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ABSTRACT Tele-operated display systems with head mounted displays (HMD) are becoming popular
as visual feedback systems for tele-operation systems. However, the users are suffered from time-varying
bidirectional delays caused by the latency and limited bandwidth of wireless communication networks.
Here, we develop a tele-operated display system and a predictive display algorithm allowing comfortable
use of HMDs by operators of tele-operation systems. Inspired by the kinematic model of the human head-
neck complex, we built a robot neck-camera system to capture the field of view in any desired orientation.
To reduce the negative effects of the time-varying bidirectional communication delay and operation delay of
the robot neck, we developed a predictive display algorithm based on a kinematic model of the human/robot
neck-camera system, and a geometrical model of a camera. Experimental results showed that the system
provide predicted images with high frame rate to the user.

INDEX TERMS Tele-operateion, head mounted display, delay compensation.

I. INTRODUCTION
Sites of disasters such as natural disasters, radioactive acci-
dents and chemical accidents, which can pose problems in
terms of human access, are increasing [2], [3]. Tele-operation
systems have been researched to work in such disaster sites
with human user’s intelligence [4]–[7]. In the tele-operated
systems, the user typically obtains the information of the sites
from two-dimensional images transmitted to monitors by
cameras attached to the tele-operated robot. Visual data is the
most intuitive form of information when observing environ-
ments. However, the performance of a tele-operated system is
limited if three-dimensional (3D) stereoscopic images are not
provided, because the user cannot gauge distances between
objects.

Recently, head mounted displays (HMDs) affording
immersive 3D visual feedback have been used to observe
environments and control tele-operated robots to perform
manipulations [8]–[10]. Most HMDs feature integrated iner-
tial measurement units (IMUs) that measure the orientation
of the user’s head. The head orientation is used to capture the
field of view (FOV) in the direction in which the user looks by
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employing a robot neck-camera system or a panoramic cam-
era of tele-operated robots. However, it is difficult to provide
real-time images in such tele-operated situations; the latency,
limited bandwidth of the tele-communication network, and
the large sizes of stereoscopic images impose delays and
packet loss. Such delays and loss of data induced by unstable
nature of wireless tele-communication network trigger time-
varying delays in image presentation, causing simulator sick-
ness [11]–[13]. The operation delays imposed by the physical
limitations of robot neck-camera system increase the delay
further.

Delays in tele-operation system have been researched for
decades, especially to ensure stability and transparency of
bilateral haptic systems. Many control algorithms, such as
wave-variable based passivity control algorithms [14], [15]
and modified algorithms to address constant [16], [17] and
time-varying delays [18]–[20] have been researched. Adap-
tive and robust control algorithms have been studied to
deal time-delayed systems with nonlinearities and uncertain-
ties [21]–[24]. Despite of the achievements, it is difficult to
apply such methods in visual feedback systems because of
different nature.

The use of point cloud data or images to construct virtual
worlds (rather than images recently captured by the robot
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camera) may mitigate the delay effect problems [9], [25],
[26]. However, such methods impose large computational
burdens or require expensive sensors. The delay effect could
be reduced if the user’s head motion is predicted, and the
remotely controlled robot moves ahead of the user. Prediction
of user’s head motion have been researched to reduce the
delay of HMDs for displaying virtual reality [27], [28]. How-
ever, it is difficult to apply such predictions, because large
delays and packet loss are expected in the communications
under disaster situations. Model-based predictions have been
researched to mitigate the effect of delays in tele-operation
systems. The position and orientation of robot manipula-
tors were predicted by kinematic models of the robots and
reflected in the user-side display, to avoid long task time
induced by ‘‘move and wait’’ strategy [29], [30] or increase
manipulation precision [31]. However, user’s head motion
was not involved in the systems, because the display systems
consisted of ordinary monitors. A predictive display method
was suggested in [32] to provide the image in actual direc-
tion of a tele-operated vehicle utilizing the dynamics of the
vehicle, but it was not implemented in real system.

Here, we developed a tele-operated display system
and a practical predictive display algorithm that compen-
sates for the bidirectional network and operation delays.
We constructed a robot neck-camera system based on a kine-
matic model of the human head-neck complex. The display
algorithm predicts images in the direction of user’s head
orientation by employing delayed image and analyzing the
difference between the delayed robot neck orientation and the
current user head orientation. We compensated for the bidi-
rectional communication and operational delays by translat-
ing and rotating the delayed images using kinematic models
of the human neck and the robot neck-camera system, and a
geometrical model of the camera. The delays were addressed
by predicting images which correspond to the current user’s
head orientation, utilizing the delayed images, robot neck
orientation, and current user’s head orientation.

The remainder of this paper is organized as follows.
Section II provides an overview of our tele-operated display
system. Section III contains a detailed analysis of the cam-
era and the predictive display algorithm. The experimental
setup and the results afforded by the proposed algorithm are
shown in Section IV. Section V presents the conclusions and
describes planned future work.

II. OVERVIEW OF THE DISPLAY SYSTEM
We developed an intuitive display system for tele-operated
robots. As shown in Figure 1, the human head-neck complex
was modeled as a simplified series linkage system featuring
three revolute joints to represent the rotational head motion.
The HMD [33] attached to the user’s head measures head
orientation, allowing presentation of 3D stereoscopic images.
The robot neck had the same kinematic structure as the human
model. Two cameras [34] were placed on top of the robot
neck to capture stereoscopic view of the work site. To pre-
vent user’s sickness caused by time differences between the

FIGURE 1. Design of a robot neck-camera module based on the kinematic
model of human head-neck complex. (θ1, θ2 and θ3 are the rotation angle
of each rotational joints that represents yaw, pitch and roll motion of the
head, respectively).

TABLE 1. Specifications of the tele-operated display system.

stereoscopic cameras, the cameras were synchronized by dig-
ital signals; both captured images at the same moment. The
detailed specifications of the tele-operated display system are
listed in Table 1.

Figure 2 is a schematic of the system. The orientation of
the user’s head (oH (t)) is measured by an IMU inside the
HMD, with a measurement delay of 1IMU . The measured
orientation [oH (t − 1IMU )] is delivered to the robot neck-
camera through a wireless network with a communication
delay of 1CM , and the robot neck then follows the user’s
head orientation [oH (t −1IMU −1CM )] with an operational
delay 1OP caused by physical limitations of the actuators.
The cameras captures stereo images in the direction of their
orientation oR(t), which is the same as the human neck ori-
entation but delayed by 1IMU , 1CM and 1OP; the delayed
orientation is denoted as oH (t −1IMU −1CM −1OP). The
captured images [Image(oR(t))] and the orientations of image
capture [oR(t)] are delivered to the user with an additional
communication delay of 1CM .
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FIGURE 2. Overview of the tele-operated display system. oH and oR are the orientation of user’s head and robot neck-camera module, respectively.
1IMU , 1CM and 1OP represent the measurement delay of user’s head orientation, communication delay of the wireless network and operational
delay of the robot neck, respectively.

The images can be delivered directly to the user via
the HMD. However, as shown in Figure 2, the delivered
images [Image(oR(t − 1CM )) = Image(oH (t − 1IMU −

21CM − 1OP))] contain the measurement delays of the
IMU [1IMU ], bidirectional communication delay [21CM ],
and the operational delay of the robot neck [1OP]. If the
image is provided directly to the user, the user may suffer
because of the delays. Especially, bidirectional communica-
tion delay is time-varying in nature and can trigger simu-
lator sickness [11]–[13]. Also, random loss of image data,
which is frequent because of the size of stereoscopic images,
increases variation in 1CM . Such delays and image loss are
inevitable in wireless networks, unless the communication is
exceptionally well-controlled. 1OP is also time-varing, as it
depends on user’s head motion. 1CM and 1OP are the pre-
dominant delays;1IMU is both relatively small and constant.
To reduce the undesirable effects of 1CM and 1OP (such
as sickness [11]–[13]), we develop a predictive compensa-
tion algorithm. The algorithm modifies the delivered images
[Image(oR(t − 1CM ))] using delayed robot neck orienta-
tions [oR(t −1CM )] and the measured user head orientation
[oH (t − 1IMU )] before providing the images. In this way,
the image which is supposed to be in the direction of user’s
head is predicted; thus, the provided image instantly reflects
user’s head motion despite the existence of time-varying
delays. The algorithm compensates for1CM and1OP, which
are the dominant time-varying delays of the entire system that
affect to the sickness of users.

III. THE PREDICTIVE DISPLAY ALGORITHM
A. DERIVATION
We first analyzed camera geometry. In this analysis,
we assumed that the camera is a pinhole camera without lens
distortion. Also, the image sensor was assumed to be square.

The camera was analyzed by dividing robot neckmotions into
yaw, pitch motion (θ1 or θ2 in Figure 1, respectively) and roll
motion (θ3 in Figure 1) of the robot neck. Figure 3 shows
the simplified geometry; the camera features an aperture and
an image sensor. Figure 3a shows image formation on the
image sensor and the position change of the formed image by
yaw or pitch motion of the robot neck. If a subject is placed
in the direction of θ from the perpendicular line of the sensor,
the distance from the center of the image sensor to the formed
subject image [op] can be approximated as follows:

op = dtanθ ≈ dθ (1)

where d is the distance between the aperture and the camera
image sensor. If the camera is rotated by θ ′, the distance
changes to op′, as follows:

op′ = dtan(θ + θ ′) ≈ d(θ + θ ′) (2)

Using (1) and (2), the positional change in a formed
image [pp′] can be calculated as:

pp′ = op′ − op = dθ ′ (3)

Note that pp′ is proportional to the translation distance of the
subject in the captured image (in pixels, δpixel) as follows:

δpixel = αdθ ′ (4)

where α is a conversion factor used to transform the distance
change of the subject image on the image sensor to that in the
captured image in pixels. Figure 3b shows image formation
of a subject on the image sensor and its position change due
to the roll motion by θ ′. In such a case, the image sensor also
rotates by θ ′, as does the subject in the captured image.

The relationship between changes in camera orientation
and positional change of the subject in captured images can
be used to predict future images based on current images.
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FIGURE 3. Simplified camera geometry and image position change of a
subject by camera motions.

If the camera joints corresponding to θ1, θ2 and θ3 of the
human kinematic model are rotated by θ ′1, θ

′

2 and θ
′

3 respec-
tively, the future image can be predicted by translating the
current image by αdθ ′1 in the horizontal direction and αdθ ′2
in the vertical direction, and by rotating the image through θ ′3.
Similarly, the scene in the direction of the current user head
orientation can be predicted using that current orientation of
user’s head [oH (t −1IMU )], the camera orientation when the
delayed image was captured [oR(t −1CM )], and the delayed
image [Image(oR(t −1CM ))].

The image prediction can be implemented by introducing a
cropped area, and translating or rotating it by the orientation
difference between the robot and human for yaw, pitch and
roll motion, respectively. An example of image manipula-
tion in the case of yaw motion (rotation of θ1) is shown
in Figure 4a. Here, a single axis-rotation case is considered,
for the clarity of the explanation. The camera captures an
image in the direction of its current orientation, as measured
by the robot neck system, and both the image [Image(oR(t))]
and the robot neck orientation [oR(t)] are delivered to the user
side with a delay of 1CM . If the predictive display algorithm

is not applied, the delivered image does not change until a new
image arrives. Thus, the delay generates an orientation differ-
ence between the user head orientation [oH (t − 1IMU )] and
the currently displayed image’s camera orientation [oR(t −
1CM ) = oH (t −1IMU − 21CM −1OP)].

However, the predictive display algorithm provides a
manipulated image (not an original) to the user. A rectangular
cropping area imposed on the delivered image [Image(oR(t−
1CM ))] with horizontal and vertical margins of Mh and Mv,
respectively. If the user head orientation changes, the cropped
area is translated by αdθ ′ pixels in the direction of head
rotation, where θ ′ is the difference between the current user
head orientation [oH (t −1IMU )] and the delayed robot neck
orientation [oR(t − 1CM )]. The translated cropped image is
then provided to the user through the HMD; the extent of
translation is determined by the camera model of (4).

Similarly, the algorithm can deal with pitch and roll motion
of the user head by applying the manipulation sequentially
(Figure 4b). The cropped areas are translated horizontally and
vertically by αdθ ′1 and αdθ

′

2, respectively, and rotated by θ ′3,
where θ ′1, θ

′

2 and θ
′

3 are the yaw, pitch and roll components of
the difference between oH (t−1IMU ) and oR(t−1CM ). As the
algorithm predicts images in the direction of current user
head orientation [oH (t−1IMU )], the effect of1CM and1OP
is compensated. Thus, image immediately change following
user head rotation feature a delay of only1IMU , which is both
constant and much smaller than the time-varying delays1CM
and 1OP. Therefore, the predictive display algorithm can
reduce the discomfort feelings or the sickness of the display
system caused by delays.

A delay compensation algorithm was proposed in
Edwards’ patent with a similar approach [35]. However, that
method yields an image smaller than or equal to the FOV of
the HMD, with negative or zero Mh and Mv values. Thus,
the image shown in the HMD looks like a scene through
a window that is translated and rotated when the image is
updated. This may negatively affect user immersion, limiting
the user-side FOV. Although the concept is similar to ours,
there was no analysis about the camera geometry and image
position change; our analyses support the validity of our
algorithm. Also, the extent of margins were not considered;
we discuss these margins in Section III.B.

B. MARGIN ANALYSIS
The margins must be set considering the rotational speed
of the user’s head and the image delays caused by 1CM
and 1OP. If the cropping area is overlapped with the out-
side of image, the user no longer receives a square image,
but rather a clipped image, because information is lacking
outside the image. This compromises task performance of
the tele-operation system by reducing user immersion. Thus,
the margins Mh and Mv must be large enough to make the
cropped area do not attain the image edges. However, large
margins reduce the image FOV in turn reducing the informa-
tion imparted. Given this trade-off, the margins must be as
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FIGURE 4. Implementation procedure of the predictive display algorithm.

small as possible but sufficiently large to prevent overlapping
with cropped areas the outside the image.

The required margins can be calculated from the image
delay, and the rotational speeds of the user’s head in yaw (θ̇1),
pitch (θ̇2) and roll (θ̇3). Figure 5 shows the translation and
rotation of the cropped area. The four corners are denoted A,
B, C , and D. As one of these points will be the first point to
reach the edge of the image when the cropped area begins
to overlap with and area outside the image, it is necessary
to ensure that all points stay within the image. Margin anal-
ysis commences at point A with initial coordinates (xA, yA).
The distances between A and closest horizontal and vertical
image edges are denoted Mh,A and Mv,A, respectively. The
coordinates of point A prior to translation and rotation of the
cropped area are:

xA = lcosθi (5)

yA = lsinθi (6)

where l is the distance from the center of the image to A, and
θi is the angle between the horizontal line and OA, calculated

using the margins and image size, as follows:

l =
√
(Lh/2−Mh)2 + (Lv/2−Mv)2 (7)

θi = atan
(Lv/2−Mv

Lh/2−Mh

)
(8)

Before manipulation of the cropped area, Mh,A and Mv,A are
identical to Mh and Mv. As the area is translated and rotated,
the coordinates of point A change:

x ′A = lcos(θi + θ ′3)+ αdθ
′

1 (9)

y′A = lsin(θi + θ ′3)+ αdθ
′

2 (10)

Assuming an image delay of dt and user rotational speeds of
θ̇1, θ̇2, θ̇3 (yaw, pitch and roll axis, respectively), the positional
change of pointA caused by usermotion during the delay time
dt can be calculated as follows:

x ′A = lcos(θi − θ̇3dt)− αd θ̇1dt (11)

y′A = lsin(θi − θ̇3dt)+ αd θ̇2dt (12)
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FIGURE 5. Margin changes by the translation and rotation of the cropped
area.

The positional change varies the margins Mh,A and Mv,A as
follows:

M ′h,A = Lh/2− x ′A (13)

M ′v,A = Lv/2− y′A (14)

To ensure that the cropped area does not attain the edges of
the image,Mh,A andMv,A must satisfy the following criteria:

M ′h,A,M
′
v,A > 0 (15)

Similarly, the coordinates and margins of the other three
points after manipulation of the cropped area are:

x ′B = lcos(θi + dotθ3dt)− αddotθ1dt (16)

y′B = −lsin(θi + dotθ3dt)+ αddotθ2dt (17)

x ′C = −lcos(θi − dotθ3dt)− αddotθ1dt (18)

y′C = −lsin(θi − dotθ3dt)+ αddotθ2dt (19)

x ′D = −lcos(θi + dotθ3dt)− αddotθ1dt (20)

y′D = lsin(θi + dotθ3dt)+ αddotθ2dt (21)

M ′h,B = Lh/2− x ′B (22)

M ′v,B = Lv/2− y′B (23)

M ′h,C = Lh/2− x ′C (24)

M ′v,C = Lv/2− y′C (25)

M ′h,D = Lh/2− x ′D (26)

M ′v,D = Lv/2− y′D (27)

Mh,B, Mv,B, Mh,C , Mv,C , Mh,D and Mv,D are also required to
satisfy following criteria:

M ′h,B,M
′
v,B,M

′
h,C ,M

′
v,C ,M

′
h,D,M

′
v,D > 0 (28)

FIGURE 6. Experimental setup for the parameter identification.

such that the cropped area does not reach to the edge of the
image. Using these criteria, the minimal required margins
can be calculated by applying the maximum angular velocity
of the user’s head (θ̇1,max , θ̇2,max and θ̇3,max) and maximum
image delay (dtmax) into (11)-(12) and (16)-(21). On the con-
trary, the delay that can be dealt with a set of margins can be
obtained by assigning the margins to (7)-(8) and calculating
dt that satisfies (15) and (28).

The problem here is that the image delay changes sig-
nificantly as tele-communication network conditions vary.
To address this problem, margins can be calculated and
applied in realtime, because our predictive display algorithm
does not impose a large computational burden. However,
margin variation also changes the image FOVs, which may
disturb the user. Also, there are limitations in the margins,
since the image have limited size. If the user’s head motion
is fast enough to escape the margins in the given network
delay, reaching to the outside of image is unavoidable. Thus,
we determined the margins empirically in the following per-
formance tests. The margins were first set to zero, and then
were increased until the cropped area does not reach to the
edge of image during the experiments so that the margin cri-
teria can be satisfied under given delay and user’s rotational
speed in a test operation.

IV. EXPERIMENTS
A. PARAMETER IDENTIFICATION
To apply the predictive display algorithm, the camera param-
eterαd of (4) was identified by an experiment. Figure 6 shows
the experimental setup. The robot neck-camera module was
fixed, and a subject was placed in front of the camera at a dis-
tance of 1m, occupying the center of the imagewhen the neck
of the robot was in the initial position. The robot neck was
rotated (in yaw or pitch) from −30◦ to 30◦ in 1◦ steps with
the camera operating. The distance between the subject in the
captured image and the image center was recorded in pixels;
the αd parameter was identified by linear fitting of αd to (4),
applying the least squares method to the recorded position
and rotational angle. Thus, αd was identified as αd = 5.5
pixel/deg for yaw, and αd = 5.9 pixel/deg for pitch with root
mean square (RMS) errors of 3.3 pixel and 4.1 pixel respec-
tively. Since there was no significant outlier, the identified
model showed good agreement with the measured data with
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FIGURE 7. Identification result of camera parameter αd by yaw and pitch
motions.

FIGURE 8. A random network delay.

the least squares method. Figure 7a and Figure 7b show the
measured positions of the subjects and the linearly fittedmod-
els for yaw and pitch of the robot neck, respectively. As the
graphs show, the measured data and camera model of (4)
were in good agreement. The parameters differed slightly in
terms of both yaw and pitch motion, caused by lens distortion
or/and image sensor asymmetry. The parameters depend on
the physical specifications of the lens and the image sensor
of camera, such as the refractive index of the lens and the size
and position of the image sensor, which are not time-varying
specifications. Thus, pre-identified camera parameters were
used in the implementation of predictive display algorithm.

B. IMPLEMENTATION OF THE PREDICTIVE DISPLAY
ALGORITHM
The predictive display algorithm was tested in a real-world
tele-operation experiment. The experimental setup was the
same as that of Figure 2. The user wore the HMD and
rotated the head; head orientation was measured and deliv-
ered to the robot neck-camera module through a wireless
network; the robot neck followed the user’s motion while a
stereo camera captured environmental images at a resolution
of 554 × 413 pixels. The captured images and robot neck

FIGURE 9. Captured images in the tele-operation experiment. Focus on
changes of image edges (e.g., the robot on the right side), or the moving
subject (i.e., the human). Check the attached video file for more details.

orientations when the images were taken were delivered to
the user side. A random delay was intentionally added to the
wireless network to reflect network conditions in practical
tele-operated applications. The captured image and robot
neck orientations were sent to the user side after random
delay with a maximum magnitude of 230 ms and a minimum
of 70 ms, representing a communication delay in the tele-
operated display system. Both images (i.e., those subjected
to and not subjected to predictive display algorithm) were
recorded. The margins of the predictive display algorithm
were set to appropriately tuned values (Mh = 90, Mv = 50)
as in Section III, or inappropriate values (Mh = 0, Mv = 0
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FIGURE 10. Experimental results with inappropriate margins. ((a): Zero
margins, (b): Negative margins) Check the attached video file for more
details.

and Mh = −90, Mv = −50) as suggested in Edwards’
patent [35] Given that the frame rate of most digital videos is
30 frames per second (FPS), image prediction proceeded at
in 30 Hz.

The recorded results are attached as a supplementary video
file. The bidirectional network delay is shown in Figure 8.
The minimum, average, maximum, and standard deviation
of the delay were 145, 245, 361, and 48 ms, respectively.
Figure 9 shows sets of updated images from scenes (1) to
(3) without/with the predictive algorithm operating under
the same experimental conditions with appropriate margins.
In the absence of the predictive display algorithm, the cap-
tured images do not change until new images arrive. However,
the images modified by the predictive algorithm change con-
tinuously as the user’s head rotates. As shown in the video
file, the delay-compensated images are much smoother and
more natural than those presented in the absence of the algo-
rithm. The desired frame rate (30 FPS) was maintained even
in the presence of unpredictable time-varying delays. The
results imply that the proposed algorithm allows operators of
tele-operation systems to comfortably use their HMDs.

A feature analysis was performed to verify the performance
of proposed algorithm. In this analysis, the coordinate differ-
ences of keypoints between the images before and after the
arrival of new image were compared, as shown in Fig. 11a.
A fast library for approximate nearest neighbors (FLANN)
matcher in openCV was used in the analysis. The average
values of coordinate differences are plotted in Fig. 11b. The
average difference was 11.0 pixels and 1.9 pixels for the
images without the predictive display algorithm and with
the algorithm, respectively. The coordinate difference was
significantly reduced when the predictive display algorithm
was applied; i.e., the video with proposed algorithm is more
continuous, providing a predicted image similar to the origi-
nal image to be updated.

However, the algorithm cannot deliver the change of envi-
ronment instantly, as reflected in Figure 9c and the video
with a moving subject. The motion of a moving subject is
not reflected until the image is updated in (3). This is a fun-
damental limitation of the algorithm, because the algorithm
utilizes delayed images for the prediction. Also, inappropriate
margins negatively affect user immersion as we concerned in
Section III, and as shown in the last part of the supplemen-
tary video and Figure 10, limiting the user-side FOV. Thus,

FIGURE 11. Feature analysis results.

the margins must be selected to satisfy the criteria introduced
in Section III.

V. CONCLUSION
In this research, a display system with a predictive display
algorithm was developed. A robot neck-camera module was
designed and manufactured based on a kinematic model of
the human head-neck complex. The image delay during the
tele-operation was analyzed; this may trigger simulator sick-
ness. To deal with this issue, a predictive display algorithm
was developed based on the camera geometry and human
and robot kinematics. The image for the current user head
orientation was predicted and provided to the user, exploiting
the difference between the current user head orientation and
the delayed camera orientation. Thus, the time-varying delays
in communication and operation were compensated, and con-
tinuous images were thus provided to the user. The proposed
algorithm is simple to implement in real-time tele-operation
systems without expensive sensors or computational burden,
yet powerful as demonstrated in the experiments. The feature
analysis result shows that the proposed algorithm is effective
in predicting images.

However, some challenges remain. The modeling uncer-
tainties of camera geometry, such as tangent approximation
and certain aspects of the pinhole camera model, should
be reflected in the algorithm. The cropping margin deci-
sion strategy requires refinement for use under various tele-
communication network conditions. If the user’s motion is
fast enough to escape the margins, the proposed algorithm
cannot provide properly predicted image, as in [35]. Also,

154454 VOLUME 7, 2019



Y. Jung et al.: Tele-Operated Display With a Predictive Display Algorithm

the predictive display algorithm does not instantly reflect
a change in the environment, because the algorithm used
delayed images. Nevertheless, the proposed algorithm is a
significant practical utility because it is simple and imposes
a low computational burden. User evaluation in various sit-
uations is essential; we will quantitatively evaluate improve-
ments in user comfort and employ these data to guide our
future research.
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