42 research outputs found

    Structure, stability and elasticity of DNA nanotube

    Full text link
    DNA nanotubes are tubular structures composed of DNA crossover molecules. We present a bottom up approach for construction and characterization of these structures. Various possible topologies of nanotubes are constructed such as 6-helix, 8-helix and tri-tubes with different sequences and lengths. We have used fully atomistic molecular dynamics simulations to study the structure, stability and elasticity of these structures. Several nanosecond long MD simulations give the microscopic details about DNA nanotubes. Based on the structural analysis of simulation data, we show that 6-helix nanotubes are stable and maintain their tubular structure; while 8-helix nanotubes are flattened to stabilize themselves. We also comment on the sequence dependence and effect of overhangs. These structures are approximately four times more rigid having stretch modulus of ~4000 pN compared to the stretch modulus of 1000 pN of DNA double helix molecule of same length and sequence. The stretch moduli of these nanotubes are also three times larger than those of PX/JX crossover DNA molecules which have stretch modulus in the range of 1500-2000 pN. The calculated persistence length is in the range of few microns which is close to the reported experimental results on certain class of the DNA nanotubes.Comment: Published in Physical Chemistry Chemical Physic

    Hydration structure and water exchange dynamics of Na(I)ion in aqueous solution

    Get PDF
    The hydration structure and water exchange dynamics in the first hydration shell for Na(I) in water are studied by molecular dynamics simulation. The structure of the hydrated ion is reported in terms of radial distribution functions, coordination numbers, and angular distributions. The average first-shell hydration structure is a 5.6, in agreement with experimental results. The classical umbrella-sampling molecular dynamic simulations was employed to investigate the water exchange reaction around the Na(I) ion in water. The water exchange mechanism proceeds via the Id mechanism with the water exchange rate constant of 3.42 x 1011 s-1 at 298 K, estimated by the transition state theory assuming a transmission coefficient of unity

    Pursuing the Complete OFF State in Photoswitchable Catalysis

    Get PDF
    Practically, all photoswitchable catalysts exhibit residual activity in the OFF state. Herein, we present a ruthenium initiator with a built-in photoswitch whose metathetical performance is completely shut off by light. The system is made of Hoveyda−Grubbs second-generation complexes appended, along with background ligands, to a gold nanoparticle surface via azobenzene linkers. Under dark or visible light - the precatalysts, in the presence of an olefin, undergo initiation, diffuse from the surface into bulk solution, and commence metathesis reaction. When the conditions are changed to ultraviolet, the isomerization of the azo switches takes place, burying the precatalysts within the bulky organic monolayer, thus preventing their initiation and thereby halting the reaction. Despite the irreversibility of the process, this work opens up opportunities for the remote deactivation of catalysts without their chemical decomposition and control of more complex tasks such as chemical selectivity

    Theoretical study of large conformational transitions in DNA: the B↔A conformational change in water and ethanol/water

    Get PDF
    We explore here the possibility of determining theoretically the free energy change associated with large conformational transitions in DNA, like the solvent-induced B⇔A conformational change. We find that a combination of targeted molecular dynamics (tMD) and the weighted histogram analysis method (WHAM) can be used to trace this transition in both water and ethanol/water mixture. The pathway of the transition in the A→B direction mirrors the B→A pathway, and is dominated by two processes that occur somewhat independently: local changes in sugar puckering and global rearrangements (particularly twist and roll) in the structure. The B→A transition is found to be a quasi-harmonic process, which follows closely the first spontaneous deformation mode of B-DNA, showing that a physiologically-relevant deformation is in coded in the flexibility pattern of DNA

    Viral Packaging ATPases Utilize a Glutamate Switch to Couple ATPase Activity and DNA Translocation [preprint]

    Get PDF
    Many viruses utilize ringed packaging ATPases to translocate double-stranded DNA into procapsids during replication. A critical step in the mechanochemical cycle of such ATPases is ATP binding, which causes a subunit within the motor to grip DNA tightly. Here, we probe the underlying molecular mechanism by which ATP binding is coupled to DNA gripping and show that a glutamate switch residue found in AAA+ enzymes is central to this coupling in viral packaging ATPases. Using free energy landscapes computed through molecular dynamics simulations, we determined the stable conformational state of the ATPase active site in apo, ATP-bound, and ADP-bound states. Our results show that the catalytic glutamate residue transitions from an inactive to an active pose upon ATP binding, and that a residue assigned as the glutamate switch is necessary for regulating the transition. Further, we identified via mutual information analyses the intramolecular signaling pathway mediated by the glutamate switch that is responsible for coupling ATP binding to conformational transitions of DNA-gripping motifs. We corroborated these predictions with both structural and functional experimental data. Specifically, we showed that the crystal structure of the ADP-bound P74-26 packaging ATPase is consistent with the predicted structural coupling from simulations, and we further showed that disrupting the predicted signaling pathway indeed decouples ATPase activity from DNA translocation activity in the φ29 DNA packaging motor. Our work thus establishes a signaling pathway in viral DNA packaging motors that ensures coordination between chemical and mechanical events involved in viral DNA packaging

    Path to Actinorhodin:Regio- and Stereoselective Ketone Reduction by a Type II Polyketide Ketoreductase Revealed in Atomistic Detail

    Get PDF
    In type II polyketide synthases (PKSs), which typically biosynthesize several antibiotic and antitumor compounds, the substrate is a growing polyketide chain, shuttled between individual PKS enzymes, while covalently tethered to an acyl carrier protein (ACP): this requires the ACP interacting with a series of different enzymes in succession. During biosynthesis of the antibiotic actinorhodin, produced by Streptomyces coelicolor, one such key binding event is between an ACP carrying a 16-carbon octaketide chain (actACP) and a ketoreductase (actKR). Once the octaketide is bound inside actKR, it is likely cyclized between C7 and C12 and regioselective reduction of the ketone at C9 occurs: how these elegant chemical and conformational changes are controlled is not yet known. Here, we perform protein-protein docking, protein NMR, and extensive molecular dynamics simulations to reveal a probable mode of association between actACP and actKR; we obtain and analyze a detailed model of the C7-C12-cyclized octaketide within the actKR active site; and we confirm this model through multiscale (QM/MM) reaction simulations of the key ketoreduction step. Molecular dynamics simulations show that the most thermodynamically stable cyclized octaketide isomer (7R,12R) also gives rise to the most reaction competent conformations for ketoreduction. Subsequent reaction simulations show that ketoreduction is stereoselective as well as regioselective, resulting in an S-alcohol. Our simulations further indicate several conserved residues that may be involved in selectivity of C7-12 cyclization and C9 ketoreduction. Detailed insights obtained on ACP-based substrate presentation in type II PKSs can help design ACP-ketoreductase systems with altered regio- or stereoselectivity

    Mechanochemical Coupling in the Myosin Motor Domain. I. Insights from Equilibrium Active-Site Simulations

    Get PDF
    Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP), the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such “mechanochemical coupling” in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [36] is to propose the actual mechanism behind these “population shifts” and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide hydrolysis and/or binding)

    The effect of oxidatively damaged DNA on the active site pre-organization during nucleotide incorporation in a high fidelity polymerase from \u3cem\u3eBacillus stearothermophilus\u3c/em\u3e

    Get PDF
    We study the effect of the oxidative lesion 8-oxoguanine (8oxoG) on the pre-organization of the active site for DNA replication in the closed (active) state of the Bacillus Fragment (BF), a Klenow analog from Bacillus stearothermophilus. Our molecular dynamics and free energy simulations of explicitly solvated model ternary complexes of BF bound to correct dCTP/incorrect dATP opposite guanine (G) and 8oxoG bases in DNA suggest that the lesion introduces structural and energetic changes at the catalytic site to favor dATP insertion. Despite the formation of a stable Watson-Crick pairing in the 8oxoG:dCTP system, the catalytic geometry is severely distorted to possibly slow down catalysis. Indeed, our calculated free energy landscapes associated with active site pre-organization suggest additional barriers to assemble an efficient catalytic site, which need to be overcome during dCTP incorporation opposite 8oxoG relative to that opposite undamaged G. In contrast, the catalytic geometry for the Hoogsteen pairing in the 8oxoG:dATP system is highly organized and poised for efficient nucleotide incorporation via the twometal- ion catalyzed phosphoryl transfer mechanism. However, the free energy calculations suggest that the catalytic geometry during dATP incorporation opposite 8oxoG is considerably less plastic than that during dCTP incorporation opposite G despite a very similar, well organized catalytic site for both systems. A correlation analysis of the dynamics trajectories suggests the presence of significant coupling between motions of the polymerase fingers and the primary distance for nucleophilic attack (i.e., between the terminal primer O3´ and the dNTP Pα atoms) during correct dCTP incorporation opposite undamaged G. This coupling is shown to be disrupted during nucleotide incorporation by the polymerase with oxidatively damaged DNA/dNTP substrates. We also suggest that the lesion affects DNA interactions with key polymerase residues, thereby affecting the enzymes ability to discriminate against noncomplementary DNA/dNTP substrates. Taken together, our results provide a unified structural, energetic, and dynamic platform to rationalize experimentally observed relative nucleotide incorporation rates for correct dCTP/incorrect dATP insertion opposite an undamaged/oxidatively damaged template G by BF
    corecore