26,391 research outputs found

    ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers

    Full text link
    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.Comment: 55 pages, 14 figures, 2 table

    A Second Order Godunov Method for Multidimensional Relativistic Magnetohydrodynamics

    Full text link
    We describe a new Godunov algorithm for relativistic magnetohydrodynamics (RMHD) that combines a simple, unsplit second order accurate integrator with the constrained transport (CT) method for enforcing the solenoidal constraint on the magnetic field. A variety of approximate Riemann solvers are implemented to compute the fluxes of the conserved variables. The methods are tested with a comprehensive suite of multidimensional problems. These tests have helped us develop a hierarchy of correction steps that are applied when the integration algorithm predicts unphysical states due to errors in the fluxes, or errors in the inversion between conserved and primitive variables. Although used exceedingly rarely, these corrections dramatically improve the stability of the algorithm. We present preliminary results from the application of these algorithms to two problems in RMHD: the propagation of supersonic magnetized jets, and the amplification of magnetic field by turbulence driven by the relativistic Kelvin-Helmholtz instability (KHI). Both of these applications reveal important differences between the results computed with Riemann solvers that adopt different approximations for the fluxes. For example, we show that use of Riemann solvers which include both contact and rotational discontinuities can increase the strength of the magnetic field within the cocoon by a factor of ten in simulations of RMHD jets, and can increase the spectral resolution of three-dimensional RMHD turbulence driven by the KHI by a factor of 2. This increase in accuracy far outweighs the associated increase in computational cost. Our RMHD scheme is publicly available as part of the Athena code.Comment: 75 pages, 28 figures, accepted for publication in ApJS. Version with high resolution figures available from http://jila.colorado.edu/~krb3u/Athena_SR/rmhd_method_paper.pd

    IGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domains

    Full text link
    This paper proposes an extension of the Multi-Index Stochastic Collocation (MISC) method for forward uncertainty quantification (UQ) problems in computational domains of shape other than a square or cube, by exploiting isogeometric analysis (IGA) techniques. Introducing IGA solvers to the MISC algorithm is very natural since they are tensor-based PDE solvers, which are precisely what is required by the MISC machinery. Moreover, the combination-technique formulation of MISC allows the straight-forward reuse of existing implementations of IGA solvers. We present numerical results to showcase the effectiveness of the proposed approach.Comment: version 3, version after revisio

    Integrating continuous differential evolution with discrete local search for meander line RFID antenna design

    Get PDF
    The automated design of meander line RFID antennas is a discrete self-avoiding walk(SAW) problem for which efficiency is to be maximized while resonant frequency is to beminimized. This work presents a novel exploration of how discrete local search may beincorporated into a continuous solver such as differential evolution (DE). A prior DE algorithmfor this problem that incorporates an adaptive solution encoding and a bias favoringantennas with low resonant frequency is extended by the addition of the backbite localsearch operator and a variety of schemes for reintroducing modified designs into the DEpopulation. The algorithm is extremely competitive with an existing ACO approach and thetechnique is transferable to other SAW problems and other continuous solvers. The findingsindicate that careful reintegration of discrete local search results into the continuous populationis necessary for effective performance
    • 

    corecore