2,673 research outputs found

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed

    Robust H8 design for resonant control in a CVCF inverter application over load uncertainties

    Get PDF
    CVCF (constant voltage, constant frequency) inverters are electronic devices used to supply AC loads from DC storage elements such as batteries or photovoltaic cells. These devices are used to feed different kinds of loads; this uncertainty requires that the controller fulfills robust stability conditions while keeping required performance. To address this, a robust H8 design is proposed based on resonant control to track a pure sinusoidal voltage signal and to reject the most common harmonic signals in a wide range of loads. The design is based on the definition of performance bounds in error signal and weighting functions for covering most uncertainty ranges in loads. Experimentally, the H8 controller achieves high-quality output voltage signal with a total harmonic distortion less than 2%Peer ReviewedPostprint (published version

    DISCRETE-TIME ADAPTIVE CONTROL ALGORITHMS FOR REJECTION OF SINUSOIDAL DISTURBANCES

    Get PDF
    We present new adaptive control algorithms that address the problem of rejecting sinusoids with known frequencies that act on an unknown asymptotically stable linear time-invariant system. To achieve asymptotic disturbance rejection, adaptive control algorithms of this dissertation rely on limited or no system model information. These algorithms are developed in discrete time, meaning that the control computations use sampled-data measurements. We demonstrate the effectiveness of algorithms via analysis, numerical simulations, and experimental testings. We also present extensions to these algorithms that address systems with decentralized control architecture and systems subject to disturbances with unknown frequencies

    Advances In Internal Model Principle Control Theory

    Get PDF
    In this thesis, two advanced implementations of the internal model principle (IMP) are presented. The first is the identification of exponentially damped sinusoidal (EDS) signals with unknown parameters which are widely used to model audio signals. This application is developed in discrete time as a signal processing problem. An IMP based adaptive algorithm is developed for estimating two EDS parameters, the damping factor and frequency. The stability and convergence of this adaptive algorithm is analyzed based on a discrete time two time scale averaging theory. Simulation results demonstrate the identification performance of the proposed algorithm and verify its stability. The second advanced implementation of the IMP control theory is the rejection of disturbances consisting of both predictable and unpredictable components. An IMP controller is used for rejecting predictable disturbances. But the phase lag introduced by the IMP controller limits the rejection capability of the wideband disturbance controller, which is used for attenuating unpredictable disturbance, such as white noise. A combination of open and closed-loop control strategy is presented. In the closed-loop mode, both controllers are active. Once the tracking error is insignificant, the input to the IMP controller is disconnected while its output control action is maintained. In the open loop mode, the wideband disturbance controller is made more aggressive for attenuating white noise. Depending on the level of the tracking error, the input to the IMP controller is connected intermittently. Thus the system switches between open and closed-loop modes. A state feedback controller is designed as the wideband disturbance controller in this application. Two types of predictable disturbances are considered, constant and periodic. For a constant disturbance, an integral controller, the simplest IMP controller, is used. For a periodic disturbance with unknown frequencies, adaptive IMP controllers are used to estimate the frequencies before cancelling the disturbances. An extended multiple Lyapunov functions (MLF) theorem is developed for the stability analysis of this intermittent control strategy. Simulation results justify the optimal rejection performance of this switched control by comparing with two other traditional controllers

    Vibration suppression in multi-body systems by means of disturbance filter design methods

    Get PDF
    This paper addresses the problem of interaction in mechanical multi-body systems and shows that subsystem interaction can be considerably minimized while increasing performance if an efficient disturbance model is used. In order to illustrate the advantage of the proposed intelligent disturbance filter, two linear model based techniques are considered: IMC and the model based predictive (MPC) approach. As an illustrative example, multivariable mass-spring-damper and quarter car systems are presented. An adaptation mechanism is introduced to account for linear parameter varying LPV conditions. In this paper we show that, even if the IMC control strategy was not designed for MIMO systems, if a proper filter is used, IMC can successfully deal with disturbance rejection in a multivariable system, and the results obtained are comparable with those obtained by a MIMO predictive control approach. The results suggest that both methods perform equally well, with similar numerical complexity and implementation effort
    • …
    corecore