111 research outputs found

    A Tele-Operated Display With a Predictive Display Algorithm

    Get PDF
    Tele-operated display systems with head mounted displays (HMD) are becoming popular as visual feedback systems for tele-operation systems. However, the users are suffered from time-varying bidirectional delays caused by the latency and limited bandwidth of wireless communication networks. Here, we develop a tele-operated display system and a predictive display algorithm allowing comfortable use of HMDs by operators of tele-operation systems. Inspired by the kinematic model of the human head-neck complex, we built a robot neck-camera system to capture the field of view in any desired orientation. To reduce the negative effects of the time-varying bidirectional communication delay and operation delay of the robot neck, we developed a predictive display algorithm based on a kinematic model of the human/robot neck-camera system, and a geometrical model of a camera. Experimental results showed that the system provide predicted images with high frame rate to the user

    Multilateral teleoperation over communication time delay using the time-domain passivity approach

    Get PDF
    A general framework to stabilize multilateral teleoperation system over a communication time delay based on the well-known time-domain passivity approach (TDPA) is proposed. The uniqueness of this framework is that it is independent of the amount of communication time delay, the multilateral control architecture, and the number of masters and slaves. The multilateral system was first decoupled into subsystems with respect to each terminal by identifying the input signals' contributions to the output terminals, which was not straightforward due to the coupled nature of the multilateral teleoperation system. The decoupled subsystems were then converted into an electrical circuit using a mechanical-electrical analogy. Time-delay power network (TDPN) was introduced to clarify active energy sources from the time delay and passivity observer/passivity controller (PO/PC) was utilized to dissipate those active energies. A less-conservative method compared with prior work was proposed to guarantee the stability. Experiments with a trilateral teleoperation system and with a multilateral teleoperation system with a dual master and dual slave were conducted to validate the proposed framework

    Passivity-Based Control of Human-Robotic Networks with Inter-Robot Communication Delays and Experimental Verification

    Full text link
    In this paper, we present experimental studies on a cooperative control system for human-robotic networks with inter-robot communication delays. We first design a cooperative controller to be implemented on each robot so that their motion are synchronized to a reference motion desired by a human operator, and then point out that each robot motion ensures passivity. Inter-robot communication channels are then designed via so-called scattering transformation which is a technique to passify the delayed channel. The resulting robotic network is then connected with human operator based on passivity theory. In order to demonstrate the present control architecture, we build an experimental testbed consisting of multiple robots and a tablet. In particular, we analyze the effects of the communication delays on the human operator's behavior

    Expert-in-the-Loop Multilateral Telerobotics for Haptics-Enabled Motor Function and Skills Development

    Get PDF
    Among medical robotics applications are Robotics-Assisted Mirror Rehabilitation Therapy (RAMRT) and Minimally-Invasive Surgical Training (RAMIST) that extensively rely on motor function development. Haptics-enabled expert-in-the-loop motor function development for such applications is made possible through multilateral telerobotic frameworks. While several studies have validated the benefits of haptic interaction with an expert in motor learning, contradictory results have also been reported. This emphasizes the need for further in-depth studies on the nature of human motor learning through haptic guidance and interaction. The objective of this study was to design and evaluate expert-in-the-loop multilateral telerobotic frameworks with stable and human-safe control loops that enable adaptive “hand-over-hand” haptic guidance for RAMRT and RAMIST. The first prerequisite for such frameworks is active involvement of the patient or trainee, which requires the closed-loop system to remain stable in the presence of an adaptable time-varying dominance factor. To this end, a wave-variable controller is proposed in this study for conventional trilateral teleoperation systems such that system stability is guaranteed in the presence of a time-varying dominance factor and communication delay. Similar to other wave-variable approaches, the controller is initially developed for the Velocity-force Domain (VD) based on the well-known passivity assumption on the human arm in VD. The controller can be applied straightforwardly to the Position-force Domain (PD), eliminating position-error accumulation and position drift, provided that passivity of the human arm in PD is addressed. However, the latter has been ignored in the literature. Therefore, in this study, passivity of the human arm in PD is investigated using mathematical analysis, experimentation as well as user studies involving 12 participants and 48 trials. The results, in conjunction with the proposed wave-variables, can be used to guarantee closed-loop PD stability of the supervised trilateral teleoperation system in its classical format. The classic dual-user teleoperation architecture does not, however, fully satisfy the requirements for properly imparting motor function (skills) in RAMRT (RAMIST). Consequently, the next part of this study focuses on designing novel supervised trilateral frameworks for providing motor learning in RAMRT and RAMIST, each customized according to the requirements of the application. The framework proposed for RAMRT includes the following features: a) therapist-in-the-loop mirror therapy; b) haptic feedback to the therapist from the patient side; c) assist-as-needed therapy realized through an adaptive Guidance Virtual Fixture (GVF); and d) real-time task-independent and patient-specific motor-function assessment. Closed-loop stability of the proposed framework is investigated using a combination of the Circle Criterion and the Small-Gain Theorem. The stability analysis addresses the instabilities caused by: a) communication delays between the therapist and the patient, facilitating haptics-enabled tele- or in-home rehabilitation; and b) the integration of the time-varying nonlinear GVF element into the delayed system. The platform is experimentally evaluated on a trilateral rehabilitation setup consisting of two Quanser rehabilitation robots and one Quanser HD2 robot. The framework proposed for RAMIST includes the following features: a) haptics-enabled expert-in-the-loop surgical training; b) adaptive expertise-oriented training, realized through a Fuzzy Interface System, which actively engages the trainees while providing them with appropriate skills-oriented levels of training; and c) task-independent skills assessment. Closed-loop stability of the architecture is analyzed using the Circle Criterion in the presence and absence of haptic feedback of tool-tissue interactions. In addition to the time-varying elements of the system, the stability analysis approach also addresses communication delays, facilitating tele-surgical training. The platform is implemented on a dual-console surgical setup consisting of the classic da Vinci surgical system (Intuitive Surgical, Inc., Sunnyvale, CA), integrated with the da Vinci Research Kit (dVRK) motor controllers, and the dV-Trainer master console (Mimic Technology Inc., Seattle, WA). In order to save on the expert\u27s (therapist\u27s) time, dual-console architectures can also be expanded to accommodate simultaneous training (rehabilitation) for multiple trainees (patients). As the first step in doing this, the last part of this thesis focuses on the development of a multi-master/single-slave telerobotic framework, along with controller design and closed-loop stability analysis in the presence of communication delays. Various parts of this study are supported with a number of experimental implementations and evaluations. The outcomes of this research include multilateral telerobotic testbeds for further studies on the nature of human motor learning and retention through haptic guidance and interaction. They also enable investigation of the impact of communication time delays on supervised haptics-enabled motor function improvement through tele-rehabilitation and mentoring

    Central controller for hybrid control over network

    Get PDF
    In this paper, a central controller for position/force hybrid control over network is proposed. In the proposed method, the central controller receives position and force information from each plant. Then, the central controller generates acceleration references for each plant by using a hybrid controller and a dead time compensator. As an application, bilateral control with communication delay is implemented. And some simulations and experiments verify the validity of the proposed method

    Robust adaptive synchronisation of a single-master multi-slave teleoperation system over delayed communication

    Get PDF
    Considering communication delays in networked multi-robot teleoperation systems, this paper proposes a new control strategy for synchronisation and stability purposes. A single-master and multi-slave (SMMS) networked robotic teleoperation system is considered. Based on a sliding surface combined with a smooth filtering and estimation methodology, a robust adaptive control is developed to guarantee the synchronisation and stability of the system in the presence of network-induced time-varying delays. Extensive simulation studies demonstrate the effectiveness of the developed control scheme

    A Wave Variable Approach with Multiple Channel Architecture for Teleoperated System

    Get PDF
    © 2013 IEEE. Performance of teleoperation can be greatly influenced by time delay in the process of tele-manipulation with respect to accuracy and transparency. Wave variable is an effective algorithm to achieve a good stable capability. However, some traditional wave variable methods may decrease the performance of transparency and suffer the impacts of wave reflection. To deal with the problem of stability and transparency in teleoperation, in this paper, a novel wave variable method with four channel is presented to achieve stable tracking in position and force. In addition, the proposed method can achieve the distortion compensation and reduce the impacts of wave reflection. The simulation experimental results verified the tracking performance of the proposed method
    corecore