47 research outputs found

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE

    Development of a probabilistic perception system for camera-lidar sensor fusion

    Get PDF
    La estimación de profundidad usando diferentes sensores es uno de los desafíos clave para dotar a las máquinas autónomas de sólidas capacidades de percepción robótica. Ha habido un avance sobresaliente en el desarrollo de técnicas de estimación de profundidad unimodales basadas en cámaras monoculares, debido a su alta resolución o sensores LiDAR, debido a los datos geométricos precisos que proporcionan. Sin embargo, cada uno de ellos presenta inconvenientes inherentes, como la alta sensibilidad a los cambios en las condiciones de iluminación en el caso delas cámaras y la resolución limitada de los sensores LiDAR. La fusión de sensores se puede utilizar para combinar los méritos y compensar las desventajas de estos dos tipos de sensores. Sin embargo, los métodos de fusión actuales funcionan a un alto nivel. Procesan los flujos de datos de los sensores de forma independiente y combinan las estimaciones de alto nivel obtenidas para cada sensor. En este proyecto, abordamos el problema en un nivel bajo, fusionando los flujos de sensores sin procesar, obteniendo así estimaciones de profundidad que son densas y precisas, y pueden usarse como una fuente de datos multimodal unificada para problemas de estimación de nivel superior. Este trabajo propone un modelo de campo aleatorio condicional (CRF) con múltiples potenciales de geometría y apariencia que representa a la perfección el problema de estimar mapas de profundidad densos a partir de datos de cámara y LiDAR. El modelo se puede optimizar de manera eficiente utilizando el algoritmo Conjúgate Gradient Squared (CGS). El método propuesto se evalúa y compara utilizando el conjunto de datos proporcionado por KITTI Datset. Adicionalmente, se evalúa cualitativamente el modelo, usando datos adquiridos por el autor de esté trabajoMulti-modal depth estimation is one of the key challenges for endowing autonomous machines with robust robotic perception capabilities. There has been an outstanding advance in the development of uni-modal depth estimation techniques based on either monocular cameras, because of their rich resolution or LiDAR sensors due to the precise geometric data they provide. However, each of them suffers from some inherent drawbacks like high sensitivity to changes in illumination conditions in the case of cameras and limited resolution for the LiDARs. Sensor fusion can be used to combine the merits and compensate the downsides of these two kinds of sensors. Nevertheless, current fusion methods work at a high level. They processes sensor data streams independently and combine the high level estimates obtained for each sensor. In this thesis, I tackle the problem at a low level, fusing the raw sensor streams, thus obtaining depth estimates which are both dense and precise, and can be used as a unified multi-modal data source for higher level estimation problems. This work proposes a Conditional Random Field (CRF) model with multiple geometry and appearance potentials that seamlessly represents the problem of estimating dense depth maps from camera and LiDAR data. The model can be optimized efficiently using the Conjugate Gradient Squared (CGS) algorithm. The proposed method was evaluated and compared with the state-of-the-art using the commonly used KITTI benchmark dataset. In addition, the model is qualitatively evaluated using data acquired by the author of this work.MaestríaMagíster en Ingeniería de Desarrollo de Producto

    Vegetation detection and terrain classification for autonomous navigation

    Get PDF
    Diese Arbeit beleuchtet sieben neuartige Ansätze aus zwei Bereichen der maschinellen Wahrnehmung: Erkennung von Vegetation und Klassifizierung von Gelände. Diese Elemente bilden den Kern eines jeden Steuerungssystems für effiziente, autonome Navigation im Außenbereich. Bezüglich der Vegetationserkennung, wird zuerst ein auf Indizierung basierender Ansatz beschrieben (1), der die reflektierenden und absorbierenden Eigenschaften von Pflanzen im Bezug auf sichtbares und nah-infrarotes Licht auswertet. Zweitens wird eine Fusionmethode von 2D/3D Merkmalen untersucht (2), die das menschliche System der Vegetationserkennung nachbildet. Zusätzlich wird ein integriertes System vorgeschlagen (3), welches die visuelle Wahrnehmung mit multi-spektralen Methoden ko mbiniert. Aufbauend auf detaillierten Studien zu Farb- und Textureigenschaften von Vegetation wird ein adaptiver selbstlernender Algorithmus eingeführt der robust und schnell Pflanzen(bewuchs) erkennt (4). Komplettiert wird die Vegetationserkennung durch einen Algorithmus zur Befahrbarkeitseinschätzung von Vegetation, der die Verformbarkeit von Pflanzen erkennt. Je leichter sich Pflanzen bewegen lassen, umso größer ist ihre Befahrbarkeit. Bezüglich der Geländeklassifizierung wird eine struktur-basierte Methode vorgestellt (6), welche die 3D Strukturdaten einer Umgebung durch die statistische Analyse lokaler Punkte von LiDAR Daten unterstützt. Zuletzt wird eine auf Klassifizierung basierende Methode (7) beschrieben, die LiDAR und Kamera-Daten kombiniert, um eine 3D Szene zu rekonstruieren. Basierend auf den Vorteilen der vorgestellten Algorithmen im Bezug auf die maschinelle Wahrnehmung, hoffen wir, dass diese Arbeit als Ausgangspunkt für weitere Entwicklung en von zuverlässigen Erkennungsmethoden dient.This thesis introduces seven novel contributions for two perception tasks: vegetation detection and terrain classification, that are at the core of any control system for efficient autonomous navigation in outdoor environments. Regarding vegetation detection, we first describe a vegetation index-based method (1), which relies on the absorption and reflectance properties of vegetation to visual light and near-infrared light, respectively. Second, a 2D/3D feature fusion (2), which imitates the human visual system in vegetation interpretation, is investigated. Alternatively, an integrated vision system (3) is proposed to realise our greedy ambition in combining visual perception-based and multi-spectral methods by only using a unit device. A depth study on colour and texture features of vegetation has been carried out, which leads to a robust and fast vegetation detection through an adaptive learning algorithm (4). In addition, a double-check of passable vegetation detection (5) is realised, relying on the compressibility of vegetation. The lower degree of resistance vegetation has, the more traversable it is. Regarding terrain classification, we introduce a structure-based method (6) to capture the world scene by inferring its 3D structures through a local point statistic analysis on LiDAR data. Finally, a classification-based method (7), which combines the LiDAR data and visual information to reconstruct 3D scenes, is presented. Whereby, object representation is described more details, thus enabling an ability to classify more object types. Based on the success of the proposed perceptual inference methods in the environmental sensing tasks, we hope that this thesis will really serve as a key point for further development of highly reliable perceptual inference methods

    Development of a probabilistic perception system for camera-lidar sensor fusion

    Get PDF
    La estimación de profundidad usando diferentes sensores es uno de los desafíos clave para dotar a las máquinas autónomas de sólidas capacidades de percepción robótica. Ha habido un avance sobresaliente en el desarrollo de técnicas de estimación de profundidad unimodales basadas en cámaras monoculares, debido a su alta resolución o sensores LiDAR, debido a los datos geométricos precisos que proporcionan. Sin embargo, cada uno de ellos presenta inconvenientes inherentes, como la alta sensibilidad a los cambios en las condiciones de iluminación en el caso delas cámaras y la resolución limitada de los sensores LiDAR. La fusión de sensores se puede utilizar para combinar los méritos y compensar las desventajas de estos dos tipos de sensores. Sin embargo, los métodos de fusión actuales funcionan a un alto nivel. Procesan los flujos de datos de los sensores de forma independiente y combinan las estimaciones de alto nivel obtenidas para cada sensor. En este proyecto, abordamos el problema en un nivel bajo, fusionando los flujos de sensores sin procesar, obteniendo así estimaciones de profundidad que son densas y precisas, y pueden usarse como una fuente de datos multimodal unificada para problemas de estimación de nivel superior. Este trabajo propone un modelo de campo aleatorio condicional (CRF) con múltiples potenciales de geometría y apariencia que representa a la perfección el problema de estimar mapas de profundidad densos a partir de datos de cámara y LiDAR. El modelo se puede optimizar de manera eficiente utilizando el algoritmo Conjúgate Gradient Squared (CGS). El método propuesto se evalúa y compara utilizando el conjunto de datos proporcionado por KITTI Datset. Adicionalmente, se evalúa cualitativamente el modelo, usando datos adquiridos por el autor de esté trabajoMulti-modal depth estimation is one of the key challenges for endowing autonomous machines with robust robotic perception capabilities. There has been an outstanding advance in the development of uni-modal depth estimation techniques based on either monocular cameras, because of their rich resolution or LiDAR sensors due to the precise geometric data they provide. However, each of them suffers from some inherent drawbacks like high sensitivity to changes in illumination conditions in the case of cameras and limited resolution for the LiDARs. Sensor fusion can be used to combine the merits and compensate the downsides of these two kinds of sensors. Nevertheless, current fusion methods work at a high level. They processes sensor data streams independently and combine the high level estimates obtained for each sensor. In this thesis, I tackle the problem at a low level, fusing the raw sensor streams, thus obtaining depth estimates which are both dense and precise, and can be used as a unified multi-modal data source for higher level estimation problems. This work proposes a Conditional Random Field (CRF) model with multiple geometry and appearance potentials that seamlessly represents the problem of estimating dense depth maps from camera and LiDAR data. The model can be optimized efficiently using the Conjugate Gradient Squared (CGS) algorithm. The proposed method was evaluated and compared with the state-of-the-art using the commonly used KITTI benchmark dataset. In addition, the model is qualitatively evaluated using data acquired by the author of this work.MaestríaMagíster en Ingeniería de Desarrollo de Producto

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Real-Time Semantic Segmentation using Hyperspectral Images for Mapping Unstructured and Unknown Environments

    Full text link
    Autonomous navigation in unstructured off-road environments is greatly improved by semantic scene understanding. Conventional image processing algorithms are difficult to implement and lack robustness due to a lack of structure and high variability across off-road environments. The use of neural networks and machine learning can overcome the previous challenges but they require large labeled data sets for training. In our work we propose the use of hyperspectral images for real-time pixel-wise semantic classification and segmentation, without the need of any prior training data. The resulting segmented image is processed to extract, filter, and approximate objects as polygons, using a polygon approximation algorithm. The resulting polygons are then used to generate a semantic map of the environment. Using our framework. we show the capability to add new semantic classes in run-time for classification. The proposed methodology is also shown to operate in real-time and produce outputs at a frequency of 1Hz, using high resolution hyperspectral images

    [pt] SEGMENTAÇÃO SEMÂNTICA DE CONJUNTO ABERTO APLICADA A IMAGENS DE SENSORIAMENTO REMOTO

    Get PDF

    Técnicas de visión por computador para la detección del verdor y la detección de obstáculos en campos de maíz

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 22/06/2017There is an increasing demand in the use of Computer Vision techniques in Precision Agriculture (PA) based on images captured with cameras on-board autonomous vehicles. Two techniques have been developed in this research. The rst for greenness identi cation and the second for obstacle detection in maize elds, including people and animals, for tractors in the RHEA (robot eets for highly e ective and forestry management) project, equipped with monocular cameras on-board the tractors. For vegetation identi cation in agricultural images the combination of colour vegetation indices (CVIs) with thresholding techniques is the usual strategy where the remaining elements on the image are also extracted. The main goal of this research line is the development of an alternative strategy for vegetation detection. To achieve our goal, we propose a methodology based on two well-known techniques in computer vision: Bag of Words representation (BoW) and Support Vector Machines (SVM). Then, each image is partitioned into several Regions Of Interest (ROIs). Afterwards, a feature descriptor is obtained for each ROI, then the descriptor is evaluated with a classi er model (previously trained to discriminate between vegetation and background) to determine whether or not the ROI is vegetation...Cada vez existe mayor demanda en el uso de t ecnicas de Visi on por Computador en Agricultura de Precisi on mediante el procesamiento de im agenes captadas por c amaras instaladas en veh culos aut onomos. En este trabajo de investigaci on se han desarrollado dos tipos de t ecnicas. Una para la identi caci on de plantas verdes y otra para la detecci on de obst aculos en campos de ma z, incluyendo personas y animales, para tractores del proyecto RHEA. El objetivo nal de los veh culos aut onomos fue la identi caci on y eliminaci on de malas hierbas en los campos de ma z. En im agenes agr colas la vegetaci on se detecta generalmente mediante ndices de vegetaci on y m etodos de umbralizaci on. Los ndices se calculan a partir de las propiedades espectrales en las im agenes de color. En esta tesis se propone un nuevo m etodo con tal n, lo que constituye un objetivo primordial de la investigaci on. La propuesta se basa en una estrategia conocida como \bolsa de palabras" conjuntamente con un modelo se aprendizaje supervisado. Ambas t ecnicas son ampliamente utilizadas en reconocimiento y clasi caci on de im agenes. La imagen se divide inicialmente en regiones homog eneas o de inter es (RIs). Dada una colecci on de RIs, obtenida de un conjunto de im agenes agr colas, se calculan sus caracter sticas locales que se agrupan por su similitud. Cada grupo representa una \palabra visual", y el conjunto de palabras visuales encontradas forman un \diccionario visual". Cada RI se representa por un conjunto de palabras visuales las cuales se cuanti can de acuerdo a su ocurrencia dentro de la regi on obteniendo as un vector-c odigo o \codebook", que es descriptor de la RI. Finalmente, se usan las M aquinas de Vectores Soporte para evaluar los vectores-c odigo y as , discriminar entre RIs que son vegetaci on del resto...Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu

    Combining Appearance, Depth and Motion for Efficient Semantic Scene Understanding

    Get PDF
    Computer vision plays a central role in autonomous vehicle technology, because cameras are comparably cheap and capture rich information about the environment. In particular, object classes, i.e. whether a certain object is a pedestrian, cyclist or vehicle can be extracted very well based on image data. Environment perception in urban city centers is a highly challenging computer vision problem, as the environment is very complex and cluttered: road boundaries and markings, traffic signs and lights and many different kinds of objects that can mutually occlude each other need to be detected in real-time. Existing automotive vision systems do not easily scale to these requirements, because every problem or object class is treated independently. Scene labeling on the other hand, which assigns object class information to every pixel in the image, is the most promising approach to avoid this overhead by sharing extracted features across multiple classes. Compared to bounding box detectors, scene labeling additionally provides richer and denser information about the environment. However, most existing scene labeling methods require a large amount of computational resources, which makes them infeasible for real-time in-vehicle applications. In addition, in terms of bandwidth, a dense pixel-level representation is not ideal to transmit the perceived environment to other modules of an autonomous vehicle, such as localization or path planning. This dissertation addresses the scene labeling problem in an automotive context by constructing a scene labeling concept around the "Stixel World" model of Pfeiffer (2011), which compresses dense information about the environment into a set of small "sticks" that stand upright, perpendicular to the ground plane. This work provides the first extension of the existing Stixel formulation that takes into account learned dense pixel-level appearance features. In a second step, Stixels are used as primitive scene elements to build a highly efficient region-level labeling scheme. The last part of this dissertation finally proposes a model that combines both pixel-level and region-level scene labeling into a single model that yields state-of-the-art or better labeling accuracy and can be executed in real-time with typical camera refresh rates. This work further investigates how existing depth information, i.e. from a stereo camera, can help to improve labeling accuracy and reduce runtime

    Hierarchical cluster guided labeling: efficient label collection for visual classification

    Get PDF
    2015 Summer.Visual classification is a core component in many visually intelligent systems. For example, recognition of objects and terrains provides perception during path planning and navigation tasks performed by autonomous agents. Supervised visual classifiers are typically trained with large sets of images to yield high classification performance. Although the collection of raw training data is easy, the required human effort to assign labels to this data is time consuming. This is particularly problematic in real-world applications with limited labeling time and resources. Techniques have emerged that are designed to help alleviate the labeling workload but suffer from several shortcomings. First, they do not generalize well to domains with limited a priori knowledge. Second, efficiency is achieved at the cost of collecting significant label noise which inhibits classifier learning or requires additional effort to remove. Finally, they introduce high latency between labeling queries, restricting real-world feasibility. This thesis addresses these shortcomings with unsupervised learning that exploits the hierarchical nature of feature patterns and semantic labels in visual data. Our hierarchical cluster guided labeling (HCGL) framework introduces a novel evaluation of hierarchical groupings to identify the most interesting changes in feature patterns. These changes help localize group selection in the hierarchy to discover and label a spectrum of visual semantics found in the data. We show that employing majority group-based labeling after selection allows HCGL to balance efficiency and label accuracy, yielding higher performing classifiers than other techniques with respect to labeling effort. Finally, we demonstrate the real-world feasibility of our labeling framework by quickly training high performing visual classifiers that aid in successful mobile robot path planning and navigation
    corecore