71 research outputs found

    An overview of informed audio source separation

    Get PDF
    International audienceAudio source separation consists in recovering different unknown signals called sources by filtering their observed mixtures. In music processing, most mixtures are stereophonic songs and the sources are the individual signals played by the instruments, e.g. bass, vocals, guitar, etc. Source separation is often achieved through a classical generalized Wiener filtering, which is controlled by parameters such as the power spectrograms and the spatial locations of the sources. For an efficient filtering, those parameters need to be available and their estimation is the main challenge faced by separation algorithms. In the blind scenario, only the mixtures are available and performance strongly depends on the mixtures considered. In recent years, much research has focused on informed separation, which consists in using additional available information about the sources to improve the separation quality. In this paper, we review some recent trends in this direction

    Underdetermined convolutive source separation using two dimensional non-negative factorization techniques

    Get PDF
    PhD ThesisIn this thesis the underdetermined audio source separation has been considered, that is, estimating the original audio sources from the observed mixture when the number of audio sources is greater than the number of channels. The separation has been carried out using two approaches; the blind audio source separation and the informed audio source separation. The blind audio source separation approach depends on the mixture signal only and it assumes that the separation has been accomplished without any prior information (or as little as possible) about the sources. The informed audio source separation uses the exemplar in addition to the mixture signal to emulate the targeted speech signal to be separated. Both approaches are based on the two dimensional factorization techniques that decompose the signal into two tensors that are convolved in both the temporal and spectral directions. Both approaches are applied on the convolutive mixture and the high-reverberant convolutive mixture which are more realistic than the instantaneous mixture. In this work a novel algorithm based on the nonnegative matrix factor two dimensional deconvolution (NMF2D) with adaptive sparsity has been proposed to separate the audio sources that have been mixed in an underdetermined convolutive mixture. Additionally, a novel Gamma Exponential Process has been proposed for estimating the convolutive parameters and number of components of the NMF2D/ NTF2D, and to initialize the NMF2D parameters. In addition, the effects of different window length have been investigated to determine the best fit model that suit the characteristics of the audio signal. Furthermore, a novel algorithm, namely the fusion K models of full-rank weighted nonnegative tensor factor two dimensional deconvolution (K-wNTF2D) has been proposed. The K-wNTF2D is developed for its ability in modelling both the spectral and temporal changes, and the spatial covariance matrix that addresses the high reverberation problem. Variable sparsity that derived from the Gibbs distribution is optimized under the Itakura-Saito divergence and adapted into the K-wNTF2D model. The tensors of this algorithm have been initialized by a novel initialization method, namely the SVD two-dimensional deconvolution (SVD2D). Finally, two novel informed source separation algorithms, namely, the semi-exemplar based algorithm and the exemplar-based algorithm, have been proposed. These algorithms based on the NMF2D model and the proposed two dimensional nonnegative matrix partial co-factorization (2DNMPCF) model. The idea of incorporating the exemplar is to inform the proposed separation algorithms about the targeted signal to be separated by initializing its parameters and guide the proposed separation algorithms. The adaptive sparsity is derived for both ii of the proposed algorithms. Also, a multistage of the proposed exemplar based algorithm has been proposed in order to further enhance the separation performance. Results have shown that the proposed separation algorithms are very promising, more flexible, and offer an alternative model to the conventional methods

    Score-Informed Source Separation for Musical Audio Recordings [An overview]

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Very Low Bitrate Spatial Audio Coding with Dimensionality Reduction

    Get PDF
    International audienceIn this paper, we show that tensor compression techniques based on randomization and partial observations are very useful for spatial audio object coding. In this application, we aim at transmitting several audio signals called objects from a coder to a decoder. A common strategy is to transmit only the downmix of the objects along some small information permitting reconstruction at the decoder. In practice , this is done by transmitting compressed versions of the objects spectrograms and separating the mix with Wiener filters. Previous research used nonnegative tensor factorizations in this context, with bitrates as low as 1 kbps per object. Building on recent advances on tensor compression, we show that the computation time for encoding can be extremely reduced. Then, we demonstrate how the mixture can be exploited at the de-coder to avoid the transmission of many parameters, permitting bi-trates as low as 0.1 kbps per object for comparable performance

    Common Fate Model for Unison source Separation

    Get PDF
    International audienceIn this paper we present a novel source separation method aiming to overcome the difficulty of modelling non-stationary signals. The method can be applied to mixtures of musical instruments with frequency and/or amplitude modulation, e.g. typically caused by vi-brato. It is based on a signal representation that divides the complex spectrogram into a grid of patches of arbitrary size. These complex patches are then processed by a two-dimensional discrete Fourier transform, forming a tensor representation which reveals spectral and temporal modulation textures. Our representation can be seen as an alternative to modulation transforms computed on magnitude spectrograms. An adapted factorization model allows to decompose different time-varying harmonic sources based on their particular common modulation profile: hence the name Common Fate Model. The method is evaluated on musical instrument mixtures playing the same fundamental frequency (unison), showing improvement over other state-of-the-art methods

    Improved Convolutive and Under-Determined Blind Audio Source Separation with MRF Smoothing

    Get PDF
    Convolutive and under-determined blind audio source separation from noisy recordings is a challenging problem. Several computational strategies have been proposed to address this problem. This study is concerned with several modifications to the expectation-minimization-based algorithm, which iteratively estimates the mixing and source parameters. This strategy assumes that any entry in each source spectrogram is modeled using superimposed Gaussian components, which are mutually and individually independent across frequency and time bins. In our approach, we resolve this issue by considering a locally smooth temporal and frequency structure in the power source spectrograms. Local smoothness is enforced by incorporating a Gibbs prior in the complete data likelihood function, which models the interactions between neighboring spectrogram bins using a Markov random field. Simulations using audio files derived from stereo audio source separation evaluation campaign 2008 demonstrate high efficiency with the proposed improvement

    Alpha-Stable Multichannel Audio Source Separation

    Get PDF
    International audienceIn this paper, we focus on modeling multichannel audio signals in the short-time Fourier transform domain for the purpose of source separation. We propose a probabilistic model based on a class of heavy-tailed distributions, in which the observed mixtures and the latent sources are jointly modeled by using a certain class of multivariate alpha-stable distributions. As opposed to the conventional Gaussian models, where the observations are constrained to lie just within a few standard deviations near the mean, the pro- posed heavy-tailed model allows us to account for spurious data or important uncertainties in the model. We develop a Monte Carlo Expectation-Maximization algorithm for making inference in the proposed model. We show that our approach leads to significant improvements in audio source separation under corrupted mixtures and in spatial audio object coding

    Object-based Modeling of Audio for Coding and Source Separation

    Get PDF
    This thesis studies several data decomposition algorithms for obtaining an object-based representation of an audio signal. The estimation of the representation parameters are coupled with audio-specific criteria, such as the spectral redundancy, sparsity, perceptual relevance and spatial position of sounds. The objective is to obtain an audio signal representation that is composed of meaningful entities called audio objects that reflect the properties of real-world sound objects and events. The estimation of the object-based model is based on magnitude spectrogram redundancy using non-negative matrix factorization with extensions to multichannel and complex-valued data. The benefits of working with object-based audio representations over the conventional time-frequency bin-wise processing are studied. The two main applications of the object-based audio representations proposed in this thesis are spatial audio coding and sound source separation from multichannel microphone array recordings. In the proposed spatial audio coding algorithm, the audio objects are estimated from the multichannel magnitude spectrogram. The audio objects are used for recovering the content of each original channel from a single downmixed signal, using time-frequency filtering. The perceptual relevance of modeling the audio signal is considered in the estimation of the parameters of the object-based model, and the sparsity of the model is utilized in encoding its parameters. Additionally, a quantization of the model parameters is proposed that reflects the perceptual relevance of each quantized element. The proposed object-based spatial audio coding algorithm is evaluated via listening tests and comparing the overall perceptual quality to conventional time-frequency block-wise methods at the same bitrates. The proposed approach is found to produce comparable coding efficiency while providing additional functionality via the object-based coding domain representation, such as the blind separation of the mixture of sound sources in the encoded channels. For the sound source separation from multichannel audio recorded by a microphone array, a method combining an object-based magnitude model and spatial covariance matrix estimation is considered. A direction of arrival-based model for the spatial covariance matrices of the sound sources is proposed. Unlike the conventional approaches, the estimation of the parameters of the proposed spatial covariance matrix model ensures a spatially coherent solution for the spatial parameterization of the sound sources. The separation quality is measured with objective criteria and the proposed method is shown to improve over the state-of-the-art sound source separation methods, with recordings done using a small microphone array
    • …
    corecore