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Abstract:

To weaken the disturbances of multi-variable and reveal the real situation, it is proved that

the essence of the weakening buffer operator (abbreviated as WBO) can weaken the disturbance

of one variable. According to this, the multi-variable weakening buffer operator is put forward.

The multi-variable weakening buffer operator can satisfy the desire to use the freshest data and

its buffer effect is obvious when the sample size is small. Four real cases show that the proposed

multi-variable weakening buffer operator has higher forecasting performances.

Keywords: forecasting; grey system theory; weakening buffer operator; multiple linear regression;

energy demand forecasting

1. Introduction

Forecasting the future values of time series data plays a very important role in our research.

Superior forecasting ability is an important characteristic of successful managers in complex and

uncertain environments. With the rapid developments of science and technology, managers can

better understand the future situation and make right strategies and plans by getting more infor-

mation in advance. Thus, some forecasting methods have been developed, for example, moving
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average, support vector clustering, neural networks and time series [7, 24]. However, these methods

require a large amount of data and must meet some assumptions, and they are invalid when the

observed data available is of a small sample size.

Moreover, in some cases, the time series may exhibit a jumping phenomenon due to the

changing of policy. Therefore, it is difficult to fit a reasonable mathematic model. In such a case,

it is most important to weaken the impact of policy. Considering the above reasons, based on

the fact that the recent data could provide more information than the distant data (More recent

data are typically more relevant, especially for short-term forecasts [9]), more emphasis has been

placed on data which is more recent. Take the energy demand in China from 1985 to 2006 as an

example. Actually, the growth rate of energy demand in China from 1985 to 2002 is tempered.

From 2003 to 2006, Chinese total energy demand increased abruptly.(During this period, China

has already entered into the heavy chemical industry stage, becoming one member of World Trade

Organization. The rapid development of heavy and chemical industry accelerates Chinese economic

growth. The growth rate of Chinese economy was above 10%. The rapid development of economy

accelerates Chinese energy demand growth.) To obtain better forecasting results from 2004 to

2006, we must give more weight to the data of 2003.

Grey weakening buffer operator is proposed to cope with the disturbance. It was first intro-

duced in early 1990s by Liu [23]. Since then, WBO has been widely and successfully applied to var-

ious systems [5,15,16,17,26]. Its improved form appeared simultaneously [1,3,4,6,8,13,14,19,22,25].

However, traditional WBOs can only deal with a single variable, and little research has been con-

ducted on multiple variables. The multi-variable weakening buffer operator model is put forward

by giving more weight to newer information in this paper.

The rest of this paper is organized as follows. In Section 2, the essence of a variable WBO

is introduced. In Sections 3, the multi-variable weakening buffer operator model is proposed. In

Section 4, the advantages of the new model over the traditional model is clarified by four real cases.
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The conclusions of this work are discussed in Section 5.

2. The essence of a variable WBO

With the changes of economic development, the historical data tends to deviate from the cur-

rent situations. Grey buffer operator can weaken these disturbances and reveal the real situation.

Its definition is as follows.

2.1. GM(1,1) model with the WBO

Definition [13] Given a raw data sequence X(0) = {x(0)(1), x(0)(2), · · · , x(0)(n)}, X(0)D =

{x(0)(1)d, x(0)(2)d, · · · , x(0)(n)d}, where

x(0)(k)d =
x(0)(k) + x(0)(k + 1) + · · ·+ x(0)(n)

n− k + 1
, (1)

D is a first order WBO.

The sequence {x(0)(1)d, x(0)(2)d, · · · , x(0)(n)d} is given by WBO of Eq.(1). A new series

X(1)D = {x(1)(1)d, x(1)(2)d, · · · , x(1)(n)d} can be generated by the first-order accumulated gener-

ating operator as x(1)(k)d =
k∑
i=1

x(0)(i)d, k = 1, 2, · · · , n. Since the original form of GM(1,1) model

x(0)(k)d + az(1)(k) = b, where z(1)(k) = x(1)(k)d+x(1)(k−1)d
2 , k = 2, 3, · · · , n. [11, 20]. The least

squares estimate of a and b can be obtained by[
â

b̂

]
= (BTB)−1BTY,

where

Y =


x(0)(2)d
x(0)(3)d

...
x(0)(n)d

 , B =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(n) 1


The prediction expression of GM(1,1) model can be obtained as x̂(1)(t) = [x(0)(1)− b̂

â ]e−ât+ b̂
â

by solving the differential dx
(1)

dt +ax(1) = b. The prediction at k+1 can be obtained as x̂(0)(k+1) =

x̂(1)(k + 1)− x̂(1)(k).

2.2. The essence of WBO

A lemma is given in order to discuss the essence of WBO.
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Lemma 1 [2] Assume that A ∈ Cn×n, δA ∈ Cn×n, b ∈ Cn, δb ∈ Cn, vector norm ‖ · ‖ and

matrix norm ‖ · ‖ are tolerant. If a matrix norm ‖ · ‖ followed ‖A−1‖‖δA‖ < 1, then the solutions

of linear system equations AX = b and (A+ δA)(X + δx) = b+ δb satisfy

‖δx‖
‖x‖

≤ ‖A‖‖A−1‖
1− ‖A‖‖A−1‖‖δA‖‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)

Theorem 1 For the GM(1,1) model of original data {x(0)(1), x(0)(2), · · · , x(0)(n)} based

on WBO, if the rth data is disturbed, that is x̂(0)(r) = x(0)(r) + εr, r = 1, 2, · · · , n. Lr is the

‖δB‖2 resulted from this disturbance, Tr is the ‖δY ‖2 resulted from this disturbance, the relative

perturbation bound of the parameter estimation is ‖B‖‖B−1‖
1−‖B‖‖B−1‖ ‖Lr‖

‖B‖
(‖Lr‖
‖B‖ + ‖Tr‖

‖Y ‖ ) by Lemma 1.

Then the relative perturbation bound of the parameter estimation is larger while the more recent

data is perturbed.

Proof. Since

B =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(n) 1

 = −


1 1

2 0 · · · 0
1 1 1

2 · · · 0
...

...
...

...
...

1 1 1 · · · 1
2



x(0)(1)d −1
x(0)(2)d 0

...
...

x(0)(n)d 0



= −


1 1

2 0 · · · 0
1 1 1

2 · · · 0
...

...
...

...
...

1 1 1 · · · 1
2




1
n

1
n

1
n · · · 1

n
0 1

n−1
1

n−1 · · · 1
n−1

...
...

...
...

...
0 0 0 · · · 1

2
0 0 0 · · · 1



x(0)(1) −n
x(0)(2) 0

...
...

x(0)(n) 0



= −


1
n

1
n + 1

2(n−1)
1
n + 1

2(n−1) · · · 1
n + 1

2(n−1)
1
n

1
n + 1

n−1
1
n + 1

n−1 + 1
2(n−2) · · · 1

n + 1
n−1 + 1

2(n−2)
...

...
...

...
...

1
n

1
n + 1

n−1
1
n + 1

n−1 + 1
2(n−2) · · ·

n∑
k=2

1
k + 1

2



x(0)(1) −n
x(0)(2) 0

...
...

x(0)(n) 0


and

Y =


x(0)(2)d
x(0)(3)d

...
x(0)(n)d

 =


0 1

n−1
1

n−1 · · · 1
n−1

...
...

...
...

...
0 0 0 · · · 1

2
0 0 0 · · · 1



x(0)(1)
x(0)(2)

...
x(0)(n)

 .
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If it happens that disturbance x̂(0)(2) = x(0)(2) + ε2, matrix B becomes

B̂ = −


1
n

1
n + 1

2(n−1)
1
n + 1

2(n−1) · · · 1
n + 1

2(n−1)
1
n

1
n + 1

n−1
1
n + 1

n−1 + 1
2(n−2) · · · 1

n + 1
n−1 + 1

2(n−2)
...

...
...

...
...

1
n

1
n + 1

n−1
1
n + 1

n−1 + 1
2(n−2) · · ·

n∑
k=2

1
k + 1

2




x(0)(1) −n
x(0)(2) + ε2 0

...
...

x(0)(n) 0



= B −


0 ( 1

n + 1
2(n−1) )ε2

0 ( 1
n + 1

n−1 )ε2
...

...
0 ( 1

n + 1
n−1 )ε2

 ,

then δB = −


0 ( 1

n + 1
2(n−1) )ε2

0 ( 1
n + 1

n−1 )ε2
...

...
0 ( 1

n + 1
n−1 )ε2

 , L2 = ‖δB‖2 =
√

( 1
2(n−1) + 1

n )2 + (n− 2)( 1
n−1 + 1

n )2|ε2|;

vector Y becomes

Ŷ =


0 1

n−1
1

n−1 · · · 1
n−1

...
...

...
...

...
0 0 0 · · · 1

2
0 0 0 · · · 1




x(0)(1)
x(0)(2) + ε2

...
x(0)(n)

 = Y+


0 1

n−1
1

n−1 · · · 1
n−1

...
...

...
...

...
0 0 0 · · · 1

2
0 0 0 · · · 1




0
ε2
...
0



then δY = −


ε2
n−1
0
...
0

 , T2 = ‖δY ‖2 = |ε2|
n−1 .

Similarly, if it happens that disturbance x̂(0)(r) = x(0)(r)+εr, r = 3, 4, · · · , n, we obtain Lr and

Tr. It is easy to find that Lr and Tr from ‖B‖‖B−1‖
1−‖B‖‖B−1‖ ‖Lr‖

‖B‖
(‖Lr‖
‖B‖ + ‖Tr‖

‖Y ‖ ) are increasing functions of r.

So the relative perturbation bound of the parameter estimation ( ‖B‖‖B−1‖
1−‖B‖‖B−1‖ ‖Lr‖

‖B‖
(‖Lr‖
‖B‖ + ‖Tr‖

‖Y ‖ )) is

an increasing function of r, that is to say, the relative perturbation bound of parameter estimation

is larger, while the more recent data is perturbed and the perturbation of each data is equable.

The essence of WBO can attach more importance to the more recent data. Attaching more

importance to the more recent data is likely to have better forecasting performance, which is

consistent with the priority theory of new information in grey system theory. According to the

essence of WBO, the multi-variable weakening buffer operator is put forward.

3. Multi-variable weakening buffer operator
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The sequence {x1(k)d, x2(k)d, · · · , xm(k)d, y(k)d} is given by the weakening buffer operator

of the observations {x1(k), x2(k), · · · , xm(k), y(k)}. Let {y(1)d, y(2)d, · · · , y(k)d} be the sequence

from the regression model given by

y(k)d = β0 + β1x1(k)d+ β2x2(k)d+ · · ·+ βmxm(k)d (2)

where β0, β1, β2, · · · , βm are the regression parameters, Eq.(2) is called as multi-variable weakening

buffer operator. The ordinary least squares estimators of the parameters are
β̂0
β̂1
...

β̂n

 = (XTX)−1XTY,

where

X =


1 x1(1)d · · · xm(1)d
1 x1(2)d · · · xm(2)d
...

...
...

...
1 x1(n)d · · · xm(n)d

 , Y =


y(1)d
y(2)d

...
y(n)d


Then the model y(k) = β̂0 + β̂1x1(k) + β̂2x2(k) + · · · + β̂mxm(k) is used to predict the variable

y(k). The flow chart of the multi-variable weakening buffer operator model is shown in Fig. 1.

Fig.1. The flow chart of the multi-variable weakening buffer operator model

Because all matrix norms are equivalent, they are substantially consistent. The matrix m1

norm and its tolerant vector norm l1 are used in order to analyze clearly.

Theorem 2 For the multi-variable regression model with WBO y(k)d = β0 + β1x1(k)d +

β2x2(k)d+· · ·+βmxm(k)d, if the rth data is disturbed, that is x̂i(r) = xi(r)+εi(i = 1, 2, · · · ,m), ŷ(r) =

y(r) + ε0(r = 1, 2, · · · , n). Lr is the ‖δX‖m1 resulted from the disturbance x̂i(r) = xi(r) + εi(i =

1, 2, · · · ,m), Tr is the ‖δY ‖1 resulted from the disturbance ŷ(r) = y(r) + ε0(r = 1, 2, · · · , n), the

relative perturbation bound of the parameter estimation is ‖X‖‖X−1‖
1−‖X‖‖X−1‖ ‖Lr‖

‖X‖
(‖Lr‖
‖X‖ + ‖Tr‖

‖Y ‖ ) by Lem-

ma 1. Then the relative perturbation bound of the parameter estimation is larger while the more

recent data is perturbed.
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Proof. Since

X =


1 x1(1)d · · · xm(1)d
1 x1(2)d · · · xm(2)d
...

...
...

...
1 x1(n)d · · · xm(n)d

 =


1
n

1
n · · · 1

n
0 1

n−1 · · · 1
n−1

...
...

...
...

0 0 · · · 1




1 x1(1) · · · xm(1)
1 x1(2) · · · xm(2)
...

...
...

...
1 x1(n) · · · xm(n)

 ,

Y =


y(1)d
y(2)d

...
y(n)d

 =


1
n

1
n · · · 1

n
0 1

n−1 · · · 1
n−1

...
...

...
...

0 0 · · · 1



y(1)
y(2)

...
y(n)

 .
If it happens that disturbance x̂i(n) = xi(n) + εi(i = 1, 2, · · · ,m), ŷ(n) = y(n) + ε0, matrix X

becomes

X̂ =


1
n

1
n · · · 1

n
0 1

n−1 · · · 1
n−1

...
...

...
...

0 0 · · · 1




1 x1(1) · · · xm(1)
1 x1(2) · · · xm(2)
...

...
...

...
1 x1(n) + ε1 · · · xm(n) + εm



= X +


1
n

1
n · · · 1

n
0 1

n−1 · · · 1
n−1

...
...

...
...

0 0 · · · 1




0 0 · · · 0
0 0 · · · 0
...

...
...

...
0 ε1 · · · εm

 ,
then

δX =


ε1
n

1
n · · · εm

n
0 ε1

n−1 · · · εm
n−1

...
...

...
...

0 ε1 · · · εm

 ,
‖δX‖m1

= (1 + 1
n−1 + 1

n )|ε1|+ (1 + 1
n−2 + 1

n−1 + 1
n )|ε2|+ · · ·+

n∑
k=1

1
k |εm|; vector Y becomes

Ŷ =


1
n

1
n · · · 1

n
0 1

n−1 · · · 1
n−1

...
...

...
...

0 0 · · · 1




y(1)
y(2)

...
y(n) + ε0

 = Y+


1
n

1
n · · · 1

n
0 1

n−1 · · · 1
n−1

...
...

...
...

0 0 · · · 1




0
0
...
ε0

 = Y+


ε0
n
ε0
n−1

...
ε0


then

δY =


ε0
n
ε0
n−1

...
ε0

 ,
‖δY ‖1 =

n∑
k=1

|ε0|
k .

Similarly, if it happens that disturbance x̂i(n− 1) = xi(n− 1) + εi(i = 1, 2, · · · ,m), ŷ(n− 1) =

y(n− 1) + ε0, we obtain Ln−1 = ‖δX‖m1
= ( 1

n−1 + 1
n )|ε1|+ ( 1

n−2 + 1
n−1 + 1

n )|ε2|+ · · ·+
n∑
k=2

1
k |εm|,

Tn−1 = ‖δY ‖1 =
n∑
k=2

|ε0|
k .
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If it happens that disturbance x̂i(r) = xi(r) + εi(i = 1, 2, · · · ,m), ŷ(r) = y(r) + ε0, r =

1, 2, · · · , n − 2, we obtain Lr = ‖δX‖m1
= ( 1

n + 1
n−1 + · · · + 1

r )|ε1| + ( 1
n + 1

n−1 + · · · + 1
r−1 )|ε2| +

· · ·+
n∑

k=n−r+1

|εm|
k , Tr = ‖δY ‖1 =

n∑
k=n−r+1

|ε0|
k .

If it happens that disturbance x̂i(r) = xi(r) + εi(i = 1, 2, · · · ,m), ŷ(r) = y(r) + ε0, r =

1, 2, · · · , n, Lr and Tr from ‖X‖‖X−1‖
1−‖X‖‖X−1‖ ‖Lr‖

‖X‖
(‖Lr‖
‖X‖ + ‖Tr‖

‖Y ‖ ) are increasing functions of r. So the

relative perturbation bound, ‖X‖‖X−1‖
1−‖X‖‖X−1‖ ‖Lr‖

‖X‖
(‖Lr‖
‖X‖ + ‖Tr‖

‖Y ‖ ), is an increasing function of r, that is

to say, the relative perturbation bound of the parameter estimation is larger, while the more recent

data is perturbed and the perturbation of per period data is equable.

If the perturbation of per period data is equable, the relative perturbation bound of the

parameter estimation is larger while the more recent data is perturbed. It means that the role of

new information on cognition is better than the old information, that is to say the impact of data

far from the prediction point on future prediction is gradually weakened or even nonexistent, while

the data close to the prediction point will have a significant impact on prediction. It also means

that this method gives new information more weight. As can be seen, Lr+1 − Lr and Tr+1 − Tr

mean the change of relative perturbation bound, when Lr+1 − Lr and Tr+1 − Tr are larger, the

relative perturbation bound changed greatly, the difference between the weight of r+ 1th data and

the weight of rth data is larger. The size of Lr+1 − Lr and Tr+1 − Tr is determined by the size of

sample n, if n is smaller, then Lr+1 − Lr and Tr+1 − Tr are larger; if n is larger, then Lr+1 − Lr

and Tr+1−Tr are smaller. That is to say, when n is small, the difference between the weight of old

data and the weight of new data is more obvious; when n is large, the difference is not obvious, it

can not highlight the role of WBO. So Eq.(2) is suitable for the small-data-set problems.

4. Experimentation results

In this section, to testify the proposed model, three criteria are used to evaluate the forecasting

precision. They are mean absolute percentage error (MAPE = 100% 1
n

n∑
k=1

|x
(0)(k)−x̂(0)(k)

x(0)(k)
|), absolute
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mean error (AME = 1
n

n∑
k=1

|x(0)(k) − x̂(0)(k)|) and mean square error (MSE = 1
n

n∑
k=1

(x(0)(k) −

x̂(0)(k))2) .

Case 1: Energy demand forecasting in China [10]

We consider an example from paper [10] which provides the sample data. As the discussion in

the introduction, data from 1985 to 2003 are used to construct the multi-variable weakening buffer

operator model. Then data from 2004 to 2006 are predicted. Actual values and the forecasting

values of four compared models are presented in Table 1. The fitting and prediction results of four

models are plotted in Fig.2.

Fig.2. The fitting and prediction values by different models

Table 1 Forecasting results from different models (million ton)

Year Actual value GM(1,1) BP network support vector regression multi-variable WBO

2004 203227 203730 197690 193940 194721

2005 224682 213420 212530 220250 220409

2006 246270 223560 237830 243560 245775

MAPE 21.1 3.9 2.5 1.9

AME 48061.5 8710 5476 4425

MSE 2459091257 83187691 37745031 30286051

As can be seen from Table 1, the multi-variable weakening buffer operator provides the lowest

errors. This implies that the multi-variable weakening buffer operator can improve the prediction

accuracy of the other models.

Case 2: Construction land demand forecasting example in Kunming[18]

We consider an example from paper [18]. The same sample is applied here to compare the

precision. Actual values and fitting values of three compared models are presented in Table 2. The

fitting and prediction results of three models are plotted in Fig.3.

As can be seen from Table 2, from a short-term forecasting viewpoint, multi-variable WBO has
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the lowest errors from 2008 to 2009 compared with the other models. Therefore, we can conclude

that the multi-variable WBO significantly enhances the precision in out-of-sample. Because the

construction land demand in Kunming exhibited a jumping phenomenon when Qiu He took up

the mayor post in 2007. Qiu supplied lots of land for the municipal construction. To predict

the trend of construction land demand, it is most necessary to weaken the impact of policy. The

multi-variable WBO made full use of the data from 2007, thus the impact of Qiu is eliminated.

Fig. 3. The fitting and prediction values by different models

Table 2 The fitted values and errors of different models

Year Actual value GM(1,1) multivariate regression [18] multi-variable WBO

2008 115086.2 112205.1 112637.7 112896.4

2009 133600.0 115267.0 125211.7 128600.7

MAPE 8.1 4.2 2.8

AME 10607 5418.4 3594.5

MSE 172199813 38179189 14894038

Case 3: The commercial housing average price forecasting example in Guangdong

province [21]

We consider an example from paper [21] which provides the sample data. The commercial

housing average price in Guangdong province exhibited a jumping phenomenon due to the recession

in 2008. To predict the trend of the commercial housing average price, the multi-variable WBO

can weaken the impact by making full use of the data from 2008. Thus, the data from 2001 to 2008

(in-sample data) are used to construct the different models. Then the value in 2009 (out-of-sample)

is predicted. Actual values and the forecasting values of three compared models are presented in

Table 3. The fitting and prediction results of three models are plotted in Fig.4.

Fig. 4. The fitting and prediction values by different models
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Table 3 The fitted values and errors of different models

Time Actual value GM(1,1) multivariate regression [21] multi-variable WBO

2009 6513 6999.9 6418.5 6548.3

MAPE 4.66 4.09 1.91

AME 486.9 94.5 35.3

MSE 237147 8934 1249

As can be seen from Table 3, from a short-term forecasting viewpoint, the multi-variable WBO

has better forecasting performance than the other models, it indicates that the multi-variable WBO

can obtain accurate forecasting.

Case 4: The freight volume forecasting example in Handan city [12]

We consider an example from paper [12] which provides the sample data. In 2009, the gov-

ernment carried out a scheme for the development of logistics in Handan, thus the freight volume

exhibited a jumping phenomenon. To predict the trend of freight volume, the multi-variable WBO

will weaken the impact by making full use of the data from 2009. Therefore, the data from 1999

to 2009 (in-sample data) are used to construct the different models. Then the value from 2010 to

2012 (out-of-sample) are predicted. Actual values and the forecasting values of three compared

models are presented in Table 4. The fitting and prediction results of three models are plotted in

Fig.5.

Fig. 5. The fitting and prediction values by different models

Table 4 The fitted values and errors of different models
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Time Actual value GM(1,1) neural network [12] multi-variable WBO

2010 25507 16717.0 26399.8 24893.4

2011 29276.6 17900.1 30242.7 29005.2

2012 34453.8 19166.9 36004.2 33916.7

MAPE 39.2 3.77 1.63

AME 11818 1136 474

MSE 1.47×108 1378070 246213

As can be seen from Table 4 and Fig.5, from a short-term forecasting viewpoint, the multi-

variable WBO can effectively reduce the forecasting errors, which means that the multi-variable

WBO reaches the objective of accurate forecasting.

5. Conclusion

As to the prediction, the most recent data is likely to carry more information than the older

data. Therefore, the multi-variable WBO is constructed with preference for recent data, the

prediction results must be very accurate. From the real cases shown above, it is found that the

multi-variable WBO always has a better forecasting performance than the conventional GM(1,1)

model and multivariate regression model. In this sense, it is suggested that it would be better to

use the multi-variable WBO for practical small sample problems.
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