9 research outputs found

    Multiscale 2-D singular spectrum analysis and principal component analysis for spatial–spectral noise-robust feature extraction and classification of hyperspectral images.

    Get PDF
    In hyperspectral images (HSI), most feature extraction and data classification methods rely on corrected dataset, in which the noisy and water absorption bands are removed. This can result in not only extra working burden but also information loss from removed bands. To tackle these issues, in this article, we propose a novel spatial-spectral feature extraction framework, multiscale 2-D singular spectrum analysis (2-D-SSA) with principal component analysis (PCA) (2-D-MSSP), for noise-robust feature extraction and data classification of HSI. First, multiscale 2-D-SSA is applied to exploit the multiscale spatial features in each spectral band of HSI via extracting the varying trends within defined windows. Taking the extracted trend signals at each scale level as the input features, the PCA is employed to the spectral domain for dimensionality reduction and spatial-spectral feature extraction. The derived spatial-spectral features in each scale are separately classified and then fused at decision-level for efficacy. As our 2-D-MSSP method can extract features and simultaneously remove noise in both spatial and spectral domains, which ensures it to be noise-robust for classification of HSI, even the uncorrected dataset. Experiments on three publicly available datasets have fully validated the efficacy and robustness of the proposed approach, when benchmarked with 10 state-of-the-art classifiers, including six spatial-spectral methods and four deep learning classifiers. In addition, both quantitative and qualitative assessment has validated the efficacy of our approach in noise-robust classification of HSI even with limited training samples, especially in classifying uncorrected data without filtering noisy bands

    Deep invariant feature learning for remote sensing scene classification

    Get PDF
    Image classification, as the core task in the computer vision field, has proceeded at a break­neck pace. It largely attributes to the recent growth of deep learning techniques which have blown the conventional statistical methods on a plethora of benchmarks and even can outperform humans in specific image classification tasks. Despite deep learning exceeding alternative techniques, they have many apparent disadvantages that prevent them from being deployed for the general-purpose. Specifically, deep learning always requires a considerable amount of well-annotated data to circumvent the problems of over-fitting and the lacking of prior knowledge. However, manually labelled data is expensive to acquire and is impossible to incorporate the variations as much as the real world. Consequently, deep learning models usually fail when they confront with the underrepresented variations in the training data. This is the main reason why the deep learning model is barely satisfactory in the challeng­ing image recognition task that contains nuisance variations such as, Remote Sensing Scene Classification (RSSC). The classification of remote sensing scene image is a procedure of assigning the seman­tic meaning labels for the given satellite images that contain the complicated variations, such as texture and appearances. The algorithms for effectively understanding and recognising remote sensing scene images have the potential to be employed in a broad range of applications, such as urban planning, Land Use and Land Cover (LULC) determination, natural hazards detection, vegetation mapping, environmental monitoring. This inspires us to de­sign the frameworks that can automatically predict the precise label for satellite images. In our research project, we mine and define the challenges in RSSC community compared with general scene image recognition tasks. Specifically, we summarise the problems into the following perspectives. 1) Visual-semantic ambiguity: the discrepancy between visual features and semantic concepts; 2) Variations: the intra-class diversity and inter-class similarity; 3) Clutter background; 4) The small size of the training set; 5) Unsatisfactory classification accuracy in large-scale datasets. To address the aforementioned challenges, we explore a way to dynamically expand the capabilities of incorporating the prior knowledge by transforming the input data so that we can learn the globally invariant second-order features from the transformed data for improving the performance of RSSC tasks. First, we devise a recurrent transformer network (RTN) to progressively discover the discriminative regions of input images and learn the corresponding second-order features. The model is optimised using pairwise ranking loss to achieve localising discriminative parts and learning the corresponding features in a mutu­ally reinforced way. Second, we observed that existing remote sensing image datasets lack the provision of ontological structures. Therefore, a multi-granularity canonical appearance pooling (MG-CAP) model is proposed to automatically seek the implied hierarchical structures of datasets and produced covariance features contained the multi-grained information. Third, we explore a way to improve the discriminative power of the second-order features. To accomplish this target, we present a covariance feature embedding (CFE) model to im­prove the distinctive power of covariance pooling by using suitable matrix normalisation methods and a low-norm cosine similarity loss to accurately metric the distances of high­dimensional features. Finally, we improved the performance of RSSC while using fewer model parameters. An invariant deep compressible covariance pooling (IDCCP) model is presented to boost the classification accuracy for RSSC tasks. Meanwhile, we proofed the generalisability of our IDCCP model using group theory and manifold optimisation techniques. All of the proposed frameworks allow being optimised in an end-to-end manner and are well-supported by GPU acceleration. We conduct extensive experiments on the well-known remote sensing scene image datasets to demonstrate the great promotions of our proposed methods in comparison with state-of-the-art approaches

    Automatic Image Classification for Planetary Exploration

    Get PDF
    Autonomous techniques in the context of planetary exploration can maximize scientific return and reduce the need for human involvement. This thesis work studies two main problems in planetary exploration: rock image classification and hyperspectral image classification. Since rock textural images are usually inhomogeneous and manually hand-crafting features is not always reliable, we propose an unsupervised feature learning method to autonomously learn the feature representation for rock images. The proposed feature method is flexible and can outperform manually selected features. In order to take advantage of the unlabelled rock images, we also propose self-taught learning technique to learn the feature representation from unlabelled rock images and then apply the features for the classification of the subclass of rock images. Since combining spatial information with spectral information for classifying hyperspectral images (HSI) can dramatically improve the performance, we first propose an innovative framework to automatically generate spatial-spectral features for HSI. Two unsupervised learning methods, K-means and PCA, are utilized to learn the spatial feature bases in each decorrelated spectral band. Then spatial-spectral features are generated by concatenating the spatial feature representations in all/principal spectral bands. In the second work for HSI classification, we propose to stack the spectral patches to reduce the spectral dimensionality and generate 2-D spectral quilts. Such quilts retain all the spectral information and can result in less convolutional parameters in neural networks. Two light convolutional neural networks are then designed to classify the spectral quilts. As the third work for HSI classification, we propose a combinational fully convolutional network. The network can not only take advantage of the inherent computational efficiency of convolution at prediction time, but also perform as a collection of many paths and has an ensemble-like behavior which guarantees the robust performance

    Automatic recognition of retinal diseases using mathematical models of image processing, based on multilayer-dictionary learning

    Get PDF
    Background and Objective:Image processing is one of the most important issues in the field of artificial intelligence, which is used in various industrial, medical, military, and security systems. One of the most important applications of image processing is the extraction of different types of classification in the field of medical sciences. By using powerful algorithms in this field, intelligent systems can be invented that automatically understand and interpret the medical characteristics of individuals without the need to the physician supervision can discover useful information to help experts make good judgments. When the necessary parameters for the diagnosis of the disease increase, the diagnosis and prognosis of the disease becomes very difficult even for an expert, which is why computer diagnostic tools have been used in recent decades to help the physicians. This has led to a reduction in possible errors due to fatigue or inexperience of the specialist, and to provide the required medical data to the physician in less time and with more detail and accuracy. The purpose of this study is to improve the classification of new methods using a multi-layered model to address retinal diseases diagnosis. Methods: This paper presents a multi-layer dictionary learning method for classification tasks.  Our multi-layer framework uses a label consistent in K-SVD algorithm to learn a discriminative dictionary for sparse coding in order to learn better features in retinal optical coherence tomography images. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discrimination in sparse codes during dictionary learning process. In fact, it relies on a succession of sparse coding and pooling steps in order to find an effective representation of data for classification. Moreover, we apply Duke dataset for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects 15 normal subjects, 15 AMD patients, and 15 DME patients. Findings: Our classifier leads to a correct classification rate of 95.85% and 100.00% for normal and abnormal (DME and AMD). Experimental results demonstrate that our algorithm outperforms compared to many recent proposed supervised dictionary learning and sparse representation techniques. Conlusion: The results of this study were to provide an automatic system for the diagnosis of some retinal abnormalities in a way that it could do data analysis with high accuracy in comparison to other modern methods to diagnosis delicate patterns of OCT, separate images of normal and patient the normal and in two age-related macular degeneration diseases (AMD), and diabetic macular degeneration (DME), and help the physician to diagnose retinal pathology with great care. As a suggestion for professionals and future research, by generalizing this method to the more classes, we can cover the entire retinal myopia and use it as a potentially effective tool in computerized diagnosis and screening for retinal disease or in the wider eye area.   ===================================================================================== COPYRIGHTS  ©2019 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.  ====================================================================================

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Measuring Confidence in Classification Decisions for Clinical Decision Support Systems: A Gaussian Bayes Optimization Approach

    Get PDF
    This thesis generally investigated various aspects of designing and developing Clinical Decision Support Systems (CDSSs), but in particular exploited machine learning techniques in supporting medical diagnosis decisions. Having reviewed the fundamental functional components of existing modern CDSSs, it shows that most such systems were lacking a trusted decision evaluation module that provides reliable information about decision strengths. Therefore a refined CDSS system framework was first proposed, which centralises the concept of confidence-based classification by coupling eventual decision outcomes with a level of decision reliability. Based on measure theory, a unified Decision Score measure of the decision reliability was introduced, which combines the decision outcomes in terms of positive or negative signs together with the decision strength in percentage values. Furthermore, the behaviour of the proposed decision score measure was investigated in more complex and diverse feature spaces of high dimensionality, where the challenges of the “curse of dimensionality” are encountered. Such challenge was handled by revisiting the problem under orthogonal projections of the feature space, and have developed a new measure in performing quantified evaluations on the decision score measure, known as the Decision Sensitivity measure. The key influencing factors for the sensitivity of decisions were found to include not only the dimensionality of the selected features, but also the standard deviation of each feature used in the transformed orthogonal space. After the basic concept of the decision score measure is established, this thesis further extended the uses of the decision score measure in a multiple classifiers setting. This thesis first reviewed the principles and rationales behind various well-established information fusion schemes and tested their strengths and limitations in adapting the proposed decision score measure. Moreover, a correlation-based decision fusion scheme was proposed in maximising the potentials of the decision score measure in complex scenarios. Based on the evaluation results across different datasets, it proves that fusion schemes improve the robustness of the decision models while maintaining a good level of diagnostic accuracy in general. As clinical decision making normally faces new unseen cases and unpredictable challenges, it is essential to maintain a degree of adaptivity in a CDSS for post-deployment robustness of the system. Therefore, the last piece of the research reported in this thesis focused on investigating possible ways to refine the CDSS decision scores model in a time-efficient manner, spontaneously. In particular, this thesis reviewed several commonly used metrics and methods for monitoring and refining prediction models, and further adapted these methods to the proposed decision score measure

    Efficient feature reduction and classification methods

    Get PDF
    Durch die steigende Anzahl verfügbarer Daten in unterschiedlichsten Anwendungsgebieten nimmt der Aufwand vieler Data-Mining Applikationen signifikant zu. Speziell hochdimensionierte Daten (Daten die über viele verschiedene Attribute beschrieben werden) können ein großes Problem für viele Data-Mining Anwendungen darstellen. Neben höheren Laufzeiten können dadurch sowohl für überwachte (supervised), als auch nicht überwachte (unsupervised) Klassifikationsalgorithmen weitere Komplikationen entstehen (z.B. ungenaue Klassifikationsgenauigkeit, schlechte Clustering-Eigenschaften, …). Dies führt zu einem Bedarf an effektiven und effizienten Methoden zur Dimensionsreduzierung. Feature Selection (die Auswahl eines Subsets von Originalattributen) und Dimensionality Reduction (Transformation von Originalattribute in (Linear)-Kombinationen der Originalattribute) sind zwei wichtige Methoden um die Dimension von Daten zu reduzieren. Obwohl sich in den letzten Jahren vielen Studien mit diesen Methoden beschäftigt haben, gibt es immer noch viele offene Fragestellungen in diesem Forschungsgebiet. Darüber hinaus ergeben sich in vielen Anwendungsbereichen durch die immer weiter steigende Anzahl an verfügbaren und verwendeten Attributen und Features laufend neue Probleme. Das Ziel dieser Dissertation ist es, verschiedene Fragenstellungen in diesem Bereich genau zu analysieren und Verbesserungsmöglichkeiten zu entwickeln. Grundsätzlich, werden folgende Ansprüche an Methoden zur Feature Selection und Dimensionality Reduction gestellt: Die Methoden sollten effizient (bezüglich ihres Rechenaufwandes) sein und die resultierenden Feature-Sets sollten die Originaldaten möglichst kompakt repräsentieren können. Darüber hinaus ist es in vielen Anwendungsgebieten wichtig, die Interpretierbarkeit der Originaldaten beizubehalten. Letztendlich sollte der Prozess der Dimensionsreduzierung keinen negativen Effekt auf die Klassifikationsgenauigkeit haben - sondern idealerweise, diese noch verbessern. Offene Problemstellungen in diesem Bereich betreffen unter anderem den Zusammenhang zwischen Methoden zur Dimensionsreduzierung und der resultierenden Klassifikationsgenauigkeit, wobei sowohl eine möglichst kompakte Repräsentation der Daten, als auch eine hohe Klassifikationsgenauigkeit erzielt werden sollen. Wie bereits erwähnt, ergibt sich durch die große Anzahl an Daten auch ein erhöhter Rechenaufwand, weshalb schnelle und effektive Methoden zur Dimensionsreduzierung entwickelt werden müssen, bzw. existierende Methoden verbessert werden müssen. Darüber hinaus sollte natürlich auch der Rechenaufwand der verwendeten Klassifikationsmethoden möglichst gering sein. Des Weiteren ist die Interpretierbarkeit von Feature Sets zwar möglich, wenn Feature Selection Methoden für die Dimensionsreduzierung verwendet werden, im Fall von Dimensionality Reduction sind die resultierenden Feature Sets jedoch meist Linearkombinationen der Originalfeatures. Daher ist es schwierig zu überprüfen, wie viel Information einzelne Originalfeatures beitragen. Im Rahmen dieser Dissertation konnten wichtige Beiträge zu den oben genannten Problemstellungen präsentiert werden: Es wurden neue, effiziente Initialisierungsvarianten für die Dimensionality Reduction Methode Nonnegative Matrix Factorization (NMF) entwickelt, welche im Vergleich zu randomisierter Initialisierung und im Vergleich zu State-of-the-Art Initialisierungsmethoden zu einer schnelleren Reduktion des Approximationsfehlers führen. Diese Initialisierungsvarianten können darüber hinaus mit neu entwickelten und sehr effektiven Klassifikationsalgorithmen basierend auf NMF kombiniert werden. Um die Laufzeit von NMF weiter zu steigern wurden unterschiedliche Varianten von NMF Algorithmen auf Multi-Prozessor Systemen vorgestellt, welche sowohl Task- als auch Datenparallelismus unterstützen und zu einer erheblichen Reduktion der Laufzeit für NMF führen. Außerdem wurde eine effektive Verbesserung der Matlab Implementierung des ALS Algorithmus vorgestellt. Darüber hinaus wurde eine Technik aus dem Bereich des Information Retrieval -- Latent Semantic Indexing -- erfolgreich als Klassifikationsalgorithmus für Email Daten angewendet. Schließlich wurde eine ausführliche empirische Studie über den Zusammenhang verschiedener Feature Reduction Methoden (Feature Selection und Dimensionality Reduction) und der resultierenden Klassifikationsgenauigkeit unterschiedlicher Lernalgorithmen präsentiert. Der starke Einfluss unterschiedlicher Methoden zur Dimensionsreduzierung auf die resultierende Klassifikationsgenauigkeit unterstreicht dass noch weitere Untersuchungen notwendig sind um das komplexe Zusammenspiel von Dimensionsreduzierung und Klassifikation genau analysieren zu können.The sheer volume of data today and its expected growth over the next years are some of the key challenges in data mining and knowledge discovery applications. Besides the huge number of data samples that are collected and processed, the high dimensional nature of data arising in many applications causes the need to develop effective and efficient techniques that are able to deal with this massive amount of data. In addition to the significant increase in the demand of computational resources, those large datasets might also influence the quality of several data mining applications (especially if the number of features is very high compared to the number of samples). As the dimensionality of data increases, many types of data analysis and classification problems become significantly harder. This can lead to problems for both supervised and unsupervised learning. Dimensionality reduction and feature (subset) selection methods are two types of techniques for reducing the attribute space. While in feature selection a subset of the original attributes is extracted, dimensionality reduction in general produces linear combinations of the original attribute set. In both approaches, the goal is to select a low dimensional subset of the attribute space that covers most of the information of the original data. During the last years, feature selection and dimensionality reduction techniques have become a real prerequisite for data mining applications. There are several open questions in this research field, and due to the often increasing number of candidate features for various application areas (e.\,g., email filtering or drug classification/molecular modeling) new questions arise. In this thesis, we focus on some open research questions in this context, such as the relationship between feature reduction techniques and the resulting classification accuracy and the relationship between the variability captured in the linear combinations of dimensionality reduction techniques (e.\,g., PCA, SVD) and the accuracy of machine learning algorithms operating on them. Another important goal is to better understand new techniques for dimensionality reduction, such as nonnegative matrix factorization (NMF), which can be applied for finding parts-based, linear representations of nonnegative data. This ``sum-of-parts'' representation is especially useful if the interpretability of the original data should be retained. Moreover, performance aspects of feature reduction algorithms are investigated. As data grow, implementations of feature selection and dimensionality reduction techniques for high-performance parallel and distributed computing environments become more and more important. In this thesis, we focus on two types of open research questions: methodological advances without any specific application context, and application-driven advances for a specific application context. Summarizing, new methodological contributions are the following: The utilization of nonnegative matrix factorization in the context of classification methods is investigated. In particular, it is of interest how the improved interpretability of NMF factors due to the non-negativity constraints (which is of central importance in various problem settings) can be exploited. Motivated by this problem context two new fast initialization techniques for NMF based on feature selection are introduced. It is shown how approximation accuracy can be increased and/or how computational effort can be reduced compared to standard randomized seeding of the NMF and to state-of-the-art initialization strategies suggested earlier. For example, for a given number of iterations and a required approximation error a speedup of 3.6 compared to standard initialization, and a speedup of 3.4 compared to state-of-the-art initialization strategies could be achieved. Beyond that, novel classification methods based on the NMF are proposed and investigated. We can show that they are not only competitive in terms of classification accuracy with state-of-the-art classifiers, but also provide important advantages in terms of computational effort (especially for low-rank approximations). Moreover, parallelization and distributed execution of NMF is investigated. Several algorithmic variants for efficiently computing NMF on multi-core systems are studied and compared to each other. In particular, several approaches for exploiting task and/or data-parallelism in NMF are studied. We show that for some scenarios new algorithmic variants clearly outperform existing implementations. Last, but not least, a computationally very efficient adaptation of the implementation of the ALS algorithm in Matlab 2009a is investigated. This variant reduces the runtime significantly (in some settings by a factor of 8) and also provides several possibilities to be executed concurrently. In addition to purely methodological questions, we also address questions arising in the adaptation of feature selection and classification methods to two specific application problems: email classification and in silico screening for drug discovery. Different research challenges arise in the contexts of these different application areas, such as the dynamic nature of data for email classification problems, or the imbalance in the number of available samples of different classes for drug discovery problems. Application-driven advances of this thesis comprise the adaptation and application of latent semantic indexing (LSI) to the task of email filtering. Experimental results show that LSI achieves significantly better classification results than the widespread de-facto standard method for this special application context. In the context of drug discovery problems, several groups of well discriminating descriptors could be identified by utilizing the ``sum-of-parts`` representation of NMF. The number of important descriptors could be further increased when applying sparseness constraints on the NMF factors

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore