255 research outputs found

    Smart Microgrids: Optimizing Local Resources toward Increased Efficiency and a More Sustainable Growth

    Get PDF
    Smart microgrids are a possibility to reduce complexity by performing local optimization of power production, consumption and storage. We do not envision smart microgrids to be island solutions but rather to be integrated into a larger network of microgrids that form the future energy grid. Operating and controlling a smart microgrid involves optimization for using locally generated energy and to provide feedback to the user when and how to use devices. This chapter shows how these issues can be addressed starting with measuring and modeling energy consumption patterns by collecting an energy consumption dataset at device level. The open dataset allows to extract typical usage patterns and subsequently to model test scenarios for energy management algorithms. Section 3 discusses means for analyzing measured data and for providing detailed feedback about energy consumption to increase customers’ energy awareness. Section 4 shows how renewable energy sources can be integrated in a smart microgrid and how energy production can be accurately predicted. Section 5 introduces a self-organizing local energy system that autonomously coordinates production and consumption via an agent-based energy auction system. The final section discusses how the proposed methods contribute to sustainable growth and gives an outlook to future research

    Coordinating decentralized learning and conflict resolution across agent boundaries

    Get PDF
    It is crucial for embedded systems to adapt to the dynamics of open environments. This adaptation process becomes especially challenging in the context of multiagent systems because of scalability, partial information accessibility and complex interaction of agents. It is a challenge for agents to learn good policies, when they need to plan and coordinate in uncertain, dynamic environments, especially when they have large state spaces. It is also critical for agents operating in a multiagent system (MAS) to resolve conflicts among the learned policies of different agents, since such conflicts may have detrimental influence on the overall performance. The focus of this research is to use a reinforcement learning based local optimization algorithm within each agent to learn multiagent policies in a decentralized fashion. These policies will allow each agent to adapt to changes in environmental conditions while reorganizing the underlying multiagent network when needed. The research takes an adaptive approach to resolving conflicts that can arise between locally optimal agent policies. First an algorithm that uses heuristic rules to locally resolve simple conflicts is presented. When the environment is more dynamic and uncertain, a mediator-based mechanism to resolve more complicated conflicts and selectively expand the agents' state space during the learning process is harnessed. For scenarios where mediator-based mechanisms with partially global views are ineffective, a more rigorous approach for global conflict resolution that synthesizes multiagent reinforcement learning (MARL) and distributed constraint optimization (DCOP) is developed. These mechanisms are evaluated in the context of a multiagent tornado tracking application called NetRads. Empirical results show that these mechanisms significantly improve the performance of the tornado tracking network for a variety of weather scenarios. The major contributions of this work are: a state of the art decentralized learning approach that supports agent interactions and reorganizes the underlying network when needed; the use of abstract classes of scenarios/states/actions that efficiently manages the exploration of the search space; novel conflict resolution algorithms of increasing complexity that use heuristic rules, sophisticated automated negotiation mechanisms and distributed constraint optimization methods respectively; and finally, a rigorous study of the interplay between two popular theories used to solve multiagent problems, namely decentralized Markov decision processes and distributed constraint optimization

    Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review

    Get PDF
    Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models

    Modeling social norms in real-world agent-based simulations

    Get PDF
    Studying and simulating social systems including human groups and societies can be a complex problem. In order to build a model that simulates humans\u27 actions, it is necessary to consider the major factors that affect human behavior. Norms are one of these factors: social norms are the customary rules that govern behavior in groups and societies. Norms are everywhere around us, from the way people handshake or bow to the clothes they wear. They play a large role in determining our behaviors. Studies on norms are much older than the age of computer science, since normative studies have been a classic topic in sociology, psychology, philosophy and law. Various theories have been put forth about the functioning of social norms. Although an extensive amount of research on norms has been performed during the recent years, there remains a significant gap between current models and models that can explain real-world normative behaviors. Most of the existing work on norms focuses on abstract applications, and very few realistic normative simulations of human societies can be found. The contributions of this dissertation include the following: 1) a new hybrid technique based on agent-based modeling and Markov Chain Monte Carlo is introduced. This method is used to prepare a smoking case study for applying normative models. 2) This hybrid technique is described using category theory, which is a mathematical theory focusing on relations rather than objects. 3) The relationship between norm emergence in social networks and the theory of tipping points is studied. 4) A new lightweight normative architecture for studying smoking cessation trends is introduced. This architecture is then extended to a more general normative framework that can be used to model real-world normative behaviors. The final normative architecture considers cognitive and social aspects of norm formation in human societies. Normative architectures based on only one of these two aspects exist in the literature, but a normative architecture that effectively includes both of these two is missing

    A Review of Energy Management Systems and Organizational Structures of Prosumers

    Get PDF
    Thisreviewprovidesthestateoftheartofenergymanagementsystems(EMS)and organizationalstructuresofprosumers.Integrationofrenewableenergysources(RES)intothe householdbringsnewchallengesinoptimaloperation,powerquality,participationintheelectricity marketandpowersystemstability.AcommonsolutiontothesechallengesistodevelopanEMSwith differentprosumerorganizationalstructures.EMSdevelopmentisamultidisciplinaryprocessthat needstoinvolveseveralaspectsofobservation.Thispaperprovidesanoverviewoftheprosumer organizationalandcontrolstructures,typesandelements,predictionmethodsofinputparameters, optimizationframeworks,optimizationmethods,objectivefunctions,constraintsandthemarket environment.Specialattentionisgiventotheoptimizationframeworkandpredictionofinput parameters,whichrepresentsroomforimprovement,thatmitigatetheimpactofuncertainties associatedwithRES-basedgeneration,consumptionandmarketpricesonoptimaloperation.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.a - Per a 2030, augmentar la cooperació internacional per tal de facilitar l’accés a la investigació i a les tecnolo­gies energètiques no contaminants, incloses les fonts d’energia renovables, l’eficiència energètica i les tecnologies de combustibles fòssils avançades i menys contaminants, i promoure la inversió en infraestructures energètiques i tecnologies d’energia no contaminantObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (published version

    Air Force Institute of Technology Research Report 2001

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    Organization based multiagent architecture for distributed environments

    Get PDF
    [EN]Distributed environments represent a complex field in which applied solutions should be flexible and include significant adaptation capabilities. These environments are related to problems where multiple users and devices may interact, and where simple and local solutions could possibly generate good results, but may not be effective with regards to use and interaction. There are many techniques that can be employed to face this kind of problems, from CORBA to multi-agent systems, passing by web-services and SOA, among others. All those methodologies have their advantages and disadvantages that are properly analyzed in this documents, to finally explain the new architecture presented as a solution for distributed environment problems. The new architecture for solving complex solutions in distributed environments presented here is called OBaMADE: Organization Based Multiagent Architecture for Distributed Environments. It is a multiagent architecture based on the organizations of agents paradigm, where the agents in the architecture are structured into organizations to improve their organizational capabilities. The reasoning power of the architecture is based on the Case-Based Reasoning methology, being implemented in a internal organization that uses agents to create services to solve the external request made by the users. The OBaMADE architecture has been successfully applied to two different case studies where its prediction capabilities have been properly checked. Those case studies have showed optimistic results and, being complex systems, have demonstrated the abstraction and generalizations capabilities of the architecture. Nevertheless OBaMADE is intended to be able to solve much other kind of problems in distributed environments scenarios. It should be applied to other varieties of situations and to other knowledge fields to fully develop its potencial.[ES]Los entornos distribuidos representan un campo de conocimiento complejo en el que las soluciones a aplicar deben ser flexibles y deben contar con gran capacidad de adaptación. Este tipo de entornos está normalmente relacionado con problemas donde varios usuarios y dispositivos entran en juego. Para solucionar dichos problemas, pueden utilizarse sistemas locales que, aunque ofrezcan buenos resultados en términos de calidad de los mismos, no son tan efectivos en cuanto a la interacción y posibilidades de uso. Existen múltiples técnicas que pueden ser empleadas para resolver este tipo de problemas, desde CORBA a sistemas multiagente, pasando por servicios web y SOA, entre otros. Todas estas mitologías tienen sus ventajas e inconvenientes, que se analizan en este documento, para explicar, finalmente, la nueva arquitectura presentada como una solución para los problemas generados en entornos distribuidos. La nueva arquitectura aquí se llama OBaMADE, que es el acrónimo del inglés Organization Based Multiagent Architecture for Distributed Environments (Arquitectura Multiagente Basada en Organizaciones para Entornos Distribuidos). Se trata de una arquitectura multiagente basasa en el paradigma de las organizaciones de agente, donde los agentes que forman parte de la arquitectura se estructuran en organizaciones para mejorar sus capacidades organizativas. La capacidad de razonamiento de la arquitectura está basada en la metodología de razonamiento basado en casos, que se ha implementado en una de las organizaciones internas de la arquitectura por medio de agentes que crean servicios que responden a las solicitudes externas de los usuarios. La arquitectura OBaMADE se ha aplicado de forma exitosa a dos casos de estudio diferentes, en los que se han demostrado sus capacidades predictivas. Aplicando OBaMADE a estos casos de estudio se han obtenido resultados esperanzadores y, al ser sistemas complejos, se han demostrado las capacidades tanto de abstracción como de generalización de la arquitectura presentada. Sin embargo, esta arquitectura está diseñada para poder ser aplicada a más tipo de problemas de entornos distribuidos. Debe ser aplicada a más variadas situaciones y a otros campos de conocimiento para desarrollar completamente el potencial de esta arquitectura

    Citizens AND HYdrology (CANDHY): conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges

    Get PDF
    Widely available digital technologies are empowering citizens who are increasingly well informed and involved in numerous water, climate, and environmental challenges. Citizen science can serve many different purposes, from the "pleasure of doing science" to complementing observations, increasing scientific literacy, and supporting collaborative behaviour to solve specific water management problems. Still, procedures on how to incorporate citizens' knowledge effectively to inform policy and decision-making are lagging behind. Moreover, general conceptual frameworks are unavailable, preventing the widespread uptake of citizen science approaches for more participatory cross-sectorial water governance. In this work, we identify the shared constituents, interfaces, and interlinkages between hydrological sciences and other academic and non-academic disciplines in addressing water issues. Our goal is to conceptualize a transdisciplinary framework for valuing citizen science and advancing the hydrological sciences. Joint efforts between hydrological, computer, and social sciences are envisaged for integrating human sensing and behavioural mechanisms into the framework. Expanding opportunities of online communities complement the fundamental value of on-site surveying and indigenous knowledge. This work is promoted by the Citizens AND HYdrology (CANDHY) Working Group established by the International Association of Hydrological Sciences (IAHS)
    • …
    corecore