159 research outputs found

    Evaluation of Overlay/underlay Waveform via SD-SMSE Framework for Enhancing Spectrum Efficiency

    Get PDF
    Recent studies have suggested that spectrum congestion is mainly due to the inefficient use of spectrum rather than its unavailability. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) are two terminologies which are used in the context of improved spectrum efficiency and usage. The DSA concept has been around for quite some time while the advent of CR has created a paradigm shift in wireless communications and instigated a change in FCC policy towards spectrum regulations. DSA can be broadly categorized as using a 1) Dynamic Exclusive Use Model, 2) Spectrum Commons or Open sharing model or 3) Hierarchical Access model. The hierarchical access model envisions primary licensed bands, to be opened up for secondary users, while inducing a minimum acceptable interference to primary users. Spectrum overlay and spectrum underlay technologies fall within the hierarchical model, and allow primary and secondary users to coexist while improving spectrum efficiency. Spectrum overlay in conjunction with the present CR model considers only the unused (white) spectral regions while in spectrum underlay the underused (gray) spectral regions are utilized. The underlay approach is similar to ultra wide band (UWB) and spread spectrum (SS) techniques utilize much wider spectrum and operate below the noise floor of primary users. Software defined radio (SDR) is considered a key CR enabling technology. Spectrally modulated, Spectrally encoded (SMSE) multi-carrier signals such as Orthogonal Frequency Domain Multiplexing (OFDM) and Multi-carrier Code Division Multiple Access (MCCDMA) are hailed as candidate CR waveforms. The SMSE structure supports and is well-suited for SDR based CR applications. This work began by developing a general soft decision (SD) CR framework, based on a previously developed SMSE framework that combines benefits of both the overlay and underlay techniques to improve spectrum efficiency and maximizing the channel capacity. The resultant SD-SMSE framework provides a user with considerable flexibility to choose overlay, underlay or hybrid overlay/underlay waveform depending on the scenario, situation or need. Overlay/Underlay SD-SMSE framework flexibility is demonstrated by applying it to a family of SMSE modulated signals such as OFDM, MCCDMA, Carrier Interferometry (CI) MCCDMA and Transform Domain Communication System (TDCS). Based on simulation results, a performance analysis of Overlay, Underlay and hybrid Overlay/Underlay waveforms are presented. Finally, the benefits of combining overlay/underlay techniques to improve spectrum efficiency and maximize channel capacity are addressed

    Cluster-based cooperative subcarrier sensing using antenna diversity-based weighted data fusion

    Get PDF
    Cooperative spectrum sensing (CSS) is used in cognitive radio (CR) networks to improve the spectrum sensing performance in shadow fading environments. Moreover, clustering in CR networks is used to reduce reporting time and bandwidth overhead during CSS. Thus, cluster-based cooperative spectrum sensing (CBCSS) has manifested satisfactory spectrum sensing results in harsh environments under processing constraints. On the other hand, the antenna diversity of multiple input multiple output CR systems can be exploited to further improve the spectrum sensing performance. This paper presents the CBCSS performance in a CR network which is comprised of single- as well as multiple-antenna CR systems. We give theoretical analysis of CBCSS for orthogonal frequency division multiplexing signal sensing and propose a novel fusion scheme at the fusion center which takes into account the receiver antenna diversity of the CRs present in the network. We introduce the concept of weighted data fusion in which the sensing results of different CRs are weighted proportional to the number of receiving antennas they are equipped with. Thus, the receiver diversity is used to the advantage of improving spectrum sensing performance in a CR cluster. Simulation results show that the proposed scheme outperforms the conventional CBCSS scheme

    Orthogonal Frequency-Division Multiplexing-Based Cooperative Spectrum Sensing for Cognitive Radio Networks

    Get PDF
    The detection of transmitted data collusion among sensing nodes needs to be resolved at data link layer. It takes a lot algorithm calculation effort and time constraint. A new method to sense the performance of cognitive radio (CR) by avoiding interference based on new master node (MN) algorithm. Interference could be reduced significantly by using only PHY (physical) information of the cognitive radio network. It saves a lot computational on above layer and detect the collusion of transmitted data as early as possible. By using a novel MN algorithm at PHY layer, it reduces the cost of computation and time to detect and avoid collusion of transmitted data

    Resource allocation for OFDM-based cognitive radio systems

    Get PDF
    Cognitive Radio (CR) is a novel concept for improving the utilization of the radio spectrum. It is a software controlled radio that senses the unused frequency spectrum at any time from the wide but congested wireless radio spectrum. This promises the efficient use of scarce radio resources. Orthogonal Frequency Division Multiplexing (OFDM) is a reliable transmission scheme for Cognitive Radio Systems [3] which provides flexibility in allocating the radio resources in dynamic environment. It also assures no mutual interference among the CR radio channels which are just adjacent to each other, making it one of the best schemes to be used in CR systems. Allocation of radio resources is a major challenge in cognitive radio systems. In a dynamic environment, many parameters and situations have to be considered which affect the total data rate of the system. A Secondary users (CRUs/SUs) may coexist with the Primary user (PU) either on Conservative basis or on a more aggressive basis which allows secondary transmissions as long as the induced interference to the PU is below acceptable level. In this we have considered Uplink cognitive radio system heaving one PU coexists with M SUs and A Downlink of an Multi User Orthogonal Frequency Division Multiplexing CR system with one base station (BS) serving one PU and K SUs. We focused on the design on the design and analysis of subcarrier and power allocation scheme under imperfect CSI for cognitive OFDM systems. A two – step Algorithm for bit rate is proposed to obtain the (1) subcarrier allocation to secondary users and (2) bits, power allocation on subcarriers. The algorithms attempt to maximize the total throughput of the CR system (secondary users) subject to the total power constraint of the CR system and tolerable interference from and to the licensed band (primary users)

    Spectrum Sensing Techniqes in Cognitive Radio: Cyclostationary Method

    Get PDF
    Cognitive Radios promise to be a major shift in wireless communications based on developing a novel approach which attempt to reduce spectrum scarcity that growing up in the past and waited to increase in the future. Since formulating stages for increasing interest in wireless application proves to be extremely challenging, it is growing rapidly. Initially this growth leads to huge demand for the radio spectrum. The novelty of this approach needs to optimize the spectrum utilization and find the efficient way for sharing the radio frequencies through spectrum sensing process. Spectrum sensing is one of the most significant tasks that allow cognitive radio functionality to implement and one of the most challenging tasks. A main challenge in sensing process arises from the fact that, detecting signals with a very low SNR in back ground of noise or severely masked by interference in specific time based on high reliability. This thesis describes the fundamental cognitive radio system aspect based on design and implementation by connecting between the theoretical and practical issue. Efficient method for sensing and detecting are studied and discussed through two fast methods of computing the spectral correlation density function, the FFT Accumulation Method and the Strip Spectral Correlation Algorithm. Several simulations have been performed to show the ability and performance of studied algorithms.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    An Opportunistic Error Correction Layer for OFDM Systems

    Get PDF
    In this paper, we propose a novel cross layer scheme to lower power\ud consumption of ADCs in OFDM systems, which is based on resolution\ud adaptive ADCs and Fountain codes. The key part in the new proposed\ud system is that the dynamic range of ADCs can be reduced by\ud discarding the packets which are transmitted over 'bad' sub\ud carriers. Correspondingly, the power consumption in ADCs can be\ud reduced. Also, the new system does not process all the packets but\ud only processes surviving packets. This new error correction layer\ud does not require perfect channel knowledge, so it can be used in a\ud realistic system where the channel is estimated. With this new\ud approach, more than 70% of the energy consumption in the ADC can be\ud saved compared with the conventional IEEE 802.11a WLAN system under\ud the same channel conditions and throughput. The ADC in a receiver\ud can consume up to 50% of the total baseband energy. Moreover, to\ud reduce the overhead of Fountain codes, we apply message passing and\ud Gaussian elimination in the decoder. In this way, the overhead is\ud 3% for a small block size (i.e. 500 packets). Using both methods\ud results in an efficient system with low delay
    corecore