1,457 research outputs found

    MIJ2K Optimization using evolutionary multiobjective optimization algorithms

    Get PDF
    This paper deals with the multiobjective definition of video compression and its optimization. The optimization will be done using NSGA-II, a well-tested and highly accurate algorithm with a high convergence speed developed for solving multiobjective problems. Video compression is defined as a problem including two competing objectives. We try to find a set of optimal, so-called Pareto-optimal solutions, instead of a single optimal solution. The two competing objectives are quality and compression ratio maximization. The optimization will be achieved using a new patent pending codec, called MIJ2K, also outlined in this paper. Video will be compressed with the MIJ2K codec applied to some classical videos used for performance measurement, selected from the Xiph.org Foundation repository. The result of the optimization will be a set of near-optimal encoder parameters. We also present the convergence of NSGA-II with different encoder parameters and discuss the suitability of MOEAs as opposed to classical search-based techniques in this field.This work was supported in part by Projects CICYT TIN2008- 06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008-07029-C02-02.publicad

    Non-weighted aggregate evaluation function of multi-objective optimization for knock engine modeling

    Get PDF
    In decision theory, the weighted sum model (WSM) is the best known Multi-Criteria Decision Analysis (MCDA) approach for evaluating a number of alternatives in terms of a number of decision criteria. Assigning weights is a difficult task, especially if the number of criteria is large and the criteria are very different in character. There are some problems in the real world which utilize conflicting criteria and mutual effect. In the field of automotive, the knocking phenomenon in internal combustion or spark ignition engines limits the efficiency of the engine. Power and fuel economy can be maximized by optimizing some factors that affect the knocking phenomenon, such as temperature, throttle position sensor, spark ignition timing, and revolution per minute. Detecting knocks and controlling the above factors or criteria may allow the engine to run at the best power and fuel economy. The best decision must arise from selecting the optimum trade-off within the above criteria. The main objective of this study was to proposed a new Non-Weighted Aggregate Evaluation Function (NWAEF) model for non-linear multi-objectives function which will simulate the engine knock behavior (non-linear dependent variable) in order to optimize non-linear decision factors (non-linear independent variables). This study has focused on the construction of a NWAEF model by using a curve fitting technique and partial derivatives. It also aims to optimize the nonlinear nature of the factors by using Genetic Algorithm (GA) as well as investigate the behavior of such function. This study assumes that a partial and mutual influence between factors is required before such factors can be optimized. The Akaike Information Criterion (AIC) is used to balance the complexity of the model and the data loss, which can help assess the range of the tested models and choose the best ones. Some statistical tools are also used in this thesis to assess and identify the most powerful explanation in the model. The first derivative is used to simplify the form of evaluation function. The NWAEF model was compared to Random Weights Genetic Algorithm (RWGA) model by using five data sets taken from different internal combustion engines. There was a relatively large variation in elapsed time to get to the best solution between the two model. Experimental results in application aspect (Internal combustion engines) show that the new model participates in decreasing the elapsed time. This research provides a form of knock control within the subspace that can enhance the efficiency and performance of the engine, improve fuel economy, and reduce regulated emissions and pollution. Combined with new concepts in the engine design, this model can be used for improving the control strategies and providing accurate information to the Engine Control Unit (ECU), which will control the knock faster and ensure the perfect condition of the engine

    Search Techniques for Multi-Objective Optimization of Mixed-Variable Systems Having Stochastic Responses

    Get PDF
    A method is proposed for solving stochastic multi-objective optimization problems. Such problems are typically encountered when one desires to optimize systems with multiple, often competing, objectives that do not have a closed form representation and must be estimated via simulation. A two-stage method is proposed that combines generalized pattern search/ranking and selection (GPS/R&S) and and Mesh Adaptive Direct Search (MADS) developed for single-objective stochastic problems with three multi-objective methods: interactive techniques for the specification of aspiration/reservation levels, scalarization functions, and multi-objective ranking and selection. This combination is devised specifically so as to keep the desirable convergence properties of GPS/R&S and MADS while extending application to the multi-objective case

    A multicriteria optimization framework for the definition of the spatial granularity of urban social media analytics

    Get PDF
    The spatial analysis of social media data has recently emerged as a significant source of knowledge for urban studies. Most of these analyses are based on an areal unit that is chosen without the support of clear criteria to ensure representativeness with regard to an observed phenomenon. Nonetheless, the results and conclusions that can be drawn from a social media analysis to a great extent depend on the areal unit chosen, since they are faced with the well-known Modifiable Areal Unit Problem. To address this problem, this article adopts a data-driven approach to determine the most suitable areal unit for the analysis of social media data. Our multicriteria optimization framework relies on the Pareto optimality to assess candidate areal units based on a set of user-defined criteria. We examine a case study that is used to investigate rainfall-related tweets and to determine the areal units that optimize spatial autocorrelation patterns through the combined use of indicators of global spatial autocorrelation and the variance of local spatial autocorrelation. The results show that the optimal areal units (30 km2 and 50 km2) provide more consistent spatial patterns than the other areal units and are thus likely to produce more reliable analytical results

    Application of general semi-infinite Programming to Lapidary Cutting Problems

    Get PDF
    We consider a volume maximization problem arising in gemstone cutting industry. The problem is formulated as a general semi-infinite program (GSIP) and solved using an interiorpoint method developed by Stein. It is shown, that the convexity assumption needed for the convergence of the algorithm can be satisfied by appropriate modelling. Clustering techniques are used to reduce the number of container constraints, which is necessary to make the subproblems practically tractable. An iterative process consisting of GSIP optimization and adaptive refinement steps is then employed to obtain an optimal solution which is also feasible for the original problem. Some numerical results based on realworld data are also presented

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Network design decisions in supply chain planning

    Get PDF
    Structuring global supply chain networks is a complex decision-making process. The typical inputs to such a process consist of a set of customer zones to serve, a set of products to be manufactured and distributed, demand projections for the different customer zones, and information about future conditions, costs (e.g. for production and transportation) and resources (e.g. capacities, available raw materials). Given the above inputs, companies have to decide where to locate new service facilities (e.g. plants, warehouses), how to allocate procurement and production activities to the variousmanufacturing facilities, and how to manage the transportation of products through the supply chain network in order to satisfy customer demands. We propose a mathematical modelling framework capturing many practical aspects of network design problems simultaneously. For problems of reasonable size we report on computational experience with standard mathematical programming software. The discussion is extended with other decisions required by many real-life applications in strategic supply chain planning. In particular, the multi-period nature of some decisions is addressed by a more comprehensivemodel, which is solved by a specially tailored heuristic approach. The numerical results suggest that the solution procedure can identify high quality solutions within reasonable computational time

    Applications of gravitational search algorithm in engineering

    Get PDF
    Gravitational search algorithm (GSA) is a nature-inspired conceptual framework with roots in gravitational kinematics, a branch of physics that models the motion of masses moving under the influence of gravity. In a recent article the authors reviewed the principles of GSA. This article presents a review of applications of GSA in engineering including combinatorial optimization problems, economic load dispatch problem, economic and emission dispatch problem, optimal power flow problem, optimal reactive power dispatch problem, energy management system problem, clustering and classification problem, feature subset selection problem, parameter identification, training neural networks, traveling salesman problem, filter design and communication systems, unit commitment problem and multiobjective optimization problems
    corecore