13 research outputs found

    A Case for Time Slotted Channel Hopping for ICN in the IoT

    Full text link
    Recent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network--both without cross-layering. Through a series of experiments on the FIT IoT-LAB interconnecting typical IoT hardware, we find that our approach is fully robust against wireless interference, and almost halves the energy consumed for transmission when compared to CSMA. Most importantly, our adaptive scheduling prevents the time-slotted MAC layer from sacrificing throughput and delay

    Bluetooth Mesh under the Microscope: How much ICN is Inside?

    Full text link
    Bluetooth (BT) mesh is a new mode of BT operation for low-energy devices that offers group-based publish-subscribe as a network service with additional caching capabilities. These features resemble concepts of information-centric networking (ICN), and the analogy to ICN has been repeatedly drawn in the BT community. In this paper, we compare BT mesh with ICN both conceptually and in real-world experiments. We contrast both architectures and their design decisions in detail. Experiments are performed on an IoT testbed using NDN/CCNx and BT mesh on constrained RIOT nodes. Our findings indicate significant differences both in concepts and in real-world performance. Supported by new insights, we identify synergies and sketch a design of a BT-ICN that benefits from both worlds

    Designing Time Slotted Channel Hopping and Information-Centric Networking for IoT

    Get PDF
    International audienceRecent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network -- both without cross-layering

    Low-power Internet of Things with NDN & Cooperative Caching

    Get PDF
    International audienceEnergy efficiency is a major driving factor in the Internet of Things (IoT). In this context, an IoT approach based on Information-Centric Networking (ICN) offers prospects for low energy consumption.Indeed, ICN can provide local in-network content caching so that relevant IoT content remains available at any time while devices are in deep-sleep mode most of the time.In this paper, we evaluate NDN enhanced with CoCa, a simple side protocol we designed to exploit content names together with smart interplay between cooperative caching and power-save sleep capabilities on IoT devices.We perform extensive, large scale experiments on real hardware with IoT networks comprising of up to 240 nodes, and on an emulator with up to 1000 nodes.We show in practice that, with NDN+CoCa, devices can reduce energy consumption by an order of magnitude while maintaining recent IoT content availability above 90%.We furthermore provide auto-configuration mechanisms enabling practical ICN deployments on IoT networks of arbitrary size with NDN+CoCa. With such mechanisms, each device can autonomously configure names and auto-tune parameters to reduce energy consumption as demonstrated in this paper

    An efficient pending interest table control management in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring, controlling and managing the PIT contents for Internet architecture of the future

    Energy Efficient Interest Forwarding in NDN-Based Wireless Sensor Networks

    Get PDF

    Goodput Analysis for Multi-Source Coded Downloads

    Get PDF

    Security Properties of Information-centric Networks

    Get PDF
    The IP network was built decades ago, and with today s use of Internet, a new network layer protocol is much needed. Named Data Networking (NDN) is a proposal for content-centric discovery and routing. Yet, the public key infrastructure issue has not been solved in NDN. Identity-based cryptography (IBC) seems to be applicable to wireless sensor networks, and even more applicable when deployed over NDN. In this paper I will explain the NDN architecture and the basics of IBC. Further, I will model and implement a trust model in a thought sensor network using IBC, running over NDN. Implementing and testing my proposal verifies the relevancy of IBC over wireless sensor network running over NDN, and the usability of developing applications over NDN. I formally and informally prove the security in the protocols suggested for device registration and data pull under deployment in the application

    Multi-source data retrieval in IoT via named data networking

    No full text
    corecore