
Information and Computation 241 (2015) 227–263

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Session typing and asynchronous subtyping

for the higher-order π-calculus

Dimitris Mostrous a,∗, Nobuko Yoshida b

a Departamento de Informática, Universidade de Lisboa, Portugal
b Department of Computing, Imperial College London, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 December 2013
Received in revised form 24 October 2014
Available online 7 February 2015

Keywords:
Session types
The higher-order π-calculus
Asynchronous subtyping
Communication optimisation
Code mobility
Linear typing

This paper proposes a session typing system for the higher-order π-calculus (the
HOπ-calculus) with asynchronous communication subtyping, which allows partial commu-
tativity of actions in higher-order processes. The system enables two complementary
kinds of optimisation, mobile code and asynchronous permutation of session actions,
within processes that utilise structured, typed communications. Our first contribution is
a session typing system for the HOπ-calculus using techniques from the linear λ-calculus.
Integration of arbitrary higher-order code mobility and sessions leads to technical
difficulties in type soundness, because linear usage of session channels and completion of
sessions are required. Our second contribution is to introduce an asynchronous subtyping
system which uniformly deals with type-manifested asynchrony and linear functions.
The most technical challenge for subtyping is to prove the transitivity of the subtyping
relation. We also demonstrate the expressiveness of our typing system with an e-commerce
example, where optimised processes can interact respecting the expected sessions.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The higher-order π -calculus with session types In global computing environments, applications are executed across multiple
distributed sites or devices. The use of mobile code is prominent in such environments, where several participants are
synthesised by communication of not only passive values but also of runnable code: for example a service can be delegated
to different participants, by sending either a channel via which it is accessible, or code that accesses it; and incoming
code may transit through several devices that alter their computational behaviour or their data through interaction with it.
Indeed, mobile code has become really pervasive at many levels. For example when we speak of “software updates,” we are
in fact referring to mobile code, and we use it in mobile phone applications, operating systems, and all kinds of networked
applications.

The Higher-Order π -calculus (HOπ -calculus) [46] is a general formalism of interaction in which two kinds of mobility,
name passing and process passing, are integrated in a simple and universal form: in this model, processes can be instan-
tiated by names and other processes, just like a piece of mobile code is instantiated with local capability after migration.
This additional expressiveness inherited from the λ-calculus provides a powerful basis for describing and analysing dynamic
behaviour in global computing scenarios.

* Corresponding author.
E-mail addresses: dimitris@fc.ul.pt (D. Mostrous), n.yoshida@imperial.ac.uk (N. Yoshida).
http://dx.doi.org/10.1016/j.ic.2015.02.002
0890-5401/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/82038065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ic.2015.02.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://creativecommons.org/licenses/by/4.0/
mailto:dimitris@fc.ul.pt
mailto:n.yoshida@imperial.ac.uk
http://dx.doi.org/10.1016/j.ic.2015.02.002
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2015.02.002&domain=pdf

228 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
As a type-theoretic foundation for highly structured communication protocols often found in distributed applications,
this paper focuses on the notion of sessions and their types [48,54,24]. A session is a series of communications between two
parties which form a meaningful logical unit, just like a web session between a browser and a server when a human user
interacts with an e-commerce site. Session types model such interactions as an abstract structure of typed choice, inputs and
outputs. The study of session typing systems is now wide-spread due to the need for structured communications in various
scenarios in distributed computing. While many advanced session types for the π -calculus and programming languages
have been studied, before our work [35] there existed no session typing systems for the HOπ -calculus. Incorporation of
sessions into this language offers a general theoretical basis for examining the interplay between two non-trivial features in
communication-based programming, higher-order mobility and session-based structured interaction.

As the first contribution, this article establishes the first session type theory for the HOπ -calculus which can statically
validate the type safety of complex distributed scenarios with code mobility. In spite of their simple type syntax, the
previous literature have shown that obtaining type soundness for session types is an intricate task because of delegation
of sessions [54]. Preservation of typability becomes even more non-trivial in the presence of higher-order process passing,
especially when the mobile processes contain free sessions.

Higher-order processes with asynchronous sessions We now outline technical challenges by examples. Code mobility in
HOπ -calculus is facilitated by sending not just ground values and channels, but also abstracted processes that can be
received and activated locally, reducing the number of transmissions of remote messages. The simplest code mobility op-
erations are sending a thunked process � P� via channel s (denoted as s!〈� P�〉), and receiving and running it by applying
the unit (denoted as s?(x).x ()). In our calculus, communications are always within a session, established when accept and
receive processes synchronise on a shared channel:

a(x).x!〈5〉.x!〈true〉.x?(y).(y() | R) | a(x).x?(z1).x?(z2).(x!〈�P�〉 | Q)

This results in a fresh session, consisting of two channels s and s, each private to one of the two processes, and their queues
initialised to be empty:

(νs)(s!〈5〉.s!〈true〉.s?(y).(y() | R) | s?(z1).s?(z2).(s!〈�P�〉 | Q) | s :ε | s :ε)

To avoid conflicts, an output on a channel s (resp. s) places the value on the dual queue s (resp. s), while an input on s
reads from s (resp. for s). Thus, after two steps the outputs of 5 and true are placed on queue s as follows:

(νs)(s?(y).(y() | R) | s?(z1).s?(z2).(s!〈�P�〉 | Q) | s :ε | s :5 · true)

and in two more steps the right process receives the values and becomes s!〈� P�{5/ z1}{true/ z2}〉 | Q {5/ z1}{true/ z2}. Similarly
the next step transmits the thunked process, and R can interact with P locally.

The session types S1 of s and S2 of s:

S1 =![nat].![bool].?[U].end S2 =?[nat].?[bool].![U].end

where U is the type of � P�, have the property S1 = S2 derived from a duality relation on types, and this guarantees that
values are communicated in a complementary order.

Asynchronous communication optimisation with code mobility The main idea of optimisation by message permutation, in the
context of buffered communications, is that outputs can be performed in advance without affecting correctness with regards
to the delayed inputs. This is based on the fact that there are two buffers per session (as there are two streams per socket
in network programming) which means that we only need to preserve the relative order of outputs (resp. inputs) to avoid
communication mismatches. In the previous example, suppose the size of P is very large and it does not contain z1 and z2,
for example because they appear in Q and the program is not optimised. Then, if s does not appear in P , the right process
might wish to start transmission of P to s :ε concurrently without waiting for the delivery of 5 and true on s :ε . Thus, we
can send � P� ahead obtaining s!〈� P�〉.s?(z1).s?(z2).Q where s now has the type S ′

2 =![U].?[nat].?[bool].end. The interaction
with the left process is still safe since both s and s continue to receive the expected type of value and in the expected order,
specifically s will receive U and s will receive first nat then bool. However, the optimised code is not composable with the
other party by the original session system [48] since it cannot be assigned S2 for s which is the only type such that S1 = S2.
To make this optimisation valid, we proposed asynchronous subtyping in [37] by which we can refine a protocol to maximise
asynchrony without violating the session. For example, in the above case, S ′

2 is an asynchronous subtype of S2, written
S ′

2 �c S2, so the optimised process can also be assigned S2, and can therefore compose with the left process as before.
Unsafe optimisations, such as one where the left process sends values in a different order, first ![bool] and then ![nat], are
filtered out by the typing system, otherwise z1 of type nat would receive a value of type bool.

The idea of this subtyping is intuitive and the combination of two kinds of optimisations is vital for typing many practical
protocols [50,23] and parallel algorithms [38], but it requires subtle formal formulations due to the presence of higher-order
code. The linear functional typing permits to send a value that contains free session channels: for example, s!〈� P�〉 can
be s!〈� s′?(x).s′!〈x〉 �〉 or even s!〈� s?(x).s!〈x〉 �〉 which contains its own session (if R conforms with the dual session, e.g.,

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 229
(Identifiers) u, v, w ::=
x, y, z variables

| a,b, c shared channels

k ::=
x, y, z variables

| s, s session channels

(Terms)
P , Q , R ::=

V value
| u(x).P server
| u(x).P client
| k?(x).P input
| k!〈V 〉.P output
| k � {l1 : P1, . . . , ln : Pn} branching
| k � l.P selection
| P | Q parallel
| (νa : 〈S〉) P restriction
| (νs) P restriction
| P Q application
| 0 nil process
| k :�h queue

(Values)
V ::=

u, v, w shared
| k linear
| () unit
| λ(x:U).P function
| μ(x:U → T).λ(y :U).P recursion

(Message Values)

h ::=
l label

| V

(Abbreviations)

�P� def= λ(x:unit).P (x /∈ fv(P)) thunk

run
def= λx.(x ()) run

Fig. 1. Syntax.

R = s!〈7〉.s?(z).0). In the first case, we can permute the output s!〈� P�〉 as explained, but in the second case it would be
unsafe, since the input action s?(x) from the thunk will appear in parallel with s?(z1).s?(z2).Q , creating a race condition,
as seen in:

(νs)(s?(x).s!〈x〉 | R | s?(z1).s?(z2).Q | s :ε | s :5 · true)

This article shows that the combination of two optimisations is indeed possible by establishing soundness and communica-
tion-safety. The technical challenge is to prove the transitivity of the asynchronous subtyping integrated with higher-order
(linear) function types and session-delegation, since the types now appear in arbitrary positions, both covariantly and con-
travariantly. Moreover, the definitions are now exposed in detail. Another challenge is to formulate a runtime typing system
which handles both stored higher-order code with open sessions and asynchronous subtyping. We demonstrate all aspects
of type-preserving optimisations explained above by using e-commerce scenarios.

Outline This article is a full version of the extended abstracts published in two conference papers [35,36] and the first
author’s PhD thesis [32]. Here it includes the detailed definitions, expanded explanations, more detailed examples, and
complete proofs. We have also updated the related work with recent literature. In the rest of the article, Section 2 defines the
syntax, operational semantics, and demonstrates the combined use of sessions, code mobility and asynchronous optimisation
with examples. Section 3 defines types and Section 4 introduces the asynchronous subtyping. Section 5 illustrates the
typing system for programs and Section 6 extends it to the typing system for runtime processes. Section 7 proves the main
theorems, type soundness and communication safety of the typed processes. Section 8 discusses related work and Section 9
concludes the article. Appendices A–C list the detailed definitions and proofs which are omitted from the main sections.

2. The higher-order π -calculus with asynchronous sessions

The HOπ -calculus with asynchronous sessions, HOSπ , is a variant of the HOπ-calculus [46]. There are two notable
differences compared to [46]. First, in HOSπ communications occur in the context of an initiated session synchronising
two processes that perform a prescribed protocol. Second, communications are buffered in message queues, to realise asyn-
chronous FIFO semantics. HOSπ encompasses two types of mobility: name passing, with which dynamic communication
topologies can be programmed, and code passing, where by transmitting processes a dynamic behaviour can be achieved.
Note that the calculus is monadic, i.e., only one value is sent/received at each communication step, but this does not affect
the results and serves for simplicity.

2.1. Syntax

The syntax of HOSπ is given in Fig. 1. The calculus extends the HOπ with a small kernel of session primitives: a way
to initiate a session over a shared channel, a class of session names — which we call endpoints — used for communications
within sessions, and primitives for offering and making choices indexed by labels.

Identifiers Variables range over x, y, z, Shared channel names, which are used only to initiate sessions (we describe this
in detail further below), are ranged over a, b, c, We write u, v, w, . . . to represent shared identifiers, that is, those that
are either variables or shared channel names. Session channels, ranged over s, . . . and s, . . . , are the endpoints through which
values are communicated within an established session (which as we shall see is always between exactly two processes).

230 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
The name s denotes the dual of s, that is, if one process in a session uses s, the other process uses s, and in this way
each of the two processes possess a unique endpoint. This separation of endpoints is similar to the use of two polarities
in [19,54]. We define duality to be idempotent, thus, we have that s = s. This property of endpoint names is used in the
reduction semantics, where a communication is synchronised over the two endpoints of a session. We write k, k′, k′′, . . . for
linear identifiers, consisting of variables and session channels.

Values We write V , V ′, W , . . . for those terms that may be used as values, that is, as the object of a communication or
as the argument in function application. First, we have identifiers, shared and linear (as standard). Abstraction, written
λ(x : U).P , encapsulates a process P , where x may occur free, into a function over x (with type annotation U). This is the
basic mechanism for the exchange of processes, and the unit () is useful when we wish to obtain a value from an arbitrary
process P : take a variable x not free in P , then λ(x :unit).P is a value, usually referred to as a thunk, and abbreviated to
� P�. To reveal and execute a process within a thunk, we use the run function λ(y :unit →).(y ()) which takes a thunk as
argument and applies it to the unit value to obtain the hidden process.

To facilitate terms that exhibit infinitary behaviour, we introduce a recursive function constructor μ(x :U → T).λ(y :U).P .
In this fixpoint representation, instances of the variable x within P represent the function itself.

Terms Terms range over P , Q , R, The main constructs are:

Session initialisation u(x).P and u(x).Q are prefixed processes that may synchronise and commence a session. The in-
teractions will adhere to the session type assigned to the shared identifier u, and since each session consists of two
endpoints used in a complementary way, we distinguish the two different behaviours with respect to this type using u
and ū. The bound variable x is a placeholder for a fresh session endpoint, initialised after the prefixes react to establish
a session.

Input and output k?(x).P is the standard input prefixed process, with linear subject k and using x as a placeholder for the
received value. k!〈V 〉.P is an output prefixed process, sending value V over session k.

Branching and selection k � {l1 : P1, . . . , ln : Pn} offers a set of label-indexed choices li : Pi on endpoint k, with a process
continuation Pi corresponding to each label li . It is often written k � {li : Pi}i∈I with index set I . The dual (or co-action)
of a branch is a process ready to perform a selection k � l.P where the chosen label is within the domain of the branch
set. Essentially a branching is an input expecting a label and performing case analysis (which covers all cases) on this
label to choose a continuation. Dually, a selection is an output of a label designating a choice. Clearly, it is undesirable
to allow the empty set in branching, since no selection can be made (that is, there is no effective co-action), and
henceforth we assume that there is at least one branch (and the respective indexing sets, when used, are non-empty).

Fresh names We write (νa : 〈S〉) P to denote a process P in which the shared channel a (typed by 〈S〉) is unique. With
(νs) P we denote that the two endpoints s and s are unique in P , that is, no external process can perform a session
action on either of these endpoints; this gives non-interference within a session.

Message queues A message queue s : �h provides access, via a session that uses s, to the ordered messages �h. It can be
thought of as a network pipe in a TCP-like transport mechanism. The messages can be values, or labels which are
required for selection and branching.

Other constructs are the nil process 0, parallel composition P | Q , and functional application P Q , which are standard from
π-calculus and λ-calculus.

We often omit 0 and some type annotations when not relevant.
The bindings are induced by (νa : 〈S〉)P , (νs)P , u(x).P , u(x).P , k?(x).P , λ(x : U).P , and μ(x : U → T).λ(y : U).P . The

derived notions of bound and free identifiers, alpha equivalence and substitution are mostly standard. We write fv(P)/fn(P)

for the set of free variables/names, respectively, extended to queue processes (which can contain labels) as follows; the
complete definition is in Fig. A.13.

fn((νs) P) = fn(P) \ {
s, s

}
fn(l) = ∅ fn(s : h1 . . .hn) = (∪i∈1..nfn(hi)) ∪ {s}

As usual, in all mathematical contexts we assume Barendregt’s variable convention, that is, free and bound variables are
always chosen to be different, and all bound variables are distinct; the same applies to names.

Note that queues and session restrictions appear only at our formalisation of runtime systems, since programmers do not
normally write protocols with “open” sessions. Furthermore, we use the terminology program for a process which does not
contain such runtime elements.

2.2. Reduction semantics

We define the standard structural congruence, denoted ‘≡’, as the smallest equivalence relation which is congruent with
respect to the calculus constructors (parallel composition, name restriction, prefixes) and respects the axioms and rules in
Fig. 2. The only non-standard rule is for garbage collecting queues from completed sessions: (νs) (s :ε | s :ε) ≡ 0.

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 231
P =α Q ⇒ P ≡ Q P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P |0 ≡ P
(νa : 〈S〉) P | Q ≡ (νa : 〈S〉) (P | Q) a /∈ fn(Q) (νa : 〈S〉) (νs) P ≡ (νs) (νa : 〈S〉) P
(νs) P | Q ≡ (νs) (P | Q) s, s /∈ fn(Q) (νa : 〈S〉) (νb : 〈S ′〉) P ≡ (νb : 〈S ′〉) (νa : 〈S〉) P
(νs) (νs′) P ≡ (νs′) (νs) P (νa : 〈S〉)0 ≡ 0 (νs)0 ≡ 0 (νs) (s :ε | s :ε) ≡ 0

Fig. 2. Structural congruence.

(λ(x : U).P)V −→ P {V/x} (beta)

(μy.λx.P)V −→ P {V/x}{μy.λx.P/y} (rec)

k !〈V 〉.P | k :�h −→ P | k :�h · V (send)

k?(x).P | k :V · �h −→ P {V/x} | k :�h (recv)

k � l.P | k :�h −→ P | k :�h · l (sel)

k � {li : Pi}i∈I | k :lm · �h −→ Pm | k :�h (m ∈ I) (bra)

a(x).P | a(z).Q −→ (νs) (P {s/x} | Q {s/z} | s :ε | s :ε) (�) (conn)

(�) s /∈ fn(P , Q)

P −→ P ′

P Q −→ P ′ Q

Q −→ Q ′

V Q −→ V Q ′ (app − l,app − r)

P −→ P ′

(νs)P −→ (νs)P ′
P −→ P ′

(νa :〈S〉)P −→ (νa :〈S〉)P ′ (ress, resc)

P −→ P ′

P | Q −→ P ′ | Q

P ≡ P ′ −→ Q ′ ≡ Q

P −→ Q
(par, str)

Fig. 3. Reduction.

The single-step call-by-value reduction, denoted −→, is a binary relation from closed terms to closed terms, defined by
the rules in Fig. 3. Rule (beta) is standard from the call-by-value λ-calculus. The case of (rec) is similar, with the added step
of unfolding the recursive function, by substituting it in place of the variable y within the function body P .

Rule (conn) establishes a new session between two processes a(x).P and a(z).Q ready to synchronise on a. The result of
this rewriting is a parallel composition of the session bodies P and Q with a fresh set of endpoints s and s substituted for
the session variables x and z, respectively. The side condition ensures that the new endpoints do not already appear free in
either P or Q . The result contains empty queues corresponding to the session channels (ε denotes the empty sequence).

Rules (send) and (sel) respectively enqueue a value or label at the tail of the queue for the dual endpoint k. When V
is a function, we have higher-order code passing; when V is a session endpoint, we call it higher-order session passing. Rules
(recv) and (bra) dequeue, from the head of the queue, a value or label. The rule (recv) substitutes value V for x in P , while
(bra) selects the corresponding branch for index m. The received label lm must be in the branch set as indicated by the side
condition. Due to the self-inverse duality property of endpoints, if k = s then we have an output from s to s, and if k = s,
the output is from s to s.

Since (conn) provides a queue for each channel, these rules say that a sending action is never blocked (asynchrony) and
that two messages from the same sender to the same channel arrive in the sending order (order preservation).

In the remaining rules: (app − l) and (app − r) implement a left to right reduction order for functional application; (par)
reduces the leftmost parallel process; (resc) and (ress) are standard and reduce a process under name hiding. The last rule,
(str), introduces structural congruence [31] into the reduction relation. This is necessary for re-arranging terms to match
reduction rules.

With “�” we denote the multi-step reduction defined as (≡ ∪ →)∗ .

Encoding replication By using recursion, we can represent infinite behaviours of processes such as, e.g., the definition agent
def, or the replication !u(x).P of [30,54,24,35]. Replication on a shared name, useful for defining persistent servers, can be
encoded as follows:

!u(x).P
def= (μy.λz.z(x).(P | y z)) u taking y, z /∈ fv(P)

Hereafter when writing a replicated connection-prefixed process we shall mean that this encoding is used. Note that we did
not (and by typing we cannot) replicate a session endpoint, since that would violate linearity. To validate the encoding, we
can observe a reduction using a replicated connection !a(x).P and a suitable co-action a(z).Q :

!a(x).P | a(z).Q −→ a(x).(P | !a(x).P) | a(z).Q
−→ (νs) (P {s/x} | !a(x).P | Q {s/z}) ≡ (νs) (P {s/x} | Q {s/z}) | !a(x).P

Note that in the application of rule (conn), since x is bound in !a(x).P , the substitution {s/ x} has no effect on this subterm.
Once a connection is established via (conn), we can apply structural congruence ≡ to obtain a term where !a(x).P can react
again; for this we used the fact that s and s do not occur free in !a(x).P , which is ensured by the conditions of the previous
reduction with (conn).

232 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
Fig. 4. Hotel booking.

Fig. 5. Hotel booking with mobile code.

2.3. Example: business protocol with code mobility

We show a simple protocol which contains essential features by which we can demonstrate the expressivity of the code
mobility and session primitives for the HOSπ -calculus; it consists of a combination of code mobility, session delegation and
branching. This extends a typical collaboration pattern that appears in many web service business protocols [23,8,47] to
code mobility.

In Fig. 4, we show the sequence diagram for a protocol which models a hotel booking: first, Booking Agency and
Client initiate interaction at session x over channel a; then Client starts exchanging a series of information with
Agency; during this initial communication, Agency calculates its Round Trip Time (RTT) between Client and Agency;
Agency selects an appropriate Hotel and creates a new session y over channel b with that Hotel. If the RTT is short
(Fig. 4), then Agency delegates to Client its part of the remaining activity with Hotel, by sending session channel y to
Client; then Client and Hotel continue negotiations by message passing. If the RTT is long (Fig. 5), since many remote
interactions increase the communication time as well as the danger of communication failures, Agency asks Client to
send mobile code to the Hotel (via y) which contains the communications pertaining to the Client’s room plan and
negotiation behaviour. Client sends the code to Hotel, then Hotel runs it locally, finishing a series of interactions in its
location. Finally, Agency receives a commission fee (10 percent of the room rate) via session x, concluding the transaction.

The given scenario is straightforwardly encoded in our calculus, where session primitives make the structure of inter-
actions clearer. Agency first initiates at a and starts the interactions with Client; then it initiates at b and establishes

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 233
session y; next it invokes either label cont or label move in Client depending on the RTT and sends y (higher-order
session passing) to it, and waits for completion of the transaction between Client and Hotel at x (“if-then-else” can be
encoded using branching, and we use other base types and their operators).

Agency
def= !a(x).x?(area).x?(date) . . .b(y) .

if rtt < 100

then x � cont . x!〈y〉 . x?(z) . P (1)

else x � move . x!〈y〉 . x?(z) . P (2)

Client requests a service at a and starts a series of interactions with Agency, and either continues the remaining activity
with Hotel or sends the code (a thunk in Line 4). Note that Client can safely send the commission fee back to Agency
because the return message x〈z × 0.1〉 which uses session channel x is embedded in the thunk.

Client
def= a(x).x!〈london〉 . . .

x � { cont : x?(y).y � cont.y!〈roomtype〉.y?(z)...x!〈z × 0.1〉 , (3)

move : x?(y).y � move.y!〈�y!〈roomtype〉.y?(z)...x!〈z × 0.1〉�〉} (4)

Hotel performs the interactions with Agency and Client via a single session at y (by the facility of higher-order
sessions). In Line 6, the code sent by Client is run locally.

Hotel
def=

!b(y).y � { cont : y?(z).y!〈roomrate(z)〉.Q ; (5)

move : y?(code).(run code | y?(z).y!〈roomrate(z)〉.Q)} (6)

This example demonstrates a couple of subtle points whose slight modification would violate the expected “complementar-
ity” of session actions, leading to obvious violations of soundness. First, in Line 4, if we send code which does not complete
the session, e.g. if we have interactions at y (say y!〈w〉) after sending the thunk in Line 4 of Client, the session at y
will eventually appear in three threads (two in Hotel, one in Client), so values may get mixed up due to the non-
determinism on y-actions. Secondly, in Line 6, if we have two or more applications (say run code | run code) instead of
exactly one run code, we will end up with duplication of session endpoints (both y and x). Finally, if the code is not activated
in Line 6 (for example if we use (λx.0)code instead of run code), the other end of the session, y?(z) . y!〈roomrate(z)〉.Q , will
never find a matching output. Hence, the variable code must appear exactly once and become instantiated into a process
exactly once. We type this example in Section 6.2.

2.4. Example: optimised business protocol with code mobility

We now show a business protocol which integrates the two kinds of type-safe optimisation: code mobility, by which a
protocol can be executed at the location of the receiver, which is especially useful when latency is high; and also message
re-ordering, which allows an implementation to perform outputs in advance, essentially permitting both participants of a
session to send at the same time. We thus extend the previous protocol to highlight the behaviours that are possible using our
methods. Fig. 6 draws the sequencing of actions modelling a hotel booking through a process Agent. On the left Client
behaves dually to Agent; on the right, an optimised MClient utilises type-safe asynchronous behaviour.

The Agent behaves the same towards both clients: initially it calculates the round-trip time (RTT) of communication
(rtt) and sends it; it then offers to the other party the option to consider the RTT and either send mobile code to in-
teract with the Agent on its location, or to continue the protocol with each executing remotely their behaviour. When
mobile code (after choice move) is received, it is run by the Agent completing the transaction on behalf of the client, in
a sequence of steps. The behaviour of Client is straightforward and complementary to Agent, but MClient has special
requirements: it represents a mobile device with limited processing power, and irrespective of the RTT it always sends
mobile code; moreover, it does not care about money, and provides the credit card number (card) before finding out the
rate.

To represent this optimised scenario, we start from the process for Agent (which is a simplification of Agency):

Agent= a(x).x!〈rtt〉.x � {move : x?(code).(run code | Q), local : Q }
Q = x?(hotel).x?(roomtype).x!〈rate〉.x?(creditcard) . . .

The session is initiated over a, then the rtt is sent, then the choices move and local are offered. If the first choice is made
then the received code is run in parallel to the process Q which continues the agent’s session, performing optimisation by
code mobility. As expected, Client has dual behaviour:

234 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
Fig. 6. Standard (left) and optimised (right) interaction for hotel booking.

Term

T ::= U value
| 	 process

Value

U ::= unit unit
| U → T shared function
| U � T linear function
| 〈S〉 shared channel
| S session

Session

S ::= ![U].S output
| ?[U].S input
| ⊕[l1 : S1, . . . , ln : Sn] selection
| &[l1 : S1, . . . , ln : Sn] branching
| t type variable
| μt.S recursion
| end ending

Fig. 7. Types.

Client= a(x).x?(rtt).x � move.x!〈�x!〈ritz〉.x!〈suite〉.x?(rate).x!〈card〉. . . .�〉
A more interesting optimisation is given by MClient, one which at first may seem to disagree with the intended protocol:

MClient= a(x).x � move.x!〈�x!〈ritz〉.x!〈suite〉.x!〈card〉.x?(rtt).x?(rate) . . .�〉
After the session is established, it eagerly sends its choice move, ignoring rtt, followed by a thunk that will continue the
session; and another important point is that in the mobile code the output of the card happens before rtt and rate are
received.

As explained in the previous subsection, even without subtyping, the typing of sessions in the HOπ-calculus poses
delicate conditions; in the present system, we can further verify that the optimisation of MClient does not violate com-
munications safety: when values are received they are always of the expected type, conforming to a new subtyping relation
given in Section 4. Optimisation by permutation is very delicate, for example as explained in the introduction we cannot op-
timise s?(z1).s?(z2).s!〈� s!〈5〉 �〉.0 into s!〈� s!〈5〉 �〉.s?(z1).s?(z2).0, because the thunk in the first process contains the sender’s
session (on s) and a permutation to the left (before the inputs) will cause interference as explained in the previous example.
In fact, the second term is untypable.

3. Higher-order linear types

This short section presents the syntax of the types, which combine linear functions, unrestricted functions, and session
types.

3.1. Types

The syntax of types is given on Fig. 7. It is an integration of the types from the simply typed λ-calculus with unit and
the session types from the π -calculus. Term types range over T , and can be value types, ranging over U , or the process
type 	. Value types consist of the unit type unit, the type U → T of shared functions, the type U � T of linear functions,
the type S of sessions, and the shared channel type 〈S〉 which enforces that sessions initiated on the corresponding channel
will follow the protocol defined by S .

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 235
![U].S =?[U].S ?[U].S =![U].S t = t μt.S = μt.S end = end

⊕[l1 : S1, . . . , ln : Sn] = &[l1: S1, . . . , ln: Sn] &[l1 : S1, . . . , ln : Sn] = ⊕[l1: S1, . . . , ln: Sn]

Fig. 8. Type duality.

The session types are defined inductively as follows. The type ![U].S represents the sending of a value of type U , followed
by the remaining session S . Dually, with ?[U].S the action will be to receive a value of expected type at least U , followed
by S as before. The selection type ⊕[l1 : S1, . . . , ln : Sn] signifies that one of the choices l1, . . . , ln will be made (operationally
this is an output of a label), and depending on this label the corresponding session continuation chosen from S1, . . . , Sn will
take place. The co-type of selection is the branch type &[l1 : S1, . . . , ln : Sn] corresponding to the reception of a label followed
by the corresponding continuation type as in selection. Recursive session types are written μt.S , where the type variable t
is bound and may occur free in S . We only consider contractive recursive types [18,54]. Practically, contractiveness of μt.S
means that every free instance of t in S is guarded under at least one input, output, selection or branching constructor.
For example μt.![nat].t is contractive, but μt.μt′.t is not. Moreover, we only consider tail-recursive session types, therefore
types such as μt.![t].end are not well-formed. To indicate that a session is finished, we use the terminal end.

We write T for the set of types.

Abbreviated forms We often write &[li : Si]i∈I and ⊕[li : Si]i∈I for branching and selection types, � T� for unit → T and � T�1

for unit � T . The terminal end is sometimes omitted.

More general recursive types Our restriction to tail-recursive types may cause a slight limitation with regards to expressive-
ness, and as noted in [3] there are safe processes that are not tail-recursive. For example, if we were to encode a data type
such as a tree with elements of type T , we would need a type of the shape μt. ⊕ [tree :![t].![t].end, leaf :![T].end]. The first
branch uses recursion to send the left and right subtrees to the client (which will have a dual type). However, we can easily
lift the restriction without changing anything substantial with respect to subtyping, and with minor modifications to some
definitions (e.g., Definition 4.1 which defines how recursive types are unfolded), and so it serves for simplicity.

3.2. Examples of types

Session types can encode many common interactions. For example the following type can be used to iterate through a
list containing elements of type U :

μt. ⊕ [hasnext : &[next :?[U].t , finished : end] , finished : end]
The type describes the behaviour of the client process accessing the list: first a choice is made, either to query the list
and discover if it has more elements, by choosing hasnext; or alternatively the choice finished can be made in which case
the protocol reaches its end. If hasnext is chosen, then the list can respond by choosing next, after which the client can
receive a value of type U . Moreover the type variable t signifies that at this point the protocol is repeated from the point
of definition, that is, from the μ-binder at the beginning. If the list replies by choosing finished, the protocol is complete.

Abstractions that contain running sessions must be used exactly once, which demonstrates the difference between linear
and unrestricted functional types:

1. (λ(x : U).x · ()) · � s!〈5〉.0 �
This term is safe, since the thunk which contains s is used exactly once within the function that receives it. To denote
linear usage, the argument has type U = unit � 	.

2. (λ(x : U ′).0) · � a(x).x!〈5〉.0 �
Although the function disappears after the application, this term is safe, because even if the thunk will not be used in
the function, it does not contain any linear or session element that needs to be preserved. Hence, the argument must
have type U ′ = unit → 	. These examples are easy to check with the typing rules in Section 5.

Duality In the above example (Section 3.2) we show the type of the iterator, but not of the list. In fact the list’s type can
be obtained by duality. Each session type S has a dual type, denoted by S , which describes complementary behaviour. This is
inductively defined by the rules in Fig. 8. Essentially, dualisation interchanges input (?) with output (!), branching (&) with
selection (⊕), leaving end, type variables and μ binders unchanged. Duality is idempotent. Note that we do not need to
define duality for other types such as function types, as these are never dualised.

4. Higher-order asynchronous subtyping

This section presents our theory of asynchronous session subtyping: reordered communications between two processes,
in the presence of higher-order values and session mobility, can preserve the type-safety of the original protocol.

As we have seen in the introduction, asynchronous subtyping allows processes to perform output actions (which include
selections) in advance within the same session, taking advantage of the underlying buffered model of communication.

236 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
Thus, we enable certain permutations of inputs with outputs. However, a permutation of two inputs or two outputs is not
permissible because it can violate type-safety. Suppose:

P = s!〈2〉.s!〈true〉.s?(x).0 and Q = s?(y).s?(z).s!〈y + 2〉.0.

These processes interact correctly. If we permute the outputs of P to get P ′ = s!〈true〉.s!〈2〉.s?(x).0, then the parallel
composition (P ′ | Q) causes a type-error. By duality, it is easy to understand why two inputs cannot be permuted. Moreover,
an alteration in the relative order of inputs and outputs such that an input is done in advance may cause deadlock, losing
progress in session s. For example, consider exchanging s!〈true〉 and s?(z) in P , obtaining:

P ′′ = s!〈2〉.s?(x).s!〈true〉.0 and Q = s?(y).s?(z).s!〈y + 2〉.0.

Obviously (P ′′ | Q) ends with deadlock, since the two inputs (the second action on both P ′′ and Q) are blocked after the
initial prefixes interact. The only way to optimise the communication within a session is to place outputs before inputs, for
example:

P = s!〈2〉.s!〈true〉.s?(x).0 and Q ′ = s?(y).s!〈y + 2〉.s?(z).0.

The communication in Q ′ is optimised and (P | Q ′) is type-safe.

4.1. Asynchronous subtyping

We begin with some preliminary notions. An occurrence of a type constructor not under a recursive prefix in a recursive
type is called a top-level action. For example, ![U1] and ?[U2] in ![U1].?[U2].μt.![U3].t are top-level, but ![U3] in the same
type is not.

Consider the following types:

S1 = ![U1].?[U2].μt.![U1].?[U2].t
S2 = μt.?[U2].![U1].t

Intuitively, we want to include S1 in the subtypes of S2, because in the infinite expansion of the types any action of S1 can
be matched to one in S2. The first output ![U1] of S1 needs to be matched with a copy of the same output obtained after
unrolling the recursion in S2 once, resulting in:

S ′
2 =?[U2].![U1].S2

This unrolling is necessary because under the μ binder every action is repeated, and by unrolling once we can obtain one of
the possibly infinite instances of the action. For this strategy to succeed, we need to obtain the output ![U1] in S ′

2 which is
guarded under the input action ?[U2]. Then, the input action can be compared, and the remaining types checked, following
the standard coinductive method.

To summarise, in asynchronous coinductive subtyping we need to formalise both the unfolding of a type and also the
type contexts specifying the top-level actions that may guard an output (or selection).

We generalise the type unfolding function defined in [19] so that it can be applied to guarded types, yielding the
following definition, based on [37]:

Definition 4.1 (n-Time unfolding).

unfold0(S) = S for all S unfold1+n(S) = unfold1(unfoldn(S))

unfold1(![U].S) =![U].unfold1(S) unfold1(⊕[li : Si]i∈I) = ⊕[li : unfold1(Si)]i∈I

unfold1(?[U].S) =?[U].unfold1(S) unfold1(&[li : Si]i∈I) = &[li : unfold1(Si)]i∈I

unfold1(t) = t unfold1(μt.S) = S[μt.S/t] unfold1(end) = end

For any recursive type S , unfoldn(S) is the result of inductively unfolding the top level recursion up to a fixed level of
nesting. For example:

unfold1(?[U].μt.![U ′].t) = ?[U].![U ′].μt.![U ′].t
unfold2(?[U].μt.?[U].μt′.![U ′].t′) =

unfold1(?[U].?[U].μt′.![U ′].t′) = ?[U].?[U].![U ′].μt′.![U ′].t′
From the definition we have that unfold1(unfoldn(S)) = unfoldn(unfold1(S)), even though normally we apply from the outside.
Also, since recursive types are not unfolded until they become guarded, but only n-times, unfoldn(S) terminates. Moreover,
because our recursive types are contractive, there is no need to apply unfolding indefinitely to obtain a guarded type.

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 237
Then, we proceed to define the contexts corresponding to a nested structure of top-level input actions (where branching
is treated like input in the sense that a label is to be received). The rationale is that a supertype is less asynchronous than
a subtype, hence may consist of input actions before any outputs that need to be checked first, based on the prefix of the
subtype. Thus, the multi-hole asynchronous contexts are defined as follows:

Definition 4.2 (Asynchronous contexts).

A ::= 〈·〉h∈H | ?[U].A | &[li : Ai]i∈I

We write A〈Sh〉h∈H for the context A with holes indexed by h ∈ H , where each hole 〈·〉h∈H is substituted with Sh . For
example, taking H = {1,2} and

A = &[l1 :?[U].〈·〉1∈H , l2 : 〈·〉2∈H]
we obtain

A〈![U ′].Sh〉h∈H = &[l1 :?[U].![U ′].S1 , l2 :![U ′].S2]
To formalise subtyping in the presence of recursive types a simulation-based (or coinductive) method is used, in which

subtyping is determined by membership of the goal within a binary relation on types. We adapt the standard simulation
approaches from [19,44,11], extending the method non-trivially to account for asynchrony.

Definition 4.3 (Asynchronous subtyping). A relation � ∈ T × T is an asynchronous type simulation if (T1, T2) ∈ � implies
the following:

1. If T1 = 	, then T2 = 	.
2. If T1 = unit, then T2 = unit.
3. If T1 = U → T , then T2 = U → T .
4. If T1 = U � T , then T2 = U � T .
5. If T1 = 〈S1〉, then T2 = 〈S2〉 and (S1, S2) ∈ � and (S2, S1) ∈ �.
6. If T1 = end, then for some n, unfoldn(T2) = end.
7. If T1 =![U1].S1, then for some n, unfoldn(T2) =A〈![U2].S2h〉h∈H with (U2, U1) ∈ � and (S1, A〈S2h〉h∈H) ∈ �.
8. If T1 =?[U1].S1, then for some n, unfoldn(T2) =?[U2].S2, (U1, U2) ∈ � and (S1, S2) ∈ �.
9. If T1 = ⊕[li : S1i]i∈I , then for some n, unfoldn(T2) = A〈⊕[l j : S2 jh] j∈ Jh 〉h∈H and ∀h ∈ H . I ⊆ Jh and ∀i ∈ I.(S1i,

A〈S2ih〉h∈H) ∈ �.
10. If T1 = &[li : S1i]i∈I , then for some n, unfoldn(T2) = &[l j : S2 j] j∈ J , J ⊆ I and ∀ j ∈ J .(S1 j, S2 j) ∈ �.
11. If T1 = μt.S , then (unfold1(T1), T2) ∈ �.

The coinductive subtyping T1 �c T2 (read: T1 is an asynchronous subtype of T2) is defined when there exists a type simula-
tion � with (T1, T2) ∈ �. Formally, �c is the largest type simulation, defined as the union of all type simulations.

Most cases are similar to the ones in [37,11], but in order to facilitate the asynchronous rules the unfolding of the
supertype is performed at each case for some level n. (1–4, 6) are the base cases, while (5) says that the shared channel
type is invariant (as in the standard session types [19,37,24]).

Now we focus on the new rules: in (7), an output prefix of T1 can be simulated when T2 can be unfolded to obtain a type
that has an output hidden under an asynchronous context A, which by definition consists of only inputs and branchings. The
type U1 is compared to U2, the first available top-level output; this is contravariant which is standard in π-calculus [44].
Then, the continuation S1 of T1 is compared with the type A〈S2h〉h∈H consisting of the asynchronous context in which the
output(s) have been removed, since they were matched with the output prefix of T1. For the input in (8), we do not use
any context, since the input must appear as the first action after unfolding. No action can appear before the desired input
at the supertype: if there is a branching (which is a form of input, with labels as values) it is not comparable, and if there
is an output or selection then T2 cannot be a supertype of the input-prefixed type T1, since it would be intuitively more
asynchronous.

In (9), selection is defined similarly to output and any label appearing in T1 must be included in the top level selections
of the asynchronous context derived from T2. Note that in the supertype, each hole in the context may use a different
indexing set Ih , but the set I of the subtype is smaller than all these sets (∀h ∈ H . I ⊆ Jh). Dually to selection, in (10),
branching is defined like input and any labelled branch of (the unfolding of) T2 must be supported in T1. Finally (11) forces
T1 to be unfolded until it becomes a guarded type.

238 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
Remark To include subtyping between base types, we would need to follow [32] where we employ a slightly more elaborate
definition, in which for all types except session types output is covariant and input is contravariant. There, we define:

(S, S ′)� = (S ′, S) (T , T ′)� = (T , T ′) if T , T ′ are not session types

The subtyping simulation in [32] has the following output-input clauses:

7. If T1 =![U1].S1, then for some n, unfoldn(T2) =A〈![U2].S2h〉h∈H with (U1, U2)
� ∈ � and (S1, A〈S2h〉h∈H) ∈ �.

8. If T1 =?[U1].S1, then for some n, unfoldn(T2) =?[U2].S2, (U2, U1)
� ∈ � and (S1, S2) ∈ �.

In this definition output appears covariant, but because of the inversion applied only to session types it becomes, in this
case, contravariant. This explains why our present definitions show contravariant output subtyping (unit and other invariant
types are not affected). Now, if we consider the types int and real with int�c real, then we have (int, real)� =
(int, real), i.e., no inversion, hence in (7) above we would obtain a covariant subtyping. For example, we would have
![int].end �c ![real].end, and not the opposite which would be non-sensical.

The usual subtyping for functional types can also be integrated into (3, 4) using the above definition from [32], but it is
orthogonal to our purposes and therefore omitted for simplicity.

4.2. Examples of asynchronous subtyping

We show four small but representative examples which highlight key points of our subtyping relation. The first ex-
ample shows that permuting outputs in advance of inputs in an infinite type preserves subtyping. The second example
demonstrates that in some subtypings, a finite number of extra outputs can appear in the subtype, and dually, a finite num-
ber of extra inputs can appear in the supertype; this is acceptable when the total outputs remain infinite without losing
type compatibility, and similarly for inputs. The third example demonstrates a case where n-level unfolding is required. The
fourth example which is atypical exposes a class of subtypings that induce infinite simulation relations, due to asynchronous
subtyping.

Three typical examples Consider the types given previously:

S1 =![U1].?[U2].μt.![U1].?[U2].t S2 = μt.?[U2].![U1].t
It is easy to verify that S1 �c S2 by checking that the following relation is a type simulation:

� = { (S1, S2), (U1, U1), (?[U2].μt.![U1].?[U2].t,?[U2].S2),

(U2, U2), (μt.![U1].?[U2].t, S2) }
It is also straightforward to show that for the following types:

S3 =![U1].μt.![U1].?[U2].t S4 =?[U2].μt.?[U2].![U1].t
it holds that S3 �c S4 using the following simulation:

� = { (S3, S4), (U1, U1), (μt.![U1].?[U2].t,?[U2].S4),

(![U1].?[U2].μt.![U1].?[U2].t,?[U2].S4),

(?[U2].μt.![U1].?[U2].t,?[U2].?[U2].S4), (U2, U2) }
We can demonstrate easily that for the following types:

S5 = μt.![U].?[U].&[l1 : t, l2 : t]
S6 = μt1.?[U].μt2.&[l1 :![U].t1, l2 :![U].t1]

we have that S5 �c S6 with the following simulation:

� = { (S5, S6), (U , U), (unfold1(S5), S6),

(?[U].&[l1 : S5, l2 : S5],?[U].&[l1 : S6, l2 : S6]),
(&[l1 : S5, l2 : S5],&[l1 : S6, l2 : S6])}

in which the fourth pair (which is added when matching the output) is obtained after unfolding S6 at level n = 2, i.e., using
unfold2(S6); this is because there is are two μ-binders guarding the asynchronous context where the output is located.
Moreover, since as we prove in the next subsection �c is transitive, we can also find a simulation �′ such that:

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 239
(μt.![U1].?[U].&[l1 : t, l2 : t], μt1.?[U].μt2.&[l1 :![U2].t1, l2 :![U3].t1]) ∈ �′

whenever (U2, U1) ∈ �′ and (U3, U1) ∈ �′ . For this the simulation will support the intermediate results

(μt.![U1].?[U].&[l1 : t, l2 : t], μt1.?[U].μt2.&[l1 :![U1].t1, l2 :![U1].t1]) ∈ �′

and

(μt1.?[U].μt2.&[l1 :![U1].t1, l2 :![U1].t1],μt1.?[U].μt2.&[l1 :![U2].t1, l2 :![U3].t1]) ∈ �′

A more controversial example Consider the types:

S7 = μt.![U1].t S8 = μt.![U1].?[U2].t
Perhaps surprisingly, it holds that S7 �c S8, as evidenced by the following simulation:

� = { (U1, U1),

(S7, S8),

(![U1].S7, S8),

(S7, ?[U2].S8),

(![U1].S7, ?[U2].S8),

(S7, ?[U2].?[U2].S8),

(![U1].S7, ?[U2].?[U2].S8),

...

(S7, ?[U2]ω.S8),

(![U1].S7, ?[U2]ω.S8)}

= {(U1, U1)} ∪ {
(S7,?[U2]n.S8), (![U1].S7,?[U2]n.S8) | n ∈N

}

where ?[U2]n.S8 is the type S8 prefixed with a sequence of n input actions ?[U2]. Effectively, the subtype is sending all the
infinite outputs in advance, and never receives any values, i.e., it is taking asynchronous optimisation to the extreme. There
are many similar examples, where the common denominator in all is the presence, within a recursion at the subtype, of a
greater proportion of output actions (including selection) compared to the supertype. For instance, μt.![U1].![U1].?[U2].t �c

μt.![U1].?[U2].t also holds and can be shown with an infinite simulation relation.
The above examples may seem slightly pathological, since values received in a buffer may never be used by the process

that owns it. For instance, by S7 �c S8 a process can record the interface s : S8 when it actually implements the behaviour
s : S7, and by duality it can interact with s : S8 = μt.?[U1].![U2].t. Clearly, the values of type U2 are received in the buffer s
(by the outputs on s) but not in the program that implements s : S7. As a consequence, in a naive implementation the buffer
can increase in size indefinitely, which is undesirable and in some cases unsafe (e.g., buffer overflow). However, dealing with
unreachable data is typically the job of a garbage collector, as in most mainstream languages, so we do not think this is a
real problem.

Type soundness and progress in the presence of asynchronous subtyping As shown in the last example, a surprising property of
our notion of asynchronous subtyping is that it allows an implementation to not actually receive all the values sent to its
buffer. It is then natural to ask how this may affect the properties one expects from a sessions system.

First, type safety is not violated since no value of unexpected type is ever received within a term, because two inputs
(resp. two outputs) on the same endpoint cannot be permuted. However, one property that can be affected is progress.
Specifically, if a session on s or a linear function containing s is never received from a buffer — due to a subtyped process
not performing the input at all — then a process waiting to perform an action on the dual endpoint s may become stuck.1

This situation is not easy to address in the present framework, because asynchronous optimisation means that we can
postpone inputs ad infinitum, which is not so different than not having those inputs at all. On the other hand, the “standard”
sessions systems only guarantee progress on a per session basis, allowing the interleaving of sessions even if it may cause
deadlocks, so in that sense not much is lost. We should note that, if one wishes to ensure that all messages are received,
there are some solutions: we can restrict subtyping as in [32, p. 181], or following the recent work [9], motivated in part
by our subtyping; we return to this later.

1 Issues pertaining to such “orphan” messages are also discussed in [12,13].

240 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
4.3. The relation �c is a preorder

We conclude this section with the main theorem, stating that �c is a preorder. In inductively defined subtyping systems,
commonly presented as a set of deduction rules, transitivity is a property by definition [18,43]. In a coinductive setting,
transitivity cannot be assumed, and not every simulation is guaranteed to contain the necessary hypotheses; however, we
can prove that �c is transitive by careful construction of supporting simulations, containing the necessary components up
to unfolding and context manipulation.

If �c was not transitive, there would not be type safety. The typical explanation is that, if there exists U1 �c U2 and
U2 �c U3 such that U1 ��c U3, then from two consecutive applications of subsumption we may provide a value of type
U1 when U3 is expected, which is unsafe when U1 ��c U3. For a detailed exposition to the issues arising from the use of
coinductive definitions in subtyping, see Chapter 21 of [43].

The standard method of relational composition [19] is not enough for proving the transitivity of �c . The difficulty is
that, given S1 �c S2 and S2 �c S3, we need to find a subtyping relation that includes enough elements to justify S1 �c S3
directly. However, due to the use of nested n-times unfolding with manipulation of asynchronous contexts, S1 �c S2 provides
insufficient information which cannot be straightforwardly combined with the hypotheses from S2 �c S3 to obtain the result.

Our objective is to discover how to obtain the “missing elements,” and to achieve it we gradually formalise a set of
extensions on simulations, essentially monotonous functions from simulations to simulations, and then utilise them to
prove the main result, Theorem 4.4, stating that �c is a preorder.

Theorem 4.4 (�c is a preorder). The relation �c is reflexive and transitive.

Overview of proof. The proofs of Theorem 4.4 are given in Appendix B.
Specifically, we perform the following steps:

1. We prove as standard that unfolding S1 or S2 or both in S1 �c S2 preserves subtyping. We formalise the unfolding
extension of a simulation to include such n-times unfoldings. (Lemmas B.1 and B.2, Definition B.3, Proposition B.1.)

2. We define a class of single-step permutation contexts representing an input/branching guarded type. Then we formalise
rules for moving an output/selection appearing within such a context (that is, immediately after the initial input/branch-
ing), to the position ahead of it. This represents the finest granularity of permutation since it is not defined to be
transitive. (Definition B.4.)

3. The contextual extension of a simulation is defined, which is a supporting construction. It is necessary in order to obtain
the subtypings that arise when removing an output/selection from a single-step permutation context, thus changing its
original structure. (Definition B.5 and Lemma B.6.)

4. The asynchronous extension of degree n is defined by applying n consecutive single-step permutations on the subtypes
in a simulation relation, and up to contexts A (that is, also deep within the structure of types). Both the contextual and
the unfolding extensions are necessary to prove that this relation is also a simulation. (Definition B.7 and Lemma B.8.)

5. Multi-step permutations that can extract an output/selection from deep within a context A, placing it ahead of all
actions (that is, prefixing A), are shown to be included in the asynchronous extension of degree ω. This is effectively
a proof that the transitive application of nested single-step permutations is included in the asynchronous extension.
(Corollary B.9.)

6. The transitivity connection of two simulations is then defined, utilising a composition of asynchronous extensions for the
given simulations. The proof that the transitivity connection is a simulation implies that �c is transitive. (Definition B.10
and Lemma B.11.)

7. The relation �c is shown to be a preorder: reflexivity is easy to obtain using straightforward techniques, and transitivity
is proved directly by utilising the result for transitivity connections. (Theorem 4.4.)

5. Higher-order linear session typing system

5.1. Typing system

We now present the typing system, which combines techniques from linear λ-calculus and session typing, integrating the
asynchronous subtyping from the previous section. The system presented here is for initial programs, i.e., for terms without
any queues or already activated sessions. We will augment the type system later, so as to also cover the runtime constructs.

Environments We first define three kinds of finite mappings for environments, needed when typing a term with free iden-
tifiers:

(Shared) Γ ::= ∅ | Γ, u : unit | Γ, u : U → T | Γ, u : 〈S〉
(Linear) Λ ::= ∅ | Λ, x : U � T (Session) Σ ::= ∅ | Σ,k : S

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 241
(Common)

(UNIT)

Γ ; ∅;∅ � ():unit

(SHARED)

Γ, u :U ; ∅;∅ � u :U
(LVAR)

Γ ; {x:U � T } ; ∅ � x : U � T

(SESSION)

Γ ; ∅; {k : S} � k : S

(Structure, Subtyping)

(PROMOTION)
Γ ; ∅;∅ � P :U � T

Γ ; ∅;∅ � P :U → T

(DERELICTION)
Γ ;Λ, x:U � T ;Σ � P :T ′

Γ, x:U → T ;Λ;Σ � P :T ′

(SUB)
Γ ;Λ;Σ � P :T Σ �c Σ ′ T �c T ′

Γ ;Λ;Σ ′ � P :T ′

(Functional)

(ABS)
(Γ ;Λ;Σ) � x:U � P :T

Γ ;Λ;Σ � λ(x:U).P :U � T

(REC)
Γ, x:U → T ; ∅;∅ � λ(y :U).P :U → T

Γ ; ∅;∅ � μ(x:U → T).λ(y :U).P :U → T

(App) T ′ = U → T or T ′ = U � T
Γ ;Λ1;Σ1 � P :T ′ Γ ;Λ2;Σ2 � Q :U

Γ ;Λ1,Λ2;Σ1,Σ2 � P Q :T

Fig. 9. Linear session typing: common and functional rules.

(Process)

(NIL)

Γ ; ∅;∅ � 0:	

(NEW)
Γ,a :〈S〉;Λ;Σ � P :	

Γ ;Λ;Σ � (νa :〈S〉)P :	

(CONN)
Γ ; ∅;∅ � u:〈S〉 Γ ;Λ;Σ, x: S � P :	

Γ ;Λ;Σ � u(x).P :	

(CONNDUAL)
Γ ; ∅;∅ � u:〈S〉 Γ ;Λ;Σ, x: S � P :	

Γ ;Λ;Σ � u(x).P :	
(RECV)

(Γ ;Λ;Σ,k : S) � x:U � P :	
Γ ;Λ;Σ,k :?[U].S � k?(x).P : 	

(SEND)
Γ ;Λ1;Σ1 � P : 	 Γ ;Λ2;Σ2 � V : U k : S ∈ Σi i = 1 or i = 2

Γ ;Λ1,Λ2; (Σ1,Σ2) \ {k : S} ,k : ![U].S � k !〈V 〉.P : 	

(PAR)
Γ ;Λ1,2;Σ1,2 � P1,2 :	

Γ ;Λ1,Λ2;Σ1,Σ2 � P1 | P2 :	
(BRA)

Γ ;Λ;Σ,k : Si � Pi : 	 (∀i ∈ I)

Γ ;Λ;Σ,k : &[li : Si]i∈I � k � {li : Pi}i∈I : 	

(CLOSE)
Γ ;Λ;Σ � P :T k /∈ dom(Γ,Λ,Σ)

Γ ;Λ;Σ,k :end � P :T

(SEL)
Γ ;Λ;Σ,k : S j � P : 	 j ∈ I

Γ ;Λ;Σ,k : ⊕[li : Si]i∈I � k � l j .P :	
Fig. 10. Linear session typing: processes.

Γ is a finite mapping, associating shared value types to identifiers. Λ associates variables and linear function types. Σ is
a finite mapping from variables/session channels to session types. Σ, Σ ′ and Λ, Λ′ denote disjoint-domain unions. Γ, u :U
means u /∈ dom(Γ), and similarly for the other environments.

Typing judgement The typing judgement takes the shape:

Γ ;Λ;Σ � P : T

which is read: under a (global) shared environment Γ and a linear function environment Λ, a term P has type T with
session usages described by Σ . We say that a judgement is well-formed if the environments (pairwise) do not share elements
in their domains, that is, when the disjoint union dom(Γ) � dom(Λ) � dom(Σ) is defined.

To reduce the number of type rules, we make use of the following abbreviation:

(Γ ;Λ;Σ) � u : T =
⎧⎨
⎩

Γ ;Λ, u : T ;Σ if T = U � T ′,
Γ ;Λ;Σ, u : T if T = S,

Γ, u : T ;Λ;Σ otherwise.

Typing rules The typing rules for identifiers, subtyping, and functions are given in Fig. 9. The rules for processes and sessions
are given in Fig. 10. In each rule, we assume that the environments in the consequence are defined.

Starting from Fig. 9, the first group is (Common). First we have a rule for the unit value (), assigning the type unit. In the
conclusion, notice that an arbitrary Γ is allowed, but no linear variables (Λ = ∅), or sessions (Σ = ∅). This restriction agrees
with the use of weakening only for shared environments, a condition necessary for the preservation of linearity. (Shared)

is an introduction rule for identifiers with shared types, i.e., not including U � T or S . (LVar) is for linear variables and
(Session) is for session endpoints, recording x :U � T in Λ and k : S in Σ , respectively. The general strategy is that the
environments Λ and Σ record precisely the desired usages of linear variables/sessions, and then within a derivation these
usages are combined using disjoint union (to ensure that no copying takes place) and prefixing composition in the case of
sessions (to ensure that certain separated usages are seen as one largest use). The use of disjoint union effectively forbids
contraction. The absence of weakening guarantees that all linear hypotheses are actually used.

242 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
The group (Structure) consists of two rules from Linear Logic [21]. The rule (Promotion) ensures that shared functions
do not contain linear terms, as unrestricted functions may be used more than once, breaking linearity, or may not be
used at all, again violating linearity by making endpoints or linear functions disappear. The rule is a special case of linear
promotion [21], since the type U → T is basically !(U � T). Dually, (Dereliction) allows to use a shared function in a linear
way, which is perfectly safe, and this is convenient when we wish to record, e.g., ![U � T].S in an environment where the
sent function has the unrestricted type U → T . The group (Subtyping) consists of one subsumption rule, (Sub), introducing
the coinductive subtyping �c into typing derivations. We write Σ �c Σ ′ when dom(Σ) = dom(Σ ′) and for all k : S ∈ Σ , we
have k : S ′ ∈ Σ ′ with S �c S ′ . Notice that subsumption can apply to the session environment, but not to other environments,
and it can also apply to the given type T for the term P .

The second group, (Function), comes from the simply typed linear λ-calculus. In the abstraction rule (Abs), the argument
x : U is from the appropriate environment following the definition of �, and it is removed in the conclusion, as expected.
(App) is the rule for functional application, and allows the arrow type to be either linear or unrestricted, similarly to [53];
this is needed due to (Rec), since abstractions and variables can always be assigned a linear arrow type, by rules (Abs) and
(Dereliction), respectively. The conclusion says that the session environments and linear variable sets of P and Q must be
disjoint; otherwise, there is copying (more than one usage) of the respective linear terms, which is forbidden. Rule (Rec) is
similar to (Abs), but with the addition of a hypothesis for x in the premise, representing the function itself, and used for
typing instances of the function within its body. It is required that the linear function and session environments are empty,
since a recursive function may rewrite itself repetitively copying all its contents.

In Fig. 10 we have the final group, (Process), for processes integrated with linear functional and session typing. Rule (Nil)
types the empty process. (New) hides a shared name. There is no typing rule for session channels (s, s) in initial programs,
but in Section 6 we define a rule (News) that verifies the communication patterns for the two endpoints s and s, in order
to ensure compatible dyadic interactions up to asynchronous permutations.

(Conn) and (ConnDual) are for initiating sessions. In the premises of (Conn), the usage S of the endpoint x in P has
to agree with the type 〈S〉 recorded for the shared identifier u in the typing environment Γ . Rule (ConnDual) is similar,
however the type in the environment Γ is dual to the usage in the session body P . This is needed in order to indicate
which side of the session is followed with respect to a shared channel type, since connecting processes must use their
endpoints dually. (Recv) is for receiving values, and uses the notation with � to cover the different cases for linear, session,
and unrestricted types. The new session type is composed in the conclusion’s session environment, in a way that agrees
with the protocol, that is, the input is appended before any subsequent actions on k within P .

(Send) is the most complex rule, integrating session typing and linear typing. Either Σ1 or Σ2 contains the complete
session k : S , which in practise means that after sending a value, the rest of the session on endpoint k must appear (and
be completed) either in the continuation P of the sending process, or inside the value V . In the latter case, we can even
have that V = k, which implements higher-order session passing of k over k, i.e., a self-delegation. The composition Σ1, Σ2
is defined in the conclusion, which entails that no endpoint appears in both the remaining sender P and the sent value V ,
because, in that case, we would have a race condition between the receiver of V and P , in the usage of communications
over these common sessions. The same applies to linear variables free in V and P . If V has a functional type, all session
endpoints within it must be complete, that is, suffixed with end, because they should not compose further. This is achieved
by the necessary use of a suitable instance of (Close). This rule uniformly generalises the corresponding rules in the session
types literature [19,48,54,24]. In the conclusion, we delete k : S where it occurs, either in Σ1 or Σ2, and the updated type for
k is recorded in the conclusion’s session environment, consisting of the continuation type S prefixed with the output ![U].

In (Par), we parallel-compose two processes, assuming disjointness of linear function and session environments, as in
(App). (Bra) and (Sel) are the standard rules for branching and selection from [24]. In (Bra) all continuations Pi must have
corresponding session usages on k that agree with the branch type. In (Sel) the continuation P must have a usage S j on k
that agrees with the type corresponding to the selected label l j on the selection type of the conclusion.

Closing sessions In the above rules for session communication, the premises always contain a hypothesis for the subject of
the session action, e.g., k : S appears in Σi located in the premise of the typing for k!〈V 〉.P . This does not necessarily imply
that k appears in P , as the usage {k : end} can be obtained using (Close). This rule is used to effectively close a session on
k by introduction of a hypothesis k :end, in order for further composition (i.e., more session actions on k) to be rejected.

5.2. Examples of typing

Here we state a few examples and counter-examples that demonstrate the purpose of the type system. We revisit some
examples from Section 3.2 and from the Introduction.

First, session endpoints must not become “forgotten”:

(λ(x: S).0) · s

In the above term, after reduction by the (beta) rule, the endpoint s will not appear any more, and the session on s might
become stuck. This term is only typable if S = end, otherwise it is not typable because in the premises of rule (Abs) we
require a session hypothesis x : S which cannot be introduced in the typing of 0 except by use of (Closed). Second, session
endpoints must not be copied:

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 243
(λ(x: S).(x!〈V 〉 | x!〈V ′〉)) · s

The above term reduces to:

s!〈V 〉 | s!〈V ′〉
in which we have copied s breaking the condition of linearity, which is undesirable as the endpoint s will nondetermin-
istically interact with one of the outputs, leaving the other waiting forever. The first term is untypable because typing the
function body x!〈V 〉 | x!〈V ′〉 with (Par) requires that the sessions in each parallel process are disjoint, which is not the case
here due to the common presence of x. We also revisit the examples in Section 3.2.

1. (λ(x : U).x · ()) · � s!〈5〉.0 � is typed with U = unit � 	, using (App) followed by (Abs) for the left and right subterms of
the application, respectively.

2. (λ(x : U).0) · � s!〈5〉.0 �
This term is unsafe as the thunk which contains s does not appear in the function that receives it, after reduction. This
is an indirect way for an endpoint to become “forgotten” as before. The typing fails because U = unit � 	 (as above)
and (Abs), used for the left subterm of the application, requires x : U to appear in the linear function environment of
the typing of 0, which is impossible.

3. (λ(x : U ′).0) · � a(x).x!〈5〉.0 � is typed with U ′ = unit → 	, applying (App) followed by (Abs) for the two subterms,
respectively.

We finally type the optimised higher-order mobility from the Introduction. In the connect process:

a(x).x!〈5〉.x!〈true〉.x?(y).(y() | R),

a has a type 〈S1〉 where S1 =![nat].![bool].?[U].end and U is the type of y (receiving the mobile code � P�). This is obtained
by applying (Conn), (Send), and (Recv) appropriately. On the other hand, in the optimised session:

a(x).x!〈�P�〉.x?(z1).x?(z2).Q ,

x is typed with S ′
2 =![U].?[nat].?[bool].end, applying (ConnDual) with a :〈S ′

2〉, then (Send) and (Recv). By an application of
(Sub) in the body of the session, x can also be typed by S2 (the dual of S1), because S ′

2 �c S2 by Definition 4.3(7). So, the
same term can also be assigned a :〈S2〉 which is the same as a :〈S1〉, and we are done.

6. Higher-order linear session typing for runtime processes

6.1. Typing system for runtime

The typing system extends the one for programs given previously, replacing a few rules with more general versions. New
formulations are needed for the integration of typing at the level of session queues, and for ensuring that the asynchronous
calculus is sound.

Queue types Due to the presence of labels in session queues, we need to extend the types to facilitate all buffer components,
as follows:

τ ::= U | l

Therefore, every label induces a singleton type identified with the label value.

Session remainder Type soundness is established by also typing the queues created during the execution of a well-typed
initial program. We track the movement of linear functions and channels to and from a queue to ensure that linearity is
preserved, and we check that endpoints continue to have dual types up to asynchronous subtyping after each use. To analyse
the intermediate steps precisely, we utilise a session remainder S − �τ = S ′ which subtracts the vector �τ of the queue types
of the values stored in a queue from the complete session type S of the queue, obtaining a remaining session S ′ . When the
remainder S ′ is end, then the session has been completed; otherwise it is not closed yet. The rules are formalised in Fig. 11.

(Empty) is a base rule. (Get) takes an input prefixed session type ?[U].S and subtracts the type U at the head of the
queue, then returns the remainder S ′ of the rest of the session S minus the tail �τ of the queue type. (Put) disregards the
output action type of the session and calculates the remainder S ′ of S − �τ , which is returned prefixed with the original
output giving ![U].�τ . This is because we are subtracting the input queue types, and therefore the output is not consumed.
(Branch) is similar to (Get), but it only records the remainder of the k-th branch with respect to a stored label lk . Dually,
(Select) records the remainder on the nested types, similarly to (Put), because selection is an output action. An example of
the use of session remainders can be found in Section 6.3.

244 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
(EMPTY)

S − ε = S

(GET)
S − �τ = S ′

?[U].S − U �τ = S ′

(PUT)
S − �τ = S ′

![U].S − �τ =![U].S ′

(BRANCH)
Sk − �τ = S ′ k ∈ I

&[li : Si]i∈I − lk �τ = S ′

(SELECT)
Si − �τ = S ′

i ∀ i ∈ I

⊕[li : Si]i∈I − �τ = ⊕[li : S ′
i]i∈I

Fig. 11. Session remainder.

(LABEL)

Γ ; ∅;∅ � l : l

(QUEUE)
Γ ; ∅;Σi � hi : τi i ∈ 1..n Σ0 = {�s : �end}
Γ ; ∅; (Σ0, ..,Σn) � s :: τ1..τn � s :h1..hn : 	

(News)

Γ ; ∅;�, s :: (S1, �τ1), s :: (S2, �τ2) � P :	 Si − �τi = S ′
i i ∈ {1,2} S ′

1 �c S ′
2

Γ ; ∅;� � (νs)P :	
(NEW)
Γ, a :〈S〉;Λ;� � P :	

Γ ;Λ;� � (νa :〈S〉)P :	

(PAR)
Γ ;Λ1,2;�1,2 � P1,2 :	

Γ ;Λ1,Λ2;�1 � �2 � P1 | P2 :	
Fig. 12. Runtime typing for asynchronous HOπ -calculus.

Typing system for terms with session queues We first extend the session environment as follows:

� ::= Σ | �,k :: �τ | �,k :: (S, �τ)

The typing judgement is now of the form:

Γ ;Λ;� � l : l and Γ ;Λ;� � P : T

The first judgement is used for typing any labels appearing in a session queue. � contains usage information for queues in
a term (s :: �τ), so that the cumulative result can be compared with the expected session type; for this we use the pairing
(s :: (S, �τ)) that combines the usage of a channel and the sequence of types already on its queue. Observe that the lighter
notation (k : �τ) is ambiguous, since �τ can be τ ′ = S ′ . This is why we use (k :: (S, �τ)) and (k :: �τ), respectively.

We define a composition operation � on �-environments, used to obtain the paired usages for channels and queues:

�1 � �2 = {s :: (�i(s),� j(s)) | s : S ∈ �i, s :: �τ ∈ � j}
∪ �1\dom(�2) ∪ �2\dom(�1)

The typing rules for runtime are listed in Fig. 12. (Label) types a label in a queue, while (Queue) forms a sequence corre-
sponding to the types of the values in a queue: we ensure the disjointness of session environments of values, and apply a
weakening of ended session types (Σ0) for closure under the structure rules. (News) is the main rule for typing the two
endpoint queues of a session. Types S1 and S2 can be given to the queues s and s when the session remainders S ′

1 and S ′
2

of S1 − �τ1 and S2 − �τ2 are dual session types up to asynchronous subtyping; more precisely, S ′
1 must be a subtype of the dual

of S ′
2, written S ′

1 �c S ′
2. This is equivalent to S ′

2 �c S ′
1. Since the session endpoints are compatible, we can restrict s. The

combination of coinductive subtyping with a syntactic duality operator, which is practically the same as the compatibility
relation in [20], has two advantages: first, it avoids the need for a separate coinductive duality as in [19]; secondly, as is
detailed in [3], a simple syntactic duality does not work with equi-recursive types, and our solution avoids such problems.
(Par) composes processes, including queues, and records the session usage by � ; this rule subsumes (Par) for programs.
Note that, as this is a runtime typing system, there are no free variables at the top level. Moreover, queues can only appear
at the top-level, in parallel to the terms that may appear in initial programs, and never inside functions. Finally, we had to
redefine (New) to account for restriction over queues, i.e., with a �-environment.

6.2. Typing the mobile business protocol

We can now type the hotel booking example in Section 2.3, guaranteeing its type safety. Agency has the following types
at a and b.

a : 〈?[string].?[date]. ⊕ [move : S1 ; cont : S1]〉, b : 〈S2〉
with S1 = ![S2].?[double].end and S2 = ⊕[cont : S3 ; move : ![�	�1].S3]
and S3 = ![string].?[double].![ccard].end

S1 contains higher-order session passing of type S2, and the thunk in S2 has a linear arrow type. Client and Hotel just
have the dual of Agency’s type at a and the dual of Agency’s type at b, respectively. Note that in Client, the received
session y appears subsequently in the sent code V , which is typed by (Send) with the side condition k : S3 ∈ Σ2 explained
in Section 6.

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 245
6.3. Typing the optimised mobile business protocol

Now, using also the runtime typing system, we can type the hotel booking example of Section 2.4, in the presence of
asynchronous optimisation for higher-order mobility. Agent and standard Client can be typed, by using the rules in
Figs. 9 and 10, as follows:

SAgent =![int].&[move :?[unit �].S ′
Agent , local : S ′

Agent]
where S ′

Agent =?[string].?[string].![double].?[ccard].end and Sclient = SAgent

We then type MClient and obtain:

SMClient = ⊕[move :![unit �].![string].![string].![ccard].?[int].?[double].end]
Applying Definition 4.3 we verify that SMClient �c SAgent (and SMClient �c SClient). Then using typing rules (Conn,

ConnDual) we can type both MClient and Agent with a : 〈SAgent〉 ∈ Γ , after applying (Sub) on the premises of
(ConnDual) typing the body of MClient.

We now demonstrate runtime typing; after three reduction steps of MClient | Agent we can have this configuration:

(νs)
(

s � {
move : s?(code).(run code | . . .), local : . . .}

| s :rtt | s :move · �s!〈ritz〉 . . .�
)

with s as the Agent’s queue. Both queues contain values including the linear higher-order code sent by MClient (which
became 0 after this output). Using (Queue,Label) from Fig. 12, we type s :move · � s!〈ritz〉 . . .� with session environment

{
s : S ′

MClient, s :: move · unit � 	}

where S ′
MClient comes from typing the HO code containing s, and:

S ′
MClient =![string].![string].![ccard].?[int].?[double].end

and similarly we type s :rtt with: {s :: int}.
The Agent s � {move : . . . , local : . . .} is typed with (Bra) under session environment:

{
s : &[move :?[unit �].S ′

Agent , local : S ′
Agent]

}

The above session environments can be synthesised using � to obtain:
{

s :: (S ′
MClient,int),

s :: (&[move :?[unit �].S ′
Agent , local : S ′

Agent],move · unit �)
}

Now we use the rules in Fig. 11 to calculate the session remainder of each queue:

S ′
MClient − int= ![string].![string].![ccard].?[double].end

&[move :?[unit �].S ′
Agent , local : S ′

Agent] − move · unit � 	 = S ′
Agent

and we have:

![string].![string].![ccard].?[double].end �c S ′
Agent

Finally, we can apply (News) and complete the derivation.

7. Type soundness and communication safety

This section studies the key properties of our typing system. First, we show that typed processes enjoy subject reduction
and communication safety.

We begin by introducing balanced environments which specify the conditions for composing environments of runtime
processes. Our definition extends the one in [19] to accommodate for the presence of buffers, using session remainders.

Definition 7.1 (Balanced �). balanced(�) holds if for all

{
s :: (S1, �τ1), s :: (S2, �τ2)

} ⊆ �

with S1 − �τ1 = S ′ and S2 − �τ2 = S ′ , we have S ′ �c S ′ .
1 2 1 2

246 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
The definition is based on (News) in the runtime typing system (Fig. 12): intuitively, all subprocesses generated from an
initial typable program should conform to the balanced condition.

Next, we define an ordering between session environments which abstractly represents an interaction at session chan-
nels.

Definition 7.2 (� ordering). Recall � defined in Section 6. We define � �s �′ as follows:

k :?[U].S � k :: U �τ �s k : S � k :: �τ
k :![U].S � k :: �τ �s k : S � k :: �τ U

k : &[li : Si]i∈I � k :: l j �τ �s k : S j � k :: �τ j ∈ I

k : ⊕[li : Si]i∈I � k :: �τ �s k : S j � k :: �τ l j j ∈ I

k : unfoldn(S) � � �s �′

k : S � � �s �′
�1 �s �2 and � � �1 defined

� � �1 �s � � �2

k : S j � k :: �τ �s k : S ′
j � k :: �τ ′ for all j ∈ H

k : A〈Sh〉h∈H � k :: �τ �s k : A〈S ′
h〉h∈H � k :: �τ ′

The first four axioms capture the transfer of types (corresponding to values) between programs and queues. For example
the first axiom captures how an input session against a non-empty queue will evolve by removing the prefix and head
element, respectively. The output axioms can be understood by duality. Then we have rules that introduce n-times unfolding
(this is needed due to asynchrony) and arbitrary contexts (�) which simplify the other rules. In the last rule, which allows
to deal with asynchronous subtypes, there are two notable points. First, we are only interested in output actions, and this
is why we use the queue k. Second, note that the queue type k :: �τ ′ is the same for all premises (j ∈ H), since we are
performing a common asynchronous action. In fact, �τ ′ will be equal to �τh where h is a label or value type; this is evident
from the output axioms. Note that if �1 �s �2 and � � �1 is defined, then � � �2 is defined; and if balanced(�) and
� �s �′ then balanced(�′). Then we have:

Theorem 7.3 (Type soundness).

1. Suppose Γ ; Λ; � � P : 	. Then P ≡ P ′ implies Γ ; Λ; � � P ′ : 	.
2. Suppose Γ ; ∅; � � P : T with balanced(�). Then P −→ P ′ implies Γ ; ∅; �′ � P ′ : T and either � = �′ or � �s �′ .

The proofs can be found in Appendix C. We make use of a number of supporting lemmas; the actual proof of Type
Soundness begins on page 260.

Communication safety We now formalise communication-safety (which subsumes the usual type-safety). First, a k-buffer is
a queue process k :�h. A k-input is a process of the shape k?(x).P or k � {li : Pi}i∈I . A k-output is a process k!〈V 〉.P or k � l.P .
Then, a k-process is a k-buffer, k-input, or k-output. Finally, a k-redex is a parallel composition of a k-input and non-empty
k-buffer, or of a k-output and k-buffer.

Definition 7.4 (Error process). We say P is an error if P ≡ (ν�a)(ν�s)(Q | R) where Q is one of the following: (a) a |-composition
of two k-processes or of a k-process and a k-process, that does not form a k-redex or a k-input with an empty k-buffer;
(b) a k-redex consisting a k-input and k-buffer such that Q = k?(x).Q ′ | k : lk�h, or Q = k � {li : Pi}i∈I | k : V �h, or Q =
k � {li : Pi}i∈I | k : lk�h with k /∈ I; (c) a k-process with k or k in �s but with k not free in R or Q ; (d) a prefixed process
or application containing a k-buffer.

The above says that a process is an error if (a) it breaks the linearity of k by having e.g. two k-inputs in parallel; (b) there
is communication-mismatch; (c) there is no corresponding opponent process for a session; or (d) it encloses a queue under
prefix, thus making it unavailable. As a corollary of Theorem 7.3, we achieve the following general communication-safety
theorem:

Theorem 7.5 (Communication safety). If Γ ; ∅; � � P : 	 with balanced(�), then P never reduces into an error.

Proof. It is enough to consider a one step reduction from a well-typed term. From Theorem 7.3 we know that the result is
well-typed. Therefore it suffices to prove that a well-typed term cannot be an error. We consider the given cases. For (a),
we may have a composition of two k-processes such as, e.g., k : �h1 | k : �h2 or k?(x1).P1 | k?(x2).P2. It is clear than no such
combination is typable: we cannot compose by � any environments �1 and �2 with k on both, unless if one is a queue
typing k :: �τ and the other is a session typing k : S . For (b), a communication mismatch is untypable since the session

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 247
remainder will be undefined, e.g., ?[U].S − lk �τ is not defined, and similarly for &[li : Si]i∈I − lk �τ when k /∈ I . When the
remainder is undefined, the rule (News) cannot apply, and therefore the term is untypable. For (c), a missing occurrence of
the dual buffer is excluded by (News). In particular, even if a session on k is ended and so does no occur in communications,
the buffer on k will still exist under the scope of k/k. For (d), a buffer cannot occur in the body of an abstraction or under
an input prefix or a branching, as can be seen by the use of Σ-environments in the user-level typing rules in Figs. 9
and 10. �
Corollary 7.6 (Open communication safety). If Γ ; Λ; � � P : 	 with balanced(�), then P never reduces into an error.

Proof. This follows easily from Theorem 7.5, since we can close the linear interface with abstractions and then apply to
linear function arguments, obtaining a term of the same type for which safety holds. In particular, Pσ , with σ a closing
substitution for Λ, will never reduce to an error, so the same is easily shown to hold for P . �
8. Related work

There is a large literature on linear and session types for both the λ-calculus and the π -calculus. Below we give the most
closely related work, dividing into three parts: one focuses on the linear typing system of the λ-calculus and the session
types for functional programming languages, the next focuses on asynchronous subtyping systems, and finally the last
explains the relationship between linearity and asynchrony from the aspect of proof theory, following recent developments.
See also [16] for discussions on other type disciplines of the π -calculus as well as on applications of session types.

8.1. Linear and session typing systems for higher-order functions

Our typing system is substructural in the sense that for session environments Σ we do not allow weakening and contrac-
tion, ensuring that a session channel is recorded as having been used only when it actually occurs in session communication
expressions. Similarly no structural transformations can apply to linear variable environments, ensuring that the occurrence
of a variable manifests that it has indeed been used exactly once. The ways in which our typing system enforces linearity
can be seen as an amalgamation of the two approaches in [53], retaining the simplicity of declarative systems, and the
decidability of algorithmic ones. Walker’s work [53] provides a good exposition to substructural typing (in which linear and
affine usages can be seen as special cases). Note that in our system there is no need to enforce linear usage for other than
functional types. Applying the inference techniques of [17,15] and [51], with the algorithmic subtyping of [19], it should be
possible to construct a type inference system.

Session types in functional languages have been studied in various works. In the first study [52], the authors define a
concurrent multi-threaded functional language with sessions. Their language supports sending of channels and higher-order
values, branching and selection, recursive sessions and channel sharing. It has an explicit multi-threading primitive (fork)
and explicit stores. The paper [20] extends the previous language to a variant of sessions where message sending is non-
blocking. This is handled by explicitly storing an entry for the two endpoint channels in a buffer. Its functionality is the same
as our use of two session channels for distinguishing the two endpoints (similarly to [19]). They simplify their previous type
judgement which required input and output environments [52] by integrating linear typing with a split operator, which
is more directly related to the original non-deterministic typing of [53]. While a precise typability comparison is difficult
due to our additional primitives, their work also shows a use of linear types for functional languages with sessions.

One of the active areas in the functional setting is the integration of session types into the lazy functional language
Haskell [39,45,27]. Incorporating primitives for session interaction into Haskell requires to define an appropriate IO-monad,
which is also suitable for solving aliasing problems. Instead of extending the type system of an existing language and adding
linear types like our work and [52,20,6], the work [39,45] encode sessions using the features of Haskell’s type system. In
general, the encoding approach in [39,45] generates more cumbersome types, but can take advantage of Haskell’s type
inference (them in most cases). The work [27] establishes a more advanced session type inference technique. An ML-style
polymorphism based on [20] is also investigated in [6].

Also, the work [10] uses (the synchronous part of) our typing system (published in [35]) to encode session types in
linear behavioural types in the HOπ -calculus. This demonstrates that the substructural features of our typing system makes
it easy to translate session types to other structures, mechanically.

Finally, the work [49] presents an alternative session system for higher-order processes, based on a logical interpretation
integrated with a functional language. This system enjoys stronger properties in terms of progress, so that processes do not
get deadlocks, but is slightly more complex due to the heavy use of monads. Moreover, it does not make use of any form
of asynchronous subtyping.

8.2. Asynchronous session typing and subtyping

Asynchronous subtyping was first studied in [37] for multiparty session types [25]; however, this work does not support
neither higher-order sessions (delegations) nor code mobility (higher-order functions). Both of these features provide powerful

248 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
abstractions for structured distributed computing; delegation is the key primitive in our implementation of session types in
Java [26] and web service protocols [23], to which we can now apply our theory for flexible optimisation. The proof of the
transitivity in this work requires a more complex construction of the transitive closure trc(�1, �2) (Definition B.10) than
the one in [37] due to the higher-order constructs. In spite of the richness of the type structures, we proposed a more
compact runtime typing and proved communication safety in the presence of higher-order code, which is not presented
in [37]. Moreover, our new typing system extends naturally the synchronous account of the linear typing system published
in [35], demonstrating a smooth integration of two kinds of type-directed optimisation.

The coinductive subtyping of recursive session types was first studied in [19], adapting standard methods from IO-
subtyping in the π-calculus [44]. The subtyping system of [19] does not provide any form of asynchronous permutation,
thus does not need the nested n-times unfolding (Definition 4.1). Moreover, our transitivity proof is significantly more
involved than in [19] due to the incorporation with n-time unfolding, permutation, and higher-order functions.

Our treatment of runtime typing, specifically our method for typing session queues and the use of session remainders, is
more compact than previous asynchronous session works (e.g. [25,4]) where they use the method of rolling-back messages —
the head type of a queue typing moves to the prefix of the session type of a process using the queue, and then compatibility
is checked on the constructed types. Our method is simpler, as we remove type elements appearing in a queue from its
typing, and also more flexible, as it naturally extends to asynchronous contexts. Our queue typing is more similar to that
in [20], where smaller types are obtained after matching with buffer values. However, our method works with queue types
rather than with values directly, which allowed it to be extended smoothly to handle asynchronous optimisation, which is
not treated in [20]. For example, we allow a type consisting of an output followed by an input action to be reduced with
a type corresponding to the input, leaving the output prefix intact. Moreover, using a more delicate composition between
values and queue typing, our system enables linear mobile code to be stored in the queues.

An analysis of asynchronous session action permutations, encompassing an asynchronous “acceptance” relation which
accommodates for output actions performed in advance, appears in an unpublished manuscript [40]. The authors suggest
that their algorithm is terminating. However, if their system admits μt.![U1].t as a subtype of μt.![U1].?[U2].t, which as we
show on page 239 induces an infinite simulation, then it is unclear how it avoids divergence without any special provision.

Finally, a notion of asynchronous context and a definition of asynchronous duality that resembles our subtyping (com-
bined with duality) appears in [5]. However, this notion is only developed in order to prove type soundness and it is not
integrated with the typing system which was mentioned as an interesting future work. It is developed for finite sessions
that, additionally, do not support delegation (name passing). Our work develops such a subtyping for a much more expres-
sive calculus supporting name and code mobility, and also in the context of recursive session types. These features require
co-inductive methods that really bring to the surface a number of challenges such as those arising from infinite simulations.

The recent work [9] studies a notion of preciseness in session subtyping, including an adaptation of our notion of asyn-
chronous subtyping. As we mentioned in Section 4.2, the subtyping of [9] avoids so called “orphan” messages, i.e., those
that are never received from a queue, by restricting the subtyping relation to contain a finite amount of branchings (in our
case this would also include inputs) before an output can be fetched from inside an asynchronous context. In simple terms,
they do not allow the accumulation of messages which follows from missing inputs. We believe a practical application of
asynchronous subtyping will make use of both approaches, ours and that of [9]: for many kinds of values that do not require
linear constraints, messages can safely be left on a queue and later garbage collected; for messages containing linear values,
a restriction might be needed such as the one in [9] or the one in [32, p. 181] or a buffer bound as in [20].

As a general remark, note that our choice to use μ-types instead of (infinite) regular trees serves better our aim of
informing programming technology, and given the restrictions, notably that of contractiveness, the two notions are equiva-
lent [18,2]. Actually, the coinductive treatment would not differ much, except in notational aspects, since we would have to
fetch output actions from deep elements of the tree representation as we do with asynchronous contexts.

8.3. Linearity and asynchrony from the proof theoretical perspective

A typical use of linearity in processes is to simply require that linear channels are used exactly once, which differs than
sessions-based linearity where channels are used once “at any moment” and can be reused in order to complete a protocol.
In that sense, linearity in sessions is about avoiding race conditions on channels, but the two notions can be interchanged
as seen by recent works [22].

There is, however, a deeper notion of linearity that arises from propositions-as-types interpretations, starting from [1].
Recently, the work [7] gave the first such correspondence for sessions types, matching session typed processes to Intu-
itionistic Linear Logic proofs. This kind of interpretation becomes more relevant for asynchrony once the constraints of
sequentiality (arising from sequent proofs) are relaxed, as has been done in [14]2 where logical sessions are obtained for
asynchronous π-calculus, and even more in [33] where logical sessions based on Proof Nets are obtained for a Solos [29]
calculus. Indeed, once we eliminate many of the prefixes, the need to perform asynchronous subtyping may seem redun-
dant, however this is not the case: in distributed computing communications are implemented using sockets or channels of
some form, so our buffered model is in fact more realistic. In the case of [14], our subtyping would allow output actions

2 Note that, as explained in [33], this work does not enjoy Subject Reduction, but this can be fixed easily.

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 249
Term fv fn
x {x} ∅
a ∅ {a}
l / () / 0 ∅ ∅
s ∅ {s}
s ∅ {

s
}

λx.P fv(P) \ {x} fn(P)

μx.λy.P fv(P) \ {x, y} fn(P)

u(x).P / u(x).P fv(u) ∪ (fv(P) \ {x}) fn(u) ∪ fn(P)

k?(x).P fv(k) ∪ (fv(P) \ {x}) fn(k) ∪ fn(P)

k!〈V 〉.P fv(k) ∪ fv(V) ∪ fv(P) fn(k) ∪ fn(V) ∪ fn(P)

k � {l1 : P1, . . . , ln : Pn} fv(k) ∪ fv(P1) ∪ . . . ∪ fv(Pn) fn(k) ∪ fn(P1) ∪ . . . ∪ fn(Pn)

k � l.P fv(k) ∪ fv(P) fn(k) ∪ fn(P)

P | Q / P Q fv(P) ∪ fv(Q) fn(P) ∪ fn(Q)

(νa : 〈S〉) P fv(P) fn(P) \ {a}
(νs) P fv(P) fn(P) \ {

s, s
}

k :�h ∅ fn(k) ∪ fn(�h)

Fig. A.13. Free variables and free names.

hidden under an input prefix to be extracted, which corresponds to valid transformations in Linear proofs. For example, we
would allow B ⊗ (A � C) to be a subtype of A � (B ⊗ C), under certain conditions.

9. Conclusion

We formalise for the first time session typing for a process language that allows not only data but also runnable code
to be the subject of structured type-safe communications. The ability to exchange code is fundamental in concurrent and
distributed systems where programs cannot be fully fixed ab initio and dynamicity is a prerequisite. We then relax the strict
compatibility requirements that govern pairs of interacting processes to allow certain classes of message-passing actions to
be permuted, offering not only greater flexibility in composing programs, but also guidance toward type-safe optimisations.
Our session typing system for the HOπ -calculus can serve as a theoretical foundation for process and functional languages,
and our asynchronous subtyping has been already implemented in order to allow message overlapping in message passing
parallel algorithms in a C language with sessions [41]. The first author’s thesis also demonstrates that the theory developed
in this article is smoothly extensible to object-orientation [32]. Our future work includes a type-preserving fully abstract
encoding of HOSπ into the session π -calculus based on a session-based asynchronous bisimulation [28] or behavioural
equivalences [42]; a development of a decidable algorithm for the asynchronous subtyping relation along the lines of [19];
extensions to multiparty session types [4,25]; and an incorporation with actor-based languages for concurrency, following
the Erlang-based development in [34]. In summary, an automatic optimisation that preserves the intended semantics and
does not violate type-safety is interesting, both theoretically and practically, and in this work we have established a solid
theory to support this development.

Acknowledgments

We thank the reviewers for their comments. The work is partially supported by EP/K034413/1, EP/K011715/1 and
EP/L00058X/1, EU project FP7-612985 UpScale, and ICT COST Action IC1201 BETTY.

Appendix A. Syntax

In Fig. A.13, we list the sets of free names and variables of HOSπ .

Appendix B. Proofs on asynchronous subtyping

This appendix gives the proofs on the properties of �c (Theorem 4.4). The outline is given in the last paragraph of
Section 4.3.

Lemma B.1. If S1 �c S2 then unfoldn(S1) �c S2 .

Proof. Let � be a type simulation such that S1 � S2. Let

Un
l (�) =

⋃
i∈1..n

{
(unfoldi(S ′

1), S ′
2) | (S ′

1, S ′
2) ∈ �

}
∪ �

Clearly (unfoldn(S1), S2) ∈ Un
l (�), but is has to be shown that Un

l (�) is a type simulation. For this we need to demonstrate
that for any (T1, T2) ∈ Un(�) the rules of simulation (Definition 4.3) hold. Since � ⊆ Un(�) and � is a simulation, we only
l l

250 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
need to examine the cases for (unfoldi(S ′
1), S

′
2) ∈ Un

l (�) \ �, that is, for the new elements for which (S ′
1, S ′

2) ∈ � holds by
our construction of Un

l (�).

In the following we write �(11)
c to mean case (11) of Definition 4.3.

Case unfoldi(S ′
1) = end. Then S ′

1 = μt1 . . .μtz.end for 0 ≤ z ≤ i. We have, by assumption, that (S ′
1, S

′
2) ∈ �, therefore after

applying �(11)
c z times we get (end, S ′

2) ∈ �, and by the rules of simulation unfoldm(S ′
2) = end, for some m, as required.

Case unfoldi(S ′
1) =![U1].S10. W.l.o.g let S ′

1 = μt1 . . .μtz.![U1].S ′
10 with 0 ≤ z ≤ i. We have (S ′

1, S
′
2) ∈ � and after z uses of

�(11)
c we obtain (unfoldz(S ′

1), S
′
2) ∈ � which can be written, based on the shape of S ′

1, as (![U1].S ′′
10, S

′
2) ∈ �. The type S ′′

10
is derived from S ′

10 after the type variable substitutions induced by the z unfoldings on S ′
1. By the rules of simulation,

from (![U1].S ′′
10, S

′
2) ∈ � we obtain unfoldm(S ′

2) = A〈![U2].S2h〉h∈H and (U2, U1) ∈ � and (S ′′
10, A〈S2h〉h∈H) ∈ �. From the

shape of S ′
1 given previously we have that unfoldi(S ′

1) =![U1].unfoldi−z(S ′′
10) and by our assumptions S10 = unfoldi−z(S ′′

10). By
the construction of Un

l (�) and (S ′′
10, A〈S2h〉h∈H) ∈ � we have that (unfoldi−z(S ′′

10), A〈S2h〉h∈H) ∈ Un
l (�). Therefore we have

(S10, A〈S2h〉h∈H) ∈ Un
l (�). From the definition of Un

l (�) which includes � the above provide us with (U2, U1) ∈ Un
l (�) and

(S10, A〈S2h〉h∈H) ∈ Un
l (�), as required.

Case unfoldi(S ′
1) = μt1 . . .μtz.S10. Then without loss of generality S ′

1 = μt′1 . . .μt′i .μt1 . . .μtz.S ′
10. The type S10 is derived

from S ′
10 after the type variable substitutions induced by the i unfoldings on S ′

1. Since (S ′
1, S

′
2) ∈ �, after i applications of

�(11)
c we obtain (unfoldi(S ′

1), S
′
2) ∈ � and hence (unfold1(unfoldi(S ′

1)), S
′
2) ∈ � which is the required result since � ⊆ Un

l (�).

Other cases are similar. �
Lemma B.2. If S1 �c S2 then S1 �c unfoldn(S2).

Proof. Let � be a type simulation such that S1 � S2. Let

Un
r (�) =

⋃
i∈1..n

{
(S ′

1,unfoldi(S ′
2)) | (S ′

1, S ′
2) ∈ �

}
∪ �

The proof follows a pattern similar to the previous lemma. Clearly we have (S1, unfoldn(S2)) ∈ Un
r (�), but is has to be shown

that Un
r (�) is a type simulation. For this we need to demonstrate that for any (T1, T2) ∈ Un

r (�) the rules of simulation
(Definition 4.3) hold. Since � ⊆ Un

r (�) and � is a simulation, we only need to examine the cases for (S1, unfoldm(S2)) ∈
Un

r (�) \ � with m ≤ n, that is, for the new elements for which (S1, S2) ∈ � holds by the construction of Un
r (�).

Interesting cases are:

Case S1 = end. Then (S1, S20) ∈ � and S2 = unfoldm(S20) and unfoldz(S20) = end. If z ≤ m then unfoldm(S20) = end as re-
quired. If z > m then unfoldz−m(S2) = end as required.

Case S1 =![U1].S ′
1. Then (S1, S20) ∈ � and S2 = unfoldm(S20) and unfoldz(S20) = A〈![U2].S2h〉h∈H and (U2, U1) ∈ � and

(S ′
1, A〈S2h〉h∈H) ∈ �.
If z ≤ m then, using the definition of unfold

S2 = unfoldm−z(A〈![U2].S2h〉h∈H) = A〈![U2].unfoldm−z(S2h)〉h∈H

We have (U2, U1) ∈ �, then we need (S ′
1, A〈unfoldm−z(S2h)〉h∈H) ∈ Un

r (�). From (S ′
1, A〈S2h〉h∈H) ∈ � we obtain (S ′

1,

unfoldm−z(A〈S2h〉h∈H)) ∈ Un
r (�), and then from the definition of unfold we obtain unfoldm−z(A〈S2h〉h∈H) =

A〈unfoldm−z(S2h)〉h∈H . If z > m then unfoldz−m(S2) =A〈![U2].S2h〉h∈H and the supporting elements are in �, as required.

Other cases are similar. �
Definition B.3 (Unfolding extension). Given a simulation �, the unfolding extension of � is defined as follows:

Un(�) = Un
l (�) ∪ Un

r (�)

Proposition B.1. If � ⊆�c then Un(�) ⊆�c . That is, for any simulation �, the unfolding extension Un(�) is a type simulation.

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 251
Proof. Trivial as Un(�) is defined as the union of two simulations. �
We now define the single-step permutation transformations for top-level actions, which enable us to obtain more asyn-

chronous subtypes, as this is needed further on when, given a simulation, we obtain more asynchronous simulations utilising
single and multi-step permutations. There are two components, permutation contexts C and permutation rules �, defined
as follows:

Definition B.4 (Single-step permutation).
Permutation Contexts

C ::= ?[U].〈·〉h∈H | &[li : 〈·〉h∈H]i∈I

Permutation Rules

S � S

C〈![U].Sh〉h∈H � ![U].C〈Sh〉h∈H

C〈⊕[li : Sih]i∈Ih 〉h∈H � ⊕[li : C〈Sih〉h∈H]i∈I ∀h ∈ H . I ⊆ Ih

Definition B.5 (Contextual extension). Given a simulation �, the contextual extension of � is defined as follows:

CE(�) = { (?[U1].S1,?[U2].S2) | (U1, U2) ∈ � ∧ (S1, S2) ∈ �}
∪ {

(&[li : S1i]i∈I ,&[l j : S2 j] j∈ J) | J ⊆ I ∧ ∀ j ∈ J . (S1 j, S2 j) ∈ �}

∪ �

Lemma B.6. If � ⊆�c then CE(�) ⊆�c . That is, for any simulation �, the contextual extension CE(�) is a type simulation.

Proof. Trivial since the generated pairs in CE(�) are exactly those justified by the conditions in Definition 4.3, cases (8)
and (10), with the required assumptions provided in �. We do not need to examine the � subcomponent as it is a simula-
tion by assumption. �

Next we define the asynchronous extension of a simulation, with degree n. The degree represents the number of single-
step permutations, applied successively to all the components of the given simulation, up to asynchronous contexts A.

Definition B.7 (Asynchronous extension). Given a simulation �, the asynchronous extension of � with degree n is defined as
follows:

α0(�) = �
αn(�) = CE(Uω(αn−1(�)))

∪{ (A〈S ′
1h〉h∈H , S2) | (A〈S1h〉h∈H , S2) ∈ αn−1(�)

∧ ∀h ∈ H . S1h � S ′
1h } (n ≥ 1)

The notation Uω(αn−1(�)) stands for the union of all Um(αn−1(�)) such that m ∈ N.

Lemma B.8. If � ⊆�c then αn(�) ⊆�c . That is, for any simulation � and degree n ∈ N, the asynchronous extension αn(�) is a type
simulation.

Proof. We proceed by induction on the degree n. The base case of n = 0 holds because � is a simulation by assumption.
We then prove the inductive case for any n ≥ 1.

By the inductive hypothesis αn−1(�) ⊆�c , then by Proposition B.1 we have Uω(αn−1(�)) ⊆�c , and by Lemma B.6 we
obtain CE(Uω(αn−1(�))) ⊆�c . Therefore, it is not necessary to examine pairs in this subset of αn(�). Then, it remains
to examine an arbitrary pair (A〈S ′

1k〉k∈K , S2) ∈ αn(�) such that (A〈S1k〉k∈K , S2) ∈ αn−1(�) with ∀ k ∈ K . S1k � S ′
1k . We

proceed by taking cases on the shape of the context A.

Case A = 〈·〉k∈K . Then let S1 = A〈S1k〉k∈K , and S ′
1 = A〈S ′

1k〉k∈K . We have S1 � S ′
1, and proceed by examination of the

permutation applied.

252 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
Subcase S1 = S ′
1. Trivial.

Subcase S1 = C〈![U].S1k〉k∈K and S ′
1 =![U].C〈S1k〉k∈K . We proceed with cases on C .

If C =?[U1].〈·〉k∈K , then

S1 = C〈![U].S1k〉k∈K =?[U1].![U].S1k

and

S ′
1 =![U].C〈S1k〉k∈K =![U].?[U1].S1k

(S1, S2) ∈ αn−1(�) ⇒ unfoldn(S2) =?[U2].S ′
2∧ (U1, U2) ∈ αn−1(�)

∧ (![U].S1k, S ′
2) ∈ αn−1(�)

(![U].S1k, S ′
2) ∈ αn−1(�) ⇒ unfoldm(S ′

2) = A1〈![U ′].S2h〉h∈H

∧ (U ′, U) ∈ αn−1(�)

∧ (S1k,A1〈S2h〉h∈H) ∈ αn−1(�)

From the definition of n-times unfolding we obtain

unfoldn+m(S2) =?[U2].A1〈![U ′].S2h〉h∈H = A2〈![U ′].S2h〉h∈H

with

A2 =?[U2].A1

Now we proceed to justify the inclusion (S ′
1, S2) ∈ αn(�). Then we have (![U].?[U1].S1k, S2) ∈ αn(�). Also unfoldn+m(S2) =

A2〈![U ′].S2h〉h∈H with (U ′, U) ∈ αn−1(�)(⊆ αn(�)). We need to show that (?[U1].S1k, A2〈S2h〉h∈H) ∈ αn(�) which can be
written (?[U1].S1k, ?[U2].A1〈S2h〉h∈H) ∈ αn(�). We have (U1, U2) ∈ αn−1(�) and (S1k, A1〈S2h〉h∈H) ∈ αn−1(�), hence we
have (?[U1].S1k, A2〈S2h〉h∈H) ∈ CE(αn−1(�)) ⊆ αn(�) as required.

If C = &[li : 〈·〉k∈K]i∈I , then

S1 = C〈![U].S1k〉k∈K = &[li :![U].S1i]i∈I

and

S ′
1 =![U].C〈S1k〉k∈K =![U].&[li : S1i]i∈I

(S1, S2) ∈ αn−1(�) ⇒ unfoldn(S2) = &[l j : S2 j] j∈ J
∧ J ⊆ I
∧ ∀ j ∈ J . (![U].S1 j, S2 j) ∈ αn−1(�)

⇒ ∀ j ∈ J .unfoldm j (S2 j) = A j〈![U ′].S ′
2 jh〉h∈H j

∧ (U ′, U) ∈ αn−1(�)

∧ ∀ j ∈ J . (S1 j,A j〈S ′
2 jh〉h∈H j) ∈ αn−1(�)

Let mmax = max j∈ J (m j). From the unfolding construction of Uω(αn−1(�)) we obtain

∀ j ∈ J . (S1 j,unfoldmmax−m j (A j〈S ′
2 jh〉h∈H j)) ∈ Uω(αn−1(�))

From the definition of n-times unfolding we obtain

unfoldn+mmax(S2) = &[l j : unfoldmmax−m j (A j〈![U ′].S ′
2 jh〉h∈H j)] j∈ J

= A′〈![U ′].S ′
2 jh〉h∈H

with

A′ = &[l j : unfoldmmax−m j (A j)] j∈ J and H = � j∈ J (H j)

Now we proceed to justify the inclusion (![U].&[li : S1i]i∈I , S2) ∈ αn(�). We have unfoldn+mmax(S2) = A′〈![U ′].S ′
2 jh〉h∈H ,

and (U ′, U) ∈ αn−1(�). We then need to show that (&[li : S1i]i∈I , A′〈S ′
2 jh〉h∈H) ∈ αn(�). Since J ⊆ I and ∀ j ∈ J . (S1 j,

unfoldmmax−m j (A j〈S ′
2 jh〉h∈H)) ∈ Uω(αn−1(�)), we have that (&[li : S1i]i∈I , &[l j : unfoldmmax−m j (A j〈S ′

2 jh〉h∈H)] j∈ J) ∈
CE(Uω(αn−1(�))), as required.

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 253
Subcase S1 = C〈⊕[li : S1ik]i∈Ik 〉k∈K and S ′
1 = ⊕[li : C〈S1ik〉k∈K]i∈I with ∀ k ∈ K . I ⊆ Ik . We proceed with cases on C .

If C =?[U1].〈·〉k∈K , then

S1 = C〈⊕[li : S1ik]i∈Ik 〉k∈K =?[U1]. ⊕ [li : S1i]i∈I

and

S ′
1 = ⊕[li : C〈S1ik〉k∈K]i∈I = ⊕[li :?[U1].S1i]i∈I

(S1, S2) ∈ αn−1(�) ⇒ unfoldn(S2) =?[U2].S ′
2∧ (U1, U2) ∈ αn−1(�)

∧ (⊕[li : S1i]i∈I , S ′
2) ∈ αn−1(�)

(⊕[li : S1i]i∈I , S ′
2) ∈ αn−1(�) ⇒ unfoldm(S ′

2) = A1〈⊕[l j : S2 jh] j∈ Jh 〉h∈H

∧ ∀h ∈ H . I ⊆ Jh

∧ ∀i ∈ I . (S1i,A1〈S2ih〉h∈H) ∈ αn−1(�)

From the definition of n-times unfolding we obtain

unfoldn+m(S2) =?[U2].A1〈⊕[l j : S2 jh] j∈ Jh 〉h∈H = A2〈⊕[l j : S2 jh] j∈ Jh 〉h∈H

with

A2 =?[U2].A1

Now we proceed to justify the inclusion (S ′
1, S2) ∈ αn(�). We have (⊕[li :?[U1].S1i]i∈I , S2) ∈ αn(�). Also unfoldn+m(S2) =

A2〈⊕[l j : S2 jh] j∈ Jh 〉h∈H with ∀h ∈ H . I ⊆ Jh . We then need to show that ∀i ∈ I . (?[U1].S1i, A2〈S2ih〉h∈H) ∈ αn(�) which can
be written (?[U1].S1i, ?[U2].A1〈S2ih〉h∈H) ∈ αn(�). We have (U1, U2) ∈ αn−1(�) and (S1i, A1〈S2ih〉h∈H) ∈ αn−1(�), hence
we have (?[U1].S1i, A2〈S2ih〉h∈H) ∈ CE(αn−1(�)) as required.

If C = &[li : 〈·〉k∈K]i∈I , then

S1 = C〈⊕[li : S1ik]i∈Ik 〉k∈K = &[l′ j : ⊕[li : S1i j]i∈I j] j∈ J

and

S ′
1 = ⊕[li : C〈S1ik〉k∈K]i∈I = ⊕[li : &[l′ j : S1i j] j∈ J]i∈I ∀ j ∈ J . I ⊆ I j

(S1, S2) ∈ αn−1(�) ⇒ unfoldn(S2) = &[l′z : S2z]z∈Z

∧ Z ⊆ J
∧ ∀z ∈ Z . (⊕[li : S1iz]i∈Iz , S2z) ∈ αn−1(�)

⇒ ∀z ∈ z .unfoldmz (S2z) = Az〈⊕[l j : S2zjh] j∈ Jh 〉h∈Hz

∧ ∀z ∈ z .∀h ∈ Hz . Iz ⊆ Jh

∧ ∀z ∈ z .∀i ∈ Iz . (S1iz,Az〈S2zih〉h∈Hz) ∈ αn−1(�)

Let mmax = maxz∈Z (mz). Then from the unfolding construction of Uω(αn−1(�)) we obtain

∀z ∈ Z .∀i ∈ Iz . (S1iz,unfoldmmax−mz (Az〈S2zih〉h∈Hz)) ∈ Uω(αn−1(�))

From the definition of n-times unfolding we obtain

unfoldn+mmax(S2) = &[l′z : Az〈⊕[l j : S2zjh] j∈ Jh 〉h∈Hz]z∈Z

= A′〈⊕[l j : S2zjh] j∈ Jh 〉h∈H

with

A′ = &[l′z : unfoldmmax−mz (Az)]z∈Z and H = �z∈Z (Hz)

Now we proceed to justify the inclusion (⊕[li : &[l′ j : S1i j] j∈ J]i∈I , S2) ∈ αn(�). We have unfoldn+mmax (S2) = A′〈⊕[l j :
S2zjh] j∈ Jh 〉h∈H and from I ⊆ Iz∈Z⊆ J ⊆ Jh∈Hz we obtain ∀h ∈ H . I ⊆ Jh . We then need to show that ∀i ∈ I . (&[l′ j :
S1i j] j∈ J , &[l′z : unfoldn+mmax(Az〈S2zih〉h∈Hz)]z∈Z) ∈ αn(�). These pairs are in CE(Uω(αn−1(�))) by construction, as required.

Case A =?[U].A′ . From the shape of A, we have (?[U].A′〈S1k〉k∈K , S2) ∈ αn−1(�). By the rules of simulation, unfoldm(S2) =
?[U ′].S ′

2 and (U , U ′) ∈ αn−1(�) and (A′〈S1k〉k∈K , S ′
2) ∈ αn−1(�). By the construction of αn(�) we have (A′〈S ′

1k〉k∈K , S ′
2) ∈

αn(�). It is now straightforward to show that (?[U].A′〈S ′
1k〉k∈K , S2) is justified by the rules of simulation and the above

hypotheses.

254 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
Case A = &[li : Ai]i∈I . From the shape of A, (&[li : Ai〈S1k〉k∈K]i∈I , S2) ∈ αn−1(�). By the rules of simulation, unfoldm(S2) =
&[l j : S2 j] j∈ J and J ⊆ I and ∀ j ∈ J . (A j〈S1k〉k∈K , S2 j) ∈ αn−1(�). By the construction of αn(�) we have ∀ j ∈
J . (A j〈S ′

1k〉k∈K , S2 j) ∈ αn(�). As before it is now trivial to justify (&[li :Ai〈S ′
1k〉k∈K]i∈I , S2) ∈ αn(�). �

Corollary B.9 (Multi-step permutation).

1. If (A〈![U1].S1k〉k∈K , S2) ∈ αω(�) then (![U1].A〈S1k〉k∈K , S2) ∈ αω(�)

2. If (A〈⊕[li : S1ih]i∈Ih 〉h∈H , S2) ∈ αω(�) and ∀ h ∈ H . I ⊆ Ih , then (⊕[li :A〈S1ih〉h∈H]i∈I , S2) ∈ αω(�).

As before, the notation αω(�) stands for the union of all αn(�) with n ∈N.

Proof. Every context A can be written as a (possibly empty) nested structure of C contexts, such that A =
C〈Ch〈Chk〈. . .〉...〉h∈H 〉k∈K . Every level of asynchronous permutation in αω(�) generates pairs by applying a transformation on
the innermost C contexts of all matching types; in this way it reduces the depth of the innermost contexts for the generated
type pairs, which are matched at the next level. At every level, the penultimate contexts become last. By induction on the
maximum depth of the nested C-context representation of any A, we can obtain the result formally. �
Proposition B.2. If (S1, S2) ∈ αω(�) then (unfoldn(S1), S2) ∈ αω(�).

Proof. Easy to obtain: since � allows the identity permutation, then for all m, αm(�) will include CE(Uω(αm−1(�))) ⊇
Uω(αm−1(�)) even when there are no more effective permutations to apply on any type, and up to all contexts. Suppose
(S1, S2) ∈ αz(�), take m = z + n + 1, and we obtain the result (unfoldn(S1), S2) ∈ αm(�). �
Transitivity connection Next is the main definition of this section, the transitivity connection of two relations. It is defined as
the relational composition (taking the union of both directions, needed due to the presence of contravariant components)
of the asynchronous extensions of the given simulations, respectively. We then prove that the transitivity connection (of
simulations) is a simulation, which is, effectively, a proof of the transitivity of �c .

Definition B.10 (Transitivity connection). For type simulations �1 and �2, the transitivity connection trc(�1, �2) is defined as
follows:

trc(�1,�2) = αω(�1) · αω(�2) ∪ αω(�2) · αω(�1)

Lemma B.11. If �i∈{1,2} ⊆�c then trc(�1, �2) ⊆�c . That is, for any two simulations �1 and �2 , the transitivity connection
trc(�1, �2) is a type simulation.

Proof. We examine an arbitrary (T1, T3) ∈ αω(�1) · αω(�2) ⊆ trc(�1, �2), taking cases on the shape of T1. The remaining
cases, for membership in αω(�2) · αω(�1), are symmetric.

Case T1 =![U1].S1. Then (T1, T2) ∈ αω(�1) and (T2, T3) ∈ αω(�2).

(![U1].S1, T2) ∈ αω(�1) ⇒ unfoldn(T2) = A1〈![U2].S2h〉h∈H

∧ (U2, U1) ∈ αω(�1)

∧ (S1,A1〈S2h〉h∈H) ∈ αω(�1)

(T2, T3) ∈ αω(�2) ⇒ (unfoldn(T2), T3) ∈ αω(�2)

⇔ (A1〈![U2].S2h〉h∈H , T3) ∈ αω(�2)

Corollary B.9 ⇒ (![U2].A1〈S2h〉h∈H , T3) ∈ αω(�2)

⇒ unfoldm(T3) = A2〈![U3].S3k〉k∈K

∧ (U3, U2) ∈ αω(�2)

∧ (A1〈S2h〉h∈H ,A2〈S3k〉k∈K) ∈ αω(�2)

Ui∈{1,2} = S ′
i ⇒ (U3, U1) = (U3, U1) ∈ αω(�2) · αω(�1)

∧ (S1,A2〈S3k〉k∈K) ∈ αω(�1) · αω(�2)

Ui∈{1,2} �= S ⇒ (U3, U1) = (U1, U3) ∈ αω(�1) · αω(�2)

∧ (S1,A2〈S3k〉k∈K) ∈ αω(�1) · αω(�2)

Hence (T1, T3) is justified in trc(�1, �2).

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 255
Case T1 =?[U1].S1. Then (T1, T2) ∈ αω(�1) and (T2, T3) ∈ αω(�2).

(?[U1].S1, T2) ∈ αω(�1) ⇒ unfoldn(T2) =?[U2].S2
∧ (U1, U2) ∈ αω(�1)

∧ (S1, S2) ∈ αω(�1)

(T2, T3) ∈ αω(�2) ⇒ (unfoldn(T2), T3) ∈ αω(�2)

⇔ (?[U2].S2, T3) ∈ αω(�2)

⇒ unfoldm(T3) =?[U3].S3
∧ (U2, U3) ∈ αω(�2)

∧ (S2, S3) ∈ αω(�2)

Ui∈{1,2} = S ′
i ⇒ (U1, U3) = (U1, U3) ∈ αω(�1) · αω(�2)

∧ (S1, S3) ∈ αω(�1) · αω(�2)

Ui∈{1,2} �= S ⇒ (U1, U3) = (U3, U1) ∈ αω(�2) · αω(�1)

∧ (S1, S3) ∈ αω(�1) · αω(�2)

Hence, as before, (T1, T3) is justified in trc(�1, �2).

Case T1 = ⊕[li : S1i]i∈I . Then (T1, T2) ∈ αω(�1) and (T2, T3) ∈ αω(�2).

(⊕[li : S1i]i∈I , T2) ∈ αω(�1) ⇒ unfoldn(T2) = A1〈⊕[l j : S2 jh] j∈ Jh 〉h∈H

∧ ∀h ∈ H . I ⊆ Jh

∧ ∀ i ∈ I . (S1i,A1〈S2ih〉h∈H) ∈ αω(�1)

(T2, T3) ∈ αω(�2) ⇒ (unfoldn(T2), T3) ∈ αω(�2)

⇔ (A1〈⊕[l j : S2 jh] j∈ Jh 〉h∈H , T3) ∈ αω(�2)

Corollary B.9 with I ⊆ Jh∈H ⇒ (⊕[li : A1〈S2ih〉h∈H]i∈I , T3) ∈ αω(�2)

⇒ unfoldm(T3) = A2〈⊕[lz : S2zk]z∈Zk 〉k∈K

∧ ∀k ∈ K . I ⊆ Zk

∧ ∀ i ∈ I . (A1〈S2ih〉h∈H ,A2〈S3ik〉k∈K) ∈ αω(�2)

⇒ ∀ i ∈ I . (S1i,A2〈S3ik〉k∈K) ∈ αω(�1) · αω(�2)

Hence (T1, T3) is justified in trc(�1, �2).

Case T1 = μt.S1. Then (T1, T2) ∈ αω(�1) and (T2, T3) ∈ αω(�2).

(μt.S1, T2) ∈ αω(�1) ⇒ (unfold1(μt.S1), T2) ∈ αω(�1)

⇒ (unfold1(μt.S1), T3) ∈ αω(�1) · αω(�2)

Thus, (T1, T3) is justified in trc(�1, �2).
Other cases are similar, and in fact simpler, because they make no use of asynchronous contexts and permutations. �

Proof of Theorem 4.4. For reflexivity it is easy to prove {(T , T) | T ∈ T } ⊆�c . For transitivity, we have that whenever
(T1, T2) ∈ �1 and (T2, T3) ∈ �2, then (T1, T3) ∈ trc(�1, �2), and trc(�1, �2) ⊆�c by Lemma B.11. �
Appendix C. Proofs of type soundness

We proceed to show that typed processes enjoy type soundness and type safety. We begin with a number of auxiliary
properties, and then prove the Substitution Lemma (page 256).

Lemma C.1 (Closed judgement). If Γ ; Λ; Σ � P : T and x ∈ fv(P) then x ∈ dom(Γ) ∪ dom(Λ) ∪ dom(Σ).

Proof. By induction on the typing derivation for P . The interesting cases are the axioms which form the leaves of a deriva-
tion. If the last rule is (Shared), (LVar), or (Session), then P = x and x appears in one of typing environments, depending
on which axiom was applied. The other cases are easy to obtain using the inductive hypothesis. �

We have the standard weakening and strengthening for Γ , but not for Λ and Σ .

256 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
Lemma C.2 (Γ -weakening). If Γ ; Λ; Σ � P : T and x /∈ dom(Γ, Λ, Σ) then Γ, x :U ; Λ; Σ � P : T .

Lemma C.3 (Γ -strengthening). If Γ, x :U ; Λ; Σ � P : T and x /∈ fv(P) then Γ ; Λ; Σ � P : T .

The typing rule (Close) can be used to introduce arbitrary, but ended, hypotheses to the session environment. This is a
form of weakening, albeit restricted, and we introduce the following lemma so that we can strengthen the hypotheses by
removing any one introduced by (Close). This lemma is used in the proof of Structural Congruence.

Lemma C.4 (Σ-strengthening). If Γ ; Λ; Σ, k :end � P : T and k /∈ fn(P) then Γ ; Λ; Σ � P : T .

Proof. By induction on the typing derivation for P . �
Lemma C.5 (Linear variable occurrence). If Γ ; Λ, x :U � T ; Σ � P : T then x ∈ fv(P).

Proof. By induction on the typing derivation for P . Most cases are straightforward, using the inductive hypothesis. The
interesting case is for (LVar), where P = x, proving the occurrence of the linear variable. �
Lemma C.6 (Endpoint occurrence). If Γ ; Λ; Σ, x : S � P : T and S �= end then x ∈ fv(P).

Proof. By induction on the typing derivation for P . Most cases are straightforward, using the inductive hypothesis. The
interesting case is for (Session), where P = x, proving the occurrence of the endpoint. The sidecondition S �= end serves to
exclude the cases where x appears in the session environment by introduction through (Close). �
Lemma C.7 (Ended session). If Γ ; Λ; Σ, x : S � P : T and x /∈ fv(P) then S = end.

Proof. By induction on the typing derivation for P . Most cases are straightforward, using the inductive hypothesis. The
interesting case is when the last rule applied was (Close), which does not require x to be free in the term, and also implies
that S = end. �
Lemma C.8 (Linear unique occurrence). If Γ ; Λ, x :U � T ; Σ � P : T , and P = Q 1 · Q 2 or P = Q 1 | Q 2 or P = k!〈Q 1〉.Q 2 (in the
last case Q 1 = V), then x /∈ fv(Q i) for i = 1 or i = 2.

Proof. We proceed by induction on the typing derivation for P . Note that we have x ∈ fv(P) by Lemma C.5. Suppose
x ∈ fv(Q 1). Assume Λ, x :U � T ≡ Λ1, Λ2 and Σ ≡ Σ1, Σ2. Let Γ ; Λ1; Σ1 � Q 1 : T1 (1) and Γ ; Λ2; Σ2 � Q 2 : T2 from the
I.H. on the premises of the last rule applied; this was either (App) or (Par) or (Send). From Lemma C.1 we know that since
x is free in Q 1 it appears in one of the typing environments of (1), and in particular Λ1 since by the well-formedness of
the assumed judgement for P it cannot appear in Γ or Σ1 ⊆ Σ when it appears in Λ, x :U � T . Now assume additionally
that x ∈ fv(Q 2). Then by Lemma C.1 we have that x ∈ dom(Γ, Λ2, Σ2) which is a contradiction since by the well-formedness
of the judgement for P we have that x cannot appear in Γ or Λ2 ⊆ Λ or Σ2 ⊆ Σ . Hence x /∈ fv(Q 2). The case for x /∈ fv(Q 1)

is symmetric. �
Lemma C.9 (Endpoint unique occurrence). If Γ ; Λ; Σ, x : S � P : T , and P = Q 1 · Q 2 or P = Q 1 | Q 2 or P = k!〈Q 1〉.Q 2 (in the last
case Q 1 = V), then x /∈ fv(Q i) for i = 1 or i = 2.

Proof. The proof is by induction on the typing derivation, and follows the same pattern as in Lemma C.8. When x /∈ fv(P),
which is a possibility due to (Close), the result is immediate. When x ∈ fv(P) we proceed as in Lemma C.8. �

The Substitution Lemma which follows is mostly standard, noting that we only need to define substitution for terms that
do not contain runtime elements, i.e., we do not need to consider queues.

Lemma C.10 (Substitution lemma).

1. Suppose Γ, x :U ; Λ; Σ � P : T and Γ ; ∅; ∅ � V : U . Then Γ ; Λ, Σ � P {V/ x} : T .
2. Assume Γ ; Λ1, x :U � T ′; Σ1 � P : T and Γ ; Λ2; Σ2 � V : U � T ′ with Λ1, Λ2 and Σ1, Σ2 defined. Then Γ ; Λ1, Λ2; Σ1,

Σ2 � P {V/ x} : T .
3. Suppose Γ ; Λ; Σ, x : S � P : T and k /∈ dom(Γ, Λ, Σ). Then Γ ; Λ; Σ, k : S � P {k/ x} : T .

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 257
Proof. The proof is by induction on the last rule applied in the typing derivation for P . In Part (1) we do not state cases
where substitution has no effect, as these can be shown trivially from the assumptions with strengthening on the hypothesis
for x in Γ, x : U . In Part (2), we assume that substitution is only applied when x ∈ fv(P), which is correct since in any
judgement, x ∈ dom(Λ) implies that x occurs in the term (see Lemma C.5). For Part (3) we cannot assume that x ∈ fv(P),
since usages of the shape x : end can be obtained using (Close) even when x is not free in the term.

Part (1)
Case (Shared) P = x T = U Λ = Σ = ∅
We have P {V/ x} = V by the hypotheses, then T = U and Λ = Σ = ∅. Then we use Γ ; ∅; ∅ � V : U to obtain the required
judgement Γ ; Λ, Σ � P {V/ x} : T .

Case (LVar) P = x is excluded because x ∈ dom(Λ) implies x /∈ dom(Γ) by the well-formedness of the judgement for P . This
case is proved in Part (2).

Case (Session) P = x is excluded because x ∈ dom(Σ) implies x /∈ dom(Γ) by the well-formedness of the judgement for P .
This case is proved in Part (3).

Case (Sub) Trivial to show using the I.H. on the premise followed by an application of (Sub).

Case (Promotion,Dereliction) Easy to show using the I.H. on the premise followed by an application of the same rule.

Case (Abs) P = λ(z : U1).Q z �= x T = U1 � T1
From the I.H. on the premises we have (Γ, x :U ; Λ; Σ) � z :U1 � Q {V/ x} : T1 (1). With an application of (Abs) on (1), binding
variable z, we obtain Γ, x : U ; Λ; Σ � λ(z : U1).Q {V/ x} : T (2). Now, since by the substitution we have that x /∈ fv(λ(z :
U1).Q {V/ x}), we use strengthening on (2) to remove the hypothesis for x and obtain the required judgement.

Case (Rec) is very similar to the case for (Abs).

Case (App) P = Q 1 · Q 2 Λ = Λ1,Λ2 Σ = Σ1,Σ2
From the premises we obtain Γ, x :U ; Λi; Σi � Q i{V/ x} : Ti with T1 = U ′ � T or T1 = U ′ → T and T2 = U ′ . We then apply
(App) with the above judgements in the premises, and obtain the result. Strengthening to remove the hypothesis for x
(which is not free in the resulting term) is the last step.

Case (Nil), (New), (News) are all straightforward to obtain from the premises using the I.H. followed by an application of
the respective rule. Removing the hypothesis for x is used as before to obtain the desired shared environment for the final
judgement.

Case (Conn) P = u(z).Q z �= x T = 	
We take the following cases:

1. Suppose u = x. Then we have Γ, x : U ; Λ; Σ � x(z).Q : 	 (1). Also V = u′ and from the assumptions Γ ; ∅; ∅ � u′ : U (2)

with U = 〈S〉. We have P {V/ x} = u′(z).Q {V/ x}. From (1) we obtain the premise Γ, x : U ; Λ; Σ, z : S � Q : 	 (3). Applying
the I.H. on (3) we get Γ ; Λ; Σ, z : S � Q {V/ x} : 	 (4). We now apply (Conn) with (2) and (4) to obtain Γ ; Λ; Σ �
u′(z).Q {V/ x} : 	 as required.

2. Suppose u �= x. Then P {V/ x} = u(z).Q {V/ x}. From the assumption for P we obtain the premise Γ, x :U ; Λ; Σ � u : 〈S〉 (5).
Then since x �= u we can strengthen the hypotheses and obtain Γ ; Λ; Σ � u : 〈S〉 (6). We obtain (4) as before, and apply
(Conn) using (4) and (6) to obtain the required judgement.

Case (ConnDual) is very similar to (Conn).

Case (Recv) is very similar to (Abs).

Case (Send) is similar to (App).

Case (Par) is straightforward to obtain using the I.H. on the premises followed by an application of (Par).

Case (Close) is straightforward to obtain using the I.H. on the premises followed by an application of (Close).

Case (Bra), (Sel) is easy to prove using the I.H. on the premises. Note that k �= x by the assumptions since x is assigned a
shared type.

Part (2)
Case (Shared) P = x is excluded because x appears in the linear function environment and therefore cannot also be in the
shared environment as required by (Shared).

258 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
Case (LVar) P = x T = U � T ′ Λ1 = ∅ Σ1 = ∅
From the assumed judgement for P (note that Λ1 = ∅ and Σ1 = ∅) we have Γ ; {x:U � T ′} ; ∅ � x : T . Then from the
assumed judgement for V we have Γ ; Λ2; Σ2 � V : U � T ′ and since P {V/ x} = V and Λ1 = Σ1 = ∅, this is the required
typing judgement.

Case (Session) P = k = x is excluded because x appears in the linear function environment and therefore cannot also be in
the session environment as required by (Session), by well-formedness.

Case (Sub) As in Part (1), trivial to show using the I.H. on the premise followed by an application of (Sub).

Case (Abs) P = λ(z : U1).Q z �= x T = U1 � T1

From the I.H. on the premises of the judgement for P we have (with the hypothesis for x now removed from the linear
environment) (Γ ; Λ1, Λ2; Σ1, Σ2) � z : U1 � Q {V/ x} : T1 (1). With an application of (Abs) on (1), binding variable z, we
obtain Γ ; Λ1, Λ2; Σ1, Σ2 � λ(z : U1).Q {V/ x} : T as required.

Case (Rec) is similar to the case for (Abs).

Case (App) P = Q 1 · Q 2 Σ1 = Σ11,Σ12 Λ1, x:U � T ′ = Λ11,Λ12

From the assumption Γ ; Λ1, x : U � T ′; Σ1 � P : T (1) and Lemma C.5 we have that x ∈ fv(P). Using P = Q 1 · Q 2 with
Lemma C.8 on the assumption we also have that x /∈ fv(Q i) for some i ∈ {1,2}. We can therefore take two cases:

1. Take x ∈ fv(Q 1) and x /∈ fv(Q 2). Then P {V/ x} = Q 1{V/ x} · Q 2. The last rule applied (modulo (Sub)) is (App). By the I.H. on
the premise Γ ; Λ′

11, x :U � T ′; Σ11 � Q 1 : T1 of (1), where T1 is U1 � T or U1 → T , we obtain Γ ; Λ′
11, Λ2; Σ11, Σ2 �

Q 1{V/ x} : T1 (2). The other premise of (1) is Γ ; Λ12; Σ12 � Q 2 : U1 (3). Now we can apply (App) with (2) and (3) as
premises. We thus obtain the required judgement.

2. The case x ∈ fv(Q 2) and x /∈ fv(Q 1) is symmetric. One note is that if U1 is an →-type, then by (Promotion) we have that
Λ12 = Σ12 = ∅, and x /∈ dom(Γ) by WF of the assumption, hence in that case we have a contradiction since it must
hold that x /∈ fv(Q 2) by Lemma C.1. This verifies our intuition that if a linear variable x appears in Q 2, then Q 2 cannot
be typed with a shared function type.

Case (Nil), (New), (News) are straightforward using the I.H.

Case (Conn), (ConnDual) follow a similar pattern to the same cases in Part (1). The proof is slightly simpler since we have
that if P = u(x).Q then since x is a linear function variable u �= x.

Case (Recv) is very similar to (Abs).

Case (Send) is similar to (App).

Case (Par) is straightforward to obtain, as before, using the I.H. on the premises followed by an application of (Par).

Case (Close) is straightforward as in the previous part.

Case (Bra), (Sel) is easy to prove using the I.H. on the premises. Note that k �= x by the assumptions since x is assigned a
linear type.

Part (3)
Most cases are straightforward as before. For the case (App), (Par), the proof is similar to the other parts but makes use of
Lemma C.9 (instead of Lemma C.8).

Case (Recv) P = k′?(z).Q T = 	
We have Γ ; Λ; Σ, x : S � k′?(z).Q : 	. Then we take cases on k′ .

1. k′ = x. Then P {k/ x} = k?(z).Q {k/ x} and S =?[U].S ′ . From the premises of (Recv) we obtain (Γ ; Λ; Σ, x : S ′) � z :U � Q : 	.
By the I.H. we have (Γ ; Λ; Σ, k : S ′) � z :U � Q {k/ x} : 	. Then with an application of (Recv) we obtain Γ ; Λ; Σ, k :?[U].S ′ �
k?(z).Q {k/ x} : 	 as required.

2. k′ �= x. Then P {k/ x} = k′?(z).Q {k/ x} and Σ = Σ ′, k′ :?[U].S ′ . As before by the premises (Γ ; Λ; Σ ′, k′ : S ′, x : S) � z :U � Q : 	.
By the I.H. (Γ ; Λ; Σ ′, k′ : S ′, k : S) � z : U � Q {k/ x} : 	. Then with an application of (Recv) we obtain Γ ; Λ; Σ, k : S �
k′?(z).Q {k/ x} : 	 as required.

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 259
Case (Send) P = k′!〈V 〉.Q T = 	 Σ, x : S = (Σ1,Σ2) \ {
k′ : S ′} ,k′ :![U].S ′

Λ = Λ1,Λ2

From the premises of (Send) we have:

Γ ;Λ1;Σ1 � Q : 	 (1)

Γ ;Λ2;Σ2 � V : U (2)

k′ : S ′ ∈ Σi i = 1 or i = 2 (3)

Then we perform case analysis on k′:

1. Suppose k′ = x. Then S =![U].S ′ . We now look at the occurrence of x in the session environments:
(a) Let x : S ′ ∈ Σ1, then Σ1 = Σ ′

1, x : S ′ and P {k/ x} = k!〈V 〉.Q {k/ x}. Using the I.H. on (1) we obtain Γ ; Λ1; Σ ′
1, k : S ′ �

Q {k/ x} : 	 (3). Then we apply (Send) with (3) and (2), with the sideconditions clearly satisfied from the assump-
tions, to obtain Γ ; Λ; Σ ′

1, Σ2, k :![U].S ′ � k!〈V 〉.Q {k/ x} : 	 as required.
(b) Let x : S ′ ∈ Σ2, then Σ2 = Σ ′

2, x : S ′ and P {k/ x} = k!〈V {k/ x}〉.Q . From the I.H. on (2) we have Γ ; Λ2; Σ ′
2, k : S ′ � V {k/ x} :

U (4). In this case we have U �= U ′ → T ′ otherwise Σ2 would be the empty set. We now apply (Send) with (1) and
(4) to obtain Γ ; Λ; Σ1, Σ ′

2, k :![U].S ′ � k!〈V {k/ x}〉.Q : 	 as required.
2. Suppose k′ �= x. As above we look at the occurrence of x in the session environments. Since k′ �= x we have two cases:

(a) Let x : S ∈ Σ1, then Σ1 = Σ ′
1, x : S and P {k/ x} = k′!〈V 〉.Q {k/ x}. By the I.H. on (1), Γ ; Λ1; Σ ′

1, k : S � Q {k/ x} : 	 (5).
We apply (Send) as before with (5) and (2), the sideconditions are satisfied (we do not check where k′ occurs in
the session environments Σ ′

1 and Σ2 as the sidecondition is met by the assumptions), and obtain Γ ; Λ; (Σ ′
1, Σ2, k :

S) \ {
k′ : S ′} , k′ :![U].S ′ � k′!〈V 〉.Q {k/ x} : 	 as required.

(b) Let x : S ∈ Σ2, then Σ2 = Σ ′
2, x : S and P {k/ x} = k′!〈V {k/ x}〉.Q . Using the same sequence of steps as before we obtain

the result.

Case (Close)

Suppose (Close) was applied for some k′ . Then the premise obtained is:

Γ ;Λ; (Σ, x: S) \ {
k′ :end

} � P : T (1)

We now distinguish two cases:

1. x = k′ . Then S = end. Also, x /∈ dom(Γ, Λ, Σ) by the well-formedness of (1). By Lemma C.1 x ∈ fv(P) implies
x ∈ dom(Γ, Λ, Σ) thus we have x /∈ fv(P). Then P {k/ x} = P . From (1) we obtain:

Γ ;Λ;Σ � P : T (2)

We have k /∈ dom(Γ, Λ, Σ) by assumption, and we can apply (Close) to obtain:

Γ ;Λ;Σ,k :end � P : T

which is the desired result, since S = end and P {k/ x} = P .
2. x �= k′ . Then from (1) we obtain:

Γ ;Λ; (Σ \ {
k′ :end

})
, x: S � P : T (4)

By the I.H. on (4) we have:

Γ ;Λ; (Σ \ {
k′ :end

})
,k : S � P {k/x} : T (5)

We now consider two cases:
(a) k′ :end ∈ Σ . Then with an application of (Close) on (5) we obtain:

Γ ;Λ;Σ,k : S � P {k/x} : T

as required.
(b) k′ :end /∈ Σ . Then Σ \ {

k′ :end
} = Σ and the result is immediate from (5).

The remaining session cases are straightforward. �

260 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
Lemma C.11 (Shared value judgement). If Γ ; Λ; Σ � V : U and U ∈ {unit, 〈S〉} then Λ = Σ = ∅.

Proof. Straightforward to show by induction on the typing derivation. There are two cases to consider: if U = unit then by
(Unit) the result is immediate; if U = 〈S〉 then by (Shared) the result follows. No other typing rule need to be considered
for this type of value. �
Lemma C.12. If Σ1, Σ2 defined and Σ ′

1 �c Σ1 and Σ ′
2 �c Σ2 then Σ ′

1, Σ
′
2 defined and Σ ′

1, Σ
′
2 �c Σ1, Σ2 .

Proof. Trivial by the definition of �c on environments and the fact that it does not change the domain of an environ-
ment. �
Lemma C.13. If Γ ; Λ, x : U ; Σ � P :T then x is free in P .

Proof. Since there is no weakening for the Λ environment, the only way to introduce x in Λ, x : U is by applying the axiom
(LVar) with subject x. But whenever a linear variable is bound, it is removed from the linear set of the conclusion; see (Abs)
and (Rec). Hence x appears in P and is not bound. �
Lemma C.14. If Γ ; Λ; Σ, k : S � P :T and k is not free in P then S = end.

Proof. Since there is no weakening for the Σ environment, and k is not free in P , the only way to introduce a mapping for
k in Σ, k : S is by applying the axiom (Nil). But then S = end. �
Lemma C.15 (Environment properties).

1. If � � k :: �τ1 defined then � � k :: �τ2 defined for any �τ1 and �τ2 .
2. If � � k : S1 defined then � � k : S2 defined for any S1 and S2 .
3. If �, �′ defined then � � �′ defined and �, �′ = � � �′ .
4. � � �′ = �′ � � and (�1 � �2) � �3 = �1 � (�2 � �3).
5. If �1 � �2 defined and �2 �s �3 then �1 � �3 defined.
6. If balanced(�) and � �s �′ then balanced(�′).

Proof. Straightforward from the definitions of balanced(�), � and �s . �
Lemma C.16. If Γ ; Λ; Σ � � � P : T and Σ �c Σ ′ then Γ ; Λ; Σ ′ � � � P : T .

Proof. Outline: For each k : S ∈ Σ with k : S ′ ∈ Σ ′ , and with P ≡ (ν�a : �〈S〉)(ν�s)(P1 | . . . | Pn), we take cases on the free
occurrence of k in some Pi . If Pi is not a queue process then by (Sub) we obtain k : S ′ in the session environment of the
subderivation for Pi . If Pi is a queue process then it is typed using (Queue) and we can apply (Sub) as before on the
premises. Then using (New), (NewS) and (Par) we obtain the required judgement. �
Lemma C.17 (Queue subsumption). If Γ ; Λ; � � k :: �τ1U1 �τ2 � P : T and U1 �c U2 then Γ ; Λ; � � k :: �τ1U2 �τ2 � P : T .

Proof. We can easily show by induction that there is an application of (Queue) in the derivation. In the premises of this
instance of (Queue) we can apply (Sub) on the typing judgement of the value that corresponds to the U1 typing, then
re-apply (Queue) using the new premise with U2. �
Proof of Theorem 7.3 (Type Soundness).
Part (1). Subject congruence is standard, except for the case of garbage collection. The latter is easy: first use the restricted
weakening environment Σ0 of rule (Queue) to obtain, after � -composition, the balanced usage pairs (end, ε) for the dual
ended queues; then by (News) the ended session can be restricted.
Part (2). For this part we proceed as standard by taking cases on the last reduction rule applied. For all cases we assume:

Γ ; ∅; � � P : T (�) balanced(�) P −→ P ′

Case (beta) P = (λ(x :U).Q) V P ′ = Q {V/ x}
From (�) we have that the judgement for P has as last rule(s) a (possibly empty) sequence of applications of (Sub), and
then (App). We then have by the judgement (�) before (Sub) and the premises of (App) that:

Γ ; ∅; Σ1, Σ2 � P : T ′ (1) Γ ; ∅; Σ1 � λ(x :U).Q : U � T ′ (2) Γ ; ∅; Σ2 � V : U (3)

Σ1, Σ2 �c � (4) T ′ �c T (5) By (Lift), if U = U0 → T0 then Σ2 = ∅ (6)

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 261
To obtain (2) we have, after a possibly empty sequence of (Sub), an application of (Abs) with:

(Γ ; Λ; Σ ′
1) � x :U � Q : T ′′ (7) T ′′ �c T ′ (8) Σ ′

1 �c Σ1 (9)

By Lemma C.12, (4) and (9) and since Σ1, Σ2 is defined we have that Σ ′
1, Σ2 is defined and:

Σ ′
1,Σ2 �c Σ1,Σ2 (10)

We now proceed with case analysis on the type U , separating the cases into shared, linear function, and session types.
In each case we determine if the (environment) conditions are met for the Substitution Lemma to apply. Then the result
follows easily.

(a) U ∈ {unit, 〈S〉, U0 → T0}. Then (7) is of the shape Γ, x :U ; ∅; Σ ′
1 � Q : T ′′ . By (7) and (3) and by Lemma C.11 and (6) we

can assert that Σ2 = ∅, and therefore Σ ′
1 �c Σ1 �c �. Then, using Lemma C.10(1) with (7) and (3), we obtain:

Γ ; ∅;Σ ′
1 � Q {V/x} : T ′′ (11)

Finally using (Sub) with (10) and (4) for the session environment and (8) and (5) for the result type, we obtain:

Γ ; ∅;� � Q {V/x} : T

(b) U = U0 � T0. Then (7) is of the shape Γ ; {x:U } ; Σ ′
1 � Q : T ′′ .

Then, using Lemma C.10(1) with (7) and (3), we obtain:

Γ ; ∅;Σ ′
1,Σ2 � Q {V/x} : T ′ (12)

The environment Σ ′
1, Σ2 is defined; see (10). Using (Sub) as before, noting as in the previous case that Σ ′

1, Σ2 �c

Σ1, Σ2 �c �, we obtain:

Γ ; ∅;� � Q {V/x} : T

(c) U = S . Then V = s or V = s. Without loss of generality we fix the proof to use s. From (3), and (2) with (Abs), following
similar steps as before, we obtain:

Γ ; ∅; Σ2 � s : S (13) Γ ; ∅; Σ ′
1, x : S � Q : T ′′ (14)

From Lemma C.10(2) with (13) and (14) we obtain:

Γ ; ∅; Σ ′
1, s : S � Q {V/ x} : T ′′ (15)

We have that {s : S}�c Σ2, then using also (9) with Lemma C.12 as before we obtain Σ ′
1, s : S �c Σ1, Σ2. Then using (4)

and (8) and (5) with (Sub) on (15) we obtain

Γ ; ∅;� � Q {V/x} : T �
Case (send) P = s!〈V 〉.Q | s:�h P ′ = Q | s :�h · V
As before we fix the output to use s and the input to use s. The last rule applied was (Par) for runtime. From this we have:

Γ ; ∅; Σ1 � s!〈V 〉.Q : 	 (1) Γ ; ∅; Σ2 � s :: �τ � s :�h : 	 (2) � = Σ1 � Σ2 � s :: �τ (3)

After a possible application of (Sub) on (1), by (Send) and its premises:

Γ ; ∅; Σ ′
1 � s!〈V 〉.Q : 	 (4) Σ ′

1 = (Σ11, Σ12) \ {s : S} , s :![U].S (5) Γ ; ∅; Σ11 � Q : 	 (6)

Γ ; ∅; Σ12 � V : U (7) s : S ∈ Σ1i i ∈ 1, 2 (8) if U = U1 → T1 then Σ12 = ∅ (9) Σ ′
1 �c Σ1 (10)

Using (8) with Σ11, Σ12 = Σ ′
11, Σ

′
12, s : S , we get, using (3), (10) and Lemma C.16:

Σ ′
1 � Σ2 � s :: �τ is defined

(Σ11,Σ12) \ {s : S} , s :![U].S � Σ2 � s :: �τ is defined

(Σ ′
11,Σ

′
12, s : S) \ {s : S} , s :![U].S � Σ2 � s :: �τ is defined

(Σ ′ ,Σ ′ , s :![U].S) � Σ � s :: �τ is defined
11 12 2

262 D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263
Then using Lemma C.15(3) on the above, followed by Lemma C.15(1–2), we obtain:

Σ ′
11 � Σ ′

12 � s : S � Σ2 � s :: �τ U is defined (11)

In (2) the last rule applied was (Queue) and combining the premises and adding (7) we obtain, by a new application of
(Queue) (noting also (9) which is needed):

Γ ; ∅;Σ2 � s :: �τ U � s :�h · V : 	 (12)

where the session environment is defined by (11). Then using (6), (12), and (Par), we obtain:

Γ ; ∅;Σ11 � Σ2 � Σ12 � s :: �τ U � P ′ : 	 (13)

By Lemma C.15(3) we have:

Σ11 � Σ12 = Σ11,Σ12 = Σ ′
11,Σ

′
12, s : S = Σ ′

11 � Σ ′
12 � s : S

and (13) becomes:

Γ ; ∅;Σ ′
11 � Σ ′

12 � s : S � Σ2 � s :: �τ U � P ′ : 	 (14)

By Lemma C.16 since Σ ′
11 � Σ ′

12 �c Σ1 \ s, we have from (14) that:

Γ ; ∅; (Σ1 \ s) � s : S � Σ2 � s :: �τ U � P ′ : 	 (15)

From (10) we have s :![U].S ∈ Σ ′
1 and by (5) there is s : S ′ ∈ Σ1 with ![U].S �c S ′ . By the definition of simulation unfoldn(S ′) =

A〈![U ′].S ′
h〉h∈H and U �c U ′ and S �c A〈S ′

h〉h∈H . Finally using Lemma C.16 and Lemma C.17 on (15) we can obtain:

Γ ; ∅;�′ � P ′ : 	
where �′ = (Σ1 \ s) � s :A〈S ′

h〉h∈H � Σ2 � s :: �τ U ′ and it holds that � �s �′ .
Case (recv) is very similar to (beta); the rest are easy to obtain. �

References

[1] S. Abramsky, Computational interpretations of linear logic, Theor. Comput. Sci. 111 (1993).
[2] R.M. Amadio, L. Cardelli, Subtyping recursive types, ACM Trans. Program. Lang. Syst. 15 (1993) 575–631.
[3] G. Bernardi, M. Hennessy, Using higher-order contracts to model session types, CoRR arXiv:1310.6176, 2013.
[4] L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, N. Yoshida, Global progress in dynamically interleaved multiparty sessions, in:

CONCUR, in: LNCS, vol. 5201, Springer-Verlag, 2008, pp. 418–433.
[5] E. Bonelli, A. Compagnoni, Multipoint session types for a distributed calculus, in: TGC’07, in: LNCS, vol. 4912, Springer-Verlag, 2008, pp. 240–256.
[6] V. Bono, L. Padovani, A. Tosatto, Polymorphic types for leak detection in a session-oriented functional language, in: FMOODS, in: LNCS, vol. 7892,

Springer, 2013, pp. 83–98.
[7] L. Caires, F. Pfenning, Session types as intuitionistic linear propositions, in: CONCUR’10, 2010, pp. 222–236.
[8] M. Carbone, K. Honda, N. Yoshida, Structured communication-centred programming for web services, in: ESOP’07, in: LNCS, vol. 4421, Springer-Verlag,

2007, pp. 2–17.
[9] T.C. Chen, M. Dezani-Ciancaglini, N. Yoshida, On the preciseness of subtyping in session types, in: Proceedings of PPDP’14, ACM Press, 2014,

pp. 135–146.
[10] O. Dardha, E. Giachino, D. Sangiorgi, Session types revisited, in: D.D. Schreye, G. Janssens, A. King (Eds.), PPDP, ACM, 2012, pp. 139–150.
[11] R. Demangeon, K. Honda, Full abstraction in a subtyped pi-calculus with linear types, in: CONCUR, in: LNCS, vol. 6901, Springer-Verlag, 2011,

pp. 280–296.
[12] P.M. Denilou, N. Yoshida, Multiparty session types meet communicating automata, in: ESOP 2012, in: LNCS, vol. 7211, 2012, pp. 194–213.
[13] P.M. Denilou, N. Yoshida, Multiparty compatibility in communicating automata: characterisation and synthesis of global session types, in: Automata,

Languages, and Programming, in: LNCS, vol. 7966, 2013, pp. 174–186.
[14] H. DeYoung, L. Caires, F. Pfenning, B. Toninho, Cut reduction in linear logic as asynchronous session-typed communication, in: P. Cégielski, A. Durand

(Eds.), CSL, in: LIPIcs, vol. 16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012, pp. 228–242.
[15] M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, N. Yoshida, Objects and session types, Inf. Comput. 207 (2009) 595–641.
[16] M. Dezani-Ciancaglini, U. de’Liguoro, Sessions and session types: an overview, in: WS-FM’09, in: LNCS, vol. 6194, Springer, 2010, pp. 1–28.
[17] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, S. Drossopoulou, Session types for object-oriented languages, in: ECOOP’06, in: LNCS, vol. 4067,

Springer-Verlag, 2006, pp. 328–352.
[18] V. Gapeyev, M. Levin, B. Pierce, Recursive subtyping revealed, J. Funct. Program. 12 (2003) 511–548.
[19] S. Gay, M. Hole, Subtyping for session types in the pi-calculus, Acta Inform. 42 (2005) 191–225.
[20] S. Gay, V.T. Vasconcelos, Linear type theory for asynchronous session types, J. Funct. Program. 20 (2010) 19–50.
[21] J.Y. Girard, Linear logic, Theor. Comput. Sci. 50 (1987).
[22] M. Giunti, V.T. Vasconcelos, Linearity, session types and the pi calculus, Math. Struct. Comput. Sci. (2014).
[23] Web services choreography working group, Web services choreography description language, http://www.w3.org/2002/ws/chor/, 2002.
[24] K. Honda, V.T. Vasconcelos, M. Kubo, Language primitives and type disciplines for structured communication-based programming, in: ESOP’98, in:

LNCS, vol. 1381, 1998, pp. 22–138.
[25] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, in: POPL’08, ACM, 2008, pp. 273–284.
[26] R. Hu, N. Yoshida, K. Honda, Session-based distributed programming in Java, in: ECOOP’08, in: LNCS, vol. 5142, 2008, pp. 516–541.
[27] K. Imai, S. Yuen, K. Agusa, Session type inference in Haskell, in: K. Honda, A. Mycroft (Eds.), PLACES, in: EPTCS, vol. 69, 2010, pp. 74–91.

http://refhub.elsevier.com/S0890-5401(15)00013-9/bib416272616D736B79533A636F6D696E746F6C6Cs1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib416D6164696F43617264656C6C693933s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4265726E61726469483133s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib42657474696E6943444C44593038s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib42657474696E6943444C44593038s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib42433037s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib426F6E6F5061646F76616E69546F736174746F3133s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib426F6E6F5061646F76616E69546F736174746F3133s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib6361697265732E7066656E6E696E673A73657373696F6E2D74797065732D696E74756974696F6E6973746963s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib636172626F6E652E686F6E64612E796F73686964613A65736F703037s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib636172626F6E652E686F6E64612E796F73686964613A65736F703037s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib6364793134s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib6364793134s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib44617264686147533132s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib44656D616E67656F6E483131s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib44656D616E67656F6E483131s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib445932303132s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib445932303133s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib445932303133s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib44424C503A636F6E662F63736C2F4465596F756E674350543132s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib44424C503A636F6E662F63736C2F4465596F756E674350543132s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib64646D793039s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib444C3130s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib45434F4F503036s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib45434F4F503036s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib476170657965764C6576696E50696572636532303030s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib47483035s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib6761792E766173636F6E63656C6F733A6C696E6561722D73657373696F6E73s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4769726172644A593A6C696E6C6F67s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib6769756E74692E766173636F6E63656C6F733A6C696E6561726974792D73657373696F6E732D7069s1
http://www.w3.org/2002/ws/chor/
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib686F6E64612E766173636F6E63656C6F732E6B75626F3A6C616E67756167652D7072696D697469766573s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib686F6E64612E766173636F6E63656C6F732E6B75626F3A6C616E67756167652D7072696D697469766573s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4348593037s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib48553037545950452D53414645s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib496D61693130s1

D. Mostrous, N. Yoshida / Information and Computation 241 (2015) 227–263 263
[28] D. Kouzapas, N. Yoshida, R. Hu, K. Honda, On asynchronous eventful session semantics, Math. Struct. Comput. Sci. 29 (5) (2014) 1–62.
[29] C. Laneve, B. Victor, Solos in concert, Math. Struct. Comput. Sci. 13 (2003) 657–683.
[30] R. Milner, Functions as processes, Math. Struct. Comput. Sci. 2 (1992) 119–141.
[31] R. Milner, Communicating and Mobile Systems: The π -Calculus, CUP, 1999.
[32] D. Mostrous, Session types in concurrent calculi: higher-order processes and objects, PhD thesis, Imperial College London, 2009.
[33] D. Mostrous, Multiparty sessions based on proof nets, in: A.F. Donaldson, V.T. Vasconcelos (Eds.), Proceedings PLACES, 2014.
[34] D. Mostrous, V.T. Vasconcelos, Session typing for a featherweight Erlang, in: W.D. Meuter, G.C. Roman (Eds.), COORDINATION, in: LNCS, vol. 6721,

Springer, 2011, pp. 95–109.
[35] D. Mostrous, N. Yoshida, Two session typing systems for higher-order mobile processes, in: TLCA’07, in: LNCS, vol. 4583, Springer-Verlag, 2007,

pp. 321–335.
[36] D. Mostrous, N. Yoshida, Session-based communication optimisation for higher-order mobile processes, in: TLCA’09, in: LNCS, vol. 5608, Springer-Verlag,

2009, pp. 203–218.
[37] D. Mostrous, N. Yoshida, K. Honda, Global principal typing in partially commutative asynchronous sessions, in: ESOP’09, in: LNCS, vol. 5502, Springer-

Verlag, 2009, pp. 316–332.
[38] MPI, The Message Passing Interface (MPI) standard, http://www-unix.mcs.anl.gov/mpi/usingmpi/examples/intermediate/main.htm, 2013.
[39] M. Neubauer, P. Thiemann, An implementation of session types, in: PADL, in: LNCS, vol. 3057, Springer-Verlag, 2004, pp. 56–70.
[40] M. Neubauer, P. Thiemann, Session types for asynchronous communication, 2004, unpublished manuscript.
[41] N. Ng, N. Yoshida, K. Honda, Multiparty session C: safe parallel programming with message optimisation, in: TOOLS, in: LNCS, vol. 7304, Springer,

2012, pp. 202–218.
[42] J.A. Pérez, L. Caires, F. Pfenning, B. Toninho, Linear logical relations for session-based concurrency, in: H. Seidl (Ed.), ESOP, in: LNCS, vol. 7211, Springer,

2012, pp. 539–558.
[43] B.C. Pierce, Types and Programming Languages, MIT Press, 2002.
[44] B.C. Pierce, D. Sangiorgi, Typing and subtyping for mobile processes, Math. Struct. Comput. Sci. 6 (1996) 409–453.
[45] R. Pucella, J.A. Tov, Haskell session types with (almost) no class, in: Proceedings of the first ACM SIGPLAN symposium on Haskell, Haskell’08, ACM,

New York, NY, USA, 2008, pp. 25–36.
[46] D. Sangiorgi, Expressing mobility in process algebras: first-order and higher order paradigms, Ph.D. thesis, University of Edinburgh, 1992.
[47] SCRIBBLE, Scribble Project, www.scrrible.org, 2013.
[48] K. Takeuchi, K. Honda, M. Kubo, An interaction-based language and its typing system, in: PARLE’94, in: LNCS, vol. 817, Springer-Verlag, 1994,

pp. 398–413.
[49] B. Toninho, L. Caires, F. Pfenning, Higher-order processes, functions, and sessions: a monadic integration, in: M. Felleisen, P. Gardner (Eds.), Programming

Languages and Systems, in: LNCS, vol. 7792, Springer, Berlin, Heidelberg, 2013, pp. 350–369.
[50] UNIFI, International Organization for Standardization ISO 20022 UNIversal Financial Industry message scheme, http://www.iso20022.org, 2002.
[51] V.T. Vasconcelos, A Note on a Typing System for the Higher-Order π -Calculus, Keio University, 1993.
[52] V.T. Vasconcelos, S. Gay, A. Ravara, Typechecking a multithreaded functional language with session types, Theor. Comput. Sci. 368 (2006) 64–87.
[53] D. Walker, in: Benjamin C. Pierce (Ed.), Advanced Topics in Types and Programming Languages, MIT, 2005.
[54] N. Yoshida, V.T. Vasconcelos, Language primitives and type disciplines for structured communication-based programming revisited, Electron. Notes

Theor. Comput. Sci. 171 (2007) 127–151.

http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4B5948483132s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib6C616E6576652E766963746F723A736F6C6F732D636F6E63657274s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4D696C6E6572523A66756E70s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4D696C6E6572523A636F6D6D737063s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib6D6F7374726F75735F706864s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib706C616365733134s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4D6F7374726F7573563131s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4D6F7374726F7573563131s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib746C63613037s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib746C63613037s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib746C63613039s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib746C63613039s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib65736F703039s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib65736F703039s1
http://www-unix.mcs.anl.gov/mpi/usingmpi/examples/intermediate/main.htm
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4E65756261756572546869656D616E6E3034s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4E59483132s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib4E59483132s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib44424C503A636F6E662F65736F702F506572657A4350543132s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib44424C503A636F6E662F65736F702F506572657A4350543132s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib50696572636542433A74797073797366706Cs1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib50696572636553616E67696F7267693935s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib507563656C6C613038s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib507563656C6C613038s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib53616E67696F726769443A6578706D7061s1
http://www.scrrible.org
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib54484Bs1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib54484Bs1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib746F6E696E686F5F66756E6374696F6E735F6D6F6E61646963s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib746F6E696E686F5F66756E6374696F6E735F6D6F6E61646963s1
http://www.iso20022.org
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib766173636F6E63656C6F733A747970696E672D73797374656D2D686F7069s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib766173636F6E63656C6F732E6761792E7261766172613A7479636865636B696E672D73657373696F6E2D7479706573s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib7375627374727563747572616C3A6477616C6B65723A61747461706Cs1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib796F73686964612E766173636F6E63656C6F733A6C616E67756167652D7072696D697469766573s1
http://refhub.elsevier.com/S0890-5401(15)00013-9/bib796F73686964612E766173636F6E63656C6F733A6C616E67756167652D7072696D697469766573s1

	Session typing and asynchronous subtyping for the higher-order π-calculus
	1 Introduction
	2 The higher-order π-calculus with asynchronous sessions
	2.1 Syntax
	2.2 Reduction semantics
	2.3 Example: business protocol with code mobility
	2.4 Example: optimised business protocol with code mobility

	3 Higher-order linear types
	3.1 Types
	3.2 Examples of types

	4 Higher-order asynchronous subtyping
	4.1 Asynchronous subtyping
	4.2 Examples of asynchronous subtyping
	4.3 The relation =<c is a preorder

	5 Higher-order linear session typing system
	5.1 Typing system
	5.2 Examples of typing

	6 Higher-order linear session typing for runtime processes
	6.1 Typing system for runtime
	6.2 Typing the mobile business protocol
	6.3 Typing the optimised mobile business protocol

	7 Type soundness and communication safety
	8 Related work
	8.1 Linear and session typing systems for higher-order functions
	8.2 Asynchronous session typing and subtyping
	8.3 Linearity and asynchrony from the proof theoretical perspective

	9 Conclusion
	Acknowledgments
	Appendix A Syntax
	Appendix B Proofs on asynchronous subtyping
	Appendix C Proofs of type soundness
	References

