617 research outputs found

    A receiver-initiated soft-state probabilistic multicasting protocol in wireless ad hoc networks

    Get PDF
    A novel Receiver-Initiated Soft-State Probabilistic multicasting protocol (RISP) for mobile ad hoc network is proposed in this paper. RISP introduces probabilistic forwarding and soft-state for making relay decisions. Multicast members periodically initiate control packets, through which intermediate nodes adjust the forwarding probability. With a probability decay function (soft-state), routes traversed by more control packets are reinforced, while the less utilized paths are gradually relinquished. In this way, RISP can adapt to node mobility: at low mobility, RISP performs similar to a tree-based protocol; at high mobility, it produces a multicast mesh in the network. Simulation results show RISP has lower delivery redundancy than meshbased protocols, while achieving higher delivery ratio. Further, the control overhead is lower than other compared protocols. © 2005 IEEE.published_or_final_versio

    A receiver-initiated soft-state probabilistic multicasting protocol in wireless ad hoc networks

    Get PDF
    A novel Receiver-Initiated Soft-State Probabilistic multicasting protocol (RISP) for mobile ad hoc network is proposed in this paper. RISP introduces probabilistic forwarding and soft-state for making relay decisions. Multicast members periodically initiate control packets, through which intermediate nodes adjust the forwarding probability. With a probability decay function (soft-state), routes traversed by more control packets are reinforced, while the less utilized paths are gradually relinquished. In this way, RISP can adapt to node mobility: at low mobility, RISP performs similar to a tree-based protocol; at high mobility, it produces a multicast mesh in the network. Simulation results show RISP has lower delivery redundancy than meshbased protocols, while achieving higher delivery ratio. Further, the control overhead is lower than other compared protocols. © 2005 IEEE.published_or_final_versio

    Mesh based and Hybrid Multicast routing protocols for MANETs: Current State of the art

    Get PDF
    This paper discusses various multicast routing protocols which are proposed in the recent past each having its own unique characteristic, with a motive of providing a complete understanding of these multicast routing protocols and present the scope of future research in this field. Further, the paper specifically discusses the current development in the development of mesh based and hybrid multicasting routing protocols. The study of this paper addresses the solution of most difficult task in Multicast routing protocols for MANETs under host mobility which causes multi-hop routing which is even more severe with bandwidth limitations. The Multicast routing plays a substantial part in MANETs

    A New Approach to Coding in Content Based MANETs

    Full text link
    In content-based mobile ad hoc networks (CB-MANETs), random linear network coding (NC) can be used to reliably disseminate large files under intermittent connectivity. Conventional NC involves random unrestricted coding at intermediate nodes. This however is vulnerable to pollution attacks. To avoid attacks, a brute force approach is to restrict the mixing at the source. However, source restricted NC generally reduces the robustness of the code in the face of errors, losses and mobility induced intermittence. CB-MANETs introduce a new option. Caching is common in CB MANETs and a fully reassembled cached file can be viewed as a new source. Thus, NC packets can be mixed at all sources (including the originator and the intermediate caches) yet still providing protection from pollution. The hypothesis we wish to test in this paper is whether in CB-MANETs with sufficient caches of a file, the performance (in terms of robustness) of the restricted coding equals that of unrestricted coding. In this paper, we examine and compare unrestricted coding to full cache coding, source only coding, and no coding. As expected, we find that full cache coding remains competitive with unrestricted coding while maintaining full protection against pollution attacks

    A survey of flooding, gossip routing, and related schemes for wireless multi- hop networks

    Get PDF
    Flooding is an essential and critical service in computer networks that is used by many routing protocols to send packets from a source to all nodes in the network. As the packets are forwarded once by each receiving node, many copies of the same packet traverse the network which leads to high redundancy and unnecessary usage of the sparse capacity of the transmission medium. Gossip routing is a well-known approach to improve the flooding in wireless multi-hop networks. Each node has a forwarding probability p that is either statically per-configured or determined by information that is available at runtime, e.g, the node degree. When a packet is received, the node selects a random number r. If the number r is below p, the packet is forwarded and otherwise, in the most simple gossip routing protocol, dropped. With this approach the redundancy can be reduced while at the same time the reachability is preserved if the value of the parameter p (and others) is chosen with consideration of the network topology. This technical report gives an overview of the relevant publications in the research domain of gossip routing and gives an insight in the improvements that can be achieved. We discuss the simulation setups and results of gossip routing protocols as well as further improved flooding schemes. The three most important metrics in this application domain are elaborated: reachability, redundancy, and management overhead. The published studies used simulation environments for their research and thus the assumptions, models, and parameters of the simulations are discussed and the feasibility of an application for real world wireless networks are highlighted. Wireless mesh networks based on IEEE 802.11 are the focus of this survey but publications about other network types and technologies are also included. As percolation theory, epidemiological models, and delay tolerant networks are often referred as foundation, inspiration, or application of gossip routing in wireless networks, a brief introduction to each research domain is included and the applicability of the particular models for the gossip routing is discussed

    Review of multicast QoS routing protocols for mobile ad hoc networks

    Get PDF
    A Mobile Ad hoc NETwork (MANET) is consisting of a collection of wireless mobile nodes, which form a temporary network without relying on any existing infrastructure or centralized administration. Since the bandwidth of MANETs is limited and shared between the participating nodes in the network, it is important to efficiently utilize the network bandwidth. Multicasting can minimize the link bandwidth consumption and reduce the communication cost by sending the same data to multiple participants. Multicast service is critical for applications that need collaboration of team of users. Multicasting in MANETs becomes a hot research area due to the increasing popularity of group communication applications such as video conferencing and interactive television. Recently, multimedia and group-oriented computing gains more popularity for users of ad hoc networks. So, effective Quality of Service (QoS) multicasting protocol plays significant role in MANETs. In this paper, we are presenting an overview of set of the most recent QoS multicast routing protocols that have been proposed in order to provide the researchers with a clear view of what has been done in this field
    corecore