96 research outputs found

    TODMIS: Mining Communities from Trajectories

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centre @ Singapore Funding Initiativ

    A computer vision approach to classification of birds in flight from video sequences

    Get PDF
    Bird populations are an important bio-indicator; so collecting reliable data is useful for ecologists helping conserve and manage fragile ecosystems. However, existing manual monitoring methods are labour-intensive, time-consuming, and error-prone. The aim of our work is to develop a reliable system, capable of automatically classifying individual bird species in flight from videos. This is challenging, but appropriate for use in the field, since there is often a requirement to identify in flight, rather than when stationary. We present our work in progress, which uses combined appearance and motion features to classify and present experimental results across seven species using Normal Bayes classifier with majority voting and achieving a classification rate of 86%

    Video trajectory analysis using unsupervised clustering and multi-criteria ranking

    Get PDF
    Surveillance camera usage has increased significantly for visual surveillance. Manual analysis of large video data recorded by cameras may not be feasible on a larger scale. In various applications, deep learning-guided supervised systems are used to track and identify unusual patterns. However, such systems depend on learning which may not be possible. Unsupervised methods relay on suitable features and demand cluster analysis by experts. In this paper, we propose an unsupervised trajectory clustering method referred to as t-Cluster. Our proposed method prepares indexes of object trajectories by fusing high-level interpretable features such as origin, destination, path, and deviation. Next, the clusters are fused using multi-criteria decision making and trajectories are ranked accordingly. The method is able to place abnormal patterns on the top of the list. We have evaluated our algorithm and compared it against competent baseline trajectory clustering methods applied to videos taken from publicly available benchmark datasets. We have obtained higher clustering accuracies on public datasets with significantly lesser computation overhead

    Automatic classification of flying bird species using computer vision techniques [forthcoming]

    Get PDF
    Bird populations are identified as important biodiversity indicators, so collecting reliable population data is important to ecologists and scientists. However, existing manual monitoring methods are labour-intensive, time-consuming, and potentially error prone. The aim of our work is to develop a reliable automated system, capable of classifying the species of individual birds, during flight, using video data. This is challenging, but appropriate for use in the field, since there is often a requirement to identify in flight, rather than while stationary. We present our work, which uses a new and rich set of appearance features for classification from video. We also introduce motion features including curvature and wing beat frequency. Combined with Normal Bayes classifier and a Support Vector Machine classifier, we present experimental evaluations of our appearance and motion features across a data set comprising 7 species. Using our appearance feature set alone we achieved a classification rate of 92% and 89% (using Normal Bayes and SVM classifiers respectively) which significantly outperforms a recent comparable state-of-the-art system. Using motion features alone we achieved a lower-classification rate, but motivate our on-going work which we seeks to combine these appearance and motion feature to achieve even more robust classification

    Detecting abnormal fish trajectories using clustered and labeled data

    Get PDF
    We propose an approach for the analysis of fish trajectories in unconstrained underwater videos. Trajectories are classified into two classes: normal trajectories which contain the usual behavior of fish and abnormal trajectories which indicate the behaviors that are not as common as the normal class. The paper presents two innovations: 1) a novel approach to abnormal trajectory detection and 2) improved performance on video based abnormal trajectory analysis of fish in unconstrained conditions. First we extract a set of features from trajectories and apply PCA. We then perform clustering on a subset of features. Based on the clustering, outlier detection is applied to each cluster. Improved results are obtained which is significant considering the challenges of underwater environments, low video quality, and erratic movement of fish
    • …
    corecore