6 research outputs found

    C-Mantec: A novel constructive neural network algorithm incorporating competition between neurons.

    Get PDF
    C-Mantec is a novel neural network constructive algorithm that combines competition between neurons with a stable modified perceptron learning rule. The neuron learning is governed by the thermal perceptron rule that ensures stability of the acquired knowledge while the architecture grows and while the neurons compete for new incoming information. Competition makes it possible that even after new units have been added to the network, existing neurons still can learn if the incoming information is similar to their stored knowledge, and this constitutes a major difference with existing constructing algorithms. The new algorithm is tested on two different sets of benchmark problems: a Boolean function set used in logic circuit design and a well studied set of real world problems. Both sets were used to analyze the size of the constructed architectures and the generalization ability obtained and to compare the results with those from other standard and well known classification algorithms. The problem of overfitting is also analyzed, and a new built-in method to avoid its effects is devised and successfully applied within an active learning paradigm that filter noisy examples. The results show that the new algorithm generates very compact neural architectures with state-of-the-art generalization capabilities.The authors acknowledge the support from MICIIN (Spain) through grants TIN2008-04985 and TIN2010-16556 (including FEDER funds) and from Junta de Andalucía through grant P08-TIC-04026

    Diseño de sistemas neurocomputacionales en el ámbito de la Biomedicina

    Get PDF
    El área de la biomedicina es un área extensa en el que las entidades públicas de cada país han invertido y continúan invirtiendo en investigación una gran cantidad de financiación a través de proyectos nacionales, europeos e internacionales. Los avances científicos y tecnológicos registrados en los últimos quince años han permitido profundizar en las bases genéticas y moleculares de enfermedades como el cáncer, y analizar la variabilidad de respuesta de pacientes individuales a diferentes tratamientos oncológicos, estableciendo las bases de lo que hoy se conoce como medicina personalizada. Ésta puede definirse como el diseño y aplicación de estrategias de prevención, diagnóstico y tratamiento adaptadas a un escenario que integra la información del perfil genético, clínico, histopatológico e inmuhistoquímico de cada paciente y patología. Dada la incidencia de la enfermedad de cáncer en la sociedad, y a pesar de que la investigación se ha centrado tradicionalmente en el aspecto de diagnóstico, es relativamente reciente el interés de los investigadores por el estudio del pronóstico de la enfermedad, aspecto integrado en la tendencia creciente de los sistemas nacionales de salud pública hacia un modelo de medicina personalizada y predictiva. El pronóstico puede ser definido como conocimiento previo de un evento antes de su posible aparición, y puede enfocarse a la susceptibilidad, supervivencia y recidiva de la enfermedad. En la literatura, existen trabajos que utilizan modelos neurocomputacionales para la predicción de casuísticas muy particulares como, por ejemplo, la recidiva en cáncer de mama operable, basándose en factores pronóstico de naturaleza clínico-histopatológica. En ellos se demuestra que estos modelos superan en rendimiento a las herramientas estadísticas tradicionalmente utilizadas en análisis de supervivencia por el personal clínico experto. Sin embargo, estos modelos pierden eficacia cuando procesan información de tumores atípicos o subtipos morfológicamente indistinguibles, para los que los factores clínicos e histopatológicos no proporcionan suficiente información discriminatoria. El motivo es la heterogeneidad del cáncer como enfermedad, para la que no existe una causa individual caracterizada, y cuya evolución se ha demostrado que está determinada por factores no sólo clínicos sino también genéticos. Por ello, la integración de los datos clínico-histopatológicos y proteómico-genómica proporcionan una mayor precisión en la predicción en comparación con aquellos modelos que utilizan sólo un tipo de datos, permitiendo llevar a la práctica clínica diaria una medicina personalizada. En este sentido, los datos de perfiles de expresión provenientes de experimentos con plataformas de microarrays de ADN, los datos de microarrays de miRNA, o más recientemente secuenciadores de última generación como RNA-Seq, proporcionan el nivel de detalle y complejidad necesarios para clasificar tumores atípicos estableciendo diferentes pronósticos para pacientes dentro de un mismo grupo protocolizado. El análisis de datos de esta naturaleza representa un verdadero reto para clínicos, biólogos y el resto de la comunidad científica en general dado el gran volumen de información producido por estas plataformas. Por lo general, las muestras resultantes de los experimentos en estas plataformas vienen representadas por un número muy elevado de genes, del orden de miles de ellos. La identificación de los genes más significativos que incorporen suficiente información discriminatoria y que permita el diseño de modelos predictivos sería prácticamente imposible de llevar a cabo sin ayuda de la informática. Es aquí donde surge la Bioinformática, término que hace referencia a cómo se aplica la ciencia de la información en el área de la biomedicina. El objetivo global que se intenta alcanzar en esta tesis consiste, por tanto, en llevar a la práctica clínica diaria una medicina personalizada. Para ello, se utilizarán datos de perfiles de expresión de alguna de las plataformas de microarrays más relevantes con objeto de desarrollar modelos predictivos que permitan obtener una mejora en la capacidad de generalización de los sistemas pronóstico actuales en el ámbito clínico. Del objetivo global de la tesis pueden derivarse tres objetivos parciales: el primero buscará (i) pre-procesar cualquier conjunto de datos en general y, datos de carácter biomédico en particular, para un posterior análisis; el segundo buscará (ii) analizar las principales deficiencias existentes en los sistemas de información actuales de un servicio de oncología para así desarrollar un sistema de información oncológico que cubra todas sus necesidades; y el tercero buscará (iii) desarrollar nuevos modelos predictivos basados en perfiles de expresión obtenidos a partir de alguna plataforma de secuenciación, haciendo hincapié en la capacidad predictiva de estos modelos, la robustez y la relevancia biológica de las firmas genéticas encontradas. Finalmente, se puede concluir que los resultados obtenidos en esta tesis doctoral permitirían ofrecer, en un futuro cercano, una medicina personalizada en la práctica clínica diaria. Los modelos predictivos basados en datos de perfiles de expresión que se han desarrollado en la tesis podrían integrarse en el propio sistema de información oncológico implantado en el Hospital Universitario Virgen de la Victoria (HUVV) de Málaga, fruto de parte del trabajo realizado en esta tesis. Además, se podría incorporar la información proteómico-genómica de cada paciente para poder aprovechar al máximo las ventajas añadidas mencionadas a lo largo de esta tesis. Por otro lado, gracias a todo el trabajo realizado en esta tesis, el doctorando ha podido profundizar y adquirir una extensa formación investigadora en un área tan amplia como es la Bioinformática

    Application of Computational Intelligence in Cognitive Radio Network for Efficient Spectrum Utilization, and Speech Therapy

    Get PDF
    communication systems utilize all the available frequency bands as efficiently as possible in time, frequency and spatial domains. Society requires more high capacity and broadband wireless connectivity, demanding greater access to spectrum. Most of the licensed spectrums are grossly underutilized while some spectrum (licensed and unlicensed) are overcrowded. The problem of spectrum scarcity and underutilization can be minimized by adopting a new paradigm of wireless communication scheme. Advanced Cognitive Radio (CR) network or Dynamic Adaptive Spectrum Sharing is one of the ways to optimize our wireless communications technologies for high data rates while maintaining users’ desired quality of service (QoS) requirements. Scanning a wideband spectrum to find spectrum holes to deliver to users an acceptable quality of service using algorithmic methods requires a lot of time and energy. Computational Intelligence (CI) techniques can be applied to these scenarios to predict the available spectrum holes, and the expected RF power in the channels. This will enable the CR to predictively avoid noisy channels among the idle channels, thus delivering optimum QoS at less radio resources. In this study, spectrum holes search using artificial neural network (ANN) and traditional search methods were simulated. The RF power traffic of some selected channels ranging from 50MHz to 2.5GHz were modelled using optimized ANN and support vector machine (SVM) regression models for prediction of real world RF power. The prediction accuracy and generalization was improved by combining different prediction models with a weighted output to form one model. The meta-parameters of the prediction models were evolved using population based differential evolution and swarm intelligence optimization algorithms. The success of CR network is largely dependent on the overall world knowledge of spectrum utilization in both time, frequency and spatial domains. To identify underutilized bands that can serve as potential candidate bands to be exploited by CRs, spectrum occupancy survey based on long time RF measurement using energy detector was conducted. Results show that the average spectrum utilization of the bands considered within the studied location is less than 30%. Though this research is focused on the application of CI with CR as the main target, the skills and knowledge acquired from the PhD research in CI was applied in ome neighbourhood areas related to the medical field. This includes the use of ANN and SVM for impaired speech segmentation which is the first phase of a research project that aims at developing an artificial speech therapist for speech impaired patients.Petroleum Technology Development Fund (PTDF) Scholarship Board, Nigeri

    Modularity in artificial neural networks

    Get PDF
    Artificial neural networks are deep machine learning models that excel at complex artificial intelligence tasks by abstracting concepts through multiple layers of feature extraction. Modular neural networks are artificial neural networks that are composed of multiple subnetworks called modules. The study of modularity has a long history in the field of artificial neural networks and many of the actively studied models in the domain of artificial neural networks have modular aspects. In this work, we aim to formalize the study of modularity in artificial neural networks and outline how modularity can be used to enhance some neural network performance measures. We do an extensive review of the current practices of modularity in the literature. Based on that, we build a framework that captures the essential properties characterizing the modularization process. Using this modularization framework as an anchor, we investigate the use of modularity to solve three different problems in artificial neural networks: balancing latency and accuracy, reducing model complexity and increasing robustness to noise and adversarial attacks. Artificial neural networks are high-capacity models with high data and computational demands. This represents a serious problem for using these models in environments with limited computational resources. Using a differential architectural search technique, we guide the modularization of a fully-connected network into a modular multi-path network. By evaluating sampled architectures, we can establish a relation between latency and accuracy that can be used to meet a required soft balance between these conflicting measures. A related problem is reducing the complexity of neural network models while minimizing accuracy loss. CapsNet is a neural network architecture that builds on the ideas of convolutional neural networks. However, the original architecture is shallow and has wide layers that contribute significantly to its complexity. By replacing the early wide layers by parallel deep independent paths, we can significantly reduce the complexity of the model. Combining this modular architecture with max-pooling, DropCircuit regularization and a modified variant of the routing algorithm, we can achieve lower model latency with the same or better accuracy compared to the baseline. The last problem we address is the sensitivity of neural network models to random noise and to adversarial attacks, a highly disruptive form of engineered noise. Convolutional layers are the basis of state-of-the-art computer vision models and, much like other neural network layers, they suffer from sensitivity to noise and adversarial attacks. We introduce the weight map layer, a modular layer based on the convolutional layer, that can increase model robustness to noise and adversarial attacks. We conclude our work by a general discussion about the investigated relation between modularity and the addressed problems and potential future research directions

    Modularity in artificial neural networks

    Get PDF
    Artificial neural networks are deep machine learning models that excel at complex artificial intelligence tasks by abstracting concepts through multiple layers of feature extraction. Modular neural networks are artificial neural networks that are composed of multiple subnetworks called modules. The study of modularity has a long history in the field of artificial neural networks and many of the actively studied models in the domain of artificial neural networks have modular aspects. In this work, we aim to formalize the study of modularity in artificial neural networks and outline how modularity can be used to enhance some neural network performance measures. We do an extensive review of the current practices of modularity in the literature. Based on that, we build a framework that captures the essential properties characterizing the modularization process. Using this modularization framework as an anchor, we investigate the use of modularity to solve three different problems in artificial neural networks: balancing latency and accuracy, reducing model complexity and increasing robustness to noise and adversarial attacks. Artificial neural networks are high-capacity models with high data and computational demands. This represents a serious problem for using these models in environments with limited computational resources. Using a differential architectural search technique, we guide the modularization of a fully-connected network into a modular multi-path network. By evaluating sampled architectures, we can establish a relation between latency and accuracy that can be used to meet a required soft balance between these conflicting measures. A related problem is reducing the complexity of neural network models while minimizing accuracy loss. CapsNet is a neural network architecture that builds on the ideas of convolutional neural networks. However, the original architecture is shallow and has wide layers that contribute significantly to its complexity. By replacing the early wide layers by parallel deep independent paths, we can significantly reduce the complexity of the model. Combining this modular architecture with max-pooling, DropCircuit regularization and a modified variant of the routing algorithm, we can achieve lower model latency with the same or better accuracy compared to the baseline. The last problem we address is the sensitivity of neural network models to random noise and to adversarial attacks, a highly disruptive form of engineered noise. Convolutional layers are the basis of state-of-the-art computer vision models and, much like other neural network layers, they suffer from sensitivity to noise and adversarial attacks. We introduce the weight map layer, a modular layer based on the convolutional layer, that can increase model robustness to noise and adversarial attacks. We conclude our work by a general discussion about the investigated relation between modularity and the addressed problems and potential future research directions
    corecore