5,033 research outputs found

    Multi-variable weakening buffer operator and its application

    Get PDF
    To weaken the disturbances of multi-variable and reveal the real situation, it is proved that the essence of the weakening buffer operator (abbreviated as WBO) can weaken the disturbance of one variable. According to this, the multi-variable weakening buffer operator is put forward. The multi-variable weakening buffer operator can satisfy the desire to use the freshest data and its buffer effect is obvious when the sample size is small. Four real cases show that the proposed multi-variable weakening buffer operator has higher forecasting performances

    Using fractional order method to generalize strengthening generating operator buffer operator and weakening buffer operator

    Get PDF
    Traditional integer order buffer operator is extended to fractional order buffer operator, the corresponding relationship between the weakening buffer operator and the strengthening buffer operator is revealed. Fractional order buffer operator not only can generalize the weakening buffer operator and the strengthening buffer operator, but also realize tiny adjustment of buffer effect. The effectiveness of GM(1,1) with the fractional order buffer operator is validated by six cases

    Abstraction : a notion for reverse engineering.

    Get PDF

    Saber: window-based hybrid stream processing for heterogeneous architectures

    Get PDF
    Modern servers have become heterogeneous, often combining multicore CPUs with many-core GPGPUs. Such heterogeneous architectures have the potential to improve the performance of data-intensive stream processing applications, but they are not supported by current relational stream processing engines. For an engine to exploit a heterogeneous architecture, it must execute streaming SQL queries with sufficient data-parallelism to fully utilise all available heterogeneous processors, and decide how to use each in the most effective way. It must do this while respecting the semantics of streaming SQL queries, in particular with regard to window handling. We describe SABER, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. SABER executes windowbased streaming SQL queries in a data-parallel fashion using all available CPU and GPGPU cores. Instead of statically assigning query operators to heterogeneous processors, SABER employs a new adaptive heterogeneous lookahead scheduling strategy, which increases the share of queries executing on the processor that yields the highest performance. To hide data movement costs, SABER pipelines the transfer of stream data between different memory types and the CPU/GPGPU. Our experimental comparison against state-ofthe-art engines shows that SABER increases processing throughput while maintaining low latency for a wide range of streaming SQL queries with small and large windows sizes

    Late-bound code generation

    Get PDF
    Each time a function or method is invoked during the execution of a program, a stream of instructions is issued to some underlying hardware platform. But exactly what underlying hardware, and which instructions, is usually left implicit. However in certain situations it becomes important to control these decisions. For example, particular problems can only be solved in real-time when scheduled on specialised accelerators, such as graphics coprocessors or computing clusters. We introduce a novel operator for hygienically reifying the behaviour of a runtime function instance as a syntactic fragment, in a language which may in general differ from the source function definition. Translation and optimisation are performed by recursively invoked, dynamically dispatched code generators. Side-effecting operations are permitted, and their ordering is preserved. We compare our operator with other techniques for pragmatic control, observing that: the use of our operator supports lifting arbitrary mutable objects, and neither requires rewriting sections of the source program in a multi-level language, nor interferes with the interface to individual software components. Due to its lack of interference at the abstraction level at which software is composed, we believe that our approach poses a significantly lower barrier to practical adoption than current methods. The practical efficacy of our operator is demonstrated by using it to offload the user interface rendering of a smartphone application to an FPGA coprocessor, including both statically and procedurally defined user interface components. The generated pipeline is an application-specific, statically scheduled processor-per-primitive rendering pipeline, suitable for place-and-route style optimisation. To demonstrate the compatibility of our operator with existing languages, we show how it may be defined within the Python programming language. We introduce a transformation for weakening mutable to immutable named bindings, termed let-weakening, to solve the problem of propagating information pertaining to named variables between modular code generating units.Open Acces

    Session typing and asynchronous subtyping for the higher-order π-calculus

    Get PDF
    AbstractThis paper proposes a session typing system for the higher-order π-calculus (the HOπ-calculus) with asynchronous communication subtyping, which allows partial commutativity of actions in higher-order processes. The system enables two complementary kinds of optimisation, mobile code and asynchronous permutation of session actions, within processes that utilise structured, typed communications. Our first contribution is a session typing system for the HOπ-calculus using techniques from the linear λ-calculus. Integration of arbitrary higher-order code mobility and sessions leads to technical difficulties in type soundness, because linear usage of session channels and completion of sessions are required. Our second contribution is to introduce an asynchronous subtyping system which uniformly deals with type-manifested asynchrony and linear functions. The most technical challenge for subtyping is to prove the transitivity of the subtyping relation. We also demonstrate the expressiveness of our typing system with an e-commerce example, where optimised processes can interact respecting the expected sessions
    • …
    corecore