335 research outputs found

    Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements

    Get PDF
    We consider the e�cient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an e�ective Schur complement approximation. Numerical results illustrate the competitiveness of this approach

    A Multigrid Method for the Efficient Numerical Solution of Optimization Problems Constrained by Partial Differential Equations

    Get PDF
    We study the minimization of a quadratic functional subject to constraints given by a linear or semilinear elliptic partial differential equation with distributed control. Further, pointwise inequality constraints on the control are accounted for. In the linear-quadratic case, the discretized optimality conditions yield a large, sparse, and indefinite system with saddle point structure. One main contribution of this thesis consists in devising a coupled multigrid solver which avoids full constraint elimination. To this end, we define a smoothing iteration incorporating elements from constraint preconditioning. A local mode analysis shows that for discrete optimality systems, we can expect smoothing rates close to those obtained with respect to the underlying constraint PDE. Our numerical experiments include problems with constraints where standard pointwise smoothing is known to fail for the underlying PDE. In particular, we consider anisotropic diffusion and convection-diffusion problems. The framework of our method allows to include line smoothers or ILU-factorizations, which are suitable for such problems. In all cases, numerical experiments show that convergence rates do not depend on the mesh size of the finest level and discrete optimality systems can be solved with a small multiple of the computational cost which is required to solve the underlying constraint PDE. Employing the full multigrid approach, the computational cost is proportional to the number of unknowns on the finest grid level. We discuss the role of the regularization parameter in the cost functional and show that the convergence rates are robust with respect to both the fine grid mesh size and the regularization parameter under a mild restriction on the next to coarsest mesh size. Incorporating spectral filtering for the reduced Hessian in the control smoothing step allows us to weaken the mesh size restriction. As a result, problems with near-vanishing regularization parameter can be treated efficiently with a negligible amount of additional computational work. For fine discretizations, robust convergence is obtained with rates which are independent of the regularization parameter, the coarsest mesh size, and the number of levels. In order to treat linear-quadratic problems with pointwise inequality constraints on the control, the multigrid approach is modified to solve subproblems generated by a primal-dual active set strategy (PDAS). Numerical experiments demonstrate the high efficiency of this approach due to mesh-independent convergence of both the outer PDAS method and the inner multigrid solver. The PDAS-multigrid method is incorporated in the sequential quadratic programming (SQP) framework. Inexact Newton techniques further enhance the computational efficiency. Globalization is implemented with a line search based on the augmented Lagrangian merit function. Numerical experiments highlight the efficiency of the resulting SQP-multigrid approach. In all cases, locally superlinear convergence of the SQP method is observed. In combination with the mesh-independent convergence rate of the inner solver, a solution method with optimal efficiency is obtained

    A full approximation scheme multilevel method for nonlinear variational inequalities

    Full text link
    We present the full approximation scheme constraint decomposition (FASCD) multilevel method for solving variational inequalities (VIs). FASCD is a common extension of both the full approximation scheme (FAS) multigrid technique for nonlinear partial differential equations, due to A.~Brandt, and the constraint decomposition (CD) method introduced by X.-C.~Tai for VIs arising in optimization. We extend the CD idea by exploiting the telescoping nature of certain function space subset decompositions arising from multilevel mesh hierarchies. When a reduced-space (active set) Newton method is applied as a smoother, with work proportional to the number of unknowns on a given mesh level, FASCD V-cycles exhibit nearly mesh-independent convergence rates, and full multigrid cycles are optimal solvers. The example problems include differential operators which are symmetric linear, nonsymmetric linear, and nonlinear, in unilateral and bilateral VI problems.Comment: 25 pages, 9 figure

    Fast Solvers for Cahn-Hilliard Inpainting

    Get PDF
    We consider the efficient solution of the modified Cahn-Hilliard equation for binary image inpainting using convexity splitting, which allows an unconditionally gradient stable time-discretization scheme. We look at a double-well as well as a double obstacle potential. For the latter we get a nonlinear system for which we apply a semi-smooth Newton method combined with a Moreau-Yosida regularization technique. At the heart of both methods lies the solution of large and sparse linear systems. We introduce and study block-triangular preconditioners using an efficient and easy to apply Schur complement approximation. Numerical results indicate that our preconditioners work very well for both problems and show that qualitatively better results can be obtained using the double obstacle potential

    Fast iterative solvers for PDE-constrained optimization problems

    Get PDF
    In this thesis, we develop preconditioned iterative methods for the solution of matrix systems arising from PDE-constrained optimization problems. In order to do this, we exploit saddle point theory, as this is the form of the matrix systems we wish to solve. We utilize well-known results on saddle point systems to motivate preconditioners based on effective approximations of the (1,1)-block and Schur complement of the matrices involved. These preconditioners are used in conjunction with suitable iterative solvers, which include MINRES, non-standard Conjugate Gradients, GMRES and BiCG. The solvers we use are selected based on the particular problem and preconditioning strategy employed. We consider the numerical solution of a range of PDE-constrained optimization problems, namely the distributed control, Neumann boundary control and subdomain control of Poisson's equation, convection-diffusion control, Stokes and Navier-Stokes control, the optimal control of the heat equation, and the optimal control of reaction-diffusion problems arising in chemical processes. Each of these problems has a special structure which we make use of when developing our preconditioners, and specific techniques and approximations are required for each problem. In each case, we motivate and derive our preconditioners, obtain eigenvalue bounds for the preconditioners where relevant, and demonstrate the effectiveness of our strategies through numerical experiments. The goal throughout this work is for our iterative solvers to be feasible and reliable, but also robust with respect to the parameters involved in the problems we consider
    corecore