±0.013) 0.334 (±0.016) 0.459 (±0.013)

elevators 0.646 (±0.025) 0.728 (±0.014) 0.695 (±0.011) 0.664 (±0.013) 0.688 (±0.016)
fried 0.489 (±0.105) 0.895 (±0.034) 0.367 (±0.308) 0.404 (±0.303) 0.812 (±0.014)
glass 0.788 (±0.067) 0.793 (±0.061) 0.849 (±0.051) 0.834 (±0.057) 0.846 (±0.048)

housing 0.400 (±0.116) 0.734 (±0.034) 0.667 (±0.045) 0.639 (±0.041) 0.711 (±0.044)
iris 0.963 (±0.060) 0.962 (±0.048) 0.845 (±0.082) 0.900 (±0.056) 0.866 (±0.086)

pendigits 0.721 (±0.026) 0.914 (±0.003) 0.916 (±0.002) 0.912 (±0.003) 0.920 (±0.003)
segment 0.656 (±0.096) 0.926 (±0.008) 0.909 (±0.009) 0.928 (±0.008) 0.939 (±0.007)

stock 0.791 (±0.040) 0.910 (±0.016) 0.852 (±0.022) 0.861 (±0.016) 0.885 (±0.016)
vehicle 0.744 (±0.054) 0.790 (±0.038) 0.806 (±0.037) 0.798 (±0.059) 0.810 (±0.033)
vowel 0.545 (±0.067) 0.817 (±0.046) 0.865 (±0.027) 0.863 (±0.028) 0.616 (±0.092)
wine 0.935 (±0.044) 0.935 (±0.054) 0.927 (±0.064) 0.915 (±0.076) 0.928 (±0.053)

wisconsin 0.295 (±0.070) 0.355 (±0.050) 0.373 (±0.046) 0.334 (±0.055) 0.324 (±0.093)

cold 0.071 (±0.039) 0.080 (±0.035) 0.080 (±0.037) 0.073 (±0.037) 0.076 (±0.030)
diau 0.215 (±0.023) 0.219 (±0.022) 0.215 (±0.025) 0.219 (±0.024) 0.217 (±0.023)
dtt 0.119 (±0.034) 0.120 (±0.034) 0.114 (±0.033) 0.107 (±0.030) 0.119 (±0.031)

heat 0.054 (±0.025) 0.061 (±0.028) 0.057 (±0.026) 0.055 (±0.027) 0.059 (±0.024)
spo 0.147 (±0.016) 0.146 (±0.015) 0.148 (±0.016) 0.146 (±0.015) 0.148 (±0.015)

We base our analysis on the statistical procedure described in Section 5.3:

1. The p-value obtained in the Friedman test was 3.613 × 10−5). Therefore, the null
hypothesis (H0) was rejected, and at least one of the tested algorithms was different.

2. Table 3 shows the results for the post hoc test by taking HNB-LR-G, the algorithm
ranked first by the Friedman test, as the control. The columns rank and p-value
represent the ranking obtained by the Friedman test and the p-value adjusted by
Holm’s procedure, respectively. The columns win, tie, and loss contain the number
of times that the control algorithm wins, ties, and loses with respect to the row-wise
algorithm. The p-values for the non-rejected null hypothesis are boldfaced.

Table 3. Results of the post hoc test for the mean accuracy of HNB-LR algorithms.

Method Rank p-Value Win Tie Loss

HNB-LR-G 2.05 - - - -

HNB-LR-E 2.33 5.5818 ×
10−1 14 0 7

HNB-LR-F 2.86 1.9422 ×
10−1 14 0 7

HNB-LR-W 3.62 3.8394 ×
10−3 16 0 5

HNBE-LR-G 4.14 7.0206 ×
10−5 18 0 3

According to these results and the statistical analysis performed, we can conclude
the following.

• The HNBE-LR-G algorithm is the worst method. The reason is obvious if we analyze
Table 4, where we show the number of components (on average) selected for each
algorithm. It is clear that this number is too small for HNBE-LR-G, which clearly
suffers from premature early stopping. Furthermore, we must recall that this algorithm
is the only one which prunes low weight components during its performance. As a
consequence, HNBE-LR-G does not obtain a good probability estimation.

• The HNB-LR-G algorithm is ranked first and is statistically different to the HNB-LR-W
and HNBE-G algorithms. In the case of HNB-LR-W, the reason is not the number of

Entropy 2021, 23, 420 17 of 24

selected components, but the equal-width discretization carried out, which produces
poor binning in comparison, for example, with the supervised entropy-based method.

• Although the HNB-LR-G algorithm is ranked first, the post hoc test reveals no signifi-
cant difference with respect to the HNB-LR-E and HNB-LR-F algorithms. This opens
the door to future research on more complex Bayesian network structures.

• As stated in [36], a large number of components are required to obtain a good proba-
bility estimation and, in our problem, a good ranking prediction.

Once we have determined that the best HNB-LR algorithms are HNB-LR-G, HNB-
LR-E, and HNB-LR-F, we introduce the two algorithms allowing interactions among the
predictive attributes in the study, that is, those based on the use of the multivariate Gaussian
distribution to jointly model the (numerical) attributes: GMSNB-LR-F and GMSNB-LR-T.
The results are shown in the two leftmost columns of Table 5. To complete the compar-
ison, we also show the results for the two state-of-the-art LR classifiers [2] described in
Sections 2.5 and 2.6.

Again, we applied the statistical analysis procedure described in Section 5.3, including
also the three HNB-LR algorithms selected from the previous study:

1. The p-value obtained for the Friedman test was 2.503× 10−7. Therefore, we rejected
the null hypothesis (H0), i.e., at least one algorithm is different to the rest.

2. As IBLR is ranked first by the Friedman test, we took it as the control and performed
a post hoc test using Holm’s procedure. Table 6 shows the results for the post hoc test.

Considering these results, we can conclude the following.

• The IBLR algorithm is ranked first, being statistically different to all the tested al-
gorithms except GMSNB-LR-T. Note that IBLR is a fine-tuned algorithm, as can be
observed from the number of neighbors selected for each dataset (see Table 4), which
are far from standard values (3, 5, . . .).

• The GMSNB-LR-T algorithm has a remarkable performance, being non-significantly
different to IBLR. This is a very important finding because, as recognized in the litera-
ture, the instance-based algorithm generally outperforms the model-based algorithms,
being necessary to use ensembles of the LRT algorithm to compete with it [14].

• The GMSNB-LR-T algorithm also has in its favor that it is able to cope with all the
tested datasets, while the experiments for IBLR cannot finish in a maximum of 168
h (one week) for fried dataset (notice the empty cell in Table 5). As can be observed,
fried is the largest dataset in our experiments, which reveals the disadvantage of
using IBLR for larger domains.

• The GMSNB-LR-T algorithm behaves better than GMSNB-LR-F, which is also ranked
behind HNB-LR-G. Two explanations are plausible for this behavior: First, the amount
of data considered is limited, so it can be scarce for the estimation of many covariance
matrices when the number of components grows. Second, it is well known that
increasing the number of components can be enough to model the correlations between
the features. In fact, if we observe Table 4, we realize that the numbers of components
selected for GMSNB-LR-T and HNB-LR-G are noticeably greater than that selected
for GMSNB-LR-F.

Entropy 2021, 23, 420 18 of 24

Table 4. Mean number of components for each mixture-based algorithm and mean number of nearest neighbors for the IBLR algorithm.

Dataset HNBE-LR-G HNB-LR-G HNB-LR-F HNB-LR-W HNB-LR-E GMSNB-LR-F GMSNB-LR-T IBLR

authorship 5.82 (±0.87) 28.66 (±24.98) 25.08 (±21.39) 22.18 (±21.95) 38.60 (±45.37) 3.26 (±0.44) 44.92 (±49.51) 6.52 (±1.62)
bodyfat 5.88 (±0.90) 36.74 (±27.42) 21.04 (±17.29) 24.92 (±23.04) 20.14 (±32.20) 20.66 (±14.57) 42.20 (±30.10) 28.68 (±13.49)

calhousing 7.12 (±1.67) 280.78 (±103.40) 357.72 (±84.48) 119.56 (±59.87) 461.96 (±81.83) 257.90 (±116.43) 453.58 (±88.94) 27.24 (±6.85)
cpu 6.60 (±1.84) 142.62 (±106.17) 153.10 (±83.49) 17.40 (±12.02) 230.06 (±116.99) 60.94 (±45.28) 372.62 (±129.13) 46.52 (±8.61)

elevators 5.44 (±0.67) 216.10 (±78.63) 95.30 (±42.99) 105.98 (±45.74) 134.12 (±49.31) 52.12 (±18.61) 219.50 (±75.32) 27.10 (±5.43)
fried 7.14 (±2.19) 500.82 (±36.01) 167.34 (±138.34) 171.58 (±131.69) 408.98 (±105.35) 257.62 (±21.08) 475.22 (±92.00)
glass 5.34 (±0.56) 14.72 (±11.81) 74.56 (±37.55) 42.40 (±17.82) 26.14 (±10.63) 5.84 (±5.63) 48.32 (±13.45) 5.26 (±0.53)

housing 5.56 (±0.67) 64.08 (±19.45) 79.46 (±47.78) 68.52 (±47.02) 38.76 (±36.03) 45.94 (±25.61) 116.60 (±28.84) 39.88 (±6.94)
iris 5.78 (±0.71) 14.44 (±9.45) 21.46 (±14.90) 17.12 (±10.96) 16.36 (±12.78) 8.50 (±2.39) 21.62 (±16.59) 8.46 (±2.00)

pendigits 6.22 (±1.31) 503.20 (±29.99) 484.00 (±55.38) 451.62 (±87.11) 484.00 (±49.35) 126.16 (±6.82) 509.44 (±18.10) 6.18 (±0.56)
segment 5.56 (±0.61) 166.98 (±55.22) 341.02 (±138.26) 303.68 (±145.76) 383.14 (±139.14) 45.10 (±16.55) 371.08 (±109.12) 8.16 (±1.74)

stock 6.16 (±1.54) 123.42 (±48.48) 99.66 (±33.97) 56.60 (±31.58) 95.54 (±30.49) 45.96 (±13.12) 244.78 (±107.07) 5.66 (±1.15)
vehicle 6.92 (±1.63) 48.06 (±48.45) 239.58 (±169.52) 179.26 (±171.77) 111.72 (±114.48) 10.34 (±4.96) 191.38 (±154.49) 8.80 (±2.22)
vowel 6.04 (±1.19) 96.70 (±27.75) 239.58 (±32.12) 231.36 (±38.00) 132.70 (±60.35) 13.28 (±4.44) 251.86 (±13.70) 5.98 (±0.98)
wine 5.48 (±0.65) 11.76 (±13.61) 12.22 (±12.34) 16.30 (±17.10) 11.40 (±13.93) 3.68 (±1.25) 9.58 (±12.81) 7.16 (±2.48)

wisconsin 5.88 (±1.24) 23.10 (±14.23) 21.10 (±13.76) 49.90 (±41.21) 45.38 (±27.82) 4.60 (±1.85) 35.84 (±15.83) 14.24 (±4.75)

cold 6.28 (±1.40) 84.84 (±107.13) 72.00 (±99.91) 84.70 (±109.52) 98.42 (±148.12) 83.00 (±143.73) 229.26 (±134.65) 23.44 (±22.88)
diau 5.76 (±1.04) 13.24 (±20.64) 23.50 (±50.16) 15.92 (±23.00) 14.58 (±14.84) 18.40 (±15.89) 35.76 (±48.31) 132.04 (±40.12)
dtt 5.50 (±0.84) 104.22 (±154.80) 82.84 (±118.50) 120.76 (±148.76) 20.50 (±27.44) 36.52 (±46.53) 116.42 (±152.29) 101.80 (±27.78)

heat 6.24 (±1.15) 71.08 (±133.42) 74.44 (±116.93) 66.44 (±128.37) 77.72 (±127.87) 31.48 (±80.92) 79.68 (±135.62) 23.14 (±13.40)
spo 5.90 (±0.95) 10.16 (±9.16) 9.24 (±12.53) 11.26 (±13.44) 12.62 (±15.67) 18.28 (±31.55) 6.96 (±5.76) 354.66 (±314.51)

Entropy 2021, 23, 420 19 of 24

Table 5. Mean accuracy for the GMSNB-LR, IBLR, and LRT algorithms.

Dataset GMSNB-LR-F GMSNB-LR-T IBLR LRT

authorship 0.838 (±0.033) 0.925 (±0.019) 0.935 (±0.014) 0.883 (±0.024)
bodyfat 0.080 (±0.078) 0.151 (±0.074) 0.230 (±0.055) 0.151 (±0.066)

calhousing 0.295 (±0.020) 0.284 (±0.017) 0.351 (±0.010) 0.319 (±0.012)
cpu 0.418 (±0.016) 0.432 (±0.027) 0.506 (±0.013) 0.404 (±0.014)

elevators 0.774 (±0.017) 0.780 (±0.009) 0.730 (±0.006) 0.668 (±0.010)
fried 0.908 (±0.025) 0.927 (±0.014) 0.727 (±0.103)
glass 0.790 (±0.061) 0.879 (±0.059) 0.864 (±0.051) 0.902 (±0.040)

housing 0.695 (±0.044) 0.782 (±0.029) 0.716 (±0.031) 0.811 (±0.029)
iris 0.925 (±0.053) 0.962 (±0.035) 0.963 (±0.042) 0.953 (±0.044)

pendigits 0.891 (±0.003) 0.927 (±0.002) 0.943 (±0.002) 0.942 (±0.002)
segment 0.884 (±0.015) 0.947 (±0.008) 0.961 (±0.005) 0.955 (±0.006)

stock 0.894 (±0.015) 0.922 (±0.014) 0.926 (±0.014) 0.898 (±0.016)
vehicle 0.721 (±0.051) 0.802 (±0.042) 0.860 (±0.026) 0.818 (±0.040)
vowel 0.589 (±0.039) 0.906 (±0.015) 0.889 (±0.018) 0.753 (±0.033)
wine 0.937 (±0.054) 0.944 (±0.042) 0.941 (±0.048) 0.870 (±0.078)

wisconsin 0.244 (±0.085) 0.336 (±0.108) 0.499 (±0.041) 0.374 (±0.040)

cold 0.072 (±0.036) 0.090 (±0.042) 0.090 (±0.035) 0.048 (±0.031)
diau 0.222 (±0.025) 0.219 (±0.025) 0.234 (±0.026) 0.129 (±0.022)
dtt 0.124 (±0.030) 0.119 (±0.032) 0.159 (±0.033) 0.080 (±0.033)

heat 0.064 (±0.029) 0.046 (±0.025) 0.070 (±0.022) 0.039 (±0.023)
spo 0.148 (±0.016) 0.148 (±0.015) 0.149 (±0.017) 0.090 (±0.018)

Table 6. Results of the post hoc test for the mean accuracy of the algorithms.

Method Rank p-Value Win Tie Loss

IBLR 1.76 - - - -
GMSNB-LR-T 2.93 8.012 × 10−2 14 0 7

HNB-LR-G 3.98 1.791 × 10−3 19 0 2
LRT 4.52 1.029 × 10−5 18 0 3

HNB-LR-E 4.67 5.271 × 10−5 20 0 1
GMSNB-LR-F 5.00 5.955 × 10−2 19 0 2

HNB-LR-F 5.14 2.369 × 10−6 20 0 1

5.4.2. Time

In this study, we consider model-based and instance-based machine learning algorithms,
which clearly distribute the CPU time for the learning and inference steps differently. Although
the CPU time for the whole process (learning from the training dataset and validating with
test dataset) is generally reported, we separate the CPU time for the learning and inference
steps because (i) a model is learnt once but queried many times and (ii) most real-world
applications require online predictions but allow for offline fitting. Tables 7 and 8 show the
average CPU time for the learning and inference steps. In light of these results, we can
conclude the following.

• The HNBE-LR-G algorithm is the fastest method during the learning step because it
suffers from premature early stopping, which gives rise to a fast but poor algorithm. On
the other hand, the LRT algorithm is the fastest method during the inference step, which
is a common situation for tree-based algorithms.

• The IBLR algorithm is faster than the HNB-LR and GMSNB-LR algorithms in the learning
step. However, during inference, the IBLR algorithm computes the distance between the
input instance and the instances in the training dataset, which clearly increases the CPU
time required by the algorithm.

• The GMSNB-LR-F algorithm is generally faster than the GMSNB-LR-T algorithm, both
in learning and inference. This is due to the number of components selected by the
GMSNB-LR-F algorithm in comparison to the GMSNB-LR-T algorithm. In a similar
way, the HNB-LR-G algorithm is faster than the HNB-LR-F, HNB-LR-W, and HNB-LR-E
algorithms, as the the latter ones apply a discretization procedure prior to the learning
and inference steps.

Entropy 2021, 23, 420 20 of 24

Table 7. Mean CPU time (in seconds) for the learning step of each algorithm.

Dataset HNBE-LR-G HNB-LR-G HNB-LR-F HNB-LR-W HNB-LR-E GMSNB-LR-F GMSNB-LR-T IBLR LRT

authorship 1.705 ± 0.532 61.196 ± 9.992 89.829 ± 12.334 87.027 ± 12.214 89.588 ± 17.826 45.615 ± 12.528 63.305 ± 26.925 0.750 ± 0.123 6.417 ± 0.359
bodyfat 0.242 ± 0.091 5.225 ± 1.886 14.765 ± 5.212 19.063 ± 9.117 26.695 ± 14.450 4.178 ± 1.082 7.411 ± 2.700 0.408 ± 0.117 0.459 ± 0.021

calhousing 24.985 ± 10.129 4460.303 ± 2556.481 934.879 ± 403.026 549.931 ± 330.861 924.278 ± 193.472 2477.003 ± 894.089 1640.548 ± 879.352 222.602 ± 18.316 617.978 ± 95.233
cpu 10.822 ± 6.953 832.624 ± 453.921 434.776 ± 115.788 284.175 ± 155.825 334.790 ± 92.549 880.115 ± 271.609 1469.499 ± 588.102 53.066 ± 1.789 119.613 ± 7.050

elevators 15.681 ± 4.200 2252.878 ± 909.937 3878.157 ± 1111.013 2912.576 ± 1199.323 1822.243 ± 564.493 3696.911 ± 817.021 1974.011 ± 467.630 154.594 ± 9.019 1685.996 ± 174.829
fried 51.613 ± 29.227 6783.099 ± 4193.126 3050.954 ± 1459.152 8534.450 ± 3529.126 3255.716 ± 1247.376 3836.842 ± 625.103 7345.125 ± 4261.981 6049.934 ± 3015.594
glass 0.139 ± 0.037 4.784 ± 1.416 21.871 ± 6.983 24.472 ± 6.890 21.390 ± 4.724 5.001 ± 0.877 12.855 ± 3.936 0.142 ± 0.003 0.439 ± 0.038

housing 0.278 ± 0.070 33.743 ± 9.953 74.223 ± 23.715 77.063 ± 36.041 72.623 ± 24.394 12.118 ± 4.511 37.575 ± 20.451 1.011 ± 0.129 0.843 ± 0.035
iris 0.119 ± 0.031 5.103 ± 1.850 5.940 ± 2.908 8.612 ± 2.794 10.060 ± 4.408 2.891 ± 0.520 3.740 ± 1.200 0.146 ± 0.029 0.024 ± 0.015

pendigits 14.921 ± 6.446 4958.630 ± 533.195 7526.738 ± 1086.477 3363.739 ± 1379.314 2181.268 ± 503.646 1370.683 ± 169.772 2171.361 ± 377.718 37.522 ± 0.314 137.337 ± 3.893
segment 1.893 ± 0.633 306.300 ± 71.676 614.536 ± 388.197 297.176 ± 96.372 633.483 ± 207.526 155.155 ± 31.039 680.656 ± 198.149 3.290 ± 0.712 43.915 ± 0.459

stock 1.153 ± 0.642 78.335 ± 18.392 206.016 ± 20.207 203.993 ± 29.806 215.489 ± 23.562 51.965 ± 10.650 110.541 ± 46.287 0.678 ± 0.078 1.767 ± 0.044
vehicle 1.361 ± 0.645 46.526 ± 17.221 75.399 ± 19.064 131.554 ± 42.902 187.489 ± 51.417 28.025 ± 13.600 120.622 ± 65.717 0.784 ± 0.162 2.614 ± 0.201
vowel 0.581 ± 0.247 39.580 ± 5.972 72.241 ± 8.261 76.060 ± 10.918 189.684 ± 98.049 22.197 ± 2.436 47.121 ± 6.398 0.364 ± 0.004 5.231 ± 0.136
wine 0.125 ± 0.039 1.565 ± 0.502 4.887 ± 1.482 5.235 ± 2.170 6.360 ± 2.088 1.264 ± 0.129 1.614 ± 0.468 0.132 ± 0.029 0.250 ± 0.095

wisconsin 0.265 ± 0.155 17.549 ± 3.963 13.207 ± 2.893 20.881 ± 10.524 40.325 ± 9.262 6.196 ± 0.661 13.596 ± 4.252 0.287 ± 0.060 2.414 ± 0.081

cold 3.400 ± 1.779 318.876 ± 133.326 373.824 ± 192.488 287.441 ± 121.705 212.068 ± 85.827 309.730 ± 195.366 342.582 ± 154.869 5.489 ± 2.379 558.146 ± 268.333
diau 2.485 ± 1.233 234.570 ± 60.736 296.337 ± 85.944 175.379 ± 46.762 273.500 ± 88.171 266.421 ± 62.646 176.723 ± 60.193 14.260 ± 2.636 509.939 ± 173.209
dtt 2.308 ± 0.900 320.371 ± 164.964 440.020 ± 233.137 317.019 ± 167.063 155.423 ± 32.987 246.605 ± 80.833 228.628 ± 119.854 11.159 ± 1.455 436.914 ± 52.761

heat 3.444 ± 1.448 323.654 ± 161.205 359.967 ± 148.471 243.728 ± 119.877 293.548 ± 147.877 250.223 ± 92.645 226.749 ± 144.860 6.322 ± 1.336 149.847 ± 22.709
spo 3.106 ± 1.114 345.584 ± 57.367 364.797 ± 97.080 238.538 ± 47.706 357.678 ± 121.603 338.189 ± 90.514 218.729 ± 34.441 33.453 ± 19.871 330.353 ± 61.667

Entropy 2021, 23, 420 21 of 24

Table 8. Mean CPU time (in seconds) for the inference step of each algorithm.

Dataset HNBE-LR-G HNB-LR-G HNB-LR-F HNB-LR-W HNB-LR-E GMSNB-LR-F GMSNB-LR-T IBLR LRT

authorship 0.007 ± 0.001 0.012 ± 0.012 0.062 ± 0.041 0.057 ± 0.034 0.044 ± 0.047 0.008 ± 0.009 0.025 ± 0.026 0.022 ± 0.000 0.002 ± 0.000
bodyfat 0.001 ± 0.000 0.002 ± 0.000 0.012 ± 0.012 0.008 ± 0.010 0.007 ± 0.009 0.003 ± 0.002 0.005 ± 0.004 0.006 ± 0.001 0.001 ± 0.000

calhousing 0.053 ± 0.003 0.409 ± 0.217 0.682 ± 0.197 0.376 ± 0.177 0.617 ± 0.154 0.348 ± 0.162 0.354 ± 0.122 3.675 ± 0.033 0.116 ± 0.011
cpu 0.024 ± 0.002 0.069 ± 0.038 0.219 ± 0.121 0.068 ± 0.025 0.263 ± 0.121 0.067 ± 0.031 0.260 ± 0.094 0.713 ± 0.020 0.033 ± 0.002

elevators 0.059 ± 0.002 0.152 ± 0.049 0.321 ± 0.117 0.252 ± 0.098 0.128 ± 0.040 0.214 ± 0.055 0.345 ± 0.102 2.620 ± 0.027 0.243 ± 0.088
fried 0.124 ± 0.013 0.779 ± 0.362 0.328 ± 0.249 1.016 ± 0.750 1.009 ± 0.493 0.437 ± 0.033 1.250 ± 0.798 0.264 ± 0.263
glass 0.001 ± 0.000 0.002 ± 0.003 0.021 ± 0.013 0.015 ± 0.013 0.008 ± 0.008 0.003 ± 0.004 0.009 ± 0.008 0.004 ± 0.000 0.001 ± 0.000

housing 0.002 ± 0.001 0.011 ± 0.011 0.026 ± 0.014 0.018 ± 0.011 0.014 ± 0.013 0.006 ± 0.005 0.024 ± 0.020 0.012 ± 0.001 0.001 ± 0.000
iris 0.001 ± 0.000 0.004 ± 0.007 0.005 ± 0.006 0.005 ± 0.006 0.003 ± 0.006 0.003 ± 0.004 0.004 ± 0.004 0.003 ± 0.000 0.001 ± 0.000

pendigits 0.055 ± 0.004 0.533 ± 0.120 1.380 ± 0.274 0.648 ± 0.357 0.346 ± 0.049 0.166 ± 0.041 0.570 ± 0.111 1.266 ± 0.013 0.025 ± 0.000
segment 0.011 ± 0.002 0.049 ± 0.019 0.093 ± 0.046 0.135 ± 0.080 0.191 ± 0.079 0.045 ± 0.016 0.190 ± 0.062 0.085 ± 0.002 0.005 ± 0.000

stock 0.003 ± 0.000 0.015 ± 0.011 0.029 ± 0.013 0.021 ± 0.014 0.033 ± 0.013 0.022 ± 0.014 0.072 ± 0.030 0.020 ± 0.000 0.002 ± 0.000
vehicle 0.004 ± 0.000 0.007 ± 0.008 0.065 ± 0.051 0.097 ± 0.086 0.069 ± 0.059 0.006 ± 0.007 0.064 ± 0.050 0.018 ± 0.000 0.002 ± 0.000
vowel 0.003 ± 0.000 0.012 ± 0.011 0.084 ± 0.023 0.075 ± 0.028 0.046 ± 0.021 0.013 ± 0.013 0.041 ± 0.014 0.011 ± 0.000 0.002 ± 0.000
wine 0.001 ± 0.000 0.001 ± 0.001 0.007 ± 0.007 0.006 ± 0.007 0.007 ± 0.009 0.001 ± 0.000 0.002 ± 0.001 0.003 ± 0.000 0.001 ± 0.000

wisconsin 0.002 ± 0.000 0.007 ± 0.011 0.016 ± 0.012 0.027 ± 0.018 0.019 ± 0.014 0.004 ± 0.005 0.007 ± 0.006 0.005 ± 0.000 0.001 ± 0.000

cold 0.011 ± 0.001 0.033 ± 0.021 0.071 ± 0.073 0.096 ± 0.086 0.122 ± 0.165 0.048 ± 0.053 0.128 ± 0.095 0.099 ± 0.007 0.017 ± 0.005
diau 0.012 ± 0.001 0.023 ± 0.014 0.047 ± 0.041 0.042 ± 0.028 0.034 ± 0.018 0.031 ± 0.015 0.045 ± 0.034 0.148 ± 0.017 0.011 ± 0.002
dtt 0.010 ± 0.001 0.034 ± 0.027 0.083 ± 0.078 0.129 ± 0.136 0.039 ± 0.028 0.033 ± 0.024 0.076 ± 0.070 0.121 ± 0.008 0.011 ± 0.001

heat 0.012 ± 0.001 0.025 ± 0.016 0.054 ± 0.039 0.097 ± 0.141 0.102 ± 0.143 0.036 ± 0.035 0.065 ± 0.069 0.101 ± 0.006 0.006 ± 0.001
spo 0.014 ± 0.001 0.022 ± 0.013 0.032 ± 0.022 0.043 ± 0.018 0.033 ± 0.012 0.036 ± 0.028 0.028 ± 0.014 0.310 ± 0.189 0.006 ± 0.001

Entropy 2021, 23, 420 22 of 24

6. Limitations

As observed in the previous section, allowing interactions between the predictive
variables represents a crucial issue with respect to the univariate case. Actually, our mixture-
based model emerges as competitive with IBLR. However, there are still some weaknesses
in our study/proposal:

• The CPU time data shown in Table 7 suggest that our method does not scale as would
be desirable. In fact, it seems that the number of instances has a greater influence on
the CPU time than the number of variables. However, more analysis is needed to
clarify this point. Feature subset selection and stratification could lead to scalability
improvements.

• Interactions between the predictive variables are limited to the numerical ones. Al-
lowing interactions among the discrete variables and also mixed interactions should
be studied. The literature on Bayesian network classifiers [30,39] and hybrid Bayesian
networks may help in this task [50].

• Currently, the method only works with complete rankings. Nevertheless, in real-world
applications it is usual to allow the agent to rank only certain labels. We think our
techniques can be adapted to deal with incomplete rankings.

7. Conclusions

This study explores the use of mixture-based algorithms to solve the LR problem. The
main problem is to model the target variable, as it takes values in the set of permutations
defined over the class variable. We solve this shortcoming by introducing a hidden variable
as root, so all the variables can be modeled by using conditional distributions. In particular,
we base our approach on the Naive Bayes structure, with the hidden variable being the root
of the model. We then go a step further by allowing interactions between the (numerical)
predictive variables, thus designing a Semi-Naive Bayes model. Learning algorithms based
on the well-known EM estimation principle are proposed for both cases. The inference is
designed as a combination of probabilistic inference and rank aggregation.

From the experimental evaluation, we observe that the Naive Bayes approach is com-
parable in score to the decision trees for the LR problem, while the Semi-Naive Bayes
approach (in particular, the one sharing a single covariance matrix among all the com-
ponents) outperforms the Naive Bayes and decision tree-based algorithms, being also
competitive with the state-of-the-art model-free algorithm based on the nearest neighbors
method (IBLR). The good performance of this algorithm (GMSNB-LR-T) with respect to
IBLR is reinforced by its better behavior at the inference stage, where IBLR needs a great
amount of time when facing large datasets.

As future research, we propose two possible extensions to this work: First, we plan to
extend our approach to cope with incomplete data in the ranking variable, that is, cases in
which not all the labels are ranked in the instances of the training set. In the literature, this
step is solved by completing those rankings before learning the model. However, we think
this step can be introduced in the EM algorithm. In fact, model-based algorithms have
shown better behavior than model-free ones when learning from incomplete rankings, so
open the door to future promising research. Second, we plan to extend the mixture-based
algorithms to the LR problems whose target ranking is a partial or bucket order, that is,
a ranking in which some labels can be tied. This problem, which is generally termed
the Partial Label Ranking (PLR) problem [51,52], introduces new challenges, such as the
infeasibility of using the Mallows distribution to model the target variable.

Author Contributions: Conceptualization, E.G.R., J.C.A., J.A.A., and J.A.G.; Formal analysis, E.G.R.,
J.C.A., J.A.A., and J.A.G.; Funding acquisition, J.A.G.; Investigation, E.G.R., J.C.A., J.A.A., and J.A.G.;
Methodology, E.G.R., J.C.A., J.A.A., and J.A.G.; Software, E.G.R., and J.C.A.; Supervision, J.A.A. and
J.A.G.; Validation, E.G.R., J.C.A., J.A.A., and J.A.G.; Writing—original draft, E.G.R., J.C.A., J.A.A.,
and J.A.G.; Writing—review and editing, E.G.R., J.C.A., J.A.A., and J.A.G.. All authors have read and
agreed to the published version of the manuscript.

Entropy 2021, 23, 420 23 of 24

Funding: This study has been partially funded by the Spanish Government, FEDER funds and the
JCCM through the projects PID2019–106758GB–C33/AEI/10.13039/501100011033,
TIN2016–77902–C3–1–P, and SBPLY/17/180501/000493. Juan C. Alfaro has also been funded by the
FPU scholarship FPU18/00181 by MCIU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The running examples of the paper together with other basic models
are available at: https://github.com/alfaro96/scikit-lr (accessed on 30 March 2021) .

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vembu, S.; Gärtner, T. Label Ranking Algorithms: A Survey. In Preference Learning; Springer: Berlin/Heidelberg, Germany, 2010;

pp. 45–64.
2. Cheng, W.; Hühn, J.; Hüllermeier, E. Decision tree and instance-based learning for label ranking. In Proceedings of the 26th

Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 161–168.
3. Dery, L. Multi-label Ranking: Mining Multi-label and Label Ranking Data. arXiv 2021, arXiv:2101.00583.
4. Hernández, J.; Inza, I.; Lozano, J.A. Weak supervision and other non-standard classification problems: A taxonomy. Pattern

Recognit. Lett. 2016, 69, 49–55. [CrossRef]
5. Charte, D.; Charte, F.; García, S.; Herrera, F. A snapshot on nonstandard supervised learning problems: taxonomy, relationships,

problem transformations and algorithm adaptations. Prog. Artif. Intell. 2019, 8, 1–14. [CrossRef]
6. Werbin-Ofir, H.; Dery, L.; Shmueli, E. Beyond majority: Label ranking ensembles based on voting rules. Expert Syst. Appl. 2019,

136, 50–61. [CrossRef]
7. Esmeli, R.; Bader-El-Den, M.; Abdullahi, H. Session Similarity Based Approach for Alleviating Cold-start Session Problem in

e-Commerce for Top-N Recommendations. In Proceedings of the 12th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management, Setubal, Portugal, 2–4 November 2020; pp. 179–186.

8. Cheng, W.; Henzgen, S.; Hüllermeier, E. Labelwise versus Pairwise Decomposition in Label Ranking. In Proceedings of the
Workshop on Lernen, Wissen & Adaptivität, Bamberg, Germany, 7–9 October 2013; pp. 129–136.

9. Gurrieri, M.; Fortemps, P.; Siebert, X. Alternative Decomposition Techniques for Label Ranking. In Proceedings of the 15th
International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Montpellier,
France, 15–19 July 2014; pp. 464–474.

10. Hüllermeier, E.and Fürnkranz, J.; Cheng, W.; Brinker, K. Label ranking by learning pairwise preferences. Artif. Intell. 2008,
172, 1897–1916. [CrossRef]

11. Har-Peled, S.; Roth, D.; Zimak, D. Constraint Classification for Multiclass Classification and Ranking. In Proceedings of the 2002
Neural Information Processing Systems Conference, Vancouver, BC, Cabada, 9–14 December 2002; pp. 785–792.

12. de Sá, C.R.; Soares, C.; Jorge, A.M.; Azevedo, P.; Costa, J. Mining Association Rules for Label Ranking. In Advances in Knowledge
Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2011; pp. 432–443.

13. Ribeiro, G.; Duivesteijn, W.; Soares, C.; Knobbe, A.J. Multilayer Perceptron for Label Ranking. In Proceedings of the 22nd
international conference on Artificial Neural Networks and Machine Learning, Lausanne, Switzerland, 11–14 September 2012;
pp. 25–32.

14. Aledo, J.; Gámez, J.; Molina, D. Tackling the supervised label ranking problem by bagging weak learners. Inf. Fusion 2017,
35, 38–50. [CrossRef]

15. de Sá, C.R.; Soares, C.; Knobbe, A.; Cortez, P. Label Ranking Forests. Expert Syst. 2017, 34, e12166. [CrossRef]
16. Zhou, Y.; Qiu, G. Random forest for label ranking. Expert Syst. Appl. 2018, 112, 99–109. [CrossRef]
17. Dery, L.; Shmueli, E. BoostLR: A Boosting-Based Learning Ensemble for Label Ranking Tasks. IEEE Access 2020, 8, 176023–176032.

[CrossRef]
18. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques—Adaptive Computation and Machine Learning; MIT

Press: Cambridge, MA, USA, 2009.
19. Jensen, F.V.; Nielsen, T.D. Bayesian Networks and Decision Graphs; Springer: Berlin/Heidelberg, Germany, 2007.
20. Cheng, W.; Dembczynski, K.; Hüllermeier, E. Label Ranking Methods based on the Plackett-Luce Model. In Proceedings of the

27th Annual International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 215–222.
21. Fernández, A.; Gámez, J.A.; Rumí, R.; Salmerón, A. Data clustering using hidden variables in hybrid Bayesian networks. Prog.

Artif. Intell. 2014, 2, 141–152. [CrossRef]
22. Mallows, C.L. Non-Null Ranking Models. Biometrika 1957, 44, 114–130. [CrossRef]
23. Alfaro, J.C.; González, E.; Aledo, J.A.; Gámez, J.A. A Probabilistic Graphical Model-Based Approach for the Label Ranking

Problem. In Proceedings of the 15th European Conference on Symbolic and Quantitative Approaches with Uncertainty, Belgrade,
Serbia, 18–20 September 2019; pp. 351–362.

24. Kemeny, J.; Snell, J. Mathematical Models in the Social Sciences; MIT Press: Cambridge, MA, USA, 1972.

https://github.com/alfaro96/scikit-lr
http://doi.org/10.1016/j.patrec.2015.10.008
http://dx.doi.org/10.1007/s13748-018-00167-7
http://dx.doi.org/10.1016/j.eswa.2019.06.022
http://dx.doi.org/10.1016/j.artint.2008.08.002
http://dx.doi.org/10.1016/j.inffus.2016.09.002
http://dx.doi.org/10.1111/exsy.12166
http://dx.doi.org/10.1016/j.eswa.2018.06.036
http://dx.doi.org/10.1109/ACCESS.2020.3026758
http://dx.doi.org/10.1007/s13748-014-0048-3
http://dx.doi.org/10.1093/biomet/44.1-2.114

Entropy 2021, 23, 420 24 of 24

25. Kendall, M.G. Rank Correlation Methods; Griffin: Hong Kong, China, 1948.
26. Borda, J. Memoire Sur Les Elections au Scrutin; Histoire de l’Academie Royal des Sciences: Paris, France, 1770.
27. Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [CrossRef]
28. Irurozk, E.; Calvo, B.; Lozano, J.A. PerMallows: An R Package for Mallows and Generalized Mallows Models. J. Stat. Softw. 2016,

71, 1–30.
29. Ali, A.; Meilă, M. Experiments with Kemeny ranking: What works when? Math. Soc. Sci. 2012, 64, 28–40. [CrossRef]
30. Bielza, C.; Larrañaga, P. Discrete Bayesian Network Classifiers: A Survey. ACM Comput. Surv. 2014, 47. [CrossRef]
31. Stutz, J.; Cheeseman, P. Autoclass—A Bayesian Approach to Classification. In Maximum Entropy and Bayesian Methods; Skilling, J.,

Sibisi, S., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 117–126.
32. Stewart, B. Improving performance of naive bayes classifier by including hidden variables. In Proceedings of the 11th International

Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems: Methodology and Tools in
Knowledge-Based Systems, Castellon, Spain, 1–4 June 1998; pp. 272–280.

33. Flores, M.J.; Gámez, J.A.; Martínez, A.M.; Puerta, J.M. HODE: Hidden One-Dependence Estimator. In Proceedings of the
15th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Belgrade, Serbia, 18–20
September 2009; pp. 481–492.

34. Langseth, H.; Nielsen, T.D. Classification using Hierarchical Naïve Bayes models. Mach. Learn. 2006, 63, 135–159. [CrossRef]
35. Jiang, L.; Zhang, H.; Zhihua, C. A Novel Bayes Model: Hidden Naive Bayes. IEEE Trans. Knowl. Data Eng. 2009, 21, 1361–1371.

[CrossRef]
36. Lowd, D.; Domingos, P. Naive Bayes models for probability estimation. In Proceedings of the 22nd International Conference on

Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 529–536.
37. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J. R. Stat. Soc. Ser. B

Methodol. 1997, 39, 1–22.
38. Wu, X.; Kumar, V. The Top Ten Algorithms in Data Mining; Chapman and Hall: London, UK, 2009.
39. Flores, M.; Gámez, J.A.; Martínez, A. Supervised Classification with Bayesian Networks: A Review on Models and Applications.

In Intelligent Data Analysis for Real-Life Applications: Theory and Practice; IGI Global: Hershey, PA, USA, 2012; pp. 72–102.
40. Salmerón, A.; Rumí, R.; Langseth, H.; Nielsen, T.D.; Madsen, A.L. A Review of Inference Algorithms for Hybrid Bayesian

Networks. J. Artif. Intell. Res. 2018, 62, 799–828. [CrossRef]
41. Friedman, N. The Bayesian Structural EM Algorithm. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial

Intelligence, Madison, WI, USA, 24–26 July 1998; pp. 129–138.
42. Reynolds, D., Gaussian Mixture Models. In Encyclopedia of Biometrics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 659–663.
43. McLachlan, G.; Krishnan, T. The EM algorithm and Extensions, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008.
44. Fayyad, U.M.; Irani, K.B. Multi-interval discretization of continuous-valued attributes for classification learning. Artif. Intell.

1993, 13, 1022–1027.
45. Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30.
46. García, S.; Herrera, F. An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise

Comparisons. J. Mach. Learn. Res. 2008, 9, 2677–2694.
47. Arias, J.; Cózar, J. ExReport: Fast, Reliable and Elegant Reproducible Research. CRAN. 2016. Available online: https:

//cran.r-project.org/web/packages/exreport (accessed on 21 March 2021).
48. Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 11, 86–92.

[CrossRef]
49. Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70.
50. Pérez-Bernabé, I.; Maldonado, A.D.; Salmerón, A.; Nielsen, T.D. MoTBFs: An R Package for Learning Hybrid Bayesian Networks

Using Mixtures of Truncated Basis Functions. R J. 2020, 12, 321. [CrossRef]
51. Alfaro, J.C.; Aledo, J.A.; Gámez, J.A. Averaging-Based Ensemble Methods for the Partial Label Ranking Problem. In Proceedings

of the 15th International Conference on Hybrid Artificial Intelligence Systems, Gijón, Spain, 11–13 November 2020; pp. 410–423.
52. Alfaro, J.C.; Aledo, J.A.; Gámez, J.A. Learning decision trees for the partial label ranking problem. Int. J. Intell. Syst. 2021,

36, 890–918. [CrossRef]

http://dx.doi.org/10.1093/biomet/30.1-2.81
http://dx.doi.org/10.1016/j.mathsocsci.2011.08.008
http://dx.doi.org/10.1145/2576868
http://dx.doi.org/10.1007/s10994-006-6136-2
http://dx.doi.org/10.1109/TKDE.2008.234
http://dx.doi.org/10.1613/jair.1.11228
https://cran.r-project.org/web/packages/exreport
https://cran.r-project.org/web/packages/exreport
http://dx.doi.org/10.1214/aoms/1177731944
http://dx.doi.org/10.32614/RJ-2021-019
http://dx.doi.org/10.1002/int.22325

	Introduction
	Background
	Kemeny Ranking Problem
	Kendall Rank Correlation Coefficient
	Mallows Probability Distribution
	Naive Bayes
	Instance-Based Label Ranking
	Label Ranking Trees

	Hidden Naive Bayes for Label Ranking
	Model Definition
	Parameter Estimation
	Learning Process
	Method A: HNBE-LR
	Method B: HNB-LR

	Inference Process

	Gaussian Mixture-Based Semi-Naive Bayes for Label Ranking
	Model Definition
	Parameter Estimation
	Learning Process
	Inference Process

	Experimental Evaluation
	Datasets
	Algorithms
	Methodology
	Results
	Accuracy
	Time

	Limitations
	Conclusions
	References

