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ABSTRACT

Multi-modal depth estimation is one of the key challenges for endowing autonomous
machines with robust robotic perception capabilities. There has been an outstan-
ding advance in the development of uni-modal depth estimation techniques based
on either monocular cameras, because of their rich resolution or LiDAR sensors due
to the precise geometric data they provide. However, each of them suffers from so-
me inherent drawbacks like high sensitivity to changes in illumination conditions in
the case of cameras and limited resolution for the LiDARs. Sensor fusion can be
used to combine the merits and compensate the downsides of these two kinds of
sensors. Nevertheless, current fusion methods work at a high level. They processes
sensor data streams independently and combine the high level estimates obtained
for each sensor. In this thesis, | tackle the problem at a low level, fusing the raw
sensor streams, thus obtaining depth estimates which are both dense and precise,
and can be used as a unified multi-modal data source for higher level estimation
problems.

This work proposes a Conditional Random Field (CRF) model with multiple geo-
metry and appearance potentials that seamlessly represents the problem of estima-
ting dense depth maps from camera and LiDAR data. The model can be optimized
efficiently using the Conjugate Gradient Squared (CGS) algorithm. The proposed
method was evaluated and compared with the state-of-the-art using the commonly
used KITTI benchmark dataset. In addition, the model is qualitatively evaluated using
data acquired by the author of this work.

Palabras clave:

Probabilistic Graphical Model (PGM), Conditional Random Field (CRFs), Sensor Fu-
sion, LiDAR, Monocular Camera, Perception and Robot Operating System (ROS).



RESUMEN

La estimacién de profundidad usando diferentes sensores es uno de los desafios
clave para dotar a las maquinas autbnomas de sélidas capacidades de percepcién
robotica. Ha habido un avance sobresaliente en el desarrollo de técnicas de estima-
cidén de profundidad unimodales basadas en cdmaras monoculares, debido a su alta
resolucién o sensores LiDAR, debido a los datos geométricos precisos que propor-
cionan. Sin embargo, cada uno de ellos presenta inconvenientes inherentes, como
la alta sensibilidad a los cambios en las condiciones de iluminacién en el caso de
las cdmaras y la resolucién limitada de los sensores LiDAR. La fusion de sensores
se puede utilizar para combinar los méritos y compensar las desventajas de estos
dos tipos de sensores. Sin embargo, los métodos de fusion actuales funcionan a un
alto nivel. Procesan los flujos de datos de los sensores de forma independiente y
combinan las estimaciones de alto nivel obtenidas para cada sensor. En este pro-
jecto, abordamos el problema en un nivel bajo, fusionando los flujos de sensores sin
procesar, obteniendo asi estimaciones de profundidad que son densas y precisas, y
pueden usarse como una fuente de datos multimodal unificada para problemas de
estimacion de nivel superior.

Este trabajo propone un modelo de campo aleatorio condicional (CRF) con mdultiples
potenciales de geometria y apariencia que representa a la perfeccién el problema
de estimar mapas de profundidad densos a partir de datos de camara y LiDAR. El
modelo se puede optimizar de manera eficiente utilizando el algoritmo Conjugate
Gradient Squared (CGS). El método propuesto se evalua y compara utilizando el
conjunto de datos proporcionado por KITTI Datset. Adicionalmente, se evalua cuali-
tativamente el modelo, usando datos adquiridos por el autor de esté trabajo.
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INTRODUCTION

More than 50 years have passed since the first industrial robot began service in a
car assembly line [1]. Since that time, robotics has been studied extensively and
improvements in the field have created opportunities for new robotics applications.
Approximately twenty years ago, Autonomous Vehicles (AV) and Driver Assistance
Systems (DAS) have gained remarkable attention. It is undeniable that these tech-
nologies could drastically reduce the number of car accidents and fatalities. These
technologies are ranked among the most transformative public-health initiatives in
human history.

Since DARPA Grand Challenge (2004, 2005) and Urban Challenge (2007), many
researchers have become interested in this area, as well as huge companies in tech
and the auto industry. Waymo, Tesla Motors, Volkswagen Group, Mercedes Benz,
GM Cruise, Ford, and NVIDIA are among the growing list of companies who are cu-
rrently testing their autonomous vehicles on California roads, according to reports
submitted to the Department of Motor Vehicles (DMV). Fully autonomous vehicles,
that is, being in the automation levels 4-5, have a much more complicated mission
and yet not fully available. They must be extremely reliable, safe, and robust to un-
seen phenomenon given their highly sensitive role. A fully autonomous vehicle must
execute all operations, monitor itself, and be able to handle all unprecedented events
and conditions, like roads without markings, unexpected objects and debris on the
road, unseen environments, adverse weather, etc. There are myriads of examples of
complicated scenarios where robots do not work very well. This problem calls for bet-
ter sensors, better processing power, and better algorithms before fully autonomous
robots start working close to humans.

One of the ongoing debates among driver-less car designers is about the choice of
exteroceptive sensors, their mounting position and the high cost they have. Two of
the most used sensors are the Light Detection and and Ranging (LiDAR) and the
monocular camera. The LiDAR is a remote sensing device that uses a set of rotating
laser to measure distances. Pulses of light are emitted from a laser scanner, and
when the pulse hits a target, a portion of its photons are reflected back to the scan-
ner. Due to the location of the scanner, the directionality of the pulse, and the time
between pulse emission and return are known, the 3D location (XYZ coordinates)
from which the pulse reflected is calculated [2].

Mass-producing LiDAR sensors has been challenging, mainly due to its relatively
high price. Some companies have pushed the idea that similar to humans, cars can
perceive and navigate using just the eyes. It is to say that they want to use just
cameras in their robotic platforms to perceive the environment. Although multiple
view reconstruction provides an attractive alternative due to a near instantaneous
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gathering of dense 3D data, leading to dense scene reconstructions from image
data alone [3][4], unfortunately, stereo reconstruction fidelity is limited in range by the
baseline and the image resolution. This seriously impedes accurate reconstruction
beyond a few meters from the camera. Hence, this idea has not been so efficient.

LiDAR technology is growing with remarkable investments, and sensor prices are
dramatically dropping. Thus, most companies are planning to actually make use of
multiple LiDARs. However, the precision of operation of an autonomous vehicle is,
thus, limited by the reliability of the associated sensors. Each type of sensor has its
own limitations, for example, LiDAR sensor readings are often affected by weather
phenomena such as rain, fog or snow [7]. Multimodal sensing is necessary, becau-
se a single modality cannot usually capture complete knowledge of a rich natural
phenomena.

Most autonomous car manufacturers are designing multi-module systems to model
the environment and make decisions. Currently, they are working on platforms that
use different sensors modalities. Most of the research on sensor fusion has been
devoted to studying how to combine information given by camera and LiDAR sen-
sor in order to get a better environment representation. Developing robust percep-
tion systems is one of the most important research endeavors in the robotics field.
Perception is understood as the task of extracting semantic information from sen-
sory data that can come from multiple sources, such as cameras, laser sensors,
radars, etc. Limited perception capabilities and underdeveloped processing techni-
ques using different sensor modalities are a common problem in intelligent systems.
These problems do not allow creating a good 3D reconstruction under challenging
environmental conditions. 3D reconstruction is important to perceive the world, and
it is an imperative prerequisite for autonomous navigation.

Applications in which it is necessary to perceive the environment automatically go
beyond the urban scenario. Perception systems are very important for getting infor-
mation that is used in the description of objects found in outdoor scenarios, such
as trees or plants, fruits to be harvested, among others. The work iN [8] presents
a solution to the detection problem of apple trees using data from a LiDAR sensor.
However, jobs that extend this type of technology using different sensors for unstruc-
tured environments such as forests are extremely rare.

As it was mentioned before, data about an environment can be obtained from diffe-
rent types of sensors. Acquiring sensing data using heterogeneous acquisition me-
chanisms is referred to as multimodal sensing [9]. Data fusion is the process by which
multimodal data streams are jointly analyzed to capture knowledge of a certain en-
vironment. Lahat et al., identifies several challenges that are imposed by multimodal
data. These challenges can be broadly categorized in two segments:
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1. Challenges at acquisition level and
2. Challenges due to uncertainty in the data sources.

Challenges due to problems at the data acquisition level include differences in phy-
sical units of measurement, differences in sampling resolutions, and differences in
spatio-temporal alignment. The uncertainty in data sources also pose challenges
that include noise such as calibration errors, quantization errors or precision losses,
differences in reliability of data sources, inconsistent data and missing values [10].

It is important thus to develop robust perception systems that are able to combine the
strengths of different sensors in order to obtain more reliable and meaningful data in
the face of environmental limitations, while still overcoming physical and technologi-
cal limitations . Hence, the primary contribution of this project will be the development
of a deep regression model for fusing sparse LIiDAR and dense monocular image da-
ta. The problem will be modelled as a conditional random field (CRF) that takes both
a sparse set of depth samples and RGB images as input, and infers a range value
for every pixel in the image. These kinds of approaches allow for dramatic reductions
in the pre-processing’s complexity of subsequent tasks such as object recognition,
instance segmentation, among others. Additionally, these tasks can be more robustly
executed due to the increased quality of the input data.

13



1. PROBLEM STATEMENT

The intelligent management of agricultural areas is set to increase further over the
coming years. Autonomous vehicles will be an increasingly common sight on farm
fields. This kind of vehicles have become more common in agriculture, and many of
the challenges identified in other scenes such as in the cities still persist.

For any autonomous vehicle whether to be used on the streets or on farms, the per-
ception system is one of the primary modules. Nowadays there are a lot of challen-
ges related to the perception system and it is worth delving into them. One of these
challenges is developing robust and inexpensive multi-sensory perception systems.

A practical problem is described later, without ignoring the fact that this sensor fusion
system might be used in general autonomous cars applications. It is important to
highlight that the development of a low-cost and robust sensory fusion system is the
core of this thesis. It is important to clarify why and where a multi-sensory perception
system can contribute significantly. The importance of a perception system in self-
driving cars was previously discussed, but it is not the only practical example.

Now the practical problem | would like to discuss is in the agro-industrial area since
the sensory fusion system is very pertinent to tackle several tasks in this field as well.

One of the most basic needs to guide the definition of urban, agro-industrial and terri-
torial management policies is to have a digital topographic representation or map of
cities, crops and forests. These maps should ideally be created from multiple sensors
whose responses are complementary (color information, for example, complements
the returns of a LiDAR sensor in the presence of rain or low reflective objects). Once
a topographic representation has been constructed, it can be used to produce and
geo-localize higher-level estimates (e.g., location and classification of different trees
and plants, crop density, location, and types of pests).

Data can be collected using both aerial and terrestrial unmanned vehicles equipped
with hyper-spectral cameras, stereo cameras and LiDAR (Light Detection And Ran-
ging) sensors. The processing of the acquired data can be used to generate a digital
forest model (DFM), where each tree is a single object in a geo-spatial database
that provides not only a greater knowledge about the forest (or crop) composition but
also macroeconomic aspects like biomass volume, spectral vegetation indexes and
growth rate.

Thus, DFM will support forest planners in making multi-criteria decisions (MCDA)

when planning harvesting operations in the case of crops or coordinating preser-
vation policies (among others) in the case of forests, while taking into account all
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possible infrastructural and geomorphological constraints. However creating a DFM,
or the map of a city, require a highly accurate and dense point cloud of the environ-
ment at hand.

Motivated for building 3D reconstructions from which representations of different ve-
getation features of an environment can be obtained with high quality and precision.
A robust perception system is proposed. It is known that cameras provide near ins-
tantaneous capture of the workspace’s appearance such as texture and color, but
from a single view, little geometrical information. On the other hand, laser readings
may be so sparse that significant information about the surface is missing.

The considerations above motivate the formulation of this work’s research question:

How to develop a perception system for fusing a laser scan with a RGB image in
order to produce a higher-resolution range?

15



2. OBJECTIVES

2.1 GENERAL OBJECTIVE

Develop a three-dimensional dense reconstruction system that allows characterizing
external and internal environments in adverse environmental conditions, at a low
cost, and from the data provided by LiDAR and camera sensors.

2.2 SPECIFIC OBJECTIVES

» Develop a library that allows capturing and visualizing the information of the laser
and camera sensors.

» Develop the architecture of a fusion system that allows reconstructing 3D environ-
ments from two sensory modalities such as camera and laser.

* Implement the fusion system.

» Evaluate the performance of the 3D reconstruction system.

16



3. JUSTIFICATION

This thesis is mainly concerned with how a robot extracts useful information for 3D
reconstruction, robust automatic navigation or other applications from dissimilar sen-
sors, and how this information can be related to each other for getting better repre-
sentations of the environment. In static environments, the registration of data is fairly
easy. However, in real-world applications, the environment is generally dynamic, and
the data captured on different days can appear significantly different.

Drastic changes in environmental appearance due to changing seasons, lighting
conditions, and dynamical objects make the task of visual perception extremely dif-
ficult. The image of a location captured on a bright summer day can appear sig-
nificantly different from the image of the same location captured on a gray snow-
covered winter day [11]. Therefore, if we use the image data alone to localize on a
snowy winter day within an a priori map collected on a sunny summer day, then it
might not be possible. However, if we use data from LiDAR sensor as well, then we
can boost the registration process by using complementary information provided by
different sensing modalities.

On the contrary, using just a LiDAR sensor might be seen as a good alternative,
as it collects data in an easy way with high accuracy. Nevertheless, it is ineffective
during heavy rain or low hanging clouds; it is also sparse and the sensor, extremely
expensive. Hence, developing a technique for low-level data fusion between laser
and monocular camera to perceive the environment can ensure that the estimated
information about the environment is both accurate and dense in spite of the environ-
mental conditions. The perception system to develop should take into consideration
also the most important data imperfections, such as incomplete data, a complex
background with different colors and textures, some obscure objects, different illumi-
nation conditions, and the blurriness associated with the camera’s low resolution.

17



4. RELATED TO WORK

4.1 IMPORTANCE OF 3D RECONSTRUCTION

Having highly detailed 3D models of natural phenomena, urban and rural scenes,
industrial sites, among others, opens new horizons for applications. In the domain
of autonomous driving, an accurate 3D model could be used by vehicles to navigate
themselves or to reason about the scene. On the other hand, the objects reconstruc-
tion technology has a very important role in archeology and ancient history; these
disciplines often require simple, robust and cheap methods for scanning objects, so
these can be studied.

Image-based modeling methods which aim to provide fast and accurate have gained
significant attention due to the advances in camera technology and the flexible and
economic data acquisition possibilities they provide [14].

The majority of these applications do not require any color information within the
3D model. Whereas extending these models with color information can be an added
value to the application. For example, during inspection of industrial companies a
photo-realistic point cloud is used to detect damaged sections.

Today, most mapping systems integrate multiple sensors in order to make a colored
and detailed 3D model. This results in the need for data fusion at sensor-level, for
example 2D-3D registration between LiDAR sensors and cameras.

4.2 PERCEPTION

Every robotic system can be seen as composed by three modules: sensing, planning
and acting. In the majority of the cases, the robot will be interacting with the real
environment. Machines just have access to this world through the measures provided
by sensors. Interpreting the measured values in order to make decisions about their
future actions is what perception is all about. Without perception, machines would
not be able to make decisions, and fill their purpose [15].

The perception system converts the sensors raw data into consistent and useful
information. The quality and richness of the obtained information will have a direct
effect over the performances of the control and planning modules.

One robotics application that illustrates the main features of a state-of-the-art percep-
tion system is SLAMMOT: Simultaneous Localization, Mapping and Moving Object
Tracking. It allows a robot to construct a consistent map of the visited places, locali-
ze itself in such maps and track moving objects in its sensors’ coverage region. This
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feature serves as the basis for scene understanding, which is a key prerequisite for
making a robot truly autonomous [16].

4.3 MEASURING THE SURROUNDINGS

Sensors are the basic element of perception. They transform physical signals into
signals that are understandable by the machine. The choice of the sensors for a
particular task is non trivial; criteria for their selection are cost, precision, range of
measurements, energy consumption and effect over the environment. These criteria
make them suitable for particular tasks under specific conditions. Hence, it is very
important to determine the characteristics of sensors to use. In our case, our sensors
are camera and LiDAR, and their corresponding strengths and weaknesses will be
presented.

4.3.1 Camera

Most driving functionalities rely heavily on receiving and processing signals in the
visible light spectrum. All mobile robots benefit from a camera-based setup, e.g. mo-
nocular vision and stereo vision [18] [19]. Inexpensive cost, color perception, high
resolution (as opposed to conventional LIDAR) and the potential of obtaining rich
semantic information are among their advantages. They are by far the most emplo-
yed sensor for detecting traffic signs, pedestrians, vehicles and road markings. 3D
localization and tracking, however, require depth information that would only be avai-
lable with a multi-camera system. Cameras are, in general, sensitive to lighting and
weather conditions.

4.3.2 LiDAR

Light Detection and Ranging (LiDAR) is a light-based ranging system which trans-
mits 600 1000nm invisible laser. Reflections from the environment are sensed using
a photodetector, and range values are estimated based on time-of-flight or phase-
shift. The result is a semi-dense 3D point cloud of the environment. Since LiDARs
use invisible light, they do not interfere with ambient light and work equally well un-
der different lighting conditions. LiDAR data can be used for directly estimating the
presence of obstacles along with their position [20] [21].

LiDARs provide accurate and direct structure measurements on scene geometry.
Unlike stereo systems, these measurements come with no post-processing cost and
do not rely on feature-matching algorithms. However, they have a maximum sensing
range of 70 to 100m, relatively low refresh rates, and sensing problems in adverse
weather such as rain, snow, fog, or dust. One other issue with LiDAR is presence of
dark or low-reflective obstacles.
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There has been remarkable effort from the industry side over the past couple of years
to improve LiDAR technology and make it more affordable. This is in part due to the
demand for more reliable active sensors from the auto industry.

4.4 MULTI SENSOR DATA

To increase the robustness and improve the overall estimation capability of a sensory
system, a lot of research effort has recently been devoted for combining data from
complementary sensors, also known as sensor fusion. It has become a necessary
approach to overcome the disadvantages of single-sensor perception architectures
providing a richer description of a dynamic environment.

Sensors are designed to provide specific data extracted from the environment. For
instance, LiDAR provides depth measurements that are useful for estimating featu-
res such as the position and shape (lines) of obstacles within its field of view. On the
contrary, cameras provide visual characteristics that can be used to infer informa-
tion about the appearance of obstacles. Intelligently combining these features from
sensors may give a complete view of the objects and the environment around the
intelligent vehicle and it is the objective of a fusion architecture [22].

Fig. 1 illustrates the cover of area, field of view, and typical operating ranges, for both
a human-driven vehicle as well as a hypothetical autonomous vehicle.
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Fig. 1. Example illustration of the various sensors, with reasonable estimates of
coverage area. [119]

Traditionally, sensor fusion methods are defined in three different levels, according to
the stage at which the sensor fusion is performed. Low-level fusion utilizes the raw
sensor data. High-level fusion integrates high-level estimates obtained from each
sensor modalities individually. Between low and high level fusion, there is another
method called hybrid fusion or feature level fusion. This project will focus on low-
level fusion.

4.5 POINT CLOUD REGISTRATION

Registration is the process of aligning several shapes (two or more) in a common
coordinate system. It is generally applied to overlapping pairs of 2D images or 3D
point cloud models. Point cloud alignment is a fundamental problem for many robo-
tics and computer vision applications. Typical registration tasks generally require 3D
point cloud alignment.

The mathematical mapping is expressed by the transformation relationship (e.g.,
scale, rotation, translation and shape deformation) between the coordinate systems
of the two datasets. To assemble point clouds into more comprehensive ones requi-
res aligning them along distinctive shapes that are common to the scans. Aligning
point clouds to find their relative motion is a critical component for any mobile plat-
form that uses a LIDAR sensor to navigate.
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The research community has developed different techniques to deal with the point
cloud registration problem [23] [24]. With the possibility to register multiple scans into
more comprehensive 3D models, it is no surprise that part of the research community
has focused on developing and using registration techniques to map urban indoor
and outdoor spaces in 3D [25] [26]. An example of registering one point cloud to one
another such that a comprehensive 3D map is generated is illustrated in Fig. 2.

Modern depth cameras commonly produce pairs of depth and color images. Many
industrial 3D scanners are also equipped with synchronized color cameras and pro-
vide software that associates color information with the 3D scans. Multi-view stereo
pipelines reconstruct colored point clouds from image collections. Considering color
along with the geometry can increase the accuracy of point cloud registration [27]
[28].

Fig. 2. 3D mapping with LiDAR, registering multiple scans (shown here for 2D scans
from atop view) [120].

4.6 SIMPLE LINEAR ITERATIVE CLUSTERING

With the advent of self-driving cars, there has been in the robotics community an
increasing interest in the development of robust perception systems that provide
correct estimates even under different and challenging environmental conditions.
Although some approaches to robust perception resort to statistical methods for dea-
ling with data outliers [29], the work presented in this paper belongs to the group that
tackles the robust-perception problem by leveraging the complementary nature of
pasive and active sensor modalities.

Multi-sensor approaches to robotic perception, can be categorised according to the
level at which the data from each sensing modality is fused in order to obtain the es-
timate of interest. According to [30], data fusion can be made at the level of symbolic
estimates or high level fusion, at the level of features or medium level fusion, or at
the level of raw data or low level fusion.

Low level fusion methods on the other hand explore the complementary relationships
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between passive and active sensors at the pixel level. The approaches in [31],[32],[33]
follow this intuition but require the fused modalities to have similar coverage densi-
ties. Additionally, low level fusion fosters the development of recognition approaches
that use an improved and unified version the multi-modal i nformation in the object
recognition task [34]. The proposed framework provides a procedure for fusing li-
dar and image data independently of the lidar data’s density. In previous papers |
show how this low level fusion (at the pixel or superpixel level) improves the object
recognition task in indoor environments [35].

In order to build the framework proposed in this project, range measurements are
first projected on the image space. T hese sparse depth measurements are locally
extended using Simple Linear lterative Clustering (SLIC) [36]. SLIC is a simple and
parallelisable method, based on k-means clustering, for decomposing an image into
a regular grid of visually homogeneous regions or so-called super-pixels. As a re-
sult, SLIC super-pixels provide a regular grouping of image pixels according to their
distance both spatially and in the colour space. | use a python library, scikit-image
[37], to generate the super-pixel segmentation in order to assign depth values to all
of the pixels within super-pixels with at least one range measurement. The image
segmented and the boundaries are shown in Fig. 3 and Fig. 4.

Fig. 3. Image segmented using SLIC into superpixels.

Fig. 4. Superpixels: boundary neighbors and centroids.
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4.7 DATA PROJECTION

In this section, we give a brief introduction to the alignment of image and LIDAR
point cloud. As presented in [38], the Velodyne HDL-64E LIDAR and a camera are
mounted on the roof of a vehicle and they are synchronized by a hardware trigger.
Once the rolling LIDAR is facing forward, the camera gets triggered. The camera and
LIDAR are cross-calibrated so that the point cloud can be aligned with the image
by projecting the LIDAR points onto the image plane. The projection of a 3D point
x = (z,y,2,1)T in rectified (rotated) camera coordinates to a point y = (u,v,1)7 in
the /'th camera image is given as

y:PSQ:tX
with
0 &) g
PO = o s & o
0 0 1 0

the i'th projection matrix. Here, %) denotes the baseline (in meters) with respect to
reference camera. Note that in order to project a 3D point x in reference camera
coordinates to a point y on the i'th image plane, the rectifying rotation matrix of the
reference camera RS;; must be considered as well:
y = Pv("gcth("(()e)ctX

Here, R,(f;)ct has been expanded into a 44 matrix by appending a fourth zero-row and
column, and setting Rff;g(4,4) = 1. We have registered the Velodyne laser scanner
with respect to the reference camera coordinate system. The rigid body transforma-
tion from Velodyne coordinates to camera coordinates is given by,

cam cam
eam Rvelo tvelo
velo 0 1

a 3D point = in Velodyne coordinates gets projected to a point y in the i'th camera
image as ’
y = P('L) R(O) eamse

rect~%rect - velo

Subsequently, as a preprocessing step, points with a negative Z value are removed.
Then the remaining points can be projected onto the image plane with the projection
matrix given by:

T
'y ) =y yp 2 1]
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The projected pixel coordinates of the LIDAR points can be obtained by:

x/ y/
[x7 y] = |:?7 ;:|
Once the 3D points are projected on a 2D plane corresponding to that of the camera,
the projected points are filtered. This filter is executed to use only 3D information that
is within the dimensions of the image. Therefore, information that is outside the range
of the camera will not be considered for the depth estimation.

In Fig. 5 and Fig. 6 the raw point cloud projected on the image, and the average of
depth measurements assigned for each superpixel.

Fig. 5. Sparse raw depth measurement projected onto the image.

Fig. 6. Depth assignment: Each pixel inside the superpixels has the same depth
value.

Fig. 6 shows the depth assignment for each superpixel’s centroid. This depth value
considers the information of all the 3D points that are projected within each single
superpixel. In this way, to determine the depth value of the centroid, an average is
calculated between all the depth values which are inside of the superpixel’s segment.
This value changes in each scene (frame) and depends on the number of superpixels
selected and the resolution of the lidar sensor used.
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4.8 THE ROBOT OPERATING SYSTEM

The Robot Operating System (ROS) is a flexible framework for writing robot software.
It is a collection of tools, libraries, and conventions that aim to simplify the task of
creating complex and robust robot behavior across a wide variety of robotic platforms
[39], [40].

ROS processes are represented as nodes in a graph structure, connected by edges
called topics. ROS nodes can pass messages to one another through topics, make
service calls to other nodes or provide a service for other nodes. ROS’s core fun-
ctionality allows developers to visualize and record data, easily navigate the ROS
package structures, and create scripts automating complex configuration and setup
processes [42].

4.9 MATHEMATICAL BACKGROUND
4.9.1 Elements of probability

This section presents a review of some basic concepts of probability theory, including
random variables, joint probability distribution, bayes rule and probabilistic graphical
models. The definitions introduced in this section are instrumental to the formualtion
of the sensor fusion model presented in further sections.

4.9.1.1 Random Variables

A random variable is a numerical description of the outcome of a random pheno-
menon. A random variable that might assume only a finite number or an infinite
sequence of values is said to be discrete. One the contrary, a random variable that
assume any value in some interval on the real number line is said to be continuous.

For instance, a random variable representing the number of automobiles sold at a
particular dealership on one day would be discrete, while a random variable repre-
senting the weight of a person in kilograms (or pounds) would be continuous [43],
[44].

For example, suppose we have a random variable Grade that reports the final grade
of a student, then the representation of the statement is P(Grade = A). We usually
use uppercase letters XY, Z to denote random variables. In discussing generic ran-
dom variables, we often use a lowercase letter to refer to a value of a random varia-
ble.
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4.9.1.2 Joint probability distribution

The probability distribution for a random variable describes how the probabilities are
distributed over the values of the random variable. For a discrete random variable,
X, the probability distribution is defined by a probability mass function, denoted by
f(X). This function provides the probability for each value of the random variable.
The joint probability mass function is the function:

fXY(x7y> = P(X ::L‘7Y :y)

In the development of the probability function for a discrete random variable, two
conditions must be satisfied:

(1) f(z) must be nonnegative for each value of the random variable,
(2) the sum of the probabilities for each value of the random variable must equal one.

A continuous random variable may assume any value in an interval on the real num-
ber line or in a collection of intervals. Since there is an infinite number of values in
any interval, it is not meaningful to talk about the probability that the random varia-
ble will take on a specific value; instead, the probability that a continuous random
variable will lie within a given interval is considered.

In the continuous case, the counterpart of the probability mass function is the proba-
bility density function, also denoted by f(x) [47]. For a continuous random variable,
the probability density function provides the height or value of the function at any
particular value of z; it does not directly give the probability of the random variable
taking on a specific value. However, the area under the graph of f(x) corresponding
to some interval, obtained by computing the integral of f(x) over that interval, provi-
des the probability that the variable will take on a value within that interval. The joint
probability density function [47] for the continuous random variable in any region R
of 2-D space is:

PxY)eR) - | / Py (o, y)dady

A probability density function must satisfy two requirements:
(1) f(x) must be nonnegative for each value of the random variable

(2) the integral over all values of the random variable must equal one.
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4.9.1.3 Marginal distributions

Often when confronted with the joint probability of two random variables, we wish to
restrict our attention to the value of just one or the other. | can calculate the probability
distribution of each variable separately in a straightforward way, if | simply remember
how to interpret probability functions.

These separated probability distributions are called the marginal distributions of the
respective individual random variables. This contrasts with a conditional distribu-
tion, which gives the probabilities contingent upon the values of the other variables
[48]. Marginalisation refers to the process of ‘removing’ the influence of one or more
events from a probability.

If X and Y are discrete random variables and f(x,y) is the value of their joint proba-
bility distribution at (z, y), the marginal distribution functions ?? ?? are given by:

fx(@) =) fxv(z,y)

fr(y) = Z fxy (z,y)

Here, we have ‘removed’ either x or y. Given two continuous random variables X and
Y whose joint distribution is known, then marginal probability density function can be
obtained by integrating the joint probability distribution over Y, and vice versa. The
marginal distributions [49] for two continuous random variables are given by:

fx(z) :/fXY(fL“ay)dy

fY(y) :/fxy(m,y)dl’

where:
€ [a,b], and y € [c,d]

4.9.1.4 Conditional probability

Sometimes the computation of the probability of an event is changed by the know-
ledge that a related event has occurred or by some additional conditions established
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on the experiment. This new probability is declared as a conditional probability, be-
cause we have some prior information about conditions under which the experiment
is going to be performed [50].

Conditional probability answers the question, how does the probability of an event
change if we have extra information? The conditional probability P(E|F) is the pro-
bability that £ happens, given that /' has happened. F' is the new sample space.
This conditional probability [51] is written as follow:

P(E|F) =

We can visualize conditional probability as follows. Think of P(A) as the proportion
of the area of the whole sample space taken up by A. For P(A|B) we restrict our
attention to B. That is, P(A|B) is the proportion of area of B taken up by A. It is
shown in the following Fig. 7.

Fig. 7. Conditional probability [x].

4.9.1.5 Chain Rule

This format is particularly useful in situations when | know the conditional probability,
but | am interested in the probability of the intersection. Sometimes | have conditional
distributions but want the joint distribution.

Intuitively it states that the probability of observing events E and F is the probability
of observing F, multiplied by the probability of observing FE, given that you have
observed F. From the definition of the conditional distribution, | immediately see
that:
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P(E,F) = P(E|F)P(F)

More generally, if E1, E2.. are events, then | can write:

P(Ey, By, ... E,) = P(E) P (E|Ey)...P(Ey|EEs...Eyy)

Thus, can always write any joint distribution as an incremental product of conditional
distributions:

P(El,EQ, .. J/’n) = HP(EZ|E1 .. .ZL’E_l)

In other words, | can express the probability of a combination of several events in
terms of the probability of the first, the probability of the second given the first, and
so on [52]. It is important to notice that | can expand this expression using any order
of events.

4.9.1.6 Bayes Rule

The concept of conditional probability was introduced previously. We noted that the
conditional probability of an event is a probability obtained with the additional infor-
mation that some other event has already occurred.

The conditional probability of B given A can be found by assuming that event A has
occurred and, working under that assumption, calculating the probability that event
B will occur [53]. In this section we extend the discussion of conditional probability
to include applications of Bayes’ theorem or Bayes’ rule, which we use for revising a
probability value based on additional information that is later obtained.

One key to understanding the essence of Bayes’ theorem is to recognize that we are
dealing with sequential events, whereby new additional information is obtained for a
subsequent event, and that new information is used to revise the probability of the
initial event. In this context, the terms prior probability and posterior probability are
commonly used [54].

A prior probability is an initial probability value originally obtained before any additio-

nal information is obtained. On the other hand, a posterior probability is a probability
value that has been revised by using additional information that is later obtained [42].
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Bayes’ theorem is a result in probability theory that relates conditional probabilities.
The two conditional probabilities P(A|B) and P(B|A) are in general different.

Bayes theorem gives a relation between P(A|B) and P(B|A). An important applica-
tion of Bayes’ theorem is that it gives a rule how to update or revise the strengths of
evidence-based beliefs in light of new evidence a posteriori.

The power of Bayes’ rule is that in many situations where we want to compute
P(A|B) itturns out that it is difficult to do so directly, yet we might have direct informa-
tion about P(B|A). Bayes’ rule enables us to compute P(A|B) in terms of P(B|A).

P(A|B) - P(B)
P(A)

P(B|A) =

It is common to think of Bayes rule in terms of updating our belief about a hypothesis
A'in the light of new evidence B. Specifically, our posterior belief P(A|B) is calculated
by multiplying our prior belief P(A) by the likelihood P(B|A) that B will occur if A is
true.

4.9.2 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are a rich framework for encoding probabi-
lity distributions over complex domains, joint (multivariate) distributions over large
numbers of random variables that interact with each other [56], [57].

Two branches of graphical representations of distributions are commonly used. The
first one i s B ayesian n etworks also known a s directed g raphical m odels, i n which
the links of the graphs have a particular directionality indicated by arrows. And the
other main class of graphical models are Markov Random Fields, also known as
undirected graphical models, in which the links do not carry arrows and have no
directional significance [58] as is shown in Fig. 8 .

Fig. 8. Probabilistic Graphical Models: a directed PGM (left, a.k.a. Bayesian Net-
work) and an undirected PGM (right, a.k.a. Markov Random Field).
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Directed graphs are useful for expressing causal relationships between random va-
riables, whereas undirected graphs are better suited to expressing soft constraints
between random variables. Both families encompass the properties of factorization
and independences, but they differ in the set of independences they can encode and
the factorization of the distribution that they induce.

A graph comprises nodes (also called vertices) connected by links (also known as
edges or arcs). In a probabilistic graphical model, each node represents a random
variable (or group of random variables), and the links express probabilistic rela-
tionships between these variables [59].

The graph then captures the way in which the joint distribution over all of the random
variables can be decomposed into a product of factors each depending only on a
subset of the variables.

4.9.2.1 Markov Random Fields

Bayesian networks are a class of models that can compactly represent many inter-
esting probability distributions. However, some distributions may have independence
assumptions that cannot be perfectly represented by the structure of a Bayesian
network [60].

There exists, however, another technique for compacitly representing and visualizing
a probability distribution that is based on the language of undirected graphs. This
class of models (known as Markov Random Fields or MRFs) can compactly repre-
sent independence assumptions that directed models cannot represent [62].

A Markov Random Field (MRF) is a probability distribution p over variables x1, ..., zn

defined by an undirected graph G in which nodes correspond to variables xi [63]. The
probability p has the form:

1
p(x1,.. . ) = ZH@(%)
ceC

where C denotes the set of cliques (i.e. fully connected subgraphs) of G, and each
factor ¢. is a nonegative function over the variables in a clique. The partition function:

is a normalizing constant that ensures that the distribution sums to one.
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4.9.2.2 Conditional Random Fields

The use of discriminative models for classification tasks has become popular [64].
CRFs offer a lot of advantages over the generative approaches by directly modeling
the conditional probability P(Y'|X). Thus, the relations between the input variables
do not need to be explicitly represented. Since no assumption is made about the
underlying structure of the observations X, the model is able to incorporate a rich
set of non-independent overlapping features of the observations.

In the context of images, various authors have successfully applied CRFs for classi-
fication tasks and have reported significant improvement over the MRF based gene-
rative models [65], [66].

A Conditional Random Field (CRF) is an undirected graphical model in which edges
represent conditional dependencies between random variables at the nodes. The
distribution of each random variable yi is conditioned on an input sequence x. The
conditional dependency of the random variables on x is defined by using feature
functions with some associated weights. Together, they can be used to determine
the probability of each yi. Dependencies among the input variables x do not need to
be represented because the model is conditional, affording the use of complex and
rich features of the input. Thus, CRFs are discriminative models, that is, they model

p(ylz).

Formally, a CRF is a Markov network over variables X U Y which specifies a condi-
tional distribution [67],

with partition function

Z(2) = 3" I ¢ (2er )

yeY ceC

Note that in this case, the partition constant now depends on x (therefore, we say
that it is a function), which is not surprising: p(yx) is a probability over y that is pa-
rametrized by z, in other words it encodes a different probability function for each z.
In that sense, a conditional random field results in an instantiation of a new Markov
Random Field for each input .

33



4.10 BACKGROUND AND STATE OF ART

Depth estimation from monocular images is a long-standing problem in computer
vision. Early works on depth estimation using RGB images usually relied on hand-
crafted features and inference on probabilistic graphical models. Classical methods
include shape-from-shading [68] and shape-from-defocus [69]. Newer methods treat
depth estimation as a machine learning problem, most recently using deep artificial
neural networks [70] [71]. For instance, Saxena et al. [72] estimated the absolute
scales of different image patches and inferred a depth image using a Markov Ran-
dom Field model. Eigen et al. [73], [74] used a multiscale convolutional network to
regress from color images to depths. Roy et al. [75] combined shallow convolutional
networks with regression forests to reduce the need for large training sets. In [76] the
proposed attention model is seamlessly integrated into a CRF, allowing end-to-end
training of the entire architecture. This approach benefits from a structured attention
model which automatically regulates the amount of information transferred between
corresponding features at different scales.

The approach of Li et al. [77] combines deep learning features on image patches
with hierarchical CRFs defined on a superpixel segmentation of the image. They use
pretrained AlexNet [78] features of image patches to predict depth at the center of
the superpixels. Liu et al. [79] also propose a deep structured learning approach
that avoids hand-crafted features. In this paper is presented a deep structured lear-
ning scheme which learns the unary and pairwise potentials of continuous CRF in
a unified deep CNN framework. Liu et al. [80] proposed a discrete-continuous CRF
model to take into consideration the relations between adjacent superpixels, e.g.,
occlusions.

Recent works have also shown the benefit of adopting multi-task learning strategies,
e.g. for jointly predicting depth and performing semantic segmentation, ego-motion
estimation or surface normal computation [81], [82], [83]. Some recent papers ha-
ve proposed unsupervised or weakly supervised methods for reconstructing depth
maps [84] [85].

With the rapid development of deep neural networks, monocular depth estimation
based on deep learning and computer vision tecniques has been widely studied
recently and achieved promising performance in accuracy [86]. However, not consi-
dering information from other sensors makes the estimate not so robust. The afo-
rementioned works use different kinds of network frameworks, loss functions, and
training strategies with just one sensory modality. The architecture proposed in this
thesis uses two sensory modalities.

Fusing data coming from multiple sensors has the potential of improving the robust-
ness of depth estimates. Ma et al. [87] uses RGB images together with sparse depth
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information to train a bottleneck network architecture. Other works [88], [89], [90],
[91] are able to fuse the information from both sources to significantly improve the
resolution of low quality and sparse range images.

Wang et al. [92] proposed a multi-scale feature fusion method for depth completion
using sparse LIDAR data. Ma et al. [93], [94] proposed two methods, a supervi-
sed method for depth completion using a ResNet based architecture and a self-
supervised method which uses the sparse LiDAR input along with pose estimates to
add additional training information based on depth and photometric losses.

Although recent methods have achieved impressive progress in evaluation metrics
such as the pixel-wise relative error, most of them neglect the geometric constraints
in the 3D space. This component is considered in our CRF model which makes this
approach different from previous fusion methods.

Providing strong cues on surface information is relevant for improving depth predic-
tion accuracy [95]. Recently, Zhang et al. [96] proposed to predict surface normals
and occlusion boundaries using a deep network and further utilized them to help
depth completion in indoor scenes. Qiuet al. [97] propose an end-to-end deep lear-
ning system to produce dense depth from sparse LiDAR data and a color image
taken from outdoor on-road scenes leveraging surface normal as the intermediate
representation. Zhang et al. [98] predicted surface normals by leveraging RGB data,
leading to a better prior for depth completion. The model developed in thesis takes
advantage of the surface normals to improve the performance of the proposed mo-
del.

In contrast, to other models [99], [100], [101], [102], the model proposed here does
not rely on a stereo matching algorithm that tend to be computationally costly.
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5. CONSTRUCTING THE MULTI-SENSOR DEPTH PREDICTION MODEL

This thesis will apply probabilistic graphical models to the problem of fusing low- re-
solution depth images with high-resolution camera images to enhance the resolution
and accuracy of the depth image. Specifically, a Conditional Random Field (CRF)
[103] method will be proposed for integrating both data sources.

CRFs are popular graphical models used for structured prediction. While extensively
studied in classification (discrete) domains, CRFs have been less explored for re-
gression (continuous) problems. One of the pioneering works on continuous CRFs
can be attributed to [104], in which they were proposed for global ranking in docu-
ment retrieval.

Different from the previous efforts, the perception system to develop will have the
ability of utilizing a unary potential, different pair wise potentials and a higher order
potentials defined on super pixels, without relying on any geometric priors nor any
extra information, other than range measurement coming from a LiDAR sensor. Our
approach will perform this data fusion using a multi-resolution CRF, which ties to-
gether image and range data, and fast optimization techniques such as a conjugate
gradient algorithm, for the CRF inference problem.

5.1 PROPOSED ARCHITECTURE

This thesis proposes a CRF model to predict dense depth images from a single
camera and a scanning laser. We make the common assumption that an image is
composed of small homogeneous regions called superpixels. The aim is to assign
each image superpixel with a range value using both image appearance and spar-
se laser data. However, this framework will be flexible. It might work on pixels or
superpixels, this parameter will determine the resolution of the algorithm.

We formulate the energy function as a typical combination of unary potentials and
pairwise potentials over the nodes and edges of the image. These potentials are built
based on multiple geometry and appearance information that seamlessly represents
the problem of estimating dense depth maps from camera and LiDAR data.

In our case, the unary term aims to regress the depth value from a single superpixel

and the pairwise term encourages neighboring superpixels with similar appearances
to take similar depths.
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5.1.1 CRF-based camera-LIDAR fusion fordepth estimation

In this thesis, depth estimation is formulated as a superpixel-level inference task on
a modified Conditional Random Field (CRF). Our proposed model is a multi-sensor
extension to the classical pairwise CRF. In this section, | introduce the CRF model
proposed. | show how to fuse the information of an image and a sparse LIDAR point
cloud with our novel CRF framework.

5.2 OVERVIEW

The Conditional Random Field (CRF) is a type of undirected probabilistic graphi-
cal model which is widely used for solving labeling problems. Formally, let X =
{X1,Xs,..., Xy} be a set of discrete random variables to be inferred from an ob-
servation or input tensor Y, which in turn are composed of the observation variables
¢; and y;, where i is an index over superpixels. For each super pixel i, the variable ¢;
corresponds to an observed three-dimensional colour value; y; is an observed range
measurement.

The goal of our framework is to infer the depth of each pixel in a single image de-
picting general scenes. | make the common assumption that an image is composed
of small homogeneous regions (superpixels) and consider the graphical model com-
posed of nodes defined on superpixels. Note that our framework is flexible and can
estimate depth values on either pixels or superpixels.

The remaining question is how to parameterize this undirected graph. Intuitively, |

want the model captures the affinities between the depth estimates among super-
pixels in a given neighborhood. These affinities can be captured as follows: Let

P(X,Y) be an unnormalized Gibbs joint distribution parameterized as a product of
factors @, where

d={¢y(D1),..., 00 (Di)},

and

P(X,Y) = H¢i (Dz)

We can then write a conditional probability distribution of the depth estimates X given
the observations Y, using the previously introduced Gibbs distribution as follows:
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where

Z(Y), also known as the partition function, works as a normalizing factor which
marginalises X from P(X,Y’), allowing the calculation of the probability distribution
P(X|Y):

P(X|Y) = mﬁ(x, Y).

Therefore, similar to conventional CRFs, | model the conditional probability distribu-
tion of the data with the following density function:

P(Xly) = Z0Y) exp(—E(X,Y))

where F is the energy function; 7 is the partition function defined as:
Z(Y) = / exp{—FE(X,Y)}dY.
Y

Since Z is continuous, the integral equation above can be analytically calculated.
This is different from the discrete case, in which approximation methods need to
be applied. To predict the depths of a new image, we solve the following maximum
a-posteriori (MAP) inference problem:

x* = argmax P(X]|Y).

To simplify the solution to the energy function, one can take the negative logarithm of
the left hand side and right side of the equation of the probability distribution P(X|Y),
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and the problem of maximizing the conditional probability becomes an energy mini-
mization problem.Therefore, maximizing the probability distribution P(XY") is equi-
valent to minimizing the corresponding energy function:

x* =argmin £(X,Y).

| formulate the energy function as a typical combination of unary potentials U and
pairwise potentials V' over the nodes (superpixels) N and edges S of the image x:

E(X,Y) = Z U(zp,y) + Z V (2, 4, )

pEN (p,9) €S

The unary term U aims to regress the depth value from a single superpixel. The
pairwise term V' encourages neighbouring superpixels with similar appearances to
take similar depths [105], [106].

Fig. 9 illustrates the modules of the proposed model. On the top left is the fused view
of the image and LIDAR point cloud on superpixels. On the top right are the normal
surface map and RGB inputs used in the pairwise potentials. On the top middle is
the graph structure of the CRF: The yellow nodes represent the centroid of image
superpixels and the green branches the connection between them. The outputs of
unary part and the pairwise part are then fed to the CRF structured loss layer, which
minimizes the corresponding energy function. On the bottom left is the probabilistic
output, a dense depth map and uncertainty estimation map, of the method proposed.

Fig. 9. lllustration of the proposed model.
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5.3 POTENTIAL FUNCTIONS

The proposed multi-modal depth estimation model is composed of unary and pair-
wise potentials. For an input image, which has been over-segmented into n super-
pixels, we define a unary potential for each superpixel. The pairwise potentials are
defined over the four-neighbor vicinity of each superpixel.

The unary potentials are built by aggregating all LIDAR observations inside each
superpixel. The pairwise part is composed of similarity vectors, each with K com-
ponents, that measure the agreement between different features of neighbouring
superpixel pairs. Therefore, we explicitly model the relations of neighbouring super-
pixels through pairwise potentials. In the following, we describe the details of the
potentials involved in the energy function.

5.3.1 Unary potential

The unary potential is constructed from the LiDAR sensor measurements by consi-
dering the least square loss between estimated x; and observed y; depth values:

o(x,y) = Zgi (@i — y)”

O(x,y) = [W(x - 2)|

where L is the set of indexes for which a depth measurement is available, and o;
is a constant weight placed on the depth measurements. This potential measures
the quadratic distance between the estimated range X and the measured range 7,
where available. Finally, in order to write the unary potential in a more efficient matrix
form, we define the diagonal matrix W with entries:

o; |fZ el
Wi = { 0 otherwise

5.3.2 Colour pairwise potential

We construct a pairwise potential from K types of similarity observations, each of
which enforces smoothness by exploiting colour consistency features of neighbou-
ring superpixels. This pairwise potential is expressed as:

\IIC(X7 I) = Z Z €ij ([L‘l - 27j)2

i JEN(i)
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U(x, 1) = [|Sx]*

where [ is a RGB image, N(7) is the set of horizontal and vertical neighbours of i,
and each row of S represents weighting factors for pairs of adjacent range nodes. As
the edge strength between nodes we use an exponentiated L, norm of the difference
in pixel appearance.

where c; is the RGB colour vector of pixel i and o, is a tuning parameter. A small o,
value increases sensitivity to changes in the image.

5.3.3 Surface-normal pairwise potential

The mathematical formulation of this potential is similar to the previous colour po-
tential, however, the surface-normal potential considers surface normal similarities
instead of colour. The weighting factors nr; ; for this case, are formulated using the
cosine similarity, which is a measure of similarity between two non-zero vectors of
an inner product space that measures the cosine of the angle between them. The
cosine of 0°is 1°, and it is less than 1 for any angle in the interval (0, (pi)] radians. It
is thus a measurement of orientation instead magnitude [107].

The cosine of two non-zero vectors can be derived by using the Euclidean dot pro-
duct formula:

A-B = [|A[[|B]|cos®

Therefore, the cosine similarity is expressed like:

A-B " A B;
cos(6) = 2=t AiBi

IANBI /ST A2 /S B

where A; and B; are the components of vectors A and B respectively. Finally, we
define our surface normal potential in the following equation.
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U (x,In) = Z Z nrgj (z; — :Ij'j)2

i jEN(3)

U (x,In) = |[Px]|

Z?:l Inzln]

V2 ]n?\/ > i In?

nrij =

5.3.4 Depth pairwise potential

This pairwise potential encodes a smoothness prior over depth estimates which en-
courages neighboring superpixels in the image to have similar depth. Usually, pairwi-
se potentials are only related to the color difference between pairs of superpixels, ho-
wever depth smoothness is a valid hypotheses which can potentially enhance depth
inference.

For enforcing depth smoothness, a distance-aware Potts model was adopted. The
neighboring points with smaller distance are considered to be more likely to have the
same depth.

The mathematical formulation of this potential is similar to the colour pairwise poten-
tial, as it follows the Potts model:

\I/d(X, D) = Z Z 61'73‘ (Iz — .Tj)Q
)

i jeN(i

and the weighting factor dp; ; for this case is formulated as:

2
P — pyl

2

dp;; = exp — o
p

where p; is the 3D location vector of the LiDAR point ¢, and o, is the parameter
controlling the strength of enforcing the close points to take similar depth values.
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5.3.5 Uncertainty potential:

Depth uncertainty estimation is important for refining depth estimation [108], [109],
and in safety critical systems [110], it allows an agent to identify unknowns in an
environment in order to reach optimal decisions. Our method provides pixel-wise
depth uncertainties estimates by taking into account the amount of LiDAR points
present for each superpixel.

The uncertainty potential is similar to the unary potential. It is constructed from the

number of LiDAR points projected on a superpixel and calculating the following least
square loss:

U(x,y) = ZUz' (u; — unc;)?

i€L
Ut(x,y) = [[W(u — unc)|*

where the vector unc is defined as follows:

) if P projected on SPx is >0 and <2

o if P projected on SPx is 0
unc; ;
mean otherwise

where P is a 3D point and SPx is a superpixel. In locations with accurate and suffi-
cient LiDAR points, the model will produce depth predictions with a high confidence.
This uncertainty estimation provides a measure of how confident the model is about
the depth estimation.This results in an overall better performance, since uncertain
estimates with high uncertainty can be neglected by higher level tasks that use the
estimated depth maps as an input.

5.4 OPTIMIZATION

With the unary and the pairwise potentials defined, we can now write the energy
function as:

B(X,Y) = () ®(x,y) + (B)T°(x,1) . ..

+ ... ()9"(x,In) + (§)T%(x,In) (1)

43



The scalars «, 3, v, § € [0,1] are weightings between the four terms. We may further
expand the unary and pairwise potentials to the form:

d(x,y) = a(x"WTWx — 22TWTWx + 2T WTW2z) (2)
U¢(x,In) = f(x"S"Sx) (3)
U"(x,In) = y(x"P"Px) (4)
U(x,In) = §(x*DTDx) (5)

We shall pose the problem as one of finding the optimal range vector x* such that:
x* = argmin {F(X,Y)}

Substituting equations 2, 3, 4 and 5 into 1 and solving for x reduces the problem to:
Az = b where,

A = o(WTW) + 3(STS) + ~(PTP) + 6(DTD)

b=a(WTWz)

If the uncertainty potential is added to the model, the mathematical formulation is the
following:

A= (W why )+ (555) + 0T 5) + (5P 8)

b= (aWEWz WT\?Vunc)
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All' | need to perform the optimization is to solve a large sparse linear system. The
methods for solving sparse systems are distinguished in two categories: direct and
iterative. Direct methods are robust but require large amounts of memory, as the
size of the problem grows. On the other hand, iterative methods provide better per-
formance but may exhibit numerical problems [11]. In this paper, the fast algorithm
Conjugate Gradient Squared proposed by Hestenes and Stiefel [112], [113] is em-
ployed to solve the energy minimization problem.
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6. EXPERIMENTS
6.1 THE KITTI ODOMETRY DATASET

In this work | use the odometry dataset, which includes both camera and LiDAR
measurements . The odometry dataset consists of 22 sequences. Among them, 5
sequences are used to calculate the hyperparameters and 10 for evaluation. | use
a random subset of 50 images from the test sequences for the final evaluation. We
use the right RGB camera. The Velodyne LiDAR measurements are projected onto
the RGB images.

For testing only the bottom crop (912 X 228) is used, since the LiDAR returns no
measurement to the upper part of the images. The KITTI dataset for depth comple-
tion and prediction is: http://www.cvlibs.net/datasets/kitti/eval_depth_all.

php
6.2 IMPLEMENTATION DETAILS

| implement the framework on a desktop Core i7, 8GB memory RAM with an NVIDIA
GeForce GT 720M. Processing one image takes around 7m with 1800 superpixels.
Take around 1 day to find the hyperparameters of the probabilistic model proposed.
These values were found using random search.

6.3 EVALUATION METRICS

| evaluate the accuracy of our method in depth prediction using the 3D laser ground
truth on the test images. | use the following depth evaluation metrics root mean
squared error (RMSE), mean absolute error (MAE) and mean absolute relative error
(REL), among which RMSE is the most important indicator and chosen to rank sub-
missions on the leader-board since it measures error directly on depth and penalizes
on further distance where depth measurement is more challenging. These metrics
were used by [115], [116], [117] to estimate the accuracy of monocular depth predic-
tion.

1 ~
RMSE = \/|7| > |ld —d|?

deT

1 7 2
MAE = TZHd—dH

deT
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e
REL:?Z (T)

deT

where d is the ground truth depth, d is the estimated depth, and T denotes the set
of all points in the test set images. In order to compare the results with Eigen et al.
[98] and Godard et al. [104], | crop the image to the evaluation crop applied by Eigen
et al. | also use the same resolution of the ground truth depth image and cap the
predicted depth at 80 m.
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7. RESULTS AND DISCUSSION

| evaluate our approach on the raw sequences of the KITTI benchmark, which is a
popular dataset for single image depth map prediction. The sequences contain ste-
reo imagery taken from a driving car in an urban scenario. The dataset also provides
3D laser measurements from a Velodyne laser scanner that | use as ground-truth
measurements (projected into the stereo images using the given intrinsics and extrin-
sics in KITTI). This dataset has been used to train and evaluate the state-of-the-art
methods and allows for quantitative comparison.

First, | evaluate the prediction accuracy of our proposed method with different po-
tentials in Section 7.1. Second, in Section 7.2 | explore the impact of the number of
the number of superpixels on the depth estimation performance. Third, Section 7.3
compares my approach to state-of-the-art methods on the KITTI dataset. Finally, in
Sections 7.4 and 7.5, | demonstrate two use cases of the proposed algorithm, one
for creating LiDAR super-resolution from sensor data provided by the KITTI dataset
and another one for a dataset collected in the context of this work.

7.1 ARCHITECTURE EVALUATION

This section presents an empirical study on the impact of different potential functions
and hyparameter choices on the depth prediction accuracy. In a first experiment, |
compare the impact of sequentially adding my proposed pairwise potentials. | first
evaluate a model with only unary and colour pairwise potentials. Then | added the
surface-normal pairwise potential, and finally the depth pairwise potential is included.
As shown in Table I, the RMSE is improved after adding each pairwise potential.

TABLE I. Method performance after adding pairwise potentials (lower is better)

Algorithm Potential functions RMSE

Ours I 865.31
Ours [l 854.24
Ours 11 849.39

Fig. 10 shows the qualitative evaluation of the impact of the pairwise potentials. In
row order: 1st: Pairwise potential |, penalizes dissimilar depth estimates of neigh-
boring pixels which take similar colors in the RGB image, 2nd: pairwise potential
Il, penalizes the depth differences between neighboring superpixels whose normal
surface vectors have large cosine similarities, 3rd: pairwise potential Ill, penalizes
neighboring superpixels with large observed depth differences.
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Fig. 10. Qualitative evaluation of the impact of the pairwise potentials defined as
CRF terms.
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7.2 ON NUMBER OF SUPERPIXELS

In this section, | explore the relation between the prediction accuracy and the number
of superpixels.

As displayed in Fig. 11, a greater number of superpixels yields better results in error

measurements. Although the more number of superpixels improves the quality of
depth map, this makes the computational cost to increase.

TABLE Il. Comparison on the number of super-pixels (lower is better)

Algorithm  #Superpixels RMSE Time x frame

Ours 1200 1370.27 5Em
Ours 2400 1050.55 11m
Ours 5500 848.84 26 m

Additionally, Table Il shows the time to estimate depth using all the potentials. As can
be seen, the execution time varies according to the number of superpixels set. It is
very important to highlight that the proposed model is not computationally efficient.
However, this can be solved using parallel programming or others approaches.

7.3 ALGORITHM EVALUATION FOR DEPTH COMPLETION

The KITTI odometry dataset is more challenging dataset as compared to other da-
taset for depth estimation. Since, the distances in the KITTI dataset are larger than
other datasets as in NYU-Depth-V2 dataset.

The value of error metrics have been taken from the respective research articles.
The quantitative results of the proposed method here and other existing methods on
KITTI dataset are shown in Table Ill. From Table lll, | can observe that the proposed
method outperforms other existing methods. Qualitative results are shown in Fig. 12.

TABLE lll. Depth completion errors by different methods on the test set of KITTI
depth completion benchmark (lower is better)

Algorithm RMSE  MAE
Schneider et al. [105] 2312.57 605.47
Cheng et al. [106] 1019.64 279.46
Huang et al. [107] 841.77 253.47
Hambarde et al. [108] 830.57 247.85
Ma et al. [109] 814.73 249.95
Ours 849.39 263.31
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Fig. 11. Visual comparison of dense depth maps produced by the CRF framewor
proposed varying superpixel size. From top to bottom, 1200, 2400 and 5500 super-
pixels.
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Fig. 12. Depth completion and uncertainty estimates of our approach on the KITTI
raw test set. From top to bottom: RGB and raw depth projected onto the image;
high-resolution depth map; raw uncertainty; and estimated uncertainty map.
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7.4 ALGORITHM EVALUATION FOR LIDAR SUPER-RESOLUTION

| present another demonstration of the method in super-resolution of LIDAR mea-
surements. 3D LiDARs have a low vertical angular resolution and thus generate a
vertically sparse point cloud. | use all measurements in the sparse depth image and
RGB images as input to the framework.

On the other hand, starting from LiDAR Super-Resolution map | can generate a
3D reconstruction of the scene. Reconstruction of three-dimensional (3D) scenes
has many important applications, such as autonomous navigation, environmental
monitoring [112] and other computer vision tasks [110].

Therefore, a dense and accurate model of the environment is crucial for autonomous
vehicles. In fact, imprecise representations of the vehicle’s surrounding may lead to
unexpected situations that could endanger the passengers. In this paper, the 3D
modeling is generated using the combination of image and range data is a sensor
fusion approach that takes strength from each in order to overcome their limitations.
Images normally have higher resolution and more visual information than range da-
ta, and range data are noisy, sparse, and have less visual information, but already
contain 3D information.

The qualitative and quantitative results presented here suggest that our system pro-
vides 2D depth map, which can be converted into a 3D point cloud, of reasonable
quality. The qualitative results for LIDAR Super-Resolution task are shown in Fig. 13.

Following [114], | use a random subset of images from the test sequences for eva-
luation. Specifically, | take the bottom part 912x228 due to no depth at the top area,
and only evaluate the pixels with ground truth. The performance of the proposed ap-
proach and state-of-the-art depth completion methods are recorded in Table IV.

TABLE IV. Depth estimation errors by different methods on the test set of KITTI
depth estimation benchmark (lower is better)

Algorithm RMSE REL Log10
Cadena et al. [113] 714 0179 -

Liao et al. [114] 451 0.113 0.049
Fuetal. [115] 3.67 0.072 -
Ma et al. [116] 3.37 0.073 -

Cheng et al. [117] 3.24 0.059 -
Hambarde et al. [118] 3.11  0.069 0.038
Ours 3.59 0.072 0.041

Table Il and Table IV show that the approach proposed in this thesis achieves good
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Fig. 13. LiDAR super-resolution. Creating dense point clouds from sparse raw mea-
surements. From top to bottom: RGB image, raw depth map, predicted depth and
ground truth depth map. Distant cars are almost invisible in the raw depth map, but
are easily recognizable in the predicted depth map
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performance in single image depth map prediction on the popular KITTI dataset. It
is able to predict detailed depth maps on thin and distant objects. It also estima-
tes reasonable depth in image parts in which there is no ground-truth available for
supervised learning.

The qualitative results presented here suggest that the system provides 2D depth
map of reasonable quality. Nevertheless, it is instructive to consider how the accuracy
of the approach depends on the density of laser measurements and the number of
superpixeles selected.

Although recent methods have achieved impressive progress in evaluation metrics,
as shown in the Tables Il and IV, most of them neglect the geometric constraints in
the 3D space, or use stereo cameras, infer depth estimation from only cameras or
require dataset to train their deep learning models.

All those components translate into disadvantages. For example, using stereo ca-
meras increase the cost of system development. To use deep learning models, it is
necessary to have large computational sources and in most of the cases a dataset
with its corresponding depth labels.

Those components were considered in the CRF model which makes this approach
different from previous fusion methods, being more robust and of low cost.
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7.5 APPLICATION: UAO DRIVING LIDAR-RGB DATASET

Thus far, | have sampled depth from high-quality LiDAR depth maps, but in practi-
ce sparse depth inputs may come from less reliable sources. Therefore | provide a
qualitative evaluation of this model on my own well-calibrated LiDAR and RGB data-
set. | use a VLP-16 LiDAR along with a Stereo Labs Zed Mini camera of 1280x720
resolution. The robotic platform used to gather the dataset is shown in Fig. 14.

Fig. 14. Jackal platform, monocular camera and lidar.

This dataset enables us to prove the stability and robustness of the proposed model
in particularly challenging scenarios. The scenes were recorded with low resolution
of camera and the LiDAR sensor in comparison of the KITTI benchmark.

Notably, the algorithm proposed is able to estimate a dense depth map of indoor and
outdoor environments using color and sparse depth data. Experimental results are
shown in Fig.15, Fig.16 and Fig.17. The dark red reflects farther distances and the
dark blue reflects closer distances.

Despite of the lower number of LIDAR channels, the proposed method has provided
accurate depth information even under challenging outdoor conditions, as shown in
Fig.17. In this scene there is lot of variability in terms of light and shadows generated
by the environment and the weather itself.

After a close look at Fig.15, Fig.16 and Fig.17, it is noticeable that no depth obser-
vations from the LiDAR are available at the top and bottom locations of the colour
image. After inference, the depth estimates, shown in the bottom images, at the abo-
ve locations is consistent with the information provided by the image. Therefore | can
conclude that the framework proposed here is reliable to work in the depth prediction
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task. Additionally, it also solves the depth completion problem, as it is able to deal
with highly sparse input point clouds projected on the image space.
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Fig. 15. Indoors: LiDAR super-resolution. Creating dense point clouds from sparse
raw measurements and color. From top to bottom: RGB image, raw depth map and
predicted depth
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Fig. 16. Outdoors: LiDAR super-resolution. Creating dense point clouds from sparse
raw measurements and color. From top to bottom: RGB image, raw depth map and
predicted depth.
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Fig.17. Outdoors: LiDAR super-resolution. Creating dense point clouds from sparse
raw measurements and color. From top to bottom: RGB image, raw depth map and
predicted depth.
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8. CONCLUSIONS

In this document, | described an innovative approach to fuse information from diffe-
rent sensor modalities, like cameras and lidar, in order to probabilistically estimate a
dense point cloud.

The approach achieves good performance in single image depth map prediction on
the popular KITTI dataset. It is able to predict detailed depth maps on thin and dis-
tant objects. It also estimates reasonable depth in image parts in which there is no
ground-truth available for supervised learning.

The qualitative and quantitative results presented here suggest that our system pro-
vides 2D depth maps of reasonable quality. Nevertheless, it is instructive to consider
how the accuracy of our approach depends on the density of laser measurements
and the number of superpixeles selected. The method proposed in this thesis works
well even with sparse point clouds. The computational demand required to run the
framework at the level of pixel is extremely high. However, there is room for improve-
ment.

This method opens up an important avenue for research into multi sensor fusion and

the more general 3D perception problems, which might benefit substantially from
sparse depth samples.
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9. APPLICATIONS AND FUTURE WORK

The automotive industry is rapidly evolving on the technology front and this growth
is primarily attributed to changes in consumer preferences, and an equal boost from
legislative bodies. Technological advances include improving vehicle performance,
passenger safety, communication skills, and driving comfort, among others. The de-
mand for safe and luxury vehicles has increased, so automakers have started to
focus on improving road safety and accident prevention.

The framework proposed in this work enables safer driving and autonomous na-
vigation by continuously monitoring the surrounding space, avoiding collisions by
measuring the distance to objects with high confidence.

On the other hand, agriculture is probably one of the most traditional and longest
existing trades. However, the sector is well advised to adopt innovative technologies
and benefit from the opportunities offered by increasing automation. One of these
advances is the autonomous operation of agricultural vehicles and precision agri-
culture. The objective of this last concept is to reduce expenditure and significantly
increase yields. The model proposed in this thesis is timely. The system improve
safety and productivity in the agriculture sector.

According to the qualitative results in outdoor environment, | consider the perception
system proposed in this project, which use two sensory modalities such as LiDAR
and Monocular camera, can significantly support agriculture in increasing yields and
using land more efficiently. For example, this system could be used to identify obsta-
cles and avoid them during scene mapping, or generate a 3D reconstruction of each
fruit to be analyzed. The use of these technologies represents an important step in
preparing the industry for the future.
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