180 research outputs found

    Issues in designing transport layer multicast facilities

    Get PDF
    Multicasting denotes a facility in a communications system for providing efficient delivery from a message's source to some well-defined set of locations using a single logical address. While modem network hardware supports multidestination delivery, first generation Transport Layer protocols (e.g., the DoD Transmission Control Protocol (TCP) (15) and ISO TP-4 (41)) did not anticipate the changes over the past decade in underlying network hardware, transmission speeds, and communication patterns that have enabled and driven the interest in reliable multicast. Much recent research has focused on integrating the underlying hardware multicast capability with the reliable services of Transport Layer protocols. Here, we explore the communication issues surrounding the design of such a reliable multicast mechanism. Approaches and solutions from the literature are discussed, and four experimental Transport Layer protocols that incorporate reliable multicast are examined

    Low Cost Quality of Service Multicast Routing in High Speed Networks

    Get PDF
    Many of the services envisaged for high speed networks, such as B-ISDN/ATM, will support real-time applications with large numbers of users. Examples of these types of application range from those used by closed groups, such as private video meetings or conferences, where all participants must be known to the sender, to applications used by open groups, such as video lectures, where partcipants need not be known by the sender. These types of application will require high volumes of network resources in addition to the real-time delay constraints on data delivery. For these reasons, several multicast routing heuristics have been proposed to support both interactive and distribution multimedia services, in high speed networks. The objective of such heuristics is to minimise the multicast tree cost while maintaining a real-time bound on delay. Previous evaluation work has compared the relative average performance of some of these heuristics and concludes that they are generally efficient, although some perform better for small multicast groups and others perform better for larger groups. Firstly, we present a detailed analysis and evaluation of some of these heuristics which illustrates that in some situations their average performance is reversed; a heuristic that in general produces efficient solutions for small multicasts may sometimes produce a more efficient solution for a particular large multicast, in a specific network. Also, in a limited number of cases using Dijkstra's algorithm produces the best result. We conclude that the efficiency of a heuristic solution depends on the topology of both the network and the multicast, and that it is difficult to predict. Because of this unpredictability we propose the integration of two heuristics with Dijkstra's shortest path tree algorithm to produce a hybrid that consistently generates efficient multicast solutions for all possible multicast groups in any network. These heuristics are based on Dijkstra's algorithm which maintains acceptable time complexity for the hybrid, and they rarely produce inefficient solutions for the same network/multicast. The resulting performance attained is generally good and in the rare worst cases is that of the shortest path tree. The performance of our hybrid is supported by our evaluation results. Secondly, we examine the stability of multicast trees where multicast group membership is dynamic. We conclude that, in general, the more efficient the solution of a heuristic is, the less stable the multicast tree will be as multicast group membership changes. For this reason, while the hybrid solution we propose might be suitable for use with closed user group multicasts, which are likely to be stable, we need a different approach for open user group multicasting, where group membership may be highly volatile. We propose an extension to an existing heuristic that ensures multicast tree stability where multicast group membership is dynamic. Although this extension decreases the efficiency of the heuristics solutions, its performance is significantly better than that of the worst case, a shortest path tree. Finally, we consider how we might apply the hybrid and the extended heuristic in current and future multicast routing protocols for the Internet and for ATM Networks.

    A novel middleware based web database model

    Full text link
    In this paper, we propose a novel model for web-based database systems based on the multicast and anycast\u27 protocols. In the model, we design a middleware, castway, which locates between the database server and the Web server. Every castway in a distributed system operates as a multicast node and an anycast node independently, respectively. The proposed mechanism can balance the workload among the distributed database servers, and offers the &quot;best&quot; server to serve for a query. Three algorithms are employed for the model: the requirement-based probing algorithm for anycast routing, the atomic multicast update algorithm for database synchronization, and the job deviation algorithm for system workload balance. The simulations and experiments show that the proposed model works very well.<br /

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    A web-DB model on multicast and anycast

    Full text link
    Most of the current web-based database systems suffer from poor performance, complicated heterogeneity, and synchronization issues. In this paper, we propose a novel mechanism for web-based database system on multicast and anycast protocols to deal with these issues. In the model, we put a castway, a network interface for database server, between database server and Web server. Castway deals with the multicast and anycast requests and responses. We propose a requirement-based server selection algorithm and an atomic multicast update algorithm for data queries and synchronizations. The model is independent from the Internet environment, it can synchronise the databases efficiently and automatically. Furthermore, the model can reduce the possibility of transaction deadlocks.<br /

    Analysis of Performance of Dynamic Multicast Routing Algorithms

    Full text link
    In this paper, three new dynamic multicast routing algorithms based on the greedy tree technique are proposed; Source Optimised Tree, Topology Based Tree and Minimum Diameter Tree. A simulation analysis is presented showing various performance aspects of the algorithms, in which a comparison is made with the greedy and core based tree techniques. The effects of the tree source location on dynamic membership change are also examined. The simulations demonstrate that the Source Optimised Tree algorithm achieves a significant improvement in terms of delay and link usage when compared to the Core Based Tree, and greedy algorithm

    MENU: multicast emulation using netlets and unicast

    Get PDF
    High-end networking applications such as Internet TV and software distribution have generated a demand for multicast protocols as an integral part of the network. This will allow such applications to support data dissemination to large groups of users in a scalable and reliable manner. Existing IP multicast protocols lack these features and also require state storage in the core of the network which is costly to implement. In this paper, we present a new multicast protocol referred to as MENU. It realises a scalable and a reliable multicast protocol model by pushing the tree building complexity to the edges of the network, thereby eliminating processing and state storage in the core of the network. The MENU protocol builds multicast support in the network using mobile agent based active network services, Netlets, and unicast addresses. The multicast delivery tree in MENU is a two level hierarchical structure where users are partitioned into client communities based on geographical proximity. Each client community in the network is treated as a single virtual destination for traffic from the server. Netlet based services referred to as hot spot delegates (HSDs) are deployed by servers at "hot spots" close to each client community. They function as virtual traffic destinations for the traffic from the server and also act as virtual source nodes for all users in the community. The source node feeds data to these distributed HSDs which in turn forward data to all downstream users through a locally constructed traffic delivery tree. It is shown through simulations that the resulting system provides an efficient means to incrementally build a source customisable secured multicast protocol which is both scalable and reliable. Furthermore, results show that MENU employs minimal processing and reduced state information in networks when compared to existing IP multicast protocols

    Multicast QoS Routing Using Collaborative Path Exploration

    Get PDF
    Quality of Service (QoS) is one of the most active research areas in networking. The most fundamental requirement for QoS routing is the ability to find and maintain a network path that provides the required network resources between two or more nodes. In this paper, we present a distributed collaborative multicast QoS routing architecture that uses a semi-greedy probing heuristic to quickly find a QoS path between a joining node and the multicast tree. The proposed architecture will enable the routers along the path to intelligently and dynamically discover a QoS path. Any router that receives a probe will only know its neighbours and it will create a link to the previous router from where the probe comes from. The proposed architecture is a tree-initiated QoS search and the first QoS packet to reach the joining node will be used as the QoS path. Analysis of this method shows that the path search time and message overhead is lower than other similar schemes
    • ā€¦
    corecore