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ABSTRACT
The spatial analysis of social media data has recently emerged as
a significant source of knowledge for urban studies. Most of these
analyses are based on an areal unit that is chosen without the support
of clear criteria to ensure representativeness with regard to an
observed phenomenon. Nonetheless, the results and conclusions
that can be drawn from a social media analysis to a great extent
depend on the areal unit chosen, since they are faced with the well-
known Modifiable Areal Unit Problem. To address this problem, this
article adopts a data-driven approach to determine the most suitable
areal unit for the analysis of social media data. Our multicriteria opti-
mization framework relies on the Pareto optimality to assess candidate
areal units based on a set of user-defined criteria. We examine a case
study that is used to investigate rainfall-related tweets and to deter-
mine the areal units that optimize spatial autocorrelation patterns
through the combined use of indicators of global spatial autocorrela-
tion and the variance of local spatial autocorrelation. The results show
that the optimal areal units (30 km2 and 50 km2) provide more con-
sistent spatial patterns than the other areal units and are thus likely to
produce more reliable analytical results.
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1. Introduction

Over the past few years, researchers have used social media data as a data source to study
several types of human activities and physical phenomena. Given the widespread usage
of social media in cities, the analysis of social media activity is considered particularly
promising in the emerging field of urban analytics (Singleton et al. 2018). Geospatial data
extracted from social media is able to give an insight into the dynamic patterns of urban
environments and urban life in higher spatial and temporal resolutions than has so far
been made possible by conventional data sources (e.g. census data and field surveys)
(Batty 2013). In line with this approach, researchers have used georeferenced social media
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data to study several key areas, such as the detection, monitoring and recognition of
natural disasters (e.g. earthquakes, typhoons, and floods) and humanitarian crises (e.g.
outbreaks of epidemic diseases), as well as to tackle urban planning problems (e.g. traffic
jams) – for an overview of this literature, see Nummi (2017), Martínez-Rojas et al. (2018),
Martí et al. (2019), and Steiger et al. (2015a).

A common strategy employed in this literature is to assess the intensity of social media
activity around a topic and then use this as a proxy signal that is capable of revealing the
spatio-temporal distribution of an urban phenomenon of interest, i.e. these studies
assume there is a correlation between the aggregated, thematic social media activity in
an areal unit and a given spatio-temporal process. This has proven to be a fruitful
approach to study natural phenomena, such as flooding (de Albuquerque et al. 2015,
Kryvasheyeu et al. 2016, Smith et al. 2017, Rosser et al. 2017, Restrepo-Estrada et al.2018, Li
et al. 2018, Arthur et al. 2018), as well as social processes, such as geodemographic
patterns (Steiger et al. 2015b, Longley and Adnan 2016, Patel et al. 2017). However, in
establishing the relationship between social media activity and a given real-world spatio-
temporal process, the analyst often has to make a decision about which areal unit of
aggregation to use. This decision is unavoidably related to the classic and well-studied
problems of ecological fallacies and the so-called Modifiable Areal Unit Problem (MAUP)
(Openshaw 1984, Fotheringham 1989, Dark and Bram 2007). The choice of an areal unit of
analysis may be even more complex in social media research than in other areas, since the
uneven distribution of social media activity across the urban space is caused by bias in the
production practices of social media users and varies in different types of social media
platforms (Rzeszewski 2018). The relationships between the spatio-temporal processes
which govern social media activities and spatio-temporal phenomena of interest are
poorly understood. The question of which spatial granularity should be used in social
media analysis is thus riddled with uncertainty, as the analyst will often be unsure about
how to match the areal unit of analysis to the scale of the phenomena being analyzed.

In view of the potentially serious effects of MAUP on social media research and the
uncertainty it arouses, it is surprising that investigations into the effects of MAUP on social
media analytics have so far received scant attention. However, whilst most previous
studies failed to carry out any investigation into the effects of MAUP or justify their
areal unit choices, there have recently been a number of studies that either explicitly
address or avoid the issues of MAUP (Jiang andMiao 2015, Lee et al. 2016). However, these
studies are mostly based on a single criterion (e.g. global measures of spatial association),
and fail to adopt a generic approach that takes account of a number of other criteria, such
as the need to identify significant local spatial patterns.

This article puts forward a systematic approach to support the analyst in investigating
the degree of sensitivity to MAUP effects and choosing the most appropriate spatial
granularity for a specific application case study. It establishes a multicriteria optimization
framework to assist in the selection of the areal unit in social media analysis, which is
based on the definition of a number of criteria (e.g. global and local indicators of spatial
association) and the application of the Pareto optimality method. Pareto optimality has
been widely used to assess a number of alternative solutions in problems that involve
multiple criteria, and where a solution that is regarded as optimal for one criterion may
not be for another. Multiple conflicting criteria can thus be evaluated to answer questions
such as the following: How can we ensure that the optimal spatial unit chosen suitably
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characterizes or represents the spatial process in accordance with a number of given
criteria? What is the optimal spatial unit that should be used when there are multiple and
conflicting criteria? This multicriteria framework is applied to investigate the effects of
different areal units on the analysis of heavy rainfall patterns by means of Twitter data in
the city of Sao Paulo, Brazil.

The remainder of the article is structured as follows: Section 2 provides an overview of
the literature on the effects of MAUP on social media analyses; Section 3 outlines the
multicriteria optimization framework for the selection of an appropriate spatial unit in
social media analysis; Section 4 describes a case study on the use of social media as
a proxy for heavy rainfall patterns; Sections 5 and 6 report the main results and conduct
a discussion on the findings; finally, Section 7 presents the conclusions and makes
suggestions for future studies.

2. MAUP in social media analysis

The spatial approach to social media analysis often involves aggregating messages to
a study area which has been partitioned into areal units that vary in size, from square
meters to square kilometers, and shape, such as regular and irregular polygons. This kind
of spatial arrangement for data aggregation is sensitive to the scale and zoning effects of
MAUP, which can yield very different spatial patterns and statistical results owing to
uncertainty about the number (scale effect) and shape (zoning effect) of the areal units
(Openshaw 1977, 1978, 1984, Fotheringham 1989, Dark and Bram 2007).

Figure 1 shows the influence of the scale and zoning effects of MAUP for spatial data
aggregation in a given study area. Clearly, the density patterns reported for any one
particular areal unit (Figure 1(c, d)) could be highly misleading if taken as representative of

Figure 1. Scale and zoning effects for spatial data aggregation (based on Lee et al. 2016). (a)
corresponds to a sample of spatial data at an individual level bounded to a study area, (b) is the
spatial count data using a reference lattice design, (c) and (d) illustrate the scale and zoning effects,
respectively.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 3



the sample of spatial data bounded to the study area (Figure 1(a)). For example, the
densities of spatial data across the vertical arrangement in Figure 1(c) varies considerably
when compared with the constant densities across the horizontal arrangement. A similar
behavior can be seen in Figure 1(d), where the low density appears on horizontally
opposite sides when the two spatial arrangements are looked at together. It is widely
recognized that, different conclusions can be drawn about the underlying statistical
relationships depending on the choice of an areal unit of analysis (Fotheringham 1989).
As a result, if no systematic criteria are used for the assessment of the effects of MAUP and
for the choice of an areal unit of analysis, this may lead to the data being aggregated in
a biased and mistaken zoning system.

Although it is widely regarded as a problem that is inherent to spatial analysis, the
literature provides some possible strategies for dealing with MAUP (Fotheringham 1989,
Dark and Bram 2007). These include the following: (i) the derivation of an ‘optimal’ zoning
system where a hypothesis concerning the expected results can be attained (e.g.
Openshaw 1977, Openshaw and Rao 1995), (ii) the identification of basic entities and
primitive areal units as a means of avoiding the use of data aggregation (e.g. Jiang and
Brandt 2016), (iii) the development of new methods that lay greater emphasis on visua-
lisation than statistical analysis (e.g. Tobler 1989), (iv) the emphasis of spatial analysis on
the rates of change (e.g. Fotheringham 1989, Poorthuis 2018), and (v) the sensitivity
analysis that examines the effects of MAUP by reporting the results for different areal
units (e.g. Fotheringham and Wong 1991). Although previous approaches have proved
effective in understanding and addressing MAUP, they tended to deal with special cases
of a general problem and should be applied with some caution – depending on the
project and type of analysis (Dark and Bram 2007).

MAUP is often ignored in social media analytics and empirical studies involving the
analysis of areal data rarely mention possible scale and zoning effects. This is especially
true in urban analytics that use social media data around a topic to mirror real-world
spatio-temporal phenomena – for some examples, see Tenkanen et al. (2017), Restrepo-
Estrada et al. (2018), Arthur et al. (2018) and Longley and Adnan (2016). However, there
have recently been a number of studies that clearly address the question of MAUP. For
example, Jiang and Miao (2015) delineated urban boundaries of cities by means the
topology of social media activity. They used the heterogeneity of the hierarchical agglom-
erations of social media activity to determine the urban structure, which may mitigate the
statistical bias of MAUP. However, this work does not make a systematic assessment of
MAUP effects to provide evidence of improvements achieved by its selection strategy for
the spatial unit of analysis. In contrast, Lee et al. (2016) assessed the scale effect of MAUP
through the rate of change of an indicator of global spatial association (Global Moran’s I)
using regular grid lattices with different areal unit sizes. Analogously to a previous work in
the segmentation of high resolution remotely sensed images (Meng et al. 2014), Lee et al.
(2016) proposed to select the areal unit of analysis based on the lattice layout that yields
the higher Global Moran’s I coefficient.

Although the use of global indicators of spatial association for a sensitivity analysis has
proved to be a useful way of investigating MAUP effects, this method only considers the
overall clustering patterns of georeferenced social media data, whilst the spatial variance
or structural instability of local patterns have been neglected. Global Moran’s I coefficient
alone may not be enough to diagnose the spatial heterogeneity of social media activity,

4 S. C. DE ANDRADE ET AL.



particularly in study areas partitioned into a large number of areal units of analysis. One of
the reasons for this is that global patterns of spatial association usually assume spatial
homogeneity (Anselin 1995) and social media activity is often dispersed in space, irregular
in time, and uncertain in content. Moreover, local spatial patterns may be of particular
relevance in urban analytics due to the intra-urban inequalities that influence a user-data
generation. As a result, social media activity is often associated with a low/medium spatial
dependence (i.e. a degree of spatial association) and a high level of spatial heterogeneity.
Thus, the investigation of the effects of MAUP should take account of other indicators,
such as the spatial heterogeneity of the process in a study area.

An example which takes the structural instability of the local patterns into account is
given in Figure 2. Each lattice (Figure 2(a)) is related to a global indicator of spatial
association and the standard deviation (i.e. spatial variance) of the local indicators of
spatial association. These spatial association statistics were calculated by means of Global
Moran’s I coefficient and its local version. According to Anselin (1995), local indicators of
spatial association (LISA) are spatial decomposition statistics of global indicator of asso-
ciation that enable the identification of spatial outliers and make an assessment of the
overall structural (in)stability, which is useful for an analysis of spatial heterogeneity. If the
underlying process is stable throughout the lattice, the local indicators are expected to
show a constant statistical behavior at the areal unit chosen.

As shown in Figure 2(b), spatial variance changes considerably and a high Global
Moran’s I does not necessarily yield a low standard deviation of Local Moran’s I, i.e. the
choice of the most suitable lattice should be bi-dimensional in terms of global and local
statistics. Hence, the spatial heterogeneity analysis is of value for assessing the extent to
which a global indicator is representative of the local association (Anselin 1995) and
measuring the conflict between spatial stability and the global indicator of association.

Figure 2. Trade-off between Global Moran’s I and the overall degree of structural (in)stability (standard
deviation) of Local Moran’s I. It should be noted the difference when compared to the trends of the
standard deviation of Local Moran’s I and Global Moran’s I across the lattices. Standard deviation of the
Local Moran’s I was normalized by scaling between the minimum and maximum values of the Global
Moran’s I. Both statistics were computed for a row-standardized spatial weights matrix based on first-
order rook contiguity.
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This kind of trade-off can occur in any spatial data analysis, including urban social media
analytics in different periods and areal units.

In summary, the determination of an optimal areal unit for spatial analysis of social media
data is a complex task owing to the MAUP effects, differences in the fields of application,
and uncertainties and conflicts arising from the different potential spatial indicators to be
used. Since a global (or singular) optimal areal unit cannot be determined, the approach we
adopt to address this problem is to enable the assessment of various different areal units by
multiple indicators in order to subsequently support the selection of an optimal areal unit,
depending on the application and determination of the spatial analysts.

3. Multicriteria optimization framework

Figure 3 shows the multicriteria optimization framework established by a Multi-Criteria
Decision Analysis (MCDA) for the choice of an optimal areal unit in spatial data analysis,
which focuses on studies involving the social mirroring of real-world phenomena derived
from social media activity. MCDA is a discipline that provides a systematic and generalized
way of dealing with decision problems, by assisting decision-makers to choose an appro-
priate and satisfactory solution from a finite set of candidate or alternative (Xu 2012, Greco
et al. 2016). According to Xu (2012), MCDA ‘refers to making decisions in the presence of
multiple, usually conflicting, criteria’. As argued in Section 2, the choice of an areal unit in
social media analysis related to real-world phenomena is closely linked to the evaluation
of conflicting indicators or criteria. Hereinafter, the words indicators and criteria will be
used interchangeably in the context of MCDA.

3.1. Modelling of candidate areal units

An MCDA problem can be modeled by a bidimensional decision matrix in which each
element (cell) represents the outcome of a measure against a criterion (column) and

Figure 3. Methodological multicriteria optimization framework for the selection of an optimal areal
unit in a spatial data analysis.
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corresponds to a particular decision – also referred to as a candidate solution (line). The
number of criteria and candidate solutions is unlimited; however, both can be reduced if
knowledge is drawn from the project topic and type of analysis. In problems concerning
urban analytics, this means choosing a range of areal units that are geographically
meaningful, and spatial statistics that make sense to the problem/analysis in hand – the
analyst should reduce the search space of the candidate areal units within the multi-
criteria optimization framework.

In general, the establishment of criteria depends on the problem, and no set rule is
followed. We assessed the areal units in social media on the basis of two criteria, namely
Global Moran’s I and the coefficient of variation of Local Moran’s I. The former relies on the
spatial aspects of a global social media activity (i.e. the average of the overall spatial
patterns), whereas the latter measures the overall instability through local inequalities (i.e.
the variance of the local spatial patterns). These spatial statistics can be calculated by
means of different schemes of spatial contiguity and spatial weight matrices, but we
computed them for a row-standardized spatial weights matrix based on first-order rook
contiguity (i.e. adjacent neighbors) – since the first-order rook makes sense for our case
study (i.e. the mapping of a continuous phenomena) and the results remained stable
across different schemes of spatial weights matrix. The coefficient of variation was used to
summarize the Local Moran’s I, rather than the standard deviation, since it allows direct
quantitative comparisons to be made between different probability distributions, i.e.
comparisons between spatial variances of Local Moran’s I across different areal units.

3.2. Evaluation of the candidate areal units

Although the MCDAmethods share similar modelling procedures (i.e. stages in an organiza-
tion and decision matrix construction), they synthesize and optimize the criteria, and
calculate the decision matrix differently (Greco et al. 2016). Hence, selecting a particular
MCDAmethod depends on the characteristics of a given problem. Collette and Siarry (2004)
and Greco et al. (2016) provide a review of the well established and recently emerging fields,
theories and methods within MCDA, which assist the readers in linking problems to
methods. We have selected the Pareto optimality algorithm available in rPref package
(Roocks 2016), which is a dominance-based method. In general, it sorts the candidate
solutions into Pareto frontiers based on all the trade-offs of the criteria and leaves the
selection of a preferred candidate solution free for the decision-maker. Frontiers are cutting
points that group the candidate solutions into ordered classes that range from the best (first
frontier) to worst (last frontier). All the candidate solutions that fall into the same frontier are
considered to be interchangeable. The so-called Pareto-optimal solutions are those that fall
into the first frontier, which are assumed by the method to be the most suitable solutions.

3.2.1. Pareto optimality method
Let X be a set of user-defined areal units with different levels of aggregation. Each spatial
granularity of aggregation x 2 X is characterized by different criteria that will be opti-
mized by a set of objective functions. A vector containingm objective functions ϕm can be
represented by

ΦðxÞ ¼ ½ϕ1ðxÞ;ϕ2ðxÞ; � � � ;ϕmðxÞ� 2 R
m (1)
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A Pareto-optimal solution only contains areal units that are not Pareto-dominated by any
other areal unit. More formally, but still in general terms, an areal unit xi 2 X dominates
another xj 2 X when it has satisfied the following two constraints:

(i) "ϕ 2 Φ : ϕðxiÞ � ϕðxjÞ, and
(ii) 9ϕ 2 Φ : ϕðxiÞ � ϕðxjÞ
where � and � correspond to the ‘general better’ and ‘better or equal’ relations,

depending on whether the objective function refers to maximization or minimization. All
the Pareto-optimal areal units form the first Pareto Frontier and if two or more areal units
fall into it, additional human expertise is required for the selection of a proper areal unit.
As mentioned above, all the areal units in the first Pareto Frontier are considered to be
equally ‘good’. The other frontiers are calculated in the same way, although the areal units
of the previous frontiers are removed (e.g. the second frontier is calculated by removing
the areal units of the first frontier, the third frontier is calculated by removing the areal
units of the first and second frontiers, and so on).

3.3. Sensitivity analysis of the optimal areal units

Once the first frontier has been obtained, the robustness of its solutions must be
evaluated. Within the context of MCDA, a sensitivity analysis is a common approach for
investigating the statistical robustness of Pareto-optimal solutions (Grunert da Fonseca
et al. 2001). A practical way of carrying this out, it is to check the stability of the outcomes
obtained from multiple runs of the Pareto optimality algorithm. Random resampling or
disturbances from the original data should be introduced to give an idea of how stable
(i.e. robust) the Pareto-optimal solutions in each run tend to be. In line with this approach,
we applied a bootstrap method since this has been widely recognized as a good asymp-
totic resampling approach in different contexts (Efron 1979).

Figure 4 shows the bootstrap resampling strategy used to generate samples of spatial
data; it uses blocks of data to partially ‘retain’ the original spatial properties. Each block
corresponds to an event/occurrence of a particular phenomenon and shares a set of data
(e.g. rain-related social media messages on a rainy day). In this work, an event is understood
to be ameasurement/observation of an observed phenomenonwithin a study area (e.g. daily
or hourly observations of rainfall in a city). Hence, a resampling of events (i.e. sets of social
media data grouped into time units) were generated to perform the sensitivity analysis.

4. Application of the multicriteria optimization framework

4.1. Case study in the context of heavy rain in Sao Paulo city, Brazil

The multicriteria optimization framework was employed for the selection of the optimal
areal unit in a social media analysis within the context of heavy rainfall patterns in Sao
Paulo city, Brazil. The city was chosen because heavy rain events cause flash floods,
inundations and flooding, mainly due to the rivers overflowing and the poor drainage
system of the urban pavements. It should also be noted that, Sao Paulo has a vast number
of Twitter users and an estimated population of approximately 12 million people, which
has made it the most density populated city in Brazil (IBGE 2010).
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The entire surface area of the city was partitioned into hexagonal areal units of 5 km2,
ranging from 10 to 100 km2 every 10 km2, and 200 km2. Each spatial unit aggregated
rainfall data and rain-related Twitter messages over the period of 1 year, from
November 2016 to November 2017. This range of areal units allowed us to determine
the trade-off between the Global Moran’s I and the coefficient of variation of Local
Moran’s I for a specific application case, while the hexagonal areal units reduced the
visual field bias when compared with the square units (Carr et al. 1992).

4.2. Description of the data

4.2.1. Twitter data
We used the Twitter Streaming API to fetch public geotagged tweets that fell within Sao
Paulo city. Although the methods employed by Twitter Streaming API for sampling data
are unknown, they return a large enough set of geotagged tweets from the Twitter
population (Morstatter et al. 2013). 2,073,219 geotagged tweets were sampled during
the entire period of analysis. Although we examined a large and dense dataset, the
geotagged tweets related to rain represented a small fraction (5,996/0.29%) of the total
number. A low percentage of phenomenon-related geotagged tweets was also observed
in other studies on crises and natural disasters (Xiao et al. 2015, Huang and Xiao 2015, de
Albuquerque et al. 2015).

Five meaningful rain-related keywords obtained from de Andrade et al. (2018) –
‘chuva’, ‘chove’, ‘chuvoso’, ‘chuvosa’ and ‘chuvarada’ (in Brazilian Portuguese) – were
employed and any geotagged tweets containing at least one of them were filtered. The

Figure 4. Bootstrap resampling strategy with a set of spatial data grouped into regular time units
called events. � corresponds to spatial data at an individual level spread over a study area (e.g. social
media messages across the city of Sao Paulo).
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authors showed that these keywords are less sensitive to time and space than others and
thus have the potential to create a filter that produces more signal than noise, i.e. they are
almost invariant across space and time (when the study area is a city) and filter more true-
positive (signal) than true-negative (noise) Twitter messages. True-negative tweets are
referred to as those that contain at least one keyword and where the text content is not
linked to the phenomenon of rain. An example of a true-negative tweet is ‘bolinho de
chuva’ (little rain cookie), a typical Brazilian doughnut.

We built a rainfall signal on the basis of the filtered geotagged tweets by means of the
‘odds ratio measure’ of the frequency of geotagged tweets (Equation 2) on a one-day scale.

OR ¼ pi=p
ri=r

(2)

where pi is the number of rain-related geotagged tweets in a spatial unit i, p is the total
number of rain-related geotagged tweets, ri is the number of ‘population’ geotagged
tweets in a spatial unit i, and r is the grand total of that population. This kind of measure is
based on the Location Quotient technique and takes into account the sampling Twitter
data to offset the over-representation of the space units, which reduces the effects of
a dissimilar spatial distribution of Twitter activity (Poorthuis et al. 2014). In addition,
a higher odds ratio measure leads to a better representation of rainfall signals with regard
to the Twitter activity within the spatial unit of observation.

4.2.2. Rainfall maps from the weather radar
The Sao Paulo weather radar of the Department of Water and Power (DAEE) and the
Hydraulics Technology Foundation Center (FCTH) of the Polytechnic School of the
University of Sao Paulo diagnosed the rain maps every 5 min. This device is a Dual
Polarisation Doppler S-Band weather radar located approximately 60–70 km from Sao
Paulo city which continuously estimates the statistics of rainfall rates at a 250 m spatial
resolution from an azimuthal width of 1 degree (Selex 2015).

Instead of using the polar rain yields, we relied on a radar product known as Surface
Rain Intensity (SRI) projected in Cartesian coordinates of a 500 × 500 m scale (Selex 2015).
This enabled us to create new maps at 10 min time intervals to match the representation
of rainfall signals of used in the Twitter activity. The mean, minimum andmaximum values
of each time interval were stored in each spatial observation unit. Spatial and linear
interpolation techniques were employed to overcome the problem of missing data and,
despite errors in the weather radar rainfall estimates, such as overestimation of some
observation points (Battan 1973), the radar measured the rainfall rate accurately.

On the basis of the rainfall threshold of the U.S. Geological Survey (USGS), we selected
days when the daily record of rainfall was, at least, higher than 10 mm per hour, i.e. we
took note of any rain event equal to, or greater than, a heavy shower. This threshold is
very close to the one generally used by Brazilian meteorological centers for heavy rain,
such as the Brazilian National Center of Monitoring and Early Warning of Natural Disaster
(CEMADEN in Portuguese). Figure 5 shows the daily increase in the rainfall and frequency
of rain-related tweets of a cross-sectional data from 7 November 2016 to 26 April 2017.
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5. Results

5.1. Optimal areal units

Figure 6 shows Global Moran’s I coefficient and the coefficient of variation of Local
Moran’s I for the areal units. Only some of the areal units show an improvement in the
criteria when compared with the adjacent areal units, i.e. higher Global Moran’s I and
lower coefficient of variation of Local Moran’s I. The other areal units either increase or
decrease both criteria. For example, from 20 km2 to 30 km2 both criteria improved, i.e.
Global Moran’s I coefficient increased and the coefficient of variation of Local Moran’s
I decreased. This means that the areal unit of 30 km2 is linked to a higher pattern of spatial
association and lower spatial heterogeneity than the areal unit of 20 km2, i.e. the former
provides more consistent spatial patterns and is thus likely to reflect more reliable
analytical results. A similar improvement was achieved by the other areal units, such as
from 80 km2 to 90 km2 and from 90 km2 to 100 km2 (Figure 6).

In contrast, the areal units of 30 km2 and 50 km2 appear to achieve the best results in
visual terms, although the criteria are in conflict with each other. While Global Moran’s
I coefficient is higher for the areal unit of 50 km2, the coefficient of variation of Local
Moran’s I is lower for the areal unit of 30 km2, i.e. if the criteria had been analyzed
separately, they would have led to different results. The areal unit of 50 km2 is better in
terms of overall spatial patterns, but the one of 30 km2 is better in terms of the structural
stability of the local patterns. A similar conflict also appears between the areal units of
100 km2 and 200 km2. In view of this, more conflicts might occur, depending on the range,
size and shape of the user-defined areal units.

According to the results of the multicriteria optimization framework in Figure 7,
Pareto-optimal solutions are the areal units of 50 km2 and 30 km2, since both areal

Figure 5. Cross-section data of daily rainfall and frequency of rain-related tweets from 7 November 2016 to
26 April 2017, Sao Paulo, Brazil.
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units fall within the first Pareto frontier and are thus considered to be equally good
(see Section 3). The Pareto front line visualization (Figure 7) is a ‘stair-shaped line
marking the border of the dominance area’ of those tuples (solutions) (Roocks 2016).
For example, the areal units of 50 km2 and 30 km2 dominate the other ones because
their criteria are better, i.e. they are combined with a higher Global Moran’s I and
lower coefficient of variation of Local Moran’s I, respectively. However, they are
mutually dominated by one criterion, i.e. the areal unit of 50 km2 dominates
30 km2 in terms of Global Moran’s I and the opposite is the case for the coefficient
of variation of Local Moran’s I (see Table 1). Such a mutual domination is illustrated
in Figure 7 by a link (line) between the scales.

Figure 6. Trade-off between the global indicator of spatial association (Global Moran’s I) and the
overall degree of structural (in)stability (coefficient of variation of Local Moran’s I normalized by
scaling between the minimum and maximum values of the Global Moran’s I coefficients. Both global
and local spatial statistics were computed for a row-standardized spatial weights matrix based on first-
order rook contiguity.

Figure 7. Pareto frontier and the trade-off between Global Moran’s I and the coefficient of variation of
Local Moran’s I (overall degree of structural (in)stability). Both statistics were computed for a row-
standardized spatial weights matrix based on first-order rook contiguity.
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5.2. Sensitivity analysis of the optimal areal units

Figure 8 shows the Pareto-optimal areal units (i.e. those within the first frontier) of
a thousand runs of the multicriteria optimization framework performed by the bootstrap
method which is used as a resampling approach – for details of the bootstrap resampling
strategy, see Section 3. The areal units of 50 km2 and 30 km2 were significant and
corresponded to 32.5% and 28.2% frequencies, respectively (Table 2); they covered
60.7% of the outcomes. Thus, they can be regarded as robust Pareto-optimal solutions
within the scope and limitations of the case study.

(a)The sum of the frequencies is greater than 1,000 because the Pareto-optimal frontier
may contain one or more areal units.

5.3. Implications of the choice of an arbitrary areal unit

Figure 9 shows the spatial patterns of the heavy rainfall signal from geotagged tweets on
the maps of 10 km2, 20 km2, 30 km2, 50 km2, 60 km2 and 70 km2. If an arbitrary areal unit is

Table 1. Criteria values and the corresponding Pareto frontier for each areal unit. In the case
of Global Moran’s I criterion, the p-value corresponds to the null hypothesis that the social
media pattern is randomly distributed among the spatial units.
Frontier Areal unit Global Moran’s I (p-value) ΔCoef : Var: of Local Moran’s I

#1 50 km2 0.40 (0.001) � 1.93
#1 30 km2 0.36 (0.001) � 1.65
#2 40 km2 0.32 (0.001) � 2.79
#2 200 km2 0.31 (0.028) � 2.17
#2 100 km2 0.28 (0.011) � 2.02
#3 90 km2 0.26 (0.017) � 2.56
#4 70 km2 0.19 (0.021) � 2.91
#5 80 km2 0.17 (0.048) � 4.17
#5 60 km2 0.06 (0.102) � 3.22
#6 20 km2 0.03 (0.170) � 7.81
#7 5 km2 0.02 (0.120) � 21.82
#8 10 km2 0.01 (0.268) � 47.19

Figure 8. Robustness of the Pareto-optimal areal units using the bootstrap method with 1,000
replications – for details of the bootstrap resampling strategy, see Section 3
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chosen, such as 20 km2 or 60 km2, very different and discordant spatial patterns are
obtained when compared with the Pareto-optimal areal units, i.e. the patterns of the areal
units of 30 km2 and 50 km2 are more similar than the others. In practice, this affects the
conclusions and may lead to uncertain and unstable decisions by analysts when applying
the strategy (i.e. an arbitrary choice) to urban planning (e.g. for the use of social media as
a supplementary data source for heavy rainfall and flood risk management).

6. Discussion

The results of the spatial analysis of geotagged social media (e.g. those related to social
mirroring of heavy rain events in our application example) are strongly dependent on the
areal unit of analysis. In light of this, a large number of possible areal units must be assessed to
determinewhich ismost suitable, and computational techniques can automate their choice by
evaluating one or more criteria. This is related to the pioneering work of Openshaw (1977),
which minimized a loss function of a linear regression model for the selection of an optimal
zonal system in census studies. More recently, in the context of social media, Lee et al. (2016)
maximized Global Moran’s I as a criterion for the selection of an optimal areal unit. However,
a limitation of both of these studies is that they rest on the assumption that the most suitable
areal unit canbedeterminedon thebasis of a single optimization criterion (or loss function). As
our example in this paper shows, a number of different factorsmay determine the choice of an

Table 2. Pareto-optimal areal units and cor-
responding frequencies after the bootstrap
method with 1,000 replications.
Areal unit Frequency(a) (%)

50 km2 608 32.5
30 km2 529 28.2
100 km2 272 14.5
200 km2 222 11.9
40 km2 112 6.0
90 km2 84 4.5
60 km2 18 1.0
80 km2 17 0.9
70 km2 9 0.5

Figure 9. Comparison of spatial patterns of Pareto-optimal areal units (middle) and four arbitrary areal
units (extremes). The patterns correspond to the ‘odds ratio measure’ of the frequency of geotagged
tweets (Poorthuis et al. 2014). , corresponds to the side length of hexagonal lattices.
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areal unit and this can lead to divergences, and thusmake the assessment a laborious process
for the spatial analyst.

In this article, we argue that the choice of themost appropriate areal unit for social media
analysis (as a data source to study real-world processes) should be based on data-driven
approaches that require a multiple-criteria analysis (Section 2). Our analysis has shown the
conflicts that can occur if multiple criteria are employed and we put forward a way of
dealing with them that involves establishing a multicriteria optimization framework which
relies on the Pareto optimality method (Section 3). This framework provides an innovative
method for selecting a more appropriate areal unit of aggregation in social media based on
multiple criteria, instead of a choice made through an awareness of the analyst or the
evaluation of a single criterion (which were the approaches commonly used in previous
work). Our systematic and novel approach for the selection of an areal unit can be flexibly
adapted to include any number of optimization criteria thatmay be appropriate for different
spatial datasets and applications. Our example of an application for the analysis of social
media messages about heavy rain events, shows that the resulting optimal areal units of
30 km2 and 50 km2 provide more consistent spatial patterns than the other areal units.

Nevertheless, a number of caveats and suggested extensions of this study should be
discussed. There exists a relation between the criteria chosen and the results. An ‘optimal’
areal unit for one particular criterion may not be suitable for another, e.g. the results vary
when Global Moran’s I and the coefficient of spatial variation of Local Moran’s I are
optimized individually (Figure 7 and Table 1). For this reason, the knowledge on the project
topic and type of analysis should be used for both definitions of the range of user-defined
areal units and for defining the criteria that must be evaluated (Figure 3). In this article,
Global Moran’s I and the coefficient of variation of Local Moran’s I have been defined
because the evaluation of both criteria together reveals the continuous spatial processes
more suitably than the use of a single criterion. Spatial patterns of heavy rain usually involve
a high degree of spatial dependence and low level of spatial heterogeneity and are thus
expected to be ‘spatially continuous’ within the study area (Blöschl and Sivapalan 1995).

Regarding the calculation of spatial statistics of Global and Local Moran’s I, a doubt
arises on how we should choose the spatial contiguity and spatial weights matrices. In the
case study, a row-standardized spatial weight matrix based on first-order rook contiguity
was chosen, that was based on the results that remained stable across different spatial
weight matrices. However, for a generalized and unbiased use of these spatial statistics,
future studies should investigate to what extent the relationship and degree of intensity
influences the underlying spatial units (Anselin 1995).

Furthermore, our case study is bounded to the spatial dimension and only addressed
the scale effect of MAUP by means of a fixed temporal unit, i.e. the variation in statistical
results between different levels of aggregation (i.e. areal unit sizes) in a one-day scale.
Although our multicriteria optimization framework can be applied to assess different
combinations of areal units (i.e. the scale and zoning effects, as described in Section 2),
further investigation is required to address the temporal dimension. There are studies that
have recently demonstrated the temporal effects of aggregation, segmentation, and
boundary in a time series as a means of understanding and analyzing real-world spatio-
temporal processes (Cheng and Adepeju 2014). Hence, these temporal effects should be
taken into account in a future extension of the framework and case studies.
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It should also be noted that when a spatial analysis uses regular lattices, it is often
driven by data aggregation approaches and may ‘reshape’ the topology of the social
media messages – depending on the size and shape of the areal unit of aggregation. The
topology of social relationships can be useful for identifying landmark sites (e.g. airports,
major public parks, and green spaces) and could be better reflected by using bottom-up
approaches such as the concept of ‘natural cities’ (Jiang 2015, Jiang and Brandt 2016),
which relies on the head/tail breaks algorithm to delineate irregular areal units and
hotspots in a natural setting. Instead, we are interested in the social mirroring of a real-
world spatio-temporal process from social media data (by assuming independence of
social media messages).

Certainly, a number of other factors is likely to exert influence on the spatial patterns of the
Twitter activity, including the topography of the urban space and potential underlying pro-
cesses. However, our previous work (de Andrade et al. 2017, Restrepo-Estrada et al. 2018)
provides quantitative evidence that rainfall patterns from meteorological data (e.g. rainfall
gauges) are significantly associated with rainfall-related Twitter activity in the city of Sao
Paulo. This enables us to suggest that the patterns identified in the current application case
for our method can be useful for the analysis of the spatial distribution of rainfall within the
urban space, even if we recognize the potential for spatial biases introduced by other factors
(such as topography), which should be further investigated in future work.

Furthermore, the spatial heterogeneity of Twitter activity within the urban space could be
associated with the existence of multiple spatial scales in the data (Westerholt et al. 2015).
Addressing this issue goes beyond the scope of the current article, but one potential extension
of our approach in this direction could involve assessing the spatial heterogeneity of the Twitter
patterns to determine more homogeneous subareas, in which our approach could then be
employed for selecting a most suitable local scale. However, we contend that a global optimi-
zation approach still makes sense in our application case, since it is widely used in hydrology for
the analysis of rainfall (Blöschl and Sivapalan 1995) and it can thus be useful in practical
scenarios of rainfall and flood monitoring.

With regard to the robustness of Pareto-optimal solutions, the areal units of 50 km2 and
30 km2 covered 60.7% of the bootstrapping method outcomes (Figure 8), and only reflect
the findings of a particular application in a case study. As a consequence, the results can
change in function of different data, periods and case studies.

Last, but not least, some MCDA modelling methods cannot model the uncertain-
ties that arise from more complex decision-making problems which are often of
a quantitative and qualitative nature and extend the application of average values
to represent the criteria for an assessment as a distribution (Xu 2012), e.g. the
stratification of the average values into classes. In this case, belief structures, such
as Evidential Reasoning (ER) approach (Xu 2012), might be employed to model and
represent the problem as an MCDA.

7. Conclusion

The ‘optimal’ areal unit in social media analysis is traditionally established in different ways
through the view of the analyst and the field of application. Frequently, a preferred areal
unit is chosen with no clear criteria or justification for ensuring its representativeness
regarding the phenomenon under study. In this case, the areal unit chosen may raise
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methodological issues, such as the MAUP effects. In this article, we argued that the ability to
select the most appropriate areal unit in spatial analysis should be based on data-driven
approaches that rely on a multiple-criteria analysis. A multicriteria optimization framework
was established for the selection of an optimal areal unit in social media analysis driven by
the Pareto optimality method.

We expect that the choice of an areal unit by adopting a multicriteria approach can provide
much more realistic patterns than a one-dimensional approach. Indeed, solutions of real-world
problems are naturally drivenbymultiple perspectives (i.e. criteria), whichmakeourmulticriteria
optimization framework a valuable tool for selecting anoptimal areal unit like thosedescribed in
our application example in social media (Section 4). The potential benefits of using it were
examined and discussed in detail in Sections 2, 5 and 6. However, the degree of uncertainty that
an optimal areal unit can be found increases with the number of criteria and more in-depth
expertise is necessary before a decision can be made on the choice of the ideal areal unit.

Future studies should aim at evaluating this framework by exploring other case study
scenarios (e.g. other cities and datasets with more control than social media data) and
criteria (e.g. economic and demographic factors) so that generalized results can be
obtained. Furthermore, the MCDA discipline encompasses a wide range of algorithms,
and other ones can be considered for the handling of multiple and usually conflicting
criteria. Finally, forecasting spatial models can be designed on the basis of the optimal areal
units provided by the multicriteria optimization framework to further explore the practical
use of the approach proposed.
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